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Abstract

The neighbourhood-based Collaborative Filtering is a widely used method in recom-

mender systems. However, the risks of revealing customers’ privacy during the process of

filtering have attracted noticeable public concern recently. Specifically, kNN attack dis-

closes the target user’s sensitive information by creating k fake nearest neighbours by non-

sensitive information. Among the current solutions against kNN attack, the probabilistic

methods showed a powerful privacy preserving effect. However, the existing probabilis-

tic methods neither guarantee enough prediction accuracy due to the global randomness,

nor provide assured security enforcement against kNN attack. To overcome the problems

of current probabilistic methods, we propose a novel approach, Partitioned Probabilistic

Neighbour Selection, to ensure a required security guarantee while achieving the optimal

prediction accuracy against kNN attack. In this paper, we define the sum of k neighbours’

similarity as the accuracy metric α, the number of user partitions, across which we select

the k neighbours, as the security metric β. Differing from the present methods that glo-

bally selected neighbours, our method selects neighbours from each group with exponential

differential privacy to decrease the magnitude of noise. Theoretical and experimental ana-

lysis show that to achieve the same security guarantee against kNN attack, our approach

ensures the optimal prediction accuracy.

Keywords: Privacy Preserving, Differential Privacy, Neighbourhood-based Collaborative

Filtering, Internet Commerce

Topics Differential Privacy, Privacy Metrics, Privacy in Recommender Systems
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1 Introduction

Recommender systems predict customers’ potential preferences by aggregating history data

and customers’ interests. Recently, the increasing importance of recommender systems in vari-

ous Internet applications should be noticed. For example, Amazon has been receiving benefits

for a decade from the recommender systems by providing personal recommendation to their

customers, and Netflix posted a one million U.S. dollars award for improving their recommender

system to make their business more profitable [8, 12, 23]. Currently, in recommender systems,

Collaborative Filtering (CF) is a famous technology with three main popular algorithms [14],

i.e., neighbourhood-based methods [8], association rules based prediction [11], and matrix fac-

torisation [13]. Among these algorithms, neighbourhood-based methods are the most widely

used in the industry because of its easy implementation and high prediction accuracy.

One of the most popular neighbourhood-based CF method is k Nearest Neighbour (kNN)

method which provides recommendations by aggregating the opinions of a user’s k nearest

neighbours [2]. Although kNN method efficiently presents good recommendation performance

of accuracy, the risk of customers’ privacy disclosure during the process of filtering is a growing

concern, e.g., the kNN attack [5] which exploits the property that the users are more similar

when sharing same ratings on corresponding non-sensitive items to reveal user’s sensitive in-

formation. Thus proposing an efficient privacy preserving neighbourhood-based CF algorithm

against kNN attack, which obtains trade-off between the system security and recommendation

accuracy, has been a natural research problem.

The literature in CF recommender systems has shown several approaches to preserve cus-

tomers’ privacy. Generally, cryptographic methods, obfuscation, perturbation, randomised

methods (including naive probabilistic methods and differential privacy methods) are ap-

plied [27]. Among them, cryptographic methods [9, 19] provide the most reliable security

but the unnecessary computational cost cannot be ignored. Obfuscation methods [20, 25] and

Perturbation methods [3, 4] introduce designed random noise into the original matrix to pre-

serve customers’ sensitive information; however the magnitude of noise is hard to calibrate in

these two types of methods [7, 27]. The naive probabilistic method [1] provides a similarity

based weighted neighbour selection for the k neighbours. Similar to perturbation, McSherry et

al. [17] presented a naive differential privacy method which adds calibrated noise into the co-

variance (similarity between users/items) matrix. Similar to the naive probabilistic neighbour

selection [1], Zhu et al. [27] proposed a Private Neighbour CF to preserve privacy against kNN

attack by introducing differential privacy in selecting the k nearest neighbours randomly, then

adding Laplace differential noise into covariance matrix. Although the methods in [1, 17, 27]

successfully preserve users’ privacy against kNN attack, the low prediction accuracy due to the

global randomness should be remarked. Moreover, as privacy preserving CF recommendation

algorithms, none of the existing randomised methods provide an assured security enforcement

before the process of filtering.

Contributions. In this paper, to overcome the problems of unsatisfactory prediction
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accuracy and unassured security guarantee in the existing probabilistic approaches against

kNN attack, we propose a novel method, Partitioned Probabilistic Neighbour Selection. The

main contributions of this paper are:

• We define performance metrics clearly in both prediction accuracy and system security

to theoretically analyse the performance of privacy preserving CF method. Specifically,

we define the sum of k neighbours’ similarity as the accuracy metric α, the number of

user partitions, across which we select the k neighbours, as the security metric β.

• We propose a novel differential privacy preserving method, Partitioned Probabilistic

Neighbour Selection (PPNS), which achieves the optimal prediction accuracy α with

a given desired system security β among all of the existing developments of randomised

neighbourhood-based CF recommendation algorithms.

• We show that, compared with the related methods, the proposed PPNS method performs

consistently well across various experimental settings. For example, we compare the

accuracy performance on different datasets; we design the experiments on both user-

based and item-based neighbourhood-based CF; we examine the accuracy performance

in the scenario with and without kNN attack.

Organisation. The rest of this paper is organised as follows: Firstly, in Section 2, we discuss

both the advantages and disadvantages in the existing privacy preserving methods on CF

recommender systems. Then we introduce the relevant preliminaries in this paper in Section

3. Afterwards, we present a classic attacking against neighbourhood-based CF recommender

systems in Section 4. Next, we propose a novel differential privacy recommendation approach,

Partitioned Probabilistic Neighbour Selection in Section 5. In Section 6, the experimental

analysis of our approach on the performance of both recommendation accuracy and security

are provided. Finally, we conclude with a summary in Section 7.

2 Related Work

A noticeable number of literature has been published on privacy risks to preserve customers’

private data in recommender systems. In this section, we briefly discuss some of the research

literature in privacy preserving CF recommender systems.

2.1 Traditional Privacy Preserving CF Recommendation

Amount of traditional privacy preserving methods have been developed in CF recommender

systems [27], including cryptographic [9,19], obfuscation [20,25], perturbation [3,4] and prob-

abilistic methods [1]. Erkin et al. [9] applied homomorphic encryption and secure multi-party

computation in privacy preserving recommender systems, which allows users to jointly com-

pute their data to receive recommendation without sharing the true data with other parties.

3



Nikolaenko et al. [19] combined a famous recommendation technique, matrix factorization,

and a cryptographic method, garbled circuits, to provide recommendations without learning

the real user ratings in database. The Cryptographic methods provide the highest guaran-

tee for both prediction security ans system security by introducing encryption rather than

adding noise to the original record. Unfortunately, unnecessary computational cost impacts

its application in industry [27]. Obfuscation and perturbation are two similar data processing

methods. In particular, obfuscation methods aggregate a number of random noises with real

users rating to preserve user’s sensitive information. Parameswaran et al. [20] proposed an

obfuscation framework which exchanges the sets of similar items before submitting the user

data to CF server. Weinsberg et al. [25] introduced extra reasonable ratings into user’s profile

against inferring user’s sensitive information. Perturbation methods modify the user’s original

ratings by a selected probability distribution before using these ratings. Particularly, Bilge

et al. [4] added uniform distribution noise to the real ratings before the utilisation of user’s

rating in prediction process. While, Basu et al. [3] regarded the deviation between two items

as the adding noise. Both perturbation and obfuscation obtain good trade-off between pre-

diction accuracy and system security due to the tiny data perturbation, but the magnitude

of noise or the percentage of replaced ratings are not easy to be calibrated [7, 27]. The naive

probabilistic method [1] applied weighted sampling in the process of neighbour selection which

preserves users’ privacy against kNN attack successfully, because of the perturbation of the

final neighbour set; however, it cannot guarantee enough prediction accuracy due to the global

randomness. Moreover, these traditional privacy preserving CF methods are unable to measure

privacy levels against kNN attack, thus impairing the credibility of the final recommendation

result.

2.2 Differential Privacy CF Recommendation

As a well-known privacy definition, the differential privacy mechanism [6] has been applied in

the research of privacy preserving recommender systems. For example, McSherry et al. [17]

provided the first differential privacy neighbourhood-based CF recommendation algorithm.

Actually, the naive differential privacy protects the neighbourhood-based CF recommender

systems against kNN attack successfully, as they added Laplace noise into the covariance

matrix globally, so that the output neighbour set is no longer the original k neighbours (k

nearest candidates). However, the prediction accuracy of their recommendation algorithm is

decreased significantly due to the introduction of global noise.

Another development of differential privacy neighbourhood-based CF method, Private

Neighbour CF (PNCF), is proposed by [27] which inspires our work. They theoretically fixed

the low prediction accuracy problem of naive probabilistic neighbour selection [1] by a trun-

cated parameter λ. As a differential privacy method, the selection weight in PNCF method is
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measured by the following equation:

ωi = exp(
ε

4k ×RS
qa(U(ua), ui)), (1)

where ε is differential privacy budge, q is the score function, RS is the Recommendation-Aware

Sensitivity of score function q for any user pair ui and uj , and U(ua) is the set of user ua’s

candidate list. For a user ua, the score function q and its Recommendation-Aware Sensitivity

are defined as:

qa(U(ua), ui) = sim(a, i), (2)

RS = max

max
s∈Sij

 ri,s · rj,s
‖r′i‖

∥∥∥r′j∥∥∥
 ,max

s∈Sij

ri,s · rj,s
(
‖ri‖ ‖rj‖ − ‖r′i‖

∥∥∥r′j∥∥∥)
‖ri‖ ‖rj‖ ‖r′i‖

∥∥∥r′j∥∥∥
 , (3)

where ri,s is user ui’s rating on item ts, sim(a, i) is the similarity between user ua and ui, ri is

user ui’s average rating on every item, Sij is the set of all items co-rated by both users i and

j, i.e., Sij = {s ∈ S|ri,s 6= ∅ & rj,s 6= ∅}.
Then, the PNCF method selects the k neighbours which include the candidates whose

similarity is greater than (simk + λ) and randomised candidates whose similarity is between

(simk + λ) and (simk − λ), where simk denotes the similarity of the kth candidate of a

target user. Zhu et al. [27] provided an equation to calculate the value of λ, i.e. λ =

min(simk,
4k·RS
ε ln k(n−k)

ρ ), where ρ is a constant, 0 < ρ < 1. Once having the k neighbours set,

Zhu et al. [27] added Laplace differential noise in the final k neighbour’s similarity matrix to

perturb the final prediction. Their experimental results showed better prediction performance

than [17].

We observe that PNCF [27] has two weaknesses. Firstly, it unnecessarily adds random noise

in the process of filtering twice (one at neighbour selection stage, another at rating prediction

stage), the extra randomness will decrease the prediction accuracy significantly. Secondly,

the value of λ may not be achievable. This is because the computation of λ results in a

good theoretical recommendation accuracy, but does not yield a good experimental prediction

accuracy on the given test data sets in [27] against kNN attack. So the PNCF method [27]

will actually be a method of naive Probabilistic Neighbour Selection [1] and cannot guarantee

enough recommendation accuracy.

In conclusion, compared with cryptographic, obfuscation and perturbation privacy pre-

serving methods, the probabilistic methods are more efficient. The existing Probabilistic solu-

tions [1, 17, 27] on privacy preserving neighbourhood-based CF recommender systems applied

different randomised strategies to improve the prediction accuracy, while ensure the security

against kNN attack by selecting the k neighbours across a target user’s partial/entire candidate

list. However, they failed to guarantee enough prediction accuracy due to the introduction of

global noise. Additionally, as privacy preserving CF recommendation algorithms, none of the

existing randomised methods provide an assured security enforcement before the process of CF
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recommendation against kNN attack. Therefore, in this paper, we aim to propose a randomised

privacy preserving neighbourhood-based CF recommendation algorithm which guarantees an

assured security firstly, then achieves the optimal prediction accuracy with the assured security

guarantee.

3 Preliminaries

In this section, we introduce the foundational concepts related with this paper in collaborative

filtering, differential privacy, and Wallenius’ non-central hypergeometric distribution.

3.1 k Nearest Neighbour Collaborative Filtering

k Nearest Neighbour collaborative filtering is the most popular recommendation method in

neighbourhood-based CF recommender systems, which predicts customer’s potential prefer-

ences by aggregating the opinions of the k most similar neighbours [2].

Neighbour Selection and Rating Prediction are two main steps in neighbourhood-based

CF [27]. At the Neighbour Selection stage, k nearest candidates are selected from the target

user ua’s candidate list Sa, where similarities between ua and any other users are calculated

by similarity measurement metric. There are two famous similarity measurement metrics: the

Pearson correlation coefficient and Cosine-based similarity [2]. In this paper, we use the Cosine-

based similarity [21] as the similarity measurement metric because of its lower complexity.

sim(i, j) =

∑
s∈Sij ri,srj,s√∑

s∈Si r
2
i,s

√∑
s∈Sj r

2
j,s

, (4)

where sim(i, j) is the similarity between user ui and uj , ri,s is user ui’s rating on item ts,

ri,s ∈ R, R is the user-item rating dataset, r̄i is user ui’s average rating on every item, Sij is

the set of all items co-rated by both user ui and uj , i.e., Sij = {s ∈ S|ri,s 6= ∅ & rj,s 6= ∅}, Si
is the set of all items rated by user ui, i.e., Si = {s ∈ S|ri,s 6= ∅}.

At the stage of Rating Prediction, to predict the potential rating r̂ax of user ua on item tx,

all ratings on tx of the k selected users (which are called neighbours) will be aggregated. For

example, for user-based methods, the prediction of r̂ax is shown as below:

r̂ax =

∑
ui∈Nk(ua) sim(a, i)ri,x∑
ui∈Nk(ua) |sim(a, i)|

, (5)

where, Nk(ua) is a sorted set which contains user ua’s k nearest neighbours, Nk(ua) is sorted

by similarity in a descending order, sim(a, i) is the ith neighbour of ua in Nk(ua).
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3.2 Differential Privacy

Informally, differential privacy [6] is a scheme that minimises the sensitivity of output for a

given statistical operation on two different (differentiated in one record to protect) datasets.

Specifically, differential privacy guarantees whether one specific record appears or does not

appear in a database, the privacy mechanism will shield the specific record to the adversary.

The strategy of differential privacy is adding a random calibrated noise to the result of a query

function on the database. We say two datasets X and X ′ are neighbouring dataset, if they

differ in only one record at most. A formal definition of Differential Privacy is shown as follows:

Definition 1 (ε-Differential Privacy [6]). A randomised mechanism T is ε-differential privacy

if for all neighbouring datasets X and X ′, and for all outcome sets S ⊆ Range(T ), T satisfies:

Pr[T (X) ∈ S] ≤ exp(ε) · Pr[T (X ′) ∈ S], where ε is a privacy budget.

Definition 2 (Exponential Differential Privacy Mechanism [18]). Given a score function of a

database X, q(X,x), which reflects the score of query respond x. The exponential mechanism T
provides ε-differential privacy, if T (X) = {the probability of a query respond x ∝ exp( ε·q(X,x)

2∆q )},
where ∆q = max |q(X,x)− q(X ′, x)|, denotes the sensitivity of q.

3.3 Wallenius’ Non-central Hypergeometric Distribution

Briefly, Wallenius’ Non-central Hypergeometric Distribution is a distribution of weighted sam-

pling without replacement [24]. We assume there are c categories in the population, category

i contains mi individuals. All the individuals in category i have the same weight ωi. The

probability of an individual is sampled at a given draw is proportional to its weight ωi.

In this paper, we use the following properties of Wallenius’ Non-central Hypergeometric Dis-

tribution to find the optimal prediction accuracy neighbour selection with a given security guar-

antee against kNN attack. [16] gave the approximated solution to the mean µ = (µ1, µ2, . . . , µc)

of x = (x1, x2, . . . , xc), where xi denotes the number of individuals sampled from category i

by Wallenius’ Non-central Hypergeometric Distribution,
∑c

i=1 xi =
∑c

i=1 µi = k:

(
1− µ?1

m1

)1/ω1

=

(
1− µ?2

m2

)1/ω2

= . . . =

(
1− µ?c

mc

)1/ωc

, (6)

where
∑c

i=1 µ
?
i = k, ∀i ∈ C : 0 ≤ µ?i ≤ mi.

The solution µ? = (µ?1, µ
?
2, . . . , µ

?
c) is an approximation to the mean µ. Fog [10] stated the

following properties of Equation (6): firstly, the solution µ∗ is valid under the conditions that

∀i ∈ C : mi > 0 and ωi > 0. Secondly, the mean given by Equation (6) is a good approximation

in most cases. Thirdly, Equation (6) is exact when all ωi are equal.
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4 A Privacy Attacking on CF Recommender Systems

In this section, we introduce a classic neighbourhood-based CF attacking, k Nearest Neighbour

(kNN) attack. Calandrino et al. [5] presented a user-based attacking, k Nearest Neighbour

(kNN) attack, against the kNN CF recommendation algorithm. Simply, kNN attack exploits

the property that the users are more similar when sharing same ratings on corresponding items

to reveal user’s private data.

We suppose that an attacker’s background knowledge consists of both the recommendation

algorithm (kNN CF recommendation) and its parameter k. Furthermore, a target user ua’s

partial non-sensitive history ratings, i.e., the ratings on m items that ua voted, are known to

the attacker.

The aim of kNN attack is to disclose ua’s sensitive transactions that the attacker does

not yet know about. To achieve this goal, the attacker firstly registers k fake users in a kNN

recommender system who only vote on ua’s m non-sensitive items with same ratings of ua.

With a high probability, each fake user’s k nearest neighbours set Nk(fake user) will include

the other k − 1 fake users and the target user ua. Because the target user ua is the only

neighbour who has ratings on the items which are not rated by the fake users, to provide

recommendations on these items to the fake users, the recommender system has to give ua’s

rating to the fake users directly. Obviously, the fake users learn the target user ua’s whole

rating list successfully with kNN attack.

5 Privacy Preservation by Partitioned Probabilistic Neighbour

Selection

In this section, we firstly present the motivations and the goal of this paper. Then we provide

two performance metrics on privacy preserving neighbourhood-based CF recommender systems

against kNN attack. Finally we propose our Partitioned Probabilistic Neighbour Selection

algorithm based on our motivations and goal.

5.1 Motivation

Current research [1, 17, 27] on privacy preserving neighbourhood-based CF recommender sys-

tems applied different randomised strategies to improve the prediction accuracy, while ensure

the security against kNN attack by selecting the k neighbours across a target user’s par-

tial/entire candidate list. Among these randomised strategies, differential privacy is a better

privacy preserving mechanism as it provides calibrated magnitude of noise.

Actually, since the information collected by recommender systems is always the customers’

personal data [5], preserving the users’ sensitive information should be the kernel issue of

recommender systems. But none of the existing privacy preserving neighbourhood-based CF

recommendation algorithms ensure a successful security-assured privacy preservation against
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kNN attack before the process of CF recommendation. So in this paper, we present a security

metric to measure the level of system security.

In addition, the prediction accuracy should also be considered carefully with the guarantee

of assured security, otherwise, the recommender systems would be useless to the non-malicious

users who are the majority of customers. However, because of the introduction of global

noise, the current randomised methods cannot guarantee the prediction accuracy either. To

provide enough prediction utility, we have to decrease the noise as much as possible. Since

there is no need to add noise into both the stage of neighbour selection and rating prediction,

we may simply add Laplace noise [6] to the final prediction rating after a regular kNN CF.

Unfortunately, as Sarathy et al. [22] reported the security risk about the Laplace mechanism

for numeric data, the above idea should be rejected. So we focus on adding noise at the stage

of neighbour selection. Instead of global neighbour selection, we partition the order candidate

list, so that we can control magnitude of noise inside each partition.

Therefore, in this paper, we aim to propose a partitioned probabilistic (differential privacy)

neighbour selection method, which guarantees an assured security, then achieves the maximum

prediction accuracy with the assured security against kNN attack, without any perturbations

in the process of rating prediction.

5.2 Performance Metrics

5.2.1 Accuracy

Naturally, in any neighbourhood-based CF recommender systems, aggregating the ratings of

more similar users yields more reliable prediction. Therefore, we define the accuracy perfor-

mance metric α as the similarity sum of the k neighbours of a target user ua. Obviously, the

greatest value of α would be the similarity sum of the k nearest candidates of a target user.

It is simple to compute α in the deterministic neighbourhood-based CF algorithms, e.g.

kNN CF recommendation algorithm, because the k neighbours selected by the deterministic

algorithms are determined. So in the case of deterministic algorithms, we compute α by the

following equation,

α =
k∑
i=1

sim(a, neighbouri). (7)

While, in the randomised neighbourhood-based CF algorithms, because of the randomisa-

tion, we should calculate the value of α as the expected similarity sum of the k neighbours

by

α = E(
k∑
i=1

sim(a, neighbouri)). (8)

However, it is difficult to compute Equation (8) directly, as we need to find all the possible

k-neighbour combinations and their corresponding probabilities. So we give another way to
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compute the expectation in Equation (8), shown in blow:

α = E(
∑k

i=1 sim(a, neighbouri))

=
∑n

i=1 sim(a, useri)E(xi)

=
∑n

i=1 sim(a, useri)µi,

(9)

where
∑n

i=1 µi = k, µi ∈ [0, 1). Section 3.3 introduced the definition of xi and µi.

Actually, when useri is selected as a neighbour of the target user ua, µi = 1, while when

useri is not a neighbour of ua, µi = 0. Namely, in this paper, deterministic algorithms

(Equation (7)) is a special case of randomised algorithms (Equation (9)). Therefore, we com-

pute the accuracy metric α by the following equation in both deterministic and randomised

neighbourhood-based CF recommendation algorithms:{
α =

∑n
i=1 sim(a, useri)µi,

k =
∑n

i=1 µi.
(10)

5.2.2 Security

According to the property of kNN attack, the purpose of a privacy preserving neighbourhood-

based CF recommendation algorithm is to avoid the target user being the only real user in

the final k neighbours set. Thus, the existing probabilistic privacy preserving solutions select

the k neighbours across the partial/entire candidate list. It is obvious that the number of

candidates who may be selected into the k neighbours set decides the success probability of

kNN attack (we call these candidates as potential neighbours). Namely, the more potential

neighbours result in the less probability that the target user is the only real user in the final

k neighbours set. On the other side, the attacker needs to create enough fake users to cover

the potential neighbours set, so that the target user can be the only real user. That is to say,

the more potential neighbours yield the higher attacking cost. In conclusion, in this paper,

because we partition the candidate list by the given k, we define the number of user partitions,

across which we select the k neighbours, as the security metric β.

5.3 Partitioned Probabilistic Neighbour Selection Scheme

To achieve our goal, we will firstly provide the objective function with its constraints based

on the discussions on both two performance metrics. Then, we propose the security-assured

accuracy-maximised privacy preserving recommendation method by solving the objective func-

tion according to its constraints.

According to the security metric β and the properties of kNN attack, we partition the

entire candidate list of a user by the given k, i.e., the size of each partition (group) is k.

Before providing the objective function, we introduce some variables in advance. We use fβ(i)

to denote the number of neighbours selected (weighted sampling with exponential differential

privacy) from partition No. i with the given security metric β, i ∈ [1, β]. Additionally, αi
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denotes the prediction accuracy of partition No. i against kNN attack. Therefore, we have a

general equation for α,

α =

β∑
i=1

αi. (11)

To solve the Equation (11) for the optimal α with the given security metric β against kNN

attack, we select one random fake user as the user who receives the system recommendation.

We suppose the candidate list of the fixed fake user has already in a descending order of

similarity. Figure 1 shows the fixed fake user’s candidate list, where Ni denotes to the user set

in partition i, i ∈ [2, β], ua is the attacker’s target user.

Partition Number 1 2 · · · β − 1 β

Partition Content Fake users + ua N2 · · · Nβ−1 Nβ

Figure 1: Candidate list against kNN attack

According to formulas (10) and Figure 1, we have

αi =
k∑
j=1

simj,Niµj,Ni , (12)

where simj,Ni denotes the similarity between jth candidate in partition No. i and the fixed

fake user, µj,Ni denotes the corresponding mean µ, in ∈ [1, β]. Moreover, because we aim to

select fβ(i) neighbours from partition No. i,
∑k

j=1 µj,Ni = fβ(i).

Combining Equation (11) and Equation (12), we have

α =

β∑
i=1

k∑
j=1

simj,Niµj,Ni . (13)

Since the similarity between the candidates in partition No. 1 and the fixed fake users is

absolutely one, we rewrite the above equation as

α = fβ(1) +

β∑
i=2

k∑
j=1

simj,Niµj,Ni . (14)

Obviously, the Equation (14) is our objective function against kNN attack.

Now we give the constraints of Equation (14). Since we need to select the k neighbours

across the top β partitions, we should select at least one neighbour from partition No. β,

i.e., fβ(β) =
∑k

i=1 µi,Nβ ≥ 1. As the candidate list is in a descending order of similarity,

and we select one neighbour from the partition No. β, to cover all the top β partitions, the

attacker needs to create at least βk fake users, no matter how many neighbours are selected

from the partition No. i, i ∈ [1, β − 1]. So we can select zero neighbour from the partition

No. i, i ∈ [1, β − 1]. In addition, because fβ(β) ≥ 1 and
∑β

i=1 fβ(i) = k, fβ(i) ≤ k − 1

11



for i ∈ [1, β − 1]. Recalling the other constraints we presented previously, we have the final

objective function with constraints as follow:

maximise α = fβ(1) +
∑β

i=2

∑k
j=1 simj,Niµj,Ni

subject to
∑k

j=1 µj,Ni = fβ(i)∑β
i=1 fβ(i) = k

fβ(i) ∈

{
[1, k], i = β

[0, k − 1], i ∈ [1, β)

(15)

Then, we solve Linear Programming (15) as a Knapsack Problem with the property of

Equation (6). The solution, that is the partitioned probabilistic neighbour selection method

which guarantees the optimal expectation of prediction accuracy α with a given security metric

β against kNN attack is:

fβ(i) =


k − 1, i = 1

1, i = β

0, i ∈ (1, β)

. (16)

Note that because ∀ β ≥ 1, the candidate list of any user is in a descending order of similarity,

formula (16) will always be the optimal solution to Linear Programming (15) for any β ≥ 1.

Algorithm 1 demonstrates the Partitioned Probabilistic Neighbour Selection (PPNS) method.

From line 1 to line 5, we compute the necessary parameters by Equation (4), (3), (2) and (1).

We select the k neighbours from each partition with exponential differential privacy by Par-

titioned Probabilistic Neighbour Selection (Equation (16)) in line 6. Next, once we have the

k neighbours of target user ua, we compute the prediction rating of ua on a item rx, rax, by

Equation (5) in line 7. Finally, we return the neighbour set Nk(ua) and the prediction rating

rax.

6 Experimental Evaluation

In this section, we use the real-world datasets to evaluate the performance on both accuracy

and security of our Partitioned Probabilistic Neighbour Selection method. We begin by the

description of the datasets, then introduce the evaluation metric, finally perform a compar-

ative analysis of our method and some existing privacy preserving neighbourhood-based CF

recommendation algorithms.

6.1 Data set and Evaluation Metric

In the experiments, we use two real-world datasets, MovieLens dataset1 and Douban2 (one of

the largest rating websites in China) film dataset3. The MovieLens dataset consists of 100,000

1http://www.grouplens.org/datasets/movielens/
2http://www.douban.com
3https://www.cse.cuhk.edu.hk/irwin.king/pub/data/douban
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Algorithm 1 Partitioned Probabilistic Neighbour Selection.

Input:
Original user-item rating set, R;
Target user, ua and prediction item, tx;
Number of neighbours, k;
Differential privacy parameter, ε;
Security metric, β.

Output:
Target user ua’s k-neighbour set, Nk(ua);
Prediction rating of ua on tx, rax.

1: Compute the similarity array for target user ua, Sa;
2: Sort Sa in descending order, S ′a;
3: Compute exponential differential privacy sensitivity, RS;
4: Compute each user ui’s selection weight, ωi;
5: Partition the sorted S ′a by k;
6: Select k neighbours from top β partitions;
7: Compute rax by Nk(ua);
8: return Nk(ua), rax;

ratings (1-5 integral stars) from 943 users on 1682 films, where each user has voted more

than 20 films, and each film received 20−250 users’ rating. The Douban film dataset contains

16,830,839 ratings (1-5 integral starts) from 129,490 unique users on 58,541 unique films [15].

We use a famous measurement metric, Mean Absolute Error (MAE) [26, 27], to measure

the recommendation accuracy, in the experiments:

MAE =
1

UI

U∑
i=1

I∑
j=1

|rij − r̂ij |, (17)

where rij is the real rating of user ui on item tj , and r̂ij is the corresponding predicted

rating from recommendation algorithms, U and I denote the number of users and items in the

experiments. Specifically, in user-based experiments, we compute the MAE of ratings from 200

random users (U = 200) on all the items (I = 1682 or I = 58, 541) in the two datasets, while,

in item-based experiments, we compute the MAE of ratings on 200 random items (I = 200)

from all the users (U = 943 or U = 129, 490) in the two datasets. In addition, we only predict

the r̂ij for the rij 6= 0. Obviously, a lower MAE denotes a higher prediction accuracy, e.g.,

MAE = 0 means the prediction is totally correct because the prediction ratings equal to the

real ratings, but no privacy guarantee against kNN attack.

6.2 Experimental Results

In this section, we show the accuracy performance from different perspectives of four main

neighbourhood-based CF methods, i.e., k Nearest Neighbour (kNN), naive Probabilistic Neigh-

bour Selection (nPNS) [1], Private Neighbour CF (PNCF) [27] and our method, Partitioned

13



Probabilistic Neighbour Selection (PPNS). Due to the similarity metric (Cosine-based similar-

ity, Equation (4)) used in this paper, in the second half of a candidate list, a large number of

candidates’ similarity will be zero which is useless for prediction. So in the experiments, we

set the upper bound of β as U/2k (user-based prediction) or I/2k (item-based prediction).

6.2.1 Accuracy performance with no attacking

We design three experiments (Figure 2 - Figure 4) to examine the user-based and item-based

CF prediction accuracy on MovieLens dataset and Douban film dataset. As seen in Figure 2 to

Figure 4, we notice that our privacy preserving method (PPNS) achieves much better accuracy

performance than the two global methods (nPNS and PNCF) in both the two datasets on both

user-based and item-based CF. Moreover, as a trade-off between the prediction accuracy and

system security in PPNS, a greater security metric β results in a greater MAE which means

a worse prediction accuracy. Specifically, when β = 1, PPNS achieves the same prediction

accuracy with the kNN method which is regarded as the baseline neighbourhood-based CF

recommendation method in this paper.

β
1 2 3 4 5 6 7
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E

0.2

0.3

0.4

0.5

0.6

0.7

0.8

kNN

nPNS

PNCF

PPNS

Figure 2: Item-based prediction accuracy on MovieLens (ε = 1, k = 100)

6.2.2 Accuracy performance against kNN attack

To examine the accuracy performance of the four methods against kNN attack with the same

security guarantee, we introduce a fixed security metric β to the three privacy preserving CF

algorithms (nPNS, PNCF, PPNS). That is, we randomly select k neighbours from the βk

nearest candidates with weighted sampling in nPNS; we calculate λ as simk−simβk in PNCF;

and we select the k neighbours across the top β partitions by Algorithm 1 in PPNS. The

experiments are run on user-based CF because kNN attack is a user-based attacking.

14



β
1 2 3 4 5 6

M
A

E

0.6

0.65

0.7

0.75

0.8

0.85

0.9

kNN

nPNS

PNCF

PPNS

Figure 3: User-based prediction accuracy on MovieLens (ε = 1, k = 100)
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Figure 4: User-based prediction accuracy on Douban film (ε = 1, k = 100)

Figure 5 shows that to ensure the same security guarantee against kNN attack, PPNS

performs much better on the prediction accuracy than the other privacy preserving CF methods

(nPNS and PNCF). Moreover, the MAE performance of the kNN method indicates that kNN

CF does not provide any security guarantee against kNN attack. Additionally, as we regard

β as security metric, we observe that we achieve a trade-off between accuracy and security,

because the greater β yields a greater MAE which denotes less prediction accuracy.
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Figure 5: Prediction accuracy on MovieLens against kNN attack (ε = 1, k = 50, m = 8)

Figure 6 demonstrates the impacts of recommendation parameter k on the prediction ac-

curacy. We examine the value of k from 10 to 100, which is a popular range for the recommen-

dation parameter k. From Figure 6, we can see that a larger size of neighbour set (or the size

of partition in PPNS) denotes the better prediction accuracy of PPNS method against kNN

attack.
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Figure 6: Impacts of k on prediction accuracy against kNN attack on MovieLens (ε = 1,
m = 8, β = 7)

Figure 7 illustrates the impacts of differential privacy budge ε on the prediction accuracy. It

is observed that as ε increases, the MAE performance improves in the two differential privacy

methods (PNCF and PPNS). So to achieve a better prediction accuracy, it is suggested to set

a greater ε against kNN attacks.
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Figure 7: Impacts of ε on prediction accuracy against kNN attack on MovieLens (k = 50,
m = 8, β = 7)

Figure 8 presents the impacts of attacking parameter m on the prediction accuracy. we can

note that to reveal a target customer’s privacy by kNN attack, the attacker needs at least 23

real ratings of the target customer as auxiliary information, since when m ≥ 8, the MAE of

a non-privacy preserving CF (kNN) method is zero. When the attacker has more background

knowledge, the prediction will be closer to the real ratings for all of the neighbourhood-based

CF systems, but none of privacy preserving algorithms releases the customer’s privacy.
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Figure 8: Impacts of m on prediction accuracy against kNN attack on MovieLens (ε = 1,
k = 50, β = 7)
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7 Conclusion

Recommender systems play an important role in Internet commerce since the first decade of

21st century. To protect customers’ private information against kNN attack during the process

of filtering, the existing privacy preserving neighbourhood-based CF recommendation methods

[1, 17, 27] introduced global noise into the covariance matrix and the process of neighbour

selection. However, they neither ensure the prediction accuracy because of the global noise, nor

guarantee an assured security enforcement before the collaborative filtering against kNN attack.

To overcome the weaknesses of the current probabilistic methods, we propose a novel privacy

preserving neighbourhood-based CF method, Partitioned Probabilistic Neighbour Selection, to

ensure a required security while achieving the optimal prediction accuracy against kNN attack.

The theoretical and experimental analysis show that achieving the same security guarantee

against kNN attack, our method ensures the optimal performance of recommendation accuracy

among the current randomised neighbourhood-based CF recommendation methods.
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