

Dieses Dokument ist eine Zweitveröffentlichung (Postprint Version) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-751154

Thomas Kühn, Walter Cazzola, Diego Mathias Olivares

Choosy and picky: configuration of language product lines

Erstveröffentlichung in / First published in:

International Conference on Software Product Lines. Nashville, 20.–24.07.2015. ACM Digital
Library, S. 71–80. ISBN 978-1-4503-3613-0.

DOI: https://doi.org/10.1145/2791060.2791092

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-751154
https://doi.org/10.1145/2791060.2791092

Choosy and Picky:
Configuration of Language Product Lines

Thomas Kühn
Software Technology Group

Technische Universität Dresden
thomas.kuehn3@tu-dresden.de

Walter Cazzola
Computer Science Department
Università degli Studi di Milano

cazzola@di.unimi.it

Diego Mathias Olivares
Computer Science Department
Università degli Studi di Milano

olivares@di.unimi.it

ABSTRACT
Although most programming languages naturally share sev-
eral language features, they are typically implemented as a
monolithic product. Language features cannot be plugged
and unplugged from a language and reused in another lan-
guage. Some modular approaches to language construction
do exist but composing language features requires a deep
understanding of its implementation hampering their use.
The choose and pick approach from software product lines
provides an easy way to compose a language out of a set of
language features. However, current approaches to language
product lines are not sufficient enough to cope with the com-
plexity and evolution of real world programming languages.
In this work, we propose a general light-weight bottom-up
approach to automatically extract a feature model from a set
of tagged language components. We applied this approach
to the Neverlang language development framework and de-
veloped the AiDE tool to guide language developers towards
a valid language composition. The approach has been evalu-
ated on a decomposed version of Javascript to highlight the
benefits of such a language product line.

CCS Concepts
•Software and its engineering → Frameworks; Trans-
lator writing systems and compiler generators; Soft-
ware product lines;

Keywords
Language Product Lines, Language Composition.

1. INTRODUCTION
Over the past few decades there has been a staggering

amount of new programming and domain-specific languages
featuring new constructs for particular application domains,
e.g.: concurrency, querying, and hardware design. Although
most of these languages naturally share several language fea-

©2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in SPLC 2015: 2015
International Conference on Software Product Lines, July 20 - 24, 2015, Nashville,
TN, USA
DOI: http://dx.doi.org/10.1145/2791060.2791092

tures1, their compilers/interpreters are usually build from
scratch as a monolithic product. Hence, language devel-
opers can neither reuse language features nor whole sub-
sets of another language when implementing their own lan-
guage. Moreover, it is difficult to directly vary the num-
ber of features supported by a monolithic language, as their
implementation is buried within the compiler/interpreter.
To overcome this, several frameworks for modular language
construction have been proposed, e.g., LISA [29], Silver/Cop-
per [40], Spoofax [24], and Neverlang [8, 10, 36]. These allow
for reusing portions of previously defined language features
when creating new languages. On the downside, the lan-
guage developer needs to have a deep understanding of the
features’ implementation, dependencies, and side-effects to
employ them in a sound way. So far, features of mainstream
languages can hardly be reused, removed, and extended.

This calls for a new way of thinking about programming
languages, whose compiler/interpreter is not a monolithic
product but the result of the composition of many language
features. Adding, modifying or discarding features from a
language in turn will simply act on the features part of
the process and the compiler will be just a by-product of
the composition process. Consequently, programming lan-
guages can be treated as a software product line (SPL),
where features correspond to language constructs mapped
to their syntactical and semantical implementation. Using
techniques from SPL, language developers can now choose
and pick the desired language features to create the language
best suited for his/her needs. As a result, the programming
language becomes a family of programming languages cre-
ated by a language product line (LPL).

Although tools for feature modeling and product con-
figuration, such as FeatureHouse [6] and FeatureIDE [34],
are well-established for typical SPLs, they are not sufficient
enough to cope with families of real world programming lan-
guages. This is due to the fact that real world languages are
very complex and tend to grow over time. Thus, typical
top-down feature modeling that start from a feature model
and afterwards creates a feature mapping to concrete arti-
facts fail miserably, because new language features might be
introduced in every version of the language and might inval-
idate big portions of the feature mapping. To make things
worse, general-purpose programming languages like C, Java,
or Javascript tend to provide a massive amount of built-in
language features. This, in turn, makes the generation and

1A language feature is, in our view, a language construct
as the for loop or a language concept without any syntactic
correspondent as scope and coercion.

Final edited form was published in "SPLC '15: 2015 International Conference on Software Product Lines. Nashville 2015", S. 71–80. ISBN: 978-1-4503-3613-0
https://doi.org/10.1145/2791060.2791092

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Expr ::= Add
Add ::= Mul | Add ’+’ Mul | Add ’-’ Mul
Mul ::= Unary | Mul ’*’ Unary | Mul ’/’ Unary
Unary ::= Primary |’+’ Unary | ’-’ Unary
Primary ::= Literal | ’(’ Expr ’)’
Literal ::= [0-9]+

Listing 1: Grammar of the expression language

maintenance of such a family of programming languages
infeasible. While the tooling can still handle the number
of features, the biggest problem arises from the strong in-
terdependence of language features. Because choosing one
language feature without picking the dependent language
features, would result in an open syntax definition or erro-
neous semantics. However, enforcing the feature selection
would drastically reduce the number of language variants
also including those conceived to be useful for educational
purposes [9]. Consequently, a better tool for language con-
figuration must guide its users providing means to resolve
open syntax definitions and missing requirements without
requiring in-depth knowledge about the features’ implemen-
tations. In sum, current SPL approaches cannot fully sup-
port the creation and provision of language product lines.

To overcome their shortcomings, this work proposes a gen-
eral light-weight approach to automatically extract a feature
model from a set of tagged language constructs. Addition-
ally, we present AiDE, a tool to guide language developers
towards a valid language configuration by employing the
Neverlang language development framework. We show that
the presented approach and tooling is suitable to create,
maintain, and extend a real world programming language
as a LPL. For this purpose, we implemented a modular and
reusable version of Javascript, namely Neverlang.JS; config-
ured several language subsets for teaching programming to
students; and created 14 additional language features that
can be seamlessly integrated into Neverlang.JS.

This paper is structured accordingly. Sect. 2 briefly intro-
duces language product lines by covering language decompo-
sition, dependency extraction, and language configuration.
Sect. 3 describes our feature model generation approach. Af-
terwards, Sect. 4 shows its application using the Neverlang
approach to language composition and introduces the lan-
guage configuration tool: AiDE. The presented approach is
evaluated, in Sect. 5, by describing the implementation, con-
figuration, and extension of Neverlang.JS. The paper is con-
cluded by reviewing related work (Sect. 6) and summarizing
the presented results and future prospects (Sect. 7).

2. LANGUAGE PRODUCT LINES
The development of families of programming and domain-

specific languages has gained popularity among researchers
and practitioners, e.g., [26, 20, 30]. Following the ideas of
SPL, a LPL facilitates the process of language development,
which can be customized by selecting individual features.
Similar, to SPLs a language could be designed to specif-
ically suit a certain use case or application domain. For
instance, authors [35, 15, 38] have shown that the many
variants of state machine languages could be modeled as one
single family of programming languages. Nonetheless, this is
also true for general-purpose programming languages, from
which dialects may be defined for DSL purposes. On one
side, specialized versions of full-fledged programming lan-

Language Component

syntax

Parsing

typing rulestyping rules

Type Validation

evaluationevaluation

Execution

Figure 1: Language component and its parts

guages can be employed in case of security purposes (e.g.,
Java Card [14]) or teaching programming [17]. Language
extension, on the other side, can be useful to embed new
language features into an existing programming language,
such as type-checked SQL queries [18]. Following this vision
of a product line for programming languages, this section
describes the artifacts and models required to establish such
a product line.

2.1 Running Example
Before we delve into the peculiarities of LPLs, it is useful

to consider a small example: the expression language. List-
ing 1, shows the typical text book grammar of expressions
in EBNF notation [2]. For brevity, the example is limited to
natural numbers and the basic mathematical operators for
addition, subtraction, multiplication, division, and brack-
ets.2 In particular, the grammar directly reflect the prece-
dence of the operators, as it is usually necessary for parser
generators of the LR-family [11]. Despite the fact that typi-
cally the full expression language is reused or extended and
for the sake of argument, the language is further decomposed
to elaborate on notions, such as language feature, feature de-
pendencies, and language configuration.

2.2 Language Decomposition
To model the variability of a language family, their lan-

guage features must be organized in a feature model and
mapped onto concrete artifacts. These artifacts must be
reusable and composable implementations of a partial lan-
guage definition encompassing all necessary definitions for
this language feature. A language feature is implemented
by a language component. SPL approaches suggest to ei-
ther collect and organize the features beforehand or retrieve
the features by analyzing multiple variants of the same lan-
guage. Unfortunately, neither approach is suitable for gen-
eral purpose programming languages, because the number
of language features tend to grow over time, the number of
language variants is generally limited to previous versions,
and the complexity of the monolithic compilers renders their
analysis almost impossible.

This raises two questions: How to effectively decompose a
languages compiler/interpreter into reusable language com-
ponents? and How to extract the dependencies between mul-
tiple language components? To approach the former ques-
tion, developers of language components have to choose the
desired level of granularity. The expression language, for
instance, can be developed as a single component limiting
the flexibility and reusability, whereas a further decompo-
sition increases the complexity of language configuration.
Despite of the latter, our experience with language decom-
position [36] indicates that each language feature, like a vari-
able declaration or an addition, should be encapsulated in a

2Luckily, the intended semantics of this language is clear
and thus needs no further explanation.

Final edited form was published in "SPLC '15: 2015 International Conference on Software Product Lines. Nashville 2015", S. 71–80. ISBN: 978-1-4503-3613-0
https://doi.org/10.1145/2791060.2791092

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Expr Add Mul Unary

PrimaryPrimaryExpr Numeric

Figure 2: Language feature dependency graph

language component together with all corresponding syntac-
tical and semantical descriptions. Figure 1 shows three typi-
cal aspects of a language feature encapsulated in a language
component. First, it declares an open (partial) grammar
to parse that construct. Second, it provides rules to vali-
date the correct use of this construct. Finally, it defines the
semantics of the construct by translation to code or direct
evaluation. Although these are the general aspects of a lan-
guage component, there are many more possible aspects to
consider. The language feature scoping, for instance, does
not correspond to a syntactic construct, but can be imple-
mented in a crosscutting language component [8, 39, 36].

Consequently, the expression language is decomposed into
seven language components: Expr, Add, Mul, Unary, Primary,
PrimaryExpr, Numeric. Each grammar rule (Listing 1) corre-
sponds to a language feature and thus to a language compo-
nent. The only exception is the Primary rule that is further
divided into two components to deal with the distinction be-
tween a literal and a bracketed expression.3 Basically, each
language component contains the respective grammar rule
as its syntax with a specification of its evaluation.

In conclusion, our approach to language decomposition is
to create a language component for each syntactic construct
encapsulating both its syntax and semantics. While this
answers the first question, a way to extract the dependencies
between multiple language components is still missing.

2.3 Dependency Extraction
In [38, 37] the concept of a dependency graph was intro-

duced for language components. In general, it describes the
dependencies between multiple language components, as a
tuple DG = ⟨S,D⟩, where S is the set of language com-
ponents, and D = {(s, s′) | s′ satisfies s} the dependency
relation. A language component s′ satisfies s iff s′ provides
the implementation of a language feature that s requires.

While these dependencies can be inferred in a number of
ways, we found that the language components’ syntactical
definitions provide enough information for constructing the
corresponding dependency graph [38, 37, 36]. In detail, for
each production rule of a component’s syntax definition all
nonterminals on the left-hand side of that rule are considered
provided, whereas all nonterminals on the right-hand side
are required. Consider for instance the Unary language com-
ponent that, according to its production rule, requires the
Primary and Unary nonterminal and provides the Unary non-
terminal. Figure 2 shows the resulting dependency graph for
the decomposed expression language. Although this graph
shows only one kind of dependency, it implicitly implies two
other kinds of dependencies:

• unique (mandatory) dependencies specify that a com-
ponent is needed to satisfy a grammar rule.

3Please note, that the actual expression language of Never-
lang.JS is more complex, to accommodate for corner cases.

• alternate (inclusive-or) dependencies occur when a non-
terminal symbol of the grammar can be produced in
more than a single way, therefore allowing a degree of
choice upon the corresponding components.

In both cases these kinds of dependencies can be spotted by
the in-degree of the graph nodes.

The dependency graph is a suitable starting point for cre-
ating a feature model, as showed in [38, 37]. However, some
additional information must be provided to construct [38]
or mine [37] a feature model from a set of language compo-
nents. This is due to the complexity of the syntax of general-
purpose languages that implicitly has many connected com-
ponents, i.e., several language components that circularly
depend on others. Just consider, the dependency graph of
the decomposed expression language in Fig. 2. It basically
resembles a circular chain of mandatory features, and thus,
it is not suitable to generate a feature model. Neverthe-
less, Sect. 3 shows a simple approach to efficiently generate
a feature model from a set of language components.

2.4 Language Configuration
Henceforth, let’s assume that the feature model for the

expression language family is given and faithfully reflects
all the dependencies between language components.4 Using
standard tools for feature modeling, e.g., FeatureIDE [5],
choosing any feature from the available features would re-
sult in the selection of all other features, as all of them are
circularly dependent on each other. As a result, there would
be only one variant of our expression language to choose
from. Clearly, this is not an error within these tools, as
they strictly follow the definition of the feature model by
automatically resolving mandatory feature requirements.

One option is to let the user pick the best resolution strat-
egy for required features and to ensure that the composite
syntax of a language product is complete, i.e., without any
open nonterminal that is not provided by any language com-
ponent. The user can either select the mandatory feature or
rewire the missing feature to another activated feature. This
is done by adding a new production rule for the open non-
terminal mapping it to another provided nonterminal. Ad-
ditionally, rewiring can also be used to connect previously
unrelated concerns by satisfying dangling features. Consid-
ering the family of expression languages, this allows for the
creation of several other language variants, for instance, an
expression language that only supports addition and sub-
traction of positive numbers. This variant is obtained by
simply rewiring the missing Mul nonterminal to the selected
Primary nonterminal. Concerning syntax, these options are
sufficient to construct a reliable and usable grammar from
the selected language components.

However, this component versatility can also lead to com-
patibility problems between language components, as rewir-
ing nonterminals implies that the involved language com-
ponents work upon equally defined, or at least compati-
ble, attributes. Standard application frameworks tackle this
problem by applying design patterns to maintain interface
consistency through the whole framework. Similarly, it is
useful to define a common set of attributes for all language
components and encapsulate their internal state employing
object-oriented inheritance and polymorphism. Eventually,
a complete hierarchy of type families facilitates feature com-
patibility over all language components.
4Impatient readers can find the feature model in Fig. 3.

Final edited form was published in "SPLC '15: 2015 International Conference on Software Product Lines. Nashville 2015", S. 71–80. ISBN: 978-1-4503-3613-0
https://doi.org/10.1145/2791060.2791092

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Table 1: Tags for the expression language
Nonterminal Tags
Expr expression
Add expression, numbers, sum, sub
Mul expression, numbers, mul, div
Unary expression, unary, numbers, sign
Primary expression, primary, literal
PrimaryExpr expression, primary, parenthesis
Numeric expression, primary, literal, numbers

In summary, letting the user being picky about resolution
strategy allows for a more flexibly configuration of his/her
desired language. Under the assumption that the user has a
basic understanding of production rules and the components
compatibility, since ambiguous resolutions may result in ill-
conceived or broken language products.

2.5 Requirements
In our opinion, a viable and flexible LPL for a family

of programming or domain-specific languages can only be
established if the following five requirements are fulfilled:
R1 The language family must be decomposed wrt. to its

language features.
R2 Each feature is encapsulated (including syntax and se-

mantics) within a language component.
R3 A dependency graph capturing the constraints between

language components can be constructed.
R4 A language development framework is able to compose

arbitrary language components.
R5 A configuration tool for language products is used that

supports multiple dependency resolution strategies.
These five requirements form a minimal set of prerequesits
that must be fulfilled in order to facilitate a viable LPL.

3. FEATURE MODEL GENERATION
Our previous approach to automated feature model ex-

traction [37] heavily relies on the presence of a semantic
network that must be provided and maintained by a domain
expert. Although this semantic network features meronyms,
hypernyms, synonyms, and antonyms; only the first two se-
mantic relations proved useful for extracting an initial fea-
ture model. Furthermore, the initial model must be man-
ually adjusted. Consequently, both the maintenance of the
semantic network and the manual adjustment of the fea-
ture model became a bottleneck for the development of more
complex LPLs. Learning from previous mistakes, our new
method for feature model extraction is lightweight and fully
automated.

3.1 Tagging Language Components
Language components, as explained, deal with several fac-

ets of the language feature they implement. They provide
the syntactic and semantic definition for the language fea-
ture and also have to disclose their interface (required and
provided nonterminals) towards the other components and a
classification for the role the language feature has within the
whole language. Such a classification is based on tags asso-
ciated to the feature provided by the component (basically
the provided nonterminals); a tag is a label that describes
the nature of the language feature. Each feature is correctly
described if all of its provided nonterminals are tagged.

Algorithm 1: GenerateFeatureTree(p:Node)

begin
T∗ := {t | c ∈ childs(p) ∧ t ∈ tags(c)};
while ∃t ∈ T∗ :

∣∣{c ∈ childs(p) | t ∈ tags(c)}
∣∣ > 1 do

select t′ ∈ T∗, such that
∣∣{c ∈ childs(p) | t′ ∈ tags(c)}

∣∣
is maximal;
create new node n with tags(n) := {t′};
childs(p) := childs(p) ∪ {n};
for o ∈ {c ∈ childs(p) | t′ ∈ tags(c)} do

tags(o) := tags(o) \ {t′};
if tags(o) = ∅ then

move components of o to n;
else

childs(n) := childs(n) ∪ {o};
end
childs(p) := childs(p) \ {o};

end
end
for c ∈ childs(p) do

VMTreeBuild(c);
end

end

Reprising the running example, Tab. 1 shows the tags asso-
ciated to the various nonterminals provided by the language
components of the expression language. The Unary nonter-
minal, for instance, is tagged with the labels: expression,
unary, numbers, and sign; because each denotes a specific
nature of the unary expression. Note that no assumptions
are made on the used tags; the language developers (as do-
main experts) should rely on a common set of tags or naming
conventions. Fortunately, language developers already use
such a common terminology.

3.2 Deriving the Feature Tree
These tags are sufficient to automatically generate an ini-

tial feature tree from the language components by employing
Algorithm 1. The initial feature tree is obtained by calling
the algorithm on a dummy tree where all language compo-
nents are child nodes of a single tag-less root node. The most
recurring tag t′ is extracted from 1st level children of each
node and a new child node n labeled by {t′} is created. Each
time all the siblings containing t′ are moved below n and t′

is removed from their tags. When the current node is sta-
ble, i.e., no tag appears more than once among its children,
the algorithm is applied recursively to each of its children.
Basically, this algorithm creates a hierarchy by selecting the
most common tags and introducing new branches for them.
Fig. 3 shows the feature tree obtained by applying the algo-
rithm to the tagged language components for the expression
language (Tab. 1). The tags used by the algorithm are still
listed underneath each feature.

Although the algorithm is fairly simple, it has several no-
table properties. First and foremost, the algorithm is guar-
anteed to produce a tree, because it is initially called with
a tree and at each step of its execution child nodes will be
either moved to a new child, removed, or retained. Hence,
no node can become the child of two different parents at
the same time. Furthermore, this also ensures that it never
creates overlapping features. Second, as it generates an ele-
mentary feature model, all nodes are optional with respect
to their parent (drawn as edges with white circle). This is
due to the fact, that all child–parent relationships in the tree
can be considered as meronyms. Last but not least, it can
handle crosscutting constraints by distributing them among

Final edited form was published in "SPLC '15: 2015 International Conference on Software Product Lines. Nashville 2015", S. 71–80. ISBN: 978-1-4503-3613-0
https://doi.org/10.1145/2791060.2791092

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Expr
expression

Numbers
numbers

Add
sum, sub

Mul
mul, div

Unary
sign, unary

Numeric
literal

Primaries
primary Primary

literal

PrimaryExpr
parenthesis

Feature

AbstractFeature
optional
mandatory
dependency

Figure 3: Feature model for the expression language

different branches of the initial feature tree. For instance,
the language feature for variables has subfeatures related to
declarations (variable declaration), statements (variable as-
signment), and expressions (variable resolution) that will be
placed into the most appropriate branch. On the downside,
the initial feature tree does not fully reflect the syntactical
dependencies of the set of language components.

3.3 Adding Dependencies
Hence, the initial feature tree must be enriched with infor-

mation retrieved from the dependency graph. Consequently,
each dependency is added as a new directed edge to the fea-
ture tree. This affects the model in three alternative ways:

• If an edge does not exist yet, it is added and its depen-
dency type is specified as either required or alternative.

• Otherwise, if a hierarchical relationship already ex-
ists, it is updated abiding the feature model specifi-
cation. In detail, a unique dependency converts the
corresponding feature to a mandatory feature.

• In case of multiple alternate dependencies the affected
relations are replaced by an inclusive-or.

Finally, after including the dependencies to the initial fea-
ture tree, the result is a valid feature model respecting all
the dependencies of the language family. Fig. 3 shows the
feature model generated for our expression language family.

3.4 Summary
The presented method can automatically generate a fea-

ture model from an arbitrary set of tagged language com-
ponents. The quality of the generated feature model solely
depends on the quality of the used tagging scheme. Besides
that, the presented method is generally applicable to LPLs
regardless of the employed language development framework,
as long as they fulfill the requirements R1 to R4 (Sect. 2.5)
and provide a classification for the language components.

4. NEVERLANG BASED LPLS
This section exploits the Neverlang language development

framework [10, 8, 36] to create reusable language compo-
nents, to extract their features and dependencies, and dy-
namically configure language variants.

module neverlang.js.AddExpr {
reference syntax {
provides { AddExpr: expression, numbers, sum, sub; }
requires { MulExpr; }
[ADD_0] AddExpr! MulExpr;
[ADD_1] AddExpr! AddExpr "+" MulExpr;
[ADD_2] AddExpr! AddExpr "-" MulExpr;

}
role(evaluation) {
[ADD_0] @{ $ADD_0[0].value = $ADD_0[1].value; }
[ADD_1] .{ /*...*/ }.
[ADD_2] .{ /*...*/ }.

}
}

slice neverlang.js.AddExprSlice {
concrete syntax from neverlang.js.AddExpr
module neverlang.js.AddExpr with role evaluation

}

language neverlang.js.TinyLang {
slices neverlang.js.AddExprSlice neverlang.js.UnaryExprSlice

/* ... */
roles syntax < evaluation
rename { MulExpr" UnaryExpr; }

}

Listing 2: Neverlang’s slice and language constructs.

4.1 Neverlang in a Nutshell
Neverlang promotes code reuse and sharing by making lan-

guage units first-class concepts. Language components are
developed as separate units that can be compiled and tested
independently, enabling developers to share and reuse the
same units across different language implementations. The
base unit is the module (Listing 2). A module may con-
tain a syntax definition and/or semantic roles. A role de-
fines actions that should be executed when some syntax
is recognized, as prescribed by the syntax-directed trans-
lation technique. Syntax definitions are portions of BNF
grammars represented as sets of grammar rules or produc-
tions. Semantic actions are defined as code snippets that
refer to production rules and the contained nonterminals
with the prefixed labels. Syntax definitions and semantic
roles are tied together using slices. For instance, module
neverlang.js.AddExpr in Listing 2 declares a reference syn-
tax for addition and subtraction, and actions are attached to
each of the three productions by referring to their label. The
slice neverlang.js.AddExprSlice declares to use this con-
crete syntax in our language together with that correspond-
ing semantics. Finally, the language descriptor (Listing 2),
indicates which slices are required to be composed together
to generate the compiler for the language. The language
descriptor is the cornerstone of the whole mechanism and
allows for easily composing, restricting and extending a pro-
gramming language.5 More importantly, each module can
additionally declare the set of nonterminals it requires and
provides; each accompanied by a number of tags.

Note that since Neverlang compiles all its artifacts into
JVM compatible classes, the language development environ-
ment can be used on any JVM compliant target platform.

4.2 Developing Language Product Lines
Henceforth, we employ Neverlang to develop a language

product line. Fortunately, a module corresponds to a lan-
guage component, as it can be used to encapsulate the syn-
tactical and semantical aspects of a language feature in a

5Neverlang details can be read in [36].

Final edited form was published in "SPLC '15: 2015 International Conference on Software Product Lines. Nashville 2015", S. 71–80. ISBN: 978-1-4503-3613-0
https://doi.org/10.1145/2791060.2791092

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

reusable way (R2). In addition to that, for each module a
slice has to be created accordingly. Thus, after decom-
posing the language family (R1), each language feature is
implemented as module accompanied by a slice. Moreover,
each nonterminal provided by a module must be tagged to
enable the feature model generation. The implementation
of the Add language component from Sect. 2.2, for instance,
is shown in Listing 2. Its syntax is defined by three BNF
productions, equivalent to the EBNF rule in Fig. 1, and its
semantics is implemented within the evaluation role. After
implementing each language component, an arbitrary lan-
guage variant can be created (R4) by stating the selected
slices to compose within the language descriptor and spec-
ifying the rewired nonterminals within the rename section.
The descriptor, in Listing 2, creates a variant of the ex-
pression language without products and divisions by exclud-
ing the MulExprSlice and rewiring the MulExpr nonterminal.
Furthermore, Neverlang provides special features to access
the required and provided nonterminals of a module together
with their tags, and to retrieve the dependency graph cre-
ated by the Neverlang compiler (R3) [38, 37]. As such, Never-
lang is a suitable framework for the implementation of LPLs.
Nonetheless, manually writing language descriptors is in-
tractable to configure variants of general-purpose program-
ming languages. Thus, a tool is needed that guides users
towards the creation of valid language variants automati-
cally generating the corresponding language descriptors.

4.3 The AIDE Tool
AiDE is an interactive configuration tool especially tai-

lored to these needs. It implements the presented method to
synthesize the feature model of a given language family out
of language components developed with Neverlang. Through
its graphical user interface, depicted in Fig. 4, the user can
explore the feature model, choose features, create a language
variant, and test it. Because feature models of LPLs tend
to be huge, the tool initially shows the first level of the tree,
however, allowing it to be expanded on demand. A feature
is selected or deselected by clicking on it, this selects all its
parents or deselects all its children, respectively. Selected
features are highlighted in green. To not confuse the user,
unique and alternative dependencies of selected features are
highlighted in red and yellow, respectively. Besides, optional
features are linked by white edges, whereas mandatory fea-
tures by black edges. Moreover, while the user configures a
language variant (or product), AiDE keeps track of all un-
resolved dependencies, i.e., all open nonterminals of the se-
lected language components and lists them on the left-hand
side allowing the user to rename (or rewire) them, i.e., bind-
ing them to another provided nonterminal. Thus, users can
easily resolve dependencies during the component picking.
Another important feature of AiDE is its ability to dynam-
ically update the language variant during its configuration.
Whenever a valid configuration, i.e., one without unresolved
dependencies, exists, the user can update the internal lan-
guage variant and test it using the integrated command line
interface of Neverlang. This, permits users to verify the
consistency and test the behavior of the language variant
under construction. Internally, AiDE updates the language
descriptor maintained by the underlying Neverlang language
development framework. When the language satisfies the
expectations, a stable copy of the development environment
is prepared and ready to be dispatched to any JVM compli-

07 Logical Conventions 65.96%
08 Types 75.89%
09 Type Conversion 46.88%
10 Execution Context 54.55%
11 Expressions 70.04%
12 Statements 52.05%
13 Function Definition 54.05%

Figure 5: Javascript coverage of Neverlang.JS

ant workstation. In sum, AiDE is able to guide users towards
the generation of consistent language variants by supporting
multiple dependency resolution strategies (R5) and contin-
uous generation of the language’s compiler/interpreter.

5. DEMONSTRATION CASE STUDY
This section demonstrates the feasibility of the presented

approach and tooling by developing a LPL for Javascript
and report on its applicability for the generation of both
language specializations and extensions [28].

5.1 Neverlang.JS
Over the course of roughly two months we decomposed

Javascript into its language features and implemented each
as a Neverlang module (and slice). Especially, each non-
terminal provided by a module was tagged to fully describe
its nature. Moreover, Neverlang.JS was developed to be a
Javascript interpreter conform to the ECMAScript 3 Lan-
guage Specification (ECMA-262) and consists of 73 slices
that accumulate to 3043 lines of code and 228 production
rules [36]. Tab. 2 shows the detailed number of slices, rules,
and lines of code (LOC) for each implemented language fea-
ture. In addition to that, 64 Java classes were implemented
to support some of Javascript’s various built-in objects. In
general, the feature complete variant of Neverlang.JS covers
about 70% of the corresponding language specification, ac-
cording to the Sputnik test suite.6 Fig. 5 shows an excerpt of
the language coverage report indicating good results regard-
ing the logical conventions, types, and expressions. Please
note, that the test suite assumes that all of the built-in
libraries have been implemented, which is merely a tech-
nicality; this is currently out of the scope of Neverlang.JS
and does not compromise the soundness of the experiments.
Besides that, Neverlang.JS fully supports the semantics of
Javascript including constructs as the prototype chain, ex-
ception handling, and closures. In particular, our implemen-
tated language provides a default value attribute of type
JSType for each nonterminal. This type is a superclass to all
possible Javascript types and allows modules to implicitly
retrieve, convert, and store values in a transparent fashion.
This ensures the compatibility of all language components
including components that were not intended to be com-
bined. In summary, Neverlang.JS is a fully tagged, decom-
posed version of the general-purpose programming language
Javascript, and thus a viable LPL.

To generate, explore, and configure the feature model of
Neverlang.JS, AiDE was employed. In particular, the result-
ing feature tree has a maximum depth of 6 and contains
92 nodes, wheres 19 are abstract features and 73 language
features. Due to space restrictions, only a small part of the

6https://code.google.com/p/sputniktests/

Final edited form was published in "SPLC '15: 2015 International Conference on Software Product Lines. Nashville 2015", S. 71–80. ISBN: 978-1-4503-3613-0
https://doi.org/10.1145/2791060.2791092

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Figure 4: Screenshot of the AiDE application representing the feature model of Neverlang.JS.

feature model is shown in Fig. 4, however a fully expanded
version of the feature model is available online.7 Using AiDE
we constructed many variants of Neverlang.JS including both
restricted and extended variants, discussed henceforth.

5.2 Feature Restriction
The configuration of products is the general use case of

SPLs and LPLs alike. However, for language products this
usually coincides with restricting a feature complete lan-
guage variant. In case of Neverlang.JS, a feature complete
variant is comparable to Javascript, whereas a variant with
fewer features will create a specialization of Javascript [28].
As indicated previously, these language specializations can
be used for gradually teaching programming languages. To
test this idea, we employed both Neverlang.JS and AiDE in [9]
to generate 13 variants of Javascript according to the learn-
ing stages. These variants were aligned to the individual
learning stages that successively introduce language features
ranging from numeric expressions up to constructors and
the prototype model. Fig. 6 shows the successive learning
stages and language features introduced in each stage of the
experimental course described in [9]. Our experience dur-
ing the preparation of this course convinced us that AiDE
is able to guide teachers towards the creation of language
specializations in accordance to the desired structure of the
course. In particular, its support of alternative dependency
resolution strategies and continuous testing of the language
variant under construction provides simple means to create
working language specializations of the Neverlang.JS LPL.

7http://neverlang.di.unimi.it/aide/njs graph.png

Table 3: List of Javascript Extensions, from [36]
Extension Name LOCs
Function Type Annotations 225
Catch Guards 80
Class-Based Single Inheritance 314
Dictionary Comprehension 79
Destructuring Assignment 73
Tuple Literal 91
List concat operator 91
Lambda Expressions 76
Named Arguments in Functions 78
List Sum Operator (Vector Sum) 41
Pipe Forward Operator 92
Immutable References 31
List Comprehension 81
Syntax for Pattern Matching 191

5.3 Feature Extension
While feature restriction might be the usual case to cre-

ate a language product, feature extension represents a more
interesting use case. As argued in Sect. 2, new language
features can be easily added to an LPL by simple adding
new language components and regenerating the language’s
feature model. To evaluate, whether this also holds for Nev-
erlang.JS, 14 PhD students were assigned to implement new
language features [36]. Each language feature introduces a
new language construct ranging from simple extensions, like
immutable references, to very complex extensions, like class-
based single inheritance. Tab. 3 list all the developed lan-

Final edited form was published in "SPLC '15: 2015 International Conference on Software Product Lines. Nashville 2015", S. 71–80. ISBN: 978-1-4503-3613-0
https://doi.org/10.1145/2791060.2791092

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Table 2: Size of the Neverlang.JS implementation per language feature, from [36]
������ ���	�
 �� ����
 ������ ���	�
 �� ����

��� ���������

����������	
� �� � �� ��	������������� � �� �

�����

���
 ���

�
�������� � ��� � ������������ � �� �

�		������ � �� � ���������������� � ��� ��

 �����	����� � �� �� ����������	
	��� � �� �

!	�"���	����� � �� � #�������������� � �� �

�����$��� � ��% � &	
��		' � �

()'����*�)'�	�+���$�����	�, � %� � &	
-������		' � ��� ��

&�����	������ � ��� � ������	���	����������	������� �� ��� ��

!	�$�
�������� � �% � ����

�'�.�/
��� � �� �

����
 ����

�'�.��	������ � �� �

��
���� � �� � ����

�'�.�
���
� � �� �

0��/�
 � �� � 12��'��	����
	�����3����"���� � ��� �

�		������ � �� � ��������

 ��12'� � �� � 4�
��/����$$������� � ��% ��

5/6���� � ��� �� 4�
��/���
�$	����	� � �� �

�

�) � ��� � ������	����	�

&�����	��*"�7����	�, � ��� �� �)�/	��(�/�� ���

(��$�
�$	����	� � � �

���������	�
 ��

�������� � !�

����������
 ""#

�������8�"������
�$�"�'��"�	��	���
������
�$.����������	
	����
�9��
��

������$��	�����������		'���'���������	��*	����������+����+����:,+�

������	���	��������
��'�
��	������1!;���
�'��$'���

��"�"�'��"�	������"�7����	��	������	� !:

1

Numeric type
+ expr.

2

Boolean type
+ expr.,

Rel./Eq. expr.

3

String type +
expr.

4

Variable decl.
+ assign

5

Conditional
stat./expr.

6

Loop
statements

7

Code block,
break +
continue

8

Functions

9

Recursion

10

First-class
functions

11

Objects,
methods

12

Exception
Handling

13

Constructors,
prototype

model

Figure 6: Language variants of Neverlang.JS used for teaching, from [9]

guage extensions together with the size of its implementation
in Neverlang. Notably, most language features were imple-
mented in less then one hundred lines of code. We tested
all language extensions first individually and afterwards all
possible combinations. As a result, most extensions were
compatible and only few had conflicts due to similar syntac-
tic definitions. This indicates that language families simplify
the creation of language extensions to a point were language
features can be implemented independently. Above all, as
AiDE is able to automatically generate a corresponding fea-
ture model for Neverlang LPLs, given that each extension
is consistently tagged, there is no need to manually refine
the feature model for each additional language feature. The
slice and module implementing the new features must sim-
ply be added to the set of files loaded by AiDE. Moreover, as
AiDE allows users to test language variants during configu-
ration, incompatibilities between new language components
can be immediately detected, as the Neverlang framework
will raise an error in that case. In sum, our experience with
Neverlang.JS shows that both the presented feature model

generation approach and the language configuration tool,
AiDE, is suitable for LPLs of general-purpose programming
languages.

6. RELATED WORK
A number of authors have tried to address the problem of

extracting a feature model from various kinds of artifacts.
She et al. [33] showed how to reverse engineer a feature
model starting from natural language feature descriptions
and static analysis of source code. Davril et al. [16] presented
a fully automated approach for constructing feature models
from publicly available product descriptions (e.g., as found
in SoftPedia and CNET). Alves et al. [3] and Niu et al. [31]
use clustering techniques to infer a tree structure. Ferrari
et al. [19] considered natural language documents. Weston
et al. [42] extract feature models from the requirements de-
scription in natural language. All these works require extra
information to be associated with the concrete implementa-
tions of the features. Information not always available, and,
as in the case of the domain of programming languages, of-

Final edited form was published in "SPLC '15: 2015 International Conference on Software Product Lines. Nashville 2015", S. 71–80. ISBN: 978-1-4503-3613-0
https://doi.org/10.1145/2791060.2791092

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

ten overrated with respect to its usefulness. In this work,
we move slightly away from our previous work [37], in that,
instead of relying on a semantic network, we mine metadata
already present in the language features. As compared to
natural language feature descriptions, tagging makes it sim-
pler to mechanically compare feature implementations, and,
as compared to semantic networks, it requires less work by
the domain experts. The dependency graph, on the other
hand, is still exploited to superimpose natural relations be-
tween the language features onto the generated feature tree.

FAMILIAR [1] provides an environment to synthesize fea-
ture models from propositional formulae. An interactive
support (through ranking lists, clusters, and logical heuris-
tics) for choosing a sound and meaningful hierarchy is part
of the environment [7]. Generic ontologies (like WordNet or
Wikipedia) are exploited as well as synthesis techniques [4].
In our context, there are three notable differences: (1) the
dependency graph is a rough over-approximation of the con-
figuration set (2) the complete list of features is not a priori
known (3) feature names are quite technical and specific.
Therefore the application of synthesis techniques [4, 1, 7] is
not immediate and requires some user effort.

Many formalisms were proposed in the past decade for
variability modeling; we refer to the work of [32, 23, 13] for
a survey on known solutions.

Some work has applied variability management to lan-
guage implementation. Although we used Neverlang [10, 8],
other modular language implementation frameworks can be
employed to implement a similar approach (cf., [40, 22]).
Cengarle et al. [12] use MontiCore [25] to describe variations
of a base language. Haugen et al. [21] have used CVL to
model possible DSL variations. White et al. [43] use fea-
ture modeling to improve reusability of features among a
language family. In Liebig et al. [27] and Wende et al. [41]
a family of languages is decomposed in terms of their fea-
tures using Spoofax [24] and LanGems [41], respectively.
The main differences to these proposals are that they either
factorize the language and then manually map the features
onto a feature model or they start from pre-implemented
languages and design the feature model that brings their
features together. In any case, the feature model is not in-
ferred in an automated or at least semi-automated way from
a set of pre-implemented features. In our approach the rela-
tions between the components are inferred using metadata
(tags) that can be directly extracted from the implemented
language components.

7. CONCLUSION AND FUTURE WORK
Both modular language development and feature-oriented

software software development are current research topics.
We have shown that by combining them, the process to pro-
duce a language variant out of a modularly implemented
language can be simplified by using product line concepts
(language product line). The paper describes how from a set
of properly classified language components a feature model
can be automatically generated. The feature model can be
easily inspected and language features can be picked to form
the desired variant of the language; missing dependencies
can be resolved in two alternative ways. Language exten-
sions and specializations are supported, as well.

The language product line approach is independent of
the adopted development framework. The imposed require-
ments have been discussed. To demonstrate the feasibility of

the language product line approach, it has been described
in the case of Neverlang; a support tool (called AiDE) for
choosing and picking the desired language components and
form the final language product has been developed.

Finally, we have developed a language product line for a
modular implementation of Javascript (Neverlang.JS). The
complexity of the language is big enough to provide a high
number of language components and a significant number of
language variants; this facilitates an interesting playground
for testing language specializations and extensions. Some
real applications of these cases have been proposed, as well.

Only one feature of typical SPL approaches is currently
not supported: their ability to estimate the number of valid
variants. Although the usual approach of transforming the
feature model to a logical formula and estimating the num-
ber of satisfying interpretations is usually an overestimation
in the case of SPLs, it most certainly will be an underestima-
tion for the number of variants in an LPL. This is because
a missing dependency can also be satisfied by rewiring an
open nonterminal. Hence, the number of variants generated
in this way can exceed the estimated number of variants by
an order of magnitude. In a worst-case scenario, the esti-
mation must consider any possible rewiring from one non-
terminal to another; this amounts to considering at most
2n variants, where n is the number of nonterminals. Conse-
quently, we need a more accurate estimation technique that
not only take the generated feature model into account, but
also the number of rewirings that fulfill dependencies and
connect compatible language components. As it is impracti-
cal to create all possible combinations to evaluate the com-
patibility between language components, we currently inves-
tigate to exploit tags to limit the number of valid rewirings.
However, further research is required to develop a reliable
estimation mechanism suitable for LPLs.

Acknowledgements
This work has been partially supported by the MIUR project
“CINA: Compositionality, Interaction, Negotiation, Auto-
nomicity for the future ICT society” as well as the German
Research Foundation (DFG) within the Research Training
Group “Role-based Software Infrastructures for continuous-
context-sensitive Systems” (GRK 1907).

8. REFERENCES
[1] M.Acher, B.Baudry, P.Heymans, A.Cleve, and J.-

L.Hainaut. Support for Reverse Engineering and Main-
taining Feature Models. In VaMoS’13, Jan. 2013. ACM.

[2] A.V.Aho, R. Sethi, and J.D.Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison Wesley, 1986.

[3] V.Alves, C. Schwanninger, L. Barbosa, A.Rashid,
P. Sawyer, P.Rayson, C. Pohl, and A.Rummler. An Ex-
ploratory Study of Information Retrieval Techniques in
Domain Analysis. In SPLC’08, pp. 67–76, Sept. 2008.

[4] N.Andersen, K.Czarnecki, S. She, and A.Wasowski.
Efficient Synthesis of Feature Models. In Proc. of
SPLC’12, pp. 97–106, Salvador, Brazil, Sept. 2012.

[5] S.Apel and C.Kästner. An Overview of Feature-Orien-
ted SW Development. J. of Obj. Tech., 8(5):49–84, 2009.

[6] S.Apel, C.Kästner, and C. Lengauer. Language-
Independent, Automated Software Composition. In
ICSE’09, pp. 221–231, Vancouver, Canada, May 2009.

Final edited form was published in "SPLC '15: 2015 International Conference on Software Product Lines. Nashville 2015", S. 71–80. ISBN: 978-1-4503-3613-0
https://doi.org/10.1145/2791060.2791092

9

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

[7] G.Bécan, S. Ben Nasr, M.Acher, and B.Baudry.
WebFML: Synthesizing Feature Models Everywhere. In
Proc. of SPLC’14, Florence, Italy, Sept. 2014.

[8] W.Cazzola. Domain-Specific Languages in Few Steps:
The Neverlang Approach. In SC’12, LNCS 7306,
pp. 162–177, Prague, Czech Republic, June 2012.

[9] W.Cazzola and D.M.Olivares. Gradually Learning
Programming Supported by a Growable Programming
Language. IEEE Trans. on Emerging Topics in Com-
puting, 4(1), Jan. 2016.

[10] W.Cazzola and E.Vacchi. Neverlang 2: Componentised
Language Development for the JVM. In SC’13, LNCS
8088, pp. 17–32, Budapest, Hungary, June 2013.

[11] W.Cazzola and E.Vacchi. On the Incremental Growth
and Shrinkage of LR Goto-Graphs. ACTA Informatica,
51(7):419–447, Oct. 2014.

[12] M.V.Cengarle, H.Grönniger, and B.Rumpe. Variabil-
ity within Modeling Language Definitions. In MoD-
ELS’09, LNCS 5795, pp. 670–684, Oct. 2009. Springer.

[13] L. Chen and M.Babar. A Systematic Review of Eval-
uation of Variability Management Approaches in SW
Product Lines. J. Inf. & SWTech., 53(4):344–362, 2011.

[14] Z. Chen. Java Card Technology for Smart Cards.
Addison-Wesley, Reading, MA, USA, 2000.

[15] M. L.Crane and J.Dingel. UML vs. Classical vs. Rhap-
sody Statecharts: Not All Models Are Created Equal.
In MoDELS’05, LNCS 3713, pp. 97–112. 2005.

[16] J.-M.Davril, E.Delfosse, N.Hariri, M.Acher, J. Cle-
land-Huang, and P.Heymans. Feature Model Extrac-
tion from Large Collections of Informal Product De-
scriptions. In ESEC/FSE’13, pp. 290–300, Aug. 2013.

[17] S. Erdweg, P.G.Giarrusso, and T.Rendel. Language
Composition Untangled. In LDTA’12, Mar. 2012.

[18] S. Erdweg, T.Rendel, C.Kästner, and K.Ostermann.
SugarJ: Library-Based Syntactic Language extensibil-
ity. In OOPSLA’11, pp. 391–406, Oct. 2011. ACM.

[19] A. Ferrari, G.O. Spagnolo, and F.Dell’Orletta. Min-
ing Commonalities and Variabilities from Natural Lan-
guage Documents. In SPLC’13, pp. 116–120, Sept. 2013.

[20] D.Ghosh. DSL for the Uninitiated. Commun. ACM,
54(7):44–50, July 2011.

[21] Ø. Haugen, B.Møller-Pedersen, J.Oldevik, G.K.Olsen,
and A. Svendsen. Adding Standardized Variability to
Domain Specific Languages. In Proc. of SPLC’08,
pp. 139–148, Limerick, Ireland, Sept. 2008. IEEE.

[22] P.R.Henriques, M. J.Varanda Pereira, M.Mernik,
M. Lenič, J.Gray, and H.Wu. Automatic Generation
of Language-Based Tools Using the LISA System. IEE
Proceedings—Software, 152(2):54–69, Apr. 2005.

[23] A.Hubaux, A.Classen, M.Mendonça, and P.Heymans.
A Preliminary Review on the Application of Feature Di-
agrams in Practice. In VaMoS’10, pp. 53–59, Jan. 2010.

[24] L. C. L.Kats and E.Visser. The Spoofax Language
Workbench: Rules for Declarative Specification of Lan-
guages and IDEs. OOPSLA’10, pp. 444–463, Oct. 2010.

[25] H.Krahn, B.Rumpe, and S.Völkel. MontiCore: A
Framework for Compositional Development of Domain
Specific Languages. Int.l J. on SW Tools for Technology
Transfer, 12(5):353–372, Sept. 2010.

[26] T.Kühn, M. Leuthäuser, S.Götz, C. Seidl, and Aß-
mann. A Metamodel Family for Role-Based Modeling

and Programming Languages. In SLE’14, LNCS 8706,
pp. 141–160, Väster̊as, Sweden, Sept. 2014. Springer.

[27] J. Liebig, R.Daniel, and S.Apel. Feature-Oriented Lan-
guage Families: A Case Study. In VaMoS’13, Jan. 2013.

[28] M.Mernik, J. Heering, and A.M. Sloane. When and
How to Develop Domain Specific Languages. ACM
Comput. Surv., 37(4):316–344, Dec. 2005.

[29] M.Mernik and V. Z̆umer. Incremental Programming
Language Development. Computer Languages, Systems
and Structures, 31(1):1–16, Apr. 2005.

[30] K.Ng, M.Warren, P.Golde, and A.Hejlberg. The
Roslyn Project: Exposing the C# and VB Compiler’s
Code Analysis. White paper, Microsoft, Oct. 2011.

[31] N.Niu and S. Easterbrook. On-Demand Cluster Anal-
ysis for Product Line Functional Requirements. In
SPLC’08, pp. 87–96, Sept. 2008. IEEE.

[32] K. Pohl and A.Metzger. Variability Management in
Software Product Line Engineering. In ICSE’06,
pp. 1049–1050, Shanghai, China, May 2006. ACM.

[33] S. She, R. Lotufo, T.Berger, A.W ↪asowski, and
K.Czarnecki. Reverse Engineering Feature Models. In
ICSE’11, pp. 461–470, May 2011. IEEE.

[34] T.Thüm, C.Kästner, F. Benduhn, J.Meinicke,
G. Saake, and T. Leich. FeatureIDE: An Extensible
Framework for Feature-Oriented Software Develop-
ment. Sc. of Comp. Progr., 79(1):70–85, Jan. 2014.

[35] L. Tratt. Domain Specific Language Implementation
Via Compile-Time Meta-Programming. ACM Trans.
Prog. Lang. Syst., 30(6):31:1–31:40, Oct. 2008.

[36] E.Vacchi and W.Cazzola. Neverlang: A Framework for
Feature-Oriented Language Development. Computer
Languages, Systems & Structures, 2015.

[37] E.Vacchi, W.Cazzola, B.Combemale, and M.Acher.
Automating Variability Model Inference for
Component-Based Language Implementations. In
SPLC’14, pp. 167–176, Florence, Italy, Sept. 2014.

[38] E.Vacchi, W.Cazzola, S. Pillay, and B.Combemale.
Variability Support in Domain-Specific Language De-
velopment. SLE’13, LNCS 8225, pp. 76–95, Oct. 2013.

[39] E.Vacchi, D.M.Olivares, A. Shaqiri, and W.Cazzola.
Neverlang 2: A Framework for Modular Language
Implementation. In Proc. of Modularity’14, pp. 23–26,
Lugano, Switzerland, Apr. 2014. ACM.

[40] E.Van Wyk, D.Bodin, J.Gao, and L.Krishnan. Silver:
an Extensible Attribute Grammar System. Science of
Computer Programming, 75(1-2):39–54, Jan. 2010.

[41] C.Wende, N.Thieme, and S. Zschaler. A Role-Based
Approach towards Modular Language Engineering. In
SLE’09, LNCS 5969, pp. 254–273, Denver, Oct. 2009.

[42] N.Weston, R.Chitchyan, and A.Rashid. A Frame-
work for Constructing Semantically Composable Fea-
ture Models from Natural Language Requirements. In
SPLC’09, pp. 211–220, Aug. 2009. ACM.

[43] J.White, J. H.Hill, J.Gray, S. Tambe, A.Gokhale, and
D.C. Schmidt. Improving Domain-specific Language
Reuse with Software Product-Line Configuration Tech-
niques. IEEE Software, 26(4):47–53, July-Aug. 2009.

Final edited form was published in "SPLC '15: 2015 International Conference on Software Product Lines. Nashville 2015", S. 71–80. ISBN: 978-1-4503-3613-0
https://doi.org/10.1145/2791060.2791092

10

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	Choosy and picky_Vorsatz.pdf
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint Version) /
	This is a self-archiving document (accepted version):
	Thomas Kühn, Walter Cazzola, Diego Mathias Olivares

