
Using FMC for Family-Based Analysis of
Software Product Lines

Maurice H. ter Beek
ISTI–CNR, Pisa, Italy
terbeek@isti.cnr.it

Alessandro Fantechi
DSI, Università di Firenze
and ISTI–CNR, Pisa, Italy
fantechi@dsi.unifi.it

Stefania Gnesi
ISTI–CNR, Pisa, Italy
gnesi@isti.cnr.it

Franco Mazzanti
ISTI–CNR, Pisa, Italy

mazzanti@isti.cnr.it

ABSTRACT
We show how the FMC model checker can successfully be
used to model and analyze behavioural variability in Soft-
ware Product Lines. FMC accepts parameterized specifi-
cations in a process-algebraic input language and allows the
verification of properties of such models by means of efficient
on-the-fly model checking. The properties can be expressed
in a logic that allows to correlate the parameters of different
actions within the same formula. We show how this feature
can be used to tailor formulas to the verification of only
a specific subset of products of a Software Product Line,
thus allowing for scalable family-based analyses with FMC.
We present a proof-of-concept that shows the application of
FMC to an illustrative Featured Transition System from the
literature.

CCS Concepts
•General and reference → Verification; •Theory of
computation→Verification by model checking; Modal
and temporal logics; Process calculi; Operational semantics;
•Software and its engineering → Model checking;
Software product lines; Model-driven software engineer-
ing;

Keywords
Variability, Features, Featured Transition Systems, Process
algebra, Model transformation

1. INTRODUCTION
Featured Transition Systems (FTSs) were originally in-

troduced in [25] for the concise description of the behaviour
of software product lines (SPLs). Formally, an FTS is a
doubly-Labelled Transition System (L2TS) equipped with
an additional feature diagram. Each state is labelled by an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC 2015, July 20 - 24, 2015, Nashville, TN, USA

© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3613-0/15/07. . . $15.00
DOI: http://dx.doi.org/10.1145/2791060.2791118

atomic proposition while each transition is labelled by an
action and, using the improved definition from [24], an asso-
ciated feature expression (a Boolean formula defined over the
set of features) that needs to hold for this specific transition
to be part of the executable product behaviour. Hence an
FTS models a family of Labelled Transition Systems (LTSs),
one per product, which can be obtained by projection: all
transitions whose feature expression is not satisfied by the
specific product’s set of features are removed, as well as all
states and transitions that because of this become unreach-
able. In this paper, we consider a subclass of ‘action-based’
FTSs obtained by ignoring state labels but considering only
transition labels (i.e. actions and feature expressions).

An FTS is a popular model in SPLE that comes with ded-
icated model checkers. FTS model checkers like SNIP [23],
now integrated and reengineered in the product line of model
checkers ProVeLines [26], allow efficient family-based anal-
ysis capable of relating errors and undesired behaviour to
the exact sets of products in which they occur. Such tech-
niques verify properties directly over an entire SPL by us-
ing variability knowledge about valid feature configurations
to deduce results for products, as opposed to enumerative
product-based analysis in which properties are verified over
individually generated products (or at most a subset) [43].

In this paper, we show how the model checker FMC [32]
can be used successfully to model and analyze behavioural
variability in SPLs. FMC (http://fmt.isti.cnr.it/fmc) is a
modelling and verification framework for the definition, ex-
ploration, analysis and model checking of system designs
modelled as parallel compositions of sequential terms. The
process algebra used to model a system is rooted in CCS [39],
CSP [41] and LOTOS [31], and inherits from these languages
its concurrent and sequential constructs. FMC accepts pa-
rameterized specifications and it supports the verification of
properties expressed in a logic that specifically allows to cor-
relate the parameters of different actions within a formula.
We will see how this feature can be used to tailor formulas
to the verification of a specific subset of products of an SPL,
thus allowing for family-based analyses of SPLs. The com-
plexity of verifying a formula for a subfamily obviously does
not depend on the size of the rest of the family. In combina-
tion with the on-the-fly model-checking algorithm of FMC,
this means that more often than not only part of the com-
plete state space needs to be inspected, which considerably
improves the scalability of our approach.

432

While the behaviour of an SPL can of course be directly
specified in FMC, in this paper we present a technique to au-
tomatically transform an FTS into a process-algebraic model
in the specific format accepted by FMC, thus paving the way
for a comparison of the modelling and analysis of SPL be-
haviour in two different model-checking frameworks.

The paper outline is as follows. In Sect. 2 we introduce
FMC in the context of the KandISTI family of model check-
ers. Section 3 contains our running example taken from [24].
The first contribution of this paper, the process-algebraic in-
terpretation of FTSs, is presented in Sect. 4 on the basis of
our running example. In Sect. 5, we provide for the first time
the full syntax of the KTL logic accepted by KandISTI. The
model resulting from Sect. 4 is used in Sect. 6 to illustrate
the main contribution of this paper, the feasibility of effi-
cient family-based analyses with FMC. Section 7 discusses
related work. We conclude with future work in Sect. 8.

Note that we assume some minimal familiarity with just
the basic principles of process algebras, transition systems,
model checking and logics like Hennessy–Milner logic, CTL,
ACTL and the modal µ-calculus [3–5,20–22,28,29,36,38,39].

2. FMC: ON-THE-FLY MODEL CHECKER
FMC is a product of the KandISTI family of model check-

ers [13, 33] (http://fmt.isti.cnr.it/kandisti) we developed at
ISTI–CNR over the past two decades, which includes also
UMC [11,18], CMC [18,30] and VMC [17,19]. Each of them
allows the efficient verification, by means of explicit-state on-
the-fly model checking, of functional properties expressed in
the action-based and state-based branching-time temporal
logic KTL (defined in Sec. 5) derived from the family of
logics based on ACTL [28,29], i.e. action-based CTL.

The model checkers of KandISTI share an optimized veri-
fication engine, as a result of which tens of millions of states
can now be verified in a few minutes. The on-the-fly nature
of KandISTI means that often not the complete state space
needs to be generated and explored. This feature improves
performance and it moreover allows to partially verify also fi-
nite fragments of infinite-state systems. Model checking the
(A)CTL fragment of KTL has a complexity that is at most
linear with respect to the size of the state space and linear
with respect to the size of the formula. KandISTI moreover
offers advanced explanation techniques, such as the step-by-
step illustration of counterexamples, which is particularly
useful when model checking branching-time formulas.

Note that while the model checkers of the KandISTI fam-
ily all share a common verification engine, the input mod-
els of the members other than FMC are rather different,
due to the varying fields of application for which they were
developed: UMC accepts systems specified as sets of com-
municating UML-like state machines, CMC accepts systems
specified in a calculus for the orchestration of web services
and VMC, finally, accepts process-algebraic interpretations
of Modal Transition Systems (MTSs), possibly enriched with
variability constraints known from SPLE.

3. RUNNING EXAMPLE
We illustrate our contribution on a well-known example:

the vending machine product line from [24]. Its valid prod-
ucts are modelled by the feature diagram in Fig. 1, which
defines a set of 12 vending machines based on the primitive
features Soda, Tea, FreeDrinks and CancelPurchase.

Figure 1: Feature diagram of vending machine SPL

The allowed product behavior is modelled by the L2TS in
Fig. 2, in which we have omitted the state labels since they
are not considered in this paper. Ignoring its state labels,
an FTS is an LTS with an associated feature diagram and
a function that labels each transition with an action and an
additional feature expression (i.e. a Boolean expression over
the features, using the abbreviations introduced in Fig. 1).

The transition 1
pay/v∧¬f

-- 2 in Fig. 2, e.g., means that
payment is required/offered only in vending machines that
lack the FreeDrinks feature.

4. FROM FTSS TO PROCESS ALGEBRA
Following [8–10, 14, 16], we model the configuration of a

product separate from its actual behaviour. The breadth-
first node traversal of the feature diagram of the FTS is
directly translated into a process-algebraic interpretation of
an LTS leading from an initial state to a final state (with
no outgoing transitions). A (temporary) final state is valid
if the selected features meet the constraints imposed by the
feature model, otherwise it is a deadlock (sink) state.

For our example, we define a process FMCModel with (upto)
four parameters holding abbreviations of the features in-
cluded (so far). We ignore the root feature v and the com-
pound feature b, since their only purpose is to group the
(primitive) features s and t. The primitive features (next
to s and t also f and c) are those that actually define user
observable configuration parameters [6,42]. The possible in-
clusion of an optional feature leads to a non-deterministic
choice (+). Hence, initially, we can either include or not in-
clude Soda, resulting in either ConfiguredSoda(1) or Con-
figuredSoda(0), respectively, after which we need to decide
upon the inclusion of Tea, Free and Cancel.

FMCModel =
ConfiguredSoda(1) +
ConfiguredSoda(0)

ConfigureSoda(s) =
ConfiguredTea(s,1) +
ConfiguredTea(s,0)

ConfiguredTea(s,t) =
ConfigureFree(s,t,1) +
ConfigureFree(s,t,0)

ConfiguredFree(s,t,f) =
ConfiguredCancel(s,t,f,1) +
ConfiguredCancel(s,t,f,0)

ConfiguredCancel(s,t,f,c) = Valid(s,t,f,c)

433

4
return/c

..

5 serveSoda/s

//
1
00 pay/v∧¬f

--

free/f

$$

2
change/v

-- 3

soda/s 11

tea/t //

cancel/c
22

7
open/v∧¬f

--

take/f

)) 8
take/v

-- 9

close/v

))

6 serveTea/t

11

Figure 2: FTS of vending machine SPL

This procedure leads to non-deterministic choices for op-
tional features, whereas mandatory features would result in
determinism. Once all nodes in the feature diagram have
been visited, a resulting feature set Valid(s,t,f,c) still
may or may not satisfy the (cross-tree) constraints of the
feature diagram. In our example, the only constraint is
Soda or Tea, which is verified by means of an explicit pair
of guards on these two features that require the correspond-
ing parameter to be 0 if the feature is to be absent and
1 if it is to be present. If the constraint is satisfied, then
action checkOK(s,t,f,c) passes the parameters to process
FTSModel(s,t,f,c), which models the behaviour of the con-
figured products based on the transition system of the FTS.

Valid(s,t,f,c) =
[s=0][t=1] checkOK(s,t,f,c).FTSModel(s,t,f,c) +
[s=1][t=0] checkOK(s,t,f,c).FTSModel(s,t,f,c) +
[s=1][t=1] checkOK(s,t,f,c).FTSModel(s,t,f,c)

We now define the product behaviour of our example prod-
uct line in a process-algebraic setting, which can be seen as
the natural encoding of the graph (FTS) of Fig. 2, with
the process terms corresponding to the nodes of the graph
and the guards verifying the respective feature expressions.
In this paper, we will often simply speak of an FTS when
we actually intend only the L(2)TS, i.e. ignoring the feature
diagram that is formally part of the definition of an FTS. Fi-
nally, we need to use net SYS to indicate the initial process
of a process model for FMC.

FTSModel(s,t,f,c) = T1(s,t,f,c)

T1(s,t,f,c) =
[f=0] pay.T2(s,t,f,c) +
[f=1] free.T3(s,t,f,c)

T2(s,t,f,c) = change(s,t,f,c).T3(s,t,f,c)

T3(s,t,f,c) =
[c=1] cancel.T4(s,t,f,c) +
[s=1] soda.T5(s,t,f,c) +
[t=1] tea.T6(s,t,f,c)

T4(s,t,f,c) = [c=1] return.T1(s,t,f,c)

T5(s,t,f,c) = [s=1] serveSoda.T7(s,t,f,c)

T6(s,t,f,c) = [t=1] serveTea.T7(s,t,f,c)

T7(s,t,f,c) =
[f=1] take.T1(s,t,f,c) +
[f=0] open.T8(s,t,f,c)

T8(s,t,f,c) = take.T9(s,t,f,c)

T9(s,t,f,c) = close.T1(s,t,f,c)

net SYS = FMCModel

Note that we simplified the feature expressions by ignor-
ing the abstract feature v, which is (by definition) always
present. Moreover, since the guards can only verify the pres-
ence or absence of a feature (through the Boolean value of
the parameter), in general we first need to transform the
feature expressions of an FTS into conjunctive normal form.

Taking the above FMCModel as input, FMC generates
the L2TS of all (valid) products of the vending machine SPL
depicted in Fig. 3.

For this paper, the encoding of an FTS (and feature model)
into FMC’s input language, as described in this section, was
performed manually. However, the procedure can easily be
automated, such that SPL developers would not even have
to look at or understand the encoding. In [7], an automatic
technique is provided that transforms any action-based FTS
(with an associated feature model) into an MTS (with ad-
ditional sets of variability constraints) in the specific format
accepted by the Variability Model Checker VMC [17,19].

5. KTL: KANDISTI TEMPORAL LOGIC
KTL is the common temporal logic shared by all tools of

the KandISTI framework. It is the result of several years of
evolution of the KandISTI tools [11,17–19,28,30,32].

Even though the various tools make use of different speci-
fication languages, the semantic model of their input specifi-
cations is uniformly seen as an L2TS, which thus constitutes
the abstract underlying model of the logic KTL.

The logic KTL includes the following rich set of features:

• Parametric state predicates (represented by the state
labels of the L2TS)
e.g. pred1(arg1, arg2), pred2 and pred3(∗, arg3)

• Special-purpose predefined state predicates (more on
PRINT below, while FINAL is shorthand for a final state)
e.g. PRINT(message, arg1, arg2) and FINAL

• Parametric action formulas (represented by Boolean
expressions over the transitions labels of the L2TS)
e.g. (act1(arg1, arg2) or act2) and not act3(arg3, ∗, ∗)

434

{checkOK(1,1,1,1)}
{checkOK(1,1,1,0)}

{checkOK(1,1,0,1)}
{checkOK(1,1,0,0)}

{checkOK(1,0,1,1)}
{checkOK(1,0,1,0)}

{checkOK(1,0,0,1)}
{checkOK(1,0,0,0)}

{checkOK(0,1,1,1)}
{checkOK(0,1,1,0)}

{checkOK(0,1,0,1)}
{checkOK(0,1,0,0)}

{free}
{free}

{pay}
{pay}

{free}
{free}

{pay}
{pay}

{free}
{free}

{pay}
{pay}

{cancel}
{soda}

{tea}
{soda}

{tea}
{change(1,1,0,1)}

{change(1,1,0,0)}
{cancel}

{soda}
{soda}

{change(1,0,0,1)}
{change(1,0,0,0)}

{cancel}
{tea}

{tea}
{change(0,1,0,1)}

{change(0,1,0,0)}

{return}
{serveSoda}

{serveTea}
{serveSoda}

{serveTea}
{cancel}

{soda}
{tea}

{soda}
{tea}

{return}
{serveSoda}

{serveSoda}
{cancel}

{soda}
{soda}

{return}
{serveTea}

{serveTea}
{cancel}

{tea}
{tea}

{take}
{take}

{return}
{serveSoda}

{serveTea}
{serveSoda}

{serveTea}
{take}

{take}
{return}

{serveSoda}
{serveSoda}

{take}
{take}

{return}
{serveTea}

{serveTea}

{open}
{open}

{open}
{open}

{open}
{open}

{take}
{take}

{take}
{take}

{take}
{take}

{close}
{close}

{close}
{close}

{close}
{close}

F
ig
u
re

3
:
L

2T
S

o
f
a
ll

p
ro

d
u
cts

o
f
th

e
v
e
n
d
in
g
m
a
ch

in
e
S
P
L

a
s
g
e
n
e
ra

te
d

b
y

F
M

C

• Classical Box, Diamond and Fixed-point operators (i.e.
the full modal µ-calculus)
e.g. maxY : max Z : ((⟨act2(arg1)⟩Y) or ⟨act2⟩Z)

• Classical high-level CTL operators (e.g. Next, Always,
Until, Globally, Eventually, Weak Until)
e.g. EX pred1, A [pred1(arg1)U pred2], AGEF pred1
and E [pred1(arg1)W pred2]

• High-level ACTL-like operators (i.e. the action-based
variants of the above CTL operators)
e.g. EX {act1} true, E [pred1(arg1) {act1}W pred2],
AGEF {act1} pred1, A [pred1(arg1) {act1}U pred2]
and A [pred1(arg1) {act1}U {act2} pred2]

• Parametric formulas that express data correlations be-
tween actions and subformulas
e.g. [act1($1, $2)] AF {act2(%1,%2)} true and
EF {$1} EF {%1} true

• Deontic variants of some of the above operators (which
allow to reason on MTSs, distinguishing mandatory
from optional transitions)
e.g. ⟨act1⟩# true and EF# {act} pred1

Clearly not all KandISTI tools are able to fully exploit all
KTL features (cf. Sect. 4). For instance, VMC and FMC
specifications do not support state labelling (and therefore
neither state predicates), whereas FMC, CMC and UMC
specifications do not support variability-related aspects (e.g.
the deontic variants).

The syntax of KTL is given by the next three definitions
(var abbreviates variable, more comment below).

Definition 1. State predicates are built as follows over
a set Ls of state labels.

P ::= ℓ(e, . . .)

e ::= literal | ∗ | %var

Definition 2. Action formulas are built as follows over
a set Lt of transition labels.

ψ ::= true | false | ℓ(e, . . .) | $var | ¬ψ | ψ ∧ ψ | ψ ∨ ψ

e ::= literal | ∗ | $var | %var

Here $var denotes a free variable, while %var denotes a
bound variable which must appear in a subformula of a for-
mula that has introduced the corresponding free variable.
Inside an action formula, $var may only occur inside certain
contexts (Box, Diamond, Next, Eventually, and on the right
side of Until operators) and not inside Boolean expressions.

Definition 3. The full syntax of KTL is as follows:

φ ::= true | false | P | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ → φ′ |
[ψ]φ | ⟨ψ⟩φ | µY.φ(Y) | ν Y.φ(Y) |
E π | Aπ

π ::= X φ | [φ U φ′] | [φ W φ′] | F φ | Gφ |
X {ψ} φ | [φ {ψ}U {ψ′} φ′] | [φ {ψ}W {ψ′} φ′] |
[φ {ψ}U φ′] | [φ {ψ}W φ′] | F {ψ} φ |
[ψ]✷ φ | ⟨ψ⟩✷ φ | F {ψ}✷ φ

where Y is a propositional variable and φ(Y) is syntacti-
cally monotone in Y .

435

In KandISTI, ¬, ∨, ∧, →, ✷, µ and ν must be written as
not, or, and, implies, #, min and max, respectively.

It is outside the scope of this paper to describe all details of
the semantics of the full KTL logic, which has already been
presented (though incrementally) in [11, 17, 30]. However,
we now recall in some detail a few aspects which are less
known but which are used in this paper.

The first aspect is related to the presence of free variables
inside a formula which are dynamically bound to some value
during the evaluation of that formula. Consider the formula:

[act1($1)] (EF ⟨act2(%1)⟩ true) (1)

The meaning of this formula is as follows: if from the cur-
rent (initial) state s1 there exists an outgoing transition la-
belled with act1(arg) (where arg is some literal), then the
target state of this transition must satisfy the subformula
EF ⟨act2(arg)⟩ true.

Note that the literal arg (possibly more than one) is taken
from the labels of the outgoing transitions from s1 (which
match the label template act1($1)) and used to instantiate
the parametric subformula EF ⟨act2(%1)⟩ true into the non-
parametric subformula EF ⟨act2(arg)⟩ true. To make this
more clear, consider the L2TS in Fig. 4.
In this case, the evaluation of Formula 1 in s1 thus be-

comes equivalent to the evaluation of the following formula:

([act1(111)] (EF ⟨act2(111)⟩ true)) ∧
([act1(222)] (EF ⟨act2(222)⟩ true))

For all labels matching the label template a variable binding
is generated and used to instantiate the rest of the formula.

It is interesting to recall the origin of this KTL feature,
initially introduced in CMC to support the verification of
service-oriented systems. In that case, there was the need
to be able to verify that in a system any action of the
type request(session_id, operation) is always followed by
an action of the type response(session_id, result), where
session_id is a dynamically generated value.

Using the above parameterization mechanism, we are able
to express such a property by a formula of the following form:

AG [request($s, ∗)] AF {response(%s, ∗)} true

Note how ∗ can be used as a placeholder for identifying
label parameters not used in the variable bindings (this is
commonly referred to as a don’t care symbol).

The second aspect we want to describe in detail is related
to the special-purpose predefined state predicate of the form
PRINT(arg1, arg2, . . .), in which arg’s can be identifiers, lit-
erals or bound variables (i.e. %var). The evaluation of such
a PRINT predicate on a state s simply returns the value false.
However, its evaluation in state s also has the side-effect of
printing the following text:

MESSAGE from state s : PRINT(arg1, arg2, . . .)

(in which any bound variable in the list of arg’s is obviously
replaced by its currently instantiated value in s).

In case of the L2TS depicted in Fig. 4, the evaluation of
the formula ⟨act1($1)⟩ PRINT(%1) in state s1 generates the

s2
act2(111)

-- s4

s1
00

act1(111)
11

act1(222) // s3
act2(222)

-- s5

Figure 4: Dynamic variable binding in L2TS

following output:

MESSAGE from state s2 : PRINT(111)

MESSAGE from state s3 : PRINT(222)

The formula:

⟨act1($1)⟩ PRINT(%1)

is FALSE

Note that in the end the formula evaluates to false because
each time a transition satisfying act1($1) is found a PRINT
predicate is evaluated, which returns false. So the final result
(false) is actually irrelevant, while the interesting part is the
preceding list of messages generated as side-effect.

Whenever a KTL formula contains a PRINT predicate, all
its Boolean conjunction and disjunction operators are evalu-
ated in a lazy, left-to-right order. This means that the eval-
uation of the formula false ∧ PRINT(OK) only returns false,
without printing anything, whereas an evaluation of the for-
mula true ∧ PRINT(OK) has the effect of still returning false,
but it subsequently prints the message PRINT(OK) from the
state in which it is evaluated. It is interesting to see that
evaluation of the formula EF φ ∧ PRINT(OK) thus has the
effect of always returning a final value false and afterwards
printing the message PRINT(OK) from all the states in which
the formula φ actually holds.

These two aspects will be applied in the next section for
the family-based analysis of our FMC model of Sect. 4.

6. MODEL CHECKING FTSS WITH FMC
In this section, we show how FMC can be used to perform

family-based analyses of SPL behaviour and we illustrate its
usage on our running example.

As usual, a product is identified by the set of features
that it contains, i.e. in our example (1, 0, 1, 0) refers to the
product that offers free soda (cf. Fig. 3).

We now provide three patterns of KTL formula that are
useful for performing family-based analyses with FMC, after
which we show an example of their usage by applying them
to the running example. Note how we use the predefined
state predicate PRINT to output the products that do or do
not satisfy a certain property.

First, a KTL formula of the format

⟨checkOK($1, . . . , $n)⟩ (φ and PRINT(OK,%1, . . . ,%n))

prints all products for which φ holds.
Second, a KTL formula of the format

⟨checkOK($1, . . . , $n)⟩ (not φ and PRINT(KO,%1, . . . ,%n))

prints all products for which φ does not hold.

436

Third, a KTL formula of the format

⟨checkOK($1, . . . , $n)⟩ ((φ and PRINT(OK,%1, . . . ,%n))

or (not φ and PRINT(KO,%1, . . . ,%n)))

prints for all products whether or not they satisfy φ. Note
that it moreover does so in a single computation.

If, instead, we are not interested in pinpointing the precise
set of products for which a property holds, but simply want
to know whether a property holds for all valid products, then
we can verify a formula of the format

[checkOK] φ

Note that this is logically equivalent to verifying the formula
[checkOK(∗, ∗, ∗, ∗)] φ. This specific format paves the way to
verification of properties for only a subset of valid products.
Suppose that we want to verify φ for all products that serve
tea but not soda and which do not allow to cancel a purchase,
while we don’t care about whether or not a beverage needs
to be paid for. We can verify this with the following formula:

[checkOK(0, 1, ∗, 0)] φ

The validity of a formula for a subset of valid products (i.e. a
subfamily) obviously does not depend on the rest of the fam-
ily and, hence, neither does the complexity of verifying the
formula. In combination with the on-the-fly model-checking
algorithm of FMC, this means that more often than not only
part of the complete state space needs to be inspected, which
considerably improves the scalability of our approach.

We now show how to verify the following example prop-
erty from [24]: “After selecting a beverage, the machine will
always open the beverage compartment to allow the customer
to collect his purchase.”

Analogous to [24], we first verify it for all valid products:

[checkOK] AG [soda or tea] AF {open} true

Not surprisingly, FMC concludes that this formula is false.
Actually, if we request FMC to explain the result (which we
recall is a very useful feature of KandISTI), it comes up with
a counterexample, similar to the one presented in [24].

In brief, FMC states that the execution sequence

C1 -> C2 {checkOK(1,1,1,1)}
C2 -> C14 {free}
C14 -> C16 {soda}

leads to a state (C16) in which the formula AF {open} true is
not satisfied. Literally, the reason provided is“there exists at
least one full path from C16 in which all transitions have the
label which does NOT satisfy the action open. For example:

C16 -> C18 {serveSoda}
C18 -> C2 {take}
C2 -> C14 {free}
C14 -> C15 {cancel}
C15 -> C2 {return} (C2 closes a loop)

is one of the above mentioned failing paths”.
As in [24], we thus need to restrict verification of the afore-

mentioned property to products without the FreeDrinks
feature if it were to hold. This can be formalized in KTL as:

[checkOK(∗, ∗, 0, ∗)] AG [soda or tea] AF {open} true

FMC reports that this formula is indeed true.

If we are interested in knowing precisely for which of the
products of the SPL the property holds and/or for which it
does not hold, then we can use one of the above patterns of
KTL formula. For example, upon verifying the KTL formula

⟨checkOK($1, . . . , $4)⟩ ((φ and PRINT(OK,%1, . . . ,%4))

or (not φ and PRINT(KO,%1, . . . ,%4)))

for φ ≡ AG [soda or tea] AF {open} true, FMC reports:

MESSAGE from state C2: PRINT(KO,1,1,1,1)
MESSAGE from state C3: PRINT(KO,1,1,1,0)
MESSAGE from state C4: PRINT(OK,1,1,0,1)
MESSAGE from state C5: PRINT(OK,1,1,0,0)
MESSAGE from state C6: PRINT(KO,1,0,1,1)
MESSAGE from state C7: PRINT(KO,1,0,1,0)
MESSAGE from state C8: PRINT(OK,1,0,0,1)
MESSAGE from state C9: PRINT(OK,1,0,0,0)
MESSAGE from state C10: PRINT(KO,0,1,1,1)
MESSAGE from state C11: PRINT(KO,0,1,1,0)
MESSAGE from state C12: PRINT(OK,0,1,0,1)
MESSAGE from state C13: PRINT(OK,0,1,0,0)
The formula:

⟨checkOK($1, . . . , $4)⟩ ((φ · · · PRINT(KO,%1, . . . ,%4)))

is FALSE

Hence this property actually only holds for products without
the FreeDrinks feature (as was known from [24]).

We conclude with three more complex properties not taken
from [24].

The first property is as follows: For all beverage vending
machines, it is always true that, if the customer pays or skips
payment, and he does not cancel his purchase, then he will
surely take the purchased beverage without being asked again
to pay or skip payment. In KTL, this can be formalized as:

[checkOK] AG [pay or free]

A [true {(not pay) and (not free)} U {take or cancel} true]

As desired, FMC reports that this is a property that holds.
The second property is as follows: For all beverage vending

machines, the machine will always eventually become idle
again. This property, which verifies that any execution se-
quence of a product of our FMC model will eventually lead
back to the product’s initial state, is formalized in KTL as:

[checkOK] AG AF ⟨pay or free⟩ true

FMC reports that also this property holds, thus confirming
the absence of deadlocks in our FMC model.

The third property, finally, is as follows: For all bever-
age vending machines, the machine will deliver an infinite
number of beverages if at each cycle all internal loops are
executed just a finite number of times. If we measure a cycle
as the execution sequence between a customer taking two
different beverages, then this property can be formalized as:

[checkOK] AG EF {take} true

Note that the only possible internal loops are those sequences
that involve a purchase being cancelled. This formula thus
concerns the evaluation of a property that holds only for
‘fair’ executions.

The reader is warmly invited to experiment with FMC:
the running example is available among the examples offered
upon clicking ‘Model Definition’ in FMC’s menu panel.

437

7. RELATED WORK
Our approach to model checking SPLs falls in the cate-

gory of using existing model checkers, that have been op-
timized for single system engineering, for SPLE, based on
encoding the product variability directly into the specifica-
tion model to be verified [1, 2, 8–10, 12, 14–17, 19, 34, 37, 40].
Consequently, these model checkers stop once a violating
product is found, without outputting the set of products
that do satisfy the property. This drawback is overcome in
the dedicated SPL model checker SNIP [23], which has re-
cently been reengineered and the resulting tool suite ProVe-
Lines [26] now supports discrete as well as real-time models,
various types of computations and advanced feature notions.
In this paper, we have shown how to overcome this drawback
with FMC by exploiting the advanced correlation features
of KTL, which allow to print for all products whether or not
they satisfy a formula as the result of a single computation.

8. CONCLUSIONS AND FUTURE WORK
We have shown how the FMC model checker (http://fmt.

isti.cnr.it/fmc) and its KTL logic can be quite easily used
for the modelling and (family-based) analysis of behavioural
variability in SPLs. We have also shown how to automat-
ically obtain a process-algebraic model from an FTS that
can directly serve as input for FMC. In [7], we undertook
a similar approach by providing an automatic technique to
transform FTSs into MTSs with additional sets of variabil-
ity constraints in the specific format accepted by VMC. This
technique was illustrated on the same example.

In FMC, parametric formulas, lazy evaluation and special-
purpose PRINT predicates allow to identify all the (reachable)
states in which a certain formula is satisfied, paving the
way for an automatic analysis for deciding which specific
products of an SPL do or do not satisfy a given property.

The on-the-fly evaluation of the KTL logic also allows
efficient verifications of properties over subfamilies of an SPL
(i.e. over a subset of products characterized by a subset of
features), in which case the state space of the rest of the
family obviously need not be generated. In combination
with on-the-fly model checking, this considerably improves
the scalability of our approach.

The adopted approach is illustrated for a classical, though
quite simple example SPL. It is left as future work to ex-
tend the analysis approach to models of larger size as well
to pursue a quantitative/qualitative comparison with other
tools that have been used for the (family-based) behavioural
variability analysis of SPLs, such as the Variability Model
Checker VMC [17, 19], the dedicated SPL model checker
SNIP/ProVeLines [23, 26] and the industrial-strength mod-
elling and analysis toolset mCRL2 [27,35].

9. ACKNOWLEDGEMENTS
Research supported by EU project QUANTICOL (600708)

and Italian MIUR project CINA (PRIN 2010LHT4KM). We
thank the anonymous reviewers for their useful comments.

10. REFERENCES
[1] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and

D. Beyer. Detection of feature interactions using
feature-aware verification. In ASE, pages 372–375.
IEEE, 2011.

[2] S. Apel, A. von Rhein, P. Wendler, A. Größlinger, and
D. Beyer. Strategies for Product-Line Verification:
Case Studies and Experiments. In ICSE, pages
482–491. IEEE, 2013.

[3] J. C. M. Baeten, T. Basten, and M. A. Reniers.
Process Algebra: Equational Theories of
Communicating Processes, volume 50 of Cambridge
Tracts in Theoretical Computer Science. Cambridge
University Press, 2010.

[4] J. C. M. Baeten and W. P. Weijland. Process Algebra,
volume 18 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1990.

[5] C. Baier and J. Katoen. Principles of Model Checking.
The MIT Press, 2008.

[6] D. S. Batory. Feature Models, Grammars, and
Propositional Formulas. In J. H. Obbink and K. Pohl,
editors, SPLC, volume 3714 of LNCS, pages 7–20.
Springer, 2005.

[7] M. H. ter Beek, F. Damiani, S. Gnesi, F. Mazzanti,
and L. Paolini. From Featured Transition Systems to
Modal Transition Systems with Variability
Constraints. In R. Calinescu and B. Rumpe, editors,
SEFM, LNCS. Springer, 2015.

[8] M. H. ter Beek and E. P. de Vink. Software Product
Line Analysis with mCRL2. In A. Legay and
E. de Vink, editors, SPLC workshop SPLat, volume 2
of SPLC, pages 78–85. ACM, 2014.

[9] M. H. ter Beek and E. P. de Vink. Towards Modular
Verification of Software Product Lines with mCRL2.
In T. Margaria and B. Steffen, editors, ISoLA, volume
8802 of LNCS, pages 368–385. Springer, 2014.

[10] M. H. ter Beek and E. P. de Vink. Using mCRL2 for
the Analysis of Software Product Lines. In S. Gnesi
and N. Plat, editors, ICSE workshop FormaliSE, pages
31–37. IEEE, 2014.

[11] M. H. ter Beek, A. Fantechi, S. Gnesi, and
F. Mazzanti. A state/event-based model-checking
approach for the analysis of abstract system
properties. Science of Computer Programming,
76(2):119–135, 2011.

[12] M. H. ter Beek, A. Fantechi, S. Gnesi, and
F. Mazzanti. Modelling and Analysing the Variability
in Product Families: Model Checking of Modal
Transition Systems, 2015.

[13] M. H. ter Beek, S. Gnesi, and F. Mazzanti. From EU
Projects to a Family of Model Checkers: From
Kandinsky to KandISTI. In R. De Nicola and
R. Hennicker, editors, Software, Services and Systems,
volume 8950 of LNCS, pages 312–328. Springer, 2015.

[14] M. H. ter Beek, A. Legay, A. Lluch Lafuente, and
A. Vandin. Quantitative Analysis of Probabilistic
Models of Software Product Lines with Statistical
Model Checking. In J. M. Atlee and S. Gnesi, editors,
SPLC workshop FMSPLE, volume 182 of EPTCS,
pages 56–70, 2015.

[15] M. H. ter Beek, A. Legay, A. Lluch Lafuente, and
A. Vandin. Statistical Analysis of Probabilistic Models
of Software Product Lines with Quantitative
Constraints. In SPLC. ACM, 2015.

[16] M. H. ter Beek, A. Lluch Lafuente, and M. Petrocchi.
Combining Declarative and Procedural Views in the
Specification and Analysis of Product Families. In

438

D. Clarke, editor, SPLC workshop FMSPLE, volume 2
of SPLC, pages 10–17. ACM, 2013.

[17] M. H. ter Beek and F. Mazzanti. VMC: Recent
Advances and Challenges Ahead. In A. Legay and
E. de Vink, editors, SPLC workshop SPLat, volume 2
of SPLC, pages 70–77. ACM, 2014.

[18] M. H. ter Beek, F. Mazzanti, and S. Gnesi.
CMC–UMC: a framework for the verification of
abstract service-oriented properties. In C. Guidi,
I. Lanese, and M. Mazzara, editors, SAC track SOAP,
pages 2111–2117. ACM, 2009.

[19] M. H. ter Beek, F. Mazzanti, and A. Sulova. VMC: A
Tool for Product Variability Analysis. In
D. Giannakopoulou and D. Méry, editors, FM, volume
7436 of LNCS, pages 450–454. Springer, 2012.

[20] J. C. Bradfield and C. Stirling. Modal µ-calculi. In
P. Blackburn, J. F. A. K. van Benthem, and
F. Wolter, editors, Handbook of Modal Logic, volume 3
of Studies in Logic and Practical Reasoning, pages
721–756. Elsevier, 2007.

[21] E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic Verification of Finite-State Concurrent
Systems Using Temporal Logic Specifications. ACM
Transactions on Programming Languages and
Systems, 8(2):244–263, 1986.

[22] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 1999.

[23] A. Classen, M. Cordy, P. Heymans, A. Legay, and
P. Schobbens. Model checking software product lines
with SNIP. International Journal on Software Tools
for Technology Transfer, 14(5):589–612, 2012.

[24] A. Classen, M. Cordy, P. Schobbens, P. Heymans,
A. Legay, and J. Raskin. Featured Transition Systems:
Foundations for Verifying Variability-Intensive
Systems and Their Application to LTL Model
Checking. IEEE Transactions on Software
Engineering, 39(8):1069–1089, 2013.

[25] A. Classen, P. Heymans, P. Schobbens, A. Legay, and
J. Raskin. Model Checking Lots of Systems: Efficient
Verification of Temporal Properties in Software
Product Lines. In ICSE, pages 335–344. ACM, 2010.

[26] M. Cordy, A. Classen, P. Heymans, P. Schobbens, and
A. Legay. ProVeLines: a product line of verifiers for
software product lines. In SPLC, volume 2, pages
141–146. ACM, 2013.

[27] S. Cranen, J. F. Groote, J. J. A. Keiren, F. P. M.
Stappers, E. P. de Vink, W. Wesselink, and T. A. C.
Willemse. An Overview of the mCRL2 Toolset and Its
Recent Advances. In N. Piterman and S. A. Smolka,
editors, TACAS, volume 7795 of LNCS, pages
199–213. Springer, 2013.

[28] R. De Nicola, A. Fantechi, S. Gnesi, and G. Ristori.
An Action Based Framework for Verifying Logical and
Behavioural Properties of Concurrent Systems. In
K. G. Larsen and A. Skou, editors, CAV, volume 575

of LNCS, pages 37–47. Springer, 1991.
[29] R. De Nicola and F. W. Vaandrager. Action versus

State based Logics for Transition Systems. In
I. Guessarian, editor, Semantics of Systems of
Concurrent Processes, volume 469 of LNCS, pages
407–419. Springer, 1990.

[30] A. Fantechi, S. Gnesi, A. Lapadula, F. Mazzanti,
R. Pugliese, and F. Tiezzi. A logical verification
methodology for service-oriented computing. ACM
Transactions on Software Engineering and
Methodology, 21(3):16:1–16:46, 2012.

[31] C. Fidge. A Comparative Introduction to CSP, CCS
and LOTOS. Technical Report 93-24, Software
Verification Research Centre, University of
Queensland, January 1994.

[32] S. Gnesi and F. Mazzanti. On the Fly Verification of
Networks of Automata. In H. R. Arabnia, editor,
PDPTA, pages 1040–1046. CSREA Press, 1999.

[33] S. Gnesi and F. Mazzanti. An Abstract, on the Fly
Framework for the Verification of Service-Oriented
Systems. In M. Wirsing and M. M. Hölzl, editors,
Rigorous Software Engineering for Service-Oriented
Systems: Results of the SENSORIA Project on
Software Engineering for Service-Oriented Computing,
volume 6582 of LNCS, pages 390–407. Springer, 2011.

[34] S. Gnesi and M. Petrocchi. Towards an executable
algebra for product lines. In SPLC workshop
FMSPLE, pages 66–73. ACM, 2012.

[35] J. F. Groote and M. R. Mousavi. Modeling and
Analysis of Communicating Systems. The MIT Press,
2014.

[36] D. Kozen. Results on the Propositional mu-Calculus.
Theoretical Computer Science, 27:333–354, 1983.

[37] K. Lauenroth, K. Pohl, and S. Töhning. Model
Checking of Domain Artifacts in Product Line
Engineering. In ASE, pages 269–280. IEEE, 2009.

[38] R. Meolic, T. Kapus, and Z. Brezocnik. ACTLW: An
action-based computation tree logic with unless
operator. Information Sciences, 178(6):1542–1557,
2008.

[39] R. Milner. Communication and Concurrency. Prentice
Hall, 1989.

[40] H. Post and C. Sinz. Configuration Lifting:
Verification meets Software Configuration. In ASE,
pages 347–350. IEEE, 2008.

[41] A. W. Roscoe. The Theory and Practice of
Concurrency. Prentice Hall, 1997.

[42] P. Schobbens, P. Heymans, and J. Trigaux. Feature
Diagrams: A Survey and a Formal Semantics. In RE,
pages 136–145. IEEE, 2006.

[43] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and
G. Saake. A Classification and Survey of Analysis
Strategies for Software Product Lines. ACM
Computing Surveys, 47(1):6:1–6:45, 2014.

439

