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ABSTRACT 
The development of genomic resources of non-model organisms 
is now becoming commonplace as the cost of sequencing 
continues to decrease. The Genome Informatics Facility in 
collaboration with the Southwest Fisheries Science Center 
(SWFSC), NOAA is creating these resources for sustainable 
aquaculture in Seriola lalandi. Gene prediction and annotation are 
common steps in the pipeline to generate genomic resources, 
which are computationally intense and time consuming. In our 
steps to create genomic resources for Seriola lalandi, we found 
BLAST to be one of our most rate limiting steps. Therefore, we 
took advantage of our XSEDE Extended Collaborative Support 
Services (ECSS) to reduce the amount of time required to process 
our transcriptome data by 300 percent. In this paper, we describe 
an optimized method for the BLAST tool on the Stampede cluster, 
which works with any existing datasets or database, without any 
modification. At modest core counts, our results are similar to the 
MPI-enabled BLAST algorithm (mpiBLAST), but also allow the 
much needed and improved flexibility of output formats that the 
latest versions of BLAST provide. Reducing this time-consuming 
bottleneck in BLAST will be broadly applicable to the annotation 
of large sequencing datasets for any organism. 

Categories and Subject Descriptors 
J.3 [Life and Medical Sciences]: Biology and Genetics. 

General Terms 

Algorithms, Performance, Experimentation. 

Keywords 
NCBI-BLAST; mpi-BLAST; optimization; Stampede. 

1. INTRODUCTION 
It is now commonplace for researchers to use high throughput 
genome sequencing technologies to generate terabytes of short 
read DNA/RNA sequencing data in order to explore a particular 
scientific question. Our primary research focus is the development 
of genomic resources that lead to environmentally friendly and 
economically sustainable production in crops, livestock, and 
aquaculture.  
In our current project, we are creating genomic resources for a 
fish species, Seriola lalandi. This research will advance 
aquaculture practices for the U.S. Seriola industry and can be 
used to help insure viability and success of domestic finfish 
aquaculture programs. We are in the process of developing a 
toolkit that will not only provide an immediate benefit to 
aquaculture facilities to improve production capacity for Seriola 

species, but the genetic resources we are developing will also be 
powerful tools for further studies of economically important traits 
in the long-term. One critical step in our pipeline involves 
searching large sequence databases to putatively assign function 
to assembled transcripts and gene models. 
One of the most popular tools for sequence similarity searches is 
the Basic Local Alignment Search Tool (BLAST) by NCBI [1].  
Unfortunately, using BLAST to assign functions to transcript and 
gene models is a computationally intensive process that requires 
many cpu hours and cannot be achieved in a reasonable amount of 
time on our local infrastructure. To overcome this limiting step, 
we took advantage of the XSEDE Extended Collaborative 
Support Services (ECSS) and created an optimized method for the 
BLAST tool on the Stampede cluster. The large life sciences 
community that uses Stampede can benefit from this work. An 
efficient usage of this cluster can result in a very valuable resource 
for this community. Also, the lessons learned might be applied to 
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other computational resources that do not need to be specially 
designed to address the requirements of this specific community. 
BLAST uses a heuristic method, to find matches between the 
sequences. Rather than using the entire sequence for finding a 
match, it uses short segments (seeds) of the sequence of interest 
(query) to find a perfect match in the sequence database (target). 
Once it finds the match, local alignment is performed and 
alignment is extended. The match is determined to be statistically 
significant based on the score and e-value calculated based on the 
similarity matrix and the database size. Recent surge in the 
sequencing projects due to the ever-decreasing cost to generate 
sequencing data has resulted in an exponential growth of these 
databases and thus has increased the computational time required 
for the sequence similarity finding algorithms. In addition, the 
BLAST algorithm reads the query sequence sequentially and 
performs a search against the database, thereby consuming larger 
amounts of time with the increasing number of query sequences.  
Although, several optimizations have been performed over the 
original BLAST program, including the MPI-enabled BLAST, 
they have limitations. Some optimizations follow a nested-
sequence approach, wherein smaller sequences are fused together 
to make a large query sequence for comparison to the database, 
reducing the total number of query sequences (megablast) [7]. 
Another popular approach is to trivially parallelize the problem by 
splitting the input sequences into to smaller files and performing 
BLAST against the database separately. There are also several 
GUI based front-ends developed for this purpose that handle the 
input splitting, sequence searching and merging output files 
automatically. GPU-acceleration has also been implemented in an 
attempt to speed up the BLAST algorithm but it has not taken off 
due to the Moore’s law increase in cpu speed every year [5]. A 
parallel implementation of the BLAST program called mpiBLAST 
is available that can perform BLAST searches more efficiently 
using large number of processors [4]. All of these 
implementations result in an increase in the processing speed of 
large sequencing queries. However, each have their limitations: 1) 
nested BLAST changes statistical scores for the query sequences 
and requires further parsing for obtaining readable results, 2) 
splitting input files creates a huge burden on I/O, and reduces the 
performance, 3) GUI based front-ends are not open source, 4) not 
all compute clusters provide GPU acceleration., and finally 5) 
mpiBLAST provides very little flexibility on the output 
configurations. Not all NCBI-BLAST options are available in 
mpiBLAST. Output options are limited to tabular (with or without 
headers), xml and regular BLAST output, whereas regular BLAST 
allows 11 output formats. Certain tasks such as identifying the 
contaminant sequences using BLAST require re-configuring 
tabular output (by including taxonomical IDs as a field), or in 
some cases listing only subject sequence ids (without description) 
are necessary; these options are not allowed in mpiBLAST. 
Taxonomic classification is becoming increasingly important in 
the field of metagenomics where hundreds to tens of thousands of 
organisms are being sequenced simultaneously.   
In this study, we have optimized NCBI-BLAST to efficiently run 
on our dataset using Stampede high performance computing 
cluster. We present a set of studies on how to efficiently run 
BLAST on Stampede. Because of the wide use of BLAST in the 
community, the impact that a set of optimal settings for running 
BLAST on this XSEDE resource is of high relevance for many 
users. We have fine-tuned the performance of the BLAST 
algorithm and have automated splitting of input files, job 

submission and merging of results in a manner that has a tolerable 
load on I/O.   

2. Algorithm 
NCBI-BLAST suite of programs provide tools for searching query 
sequences against various databases. Among the most popular 
algorithms: blastn, searches nucleotide query sequence against the 
nucleotide database; blastp, searches protein query sequence 
against the proteins sequence database; blastx, searches translated 
nucleotide sequence against the protein database; tblastn, uses 
protein query sequence to search against translated nucleotide 
database and tblastx uses translated nucleotide query against 
translated nucleotide database. All of these programs are identical 
except input query and/or database; protein or nucleotide.  

All of our BLAST optimizations were performed using the NCBI-
BLAST (version 2.2.28+).  The basic BLAST algorithm is simple 
and robust, meaning that it can be used in many ways to inform on 
a particular biological question of interest by utilizing the 
available sequence databases. Here is a brief overview of some of 
the more common uses.   

 Gene model identification: An unknown sequence from a 
biological sample of an organism that has a database of 
known gene models. 

 Motif/domain searches:  A subset of genes that contain 
regulatory elements or specific protein domains can be 
identified in a database. 

 Gene function prediction: The function of gene 
models/transcripts from new species can be predicted based 
on similarity to sequences with known functions in existing 
databases. 

 Taxonomic classification: Using sequence similarity scores, 
sequences of unknown origin can be placed into taxonomic 
groups. This is especially helpful for metagenomic samples 
where many species are sequenced simultaneously.  

 Contamination removal:  Samples sometimes contain 
unwanted sequences.   Using similarity and taxonomy, these 
can be removed prior to deposition into a database.  This is 
vital to ensure the integrity of our sequence databases as 
these databases are used to assign function and clade to 
unknown sequences. 

 Synteny: By combining gene model order contained in a 
sequence with the sequence similarity of gene models 
between organisms stretches of sequences can be identified 
that originated from a common ancestor.  

For comparative purposes, we tested our optimizations against the 
mpiBLAST (version 1.6.0) tool developed at Synergy Lab; 
Virginia Tech. The mpiBLAST program uses database 
segmentation approach for running the basic BLAST programs in 
parallel. Like BLAST, mpiBLAST can also be used across 
different databases using either nucleotide or protein sequence as 
query. The statistical values (score and evalue) are comparable 
with the basic BLAST. Although this program speeds up linearly 
with the huge sequence databases, it provides limited 
configurations with respect to output as compared to basic 
BLAST, limiting the usefulness of mpiBLAST for some of the 
uses described above. 



3. Research Problem 
Seriola species (S. dumerili, S. lalandi, S. rivoliana, S. 

quinqueradiata), collectively known as amberjacks, are fish of 
particular interest to the growing aquaculture industry due to their 
high value, forming a billion dollar plus component of the sashimi 
industry. In many locations, one or more of these species 
comprise a large percentage of the total marine finfish in culture 
(e.g., over 60% of total mariculture in Japan). Culture of these 
species has traditionally relied heavily on harvesting and growout 
of wild juveniles, which can be unpredictable in supply and puts 
excessive pressure on natural populations. In the U.S. and 
elsewhere, hatchery production of Seriola lalandi is rapidly 
growing but has been hindered by a propensity for deformities 
and growth heterogeneity developed during larval and early 
juvenile stages that limit the production capacity and efficiency.  
In order to develop environmentally friendly and economically 
sustainable Seriola lalandi aquaculture, an understanding of the 
genetic basis of traits that currently limit/enhance the development 
and progress of domestic aquaculture is needed.  To this end, 
approximately 1 billion reads were generated from an Illumina 
HiSeq 2500 instrument.  These reads were assembled using 
Trinity [3], and resulted in 240,022 transcripts (82,782 translated 
proteins) These transcripts were BLASTed against the curated 
protein database (UniRef 90) [2], to putatively assign function as 
well as remove any potential contaminants. While the Trinity was 
successfully run on our local clusters, we required more 
computational power to run our BLAST jobs and therefore 
created this optimization for BLAST on Stampede. We used both 
nucleotide transcripts as well as transcoded protein sequences as 
queries (blastx and blastp). Gene model annotation is an 
important step in the creation of genomic resources for non-model 
organisms, which is becoming increasing popular as the cost of 
sequencing decreases and the quality of the assemblies increases. 

3.1 Database 
UniProt Reference Clusters (UniRef) provides clustered sets of 
sequences from the UniProt Knowledgebase (including isoforms) 
and selected UniParc records. A subset of these, that have at least 
90% sequence identity (referred as UniRef90 proteins) were used 
as our target database for BLAST. With over 32 million 
sequences, all with rich functional annotation, they can be readily 
used to assign function for the unknown sequences.  

4. Running BLAST on Stampede 
We needed an efficient parallel implementation of BLAST on 
Stampede for processing these increasingly common and larger 
datasets. This type of application represents a challenge for the 
distributed parallel file system due to the continuous requests to 
the metadata server (MDS). This produces high loads in the MDS 
and can lead to instabilities in the file system and even crashes. 
This is particularly critical when large numbers of instances of 
BLAST run at the same time. Stampede has two different modules 
for BLAST available for all the users: BLAST (versions 2.28 and 
2.29) and mpiBLAST 1.6.0. 
Stampede contains 6400 dual socket eight-core Sandy-Bridge E5-
2680 server nodes with 32 GB of memory. The nodes are 
interconnected by InfiniBand HCAs in FDR mode and the 
operating system used is CentOS 6.4 with kernel 2.6.32-358.el6. 
Each node has its own local disk with 72 GB of disk available for 
the users to write temporary files using the /tmp folder. 

4.1 Computational challenges 
As mentioned, the considerable impact of these applications on 
the file system necessitate finding an optimal approach for 
efficiently running large numbers of BLAST instances in parallel 
without leading to instabilities in the file system. We present three 
different alternatives for using BLAST on Stampede: sequential 
BLAST with Launcher, mpiBLAST, and threaded BLAST.  

4.1.1 Sequential BLAST with Launcher 
A typical scenario for running BLAST on Stampede is to submit 
many independent jobs where each one job runs a single 
sequential instance of BLAST. Since each BLAST instance uses 
only one core, the other 15 cores on each node are still available 
as resources. Stampede provides a tool called launcher [6] for this 
type of serial applications. This tool enables the user to utilize all 
available cores on each node, so that each core runs a serial 
application. While this scenario is typically ideal for these 
applications, for other applications that are I/O demanding, this 
can represent a problem especially when large numbers of these 
jobs are submitted. For example, when 20 jobs were running at 
the same time (320 cores), then the number of I/O requests per 
second were greater than 2000000. This already high load may be 
additionally taxed by several hundred users also accessing the file 
system during the same period. 
 In our experience with Stampede, this high load can create 
instabilities in the file system if different users require so many 
accesses at the same time. Therefore this is not an approach that 
can be recommended.  

4.1.2 mpiBLAST 
The first step to run mpiBLAST is to reformat the database since 
this code uses its own format. The database only needs to be 
reformatted once, so we do not include the time required for 
formatting in the results in the next section. It is recommended to 
set the stripes for the file system to at least 60.  
BLAST and mpiBLAST typically require a set of variables to be 
defined in a .ncbirc file. In our experience with Stampede, using 
this file with large number of cores can lead to timeouts that will 
also lead to MPI aborts since all the processes will try to access 
the file at the same time. The solution is to define these variables 
as environment variables. 
The mpiBLAST allows the use of a very large numbers of cores 
(as shown in Sec. 5) and its MPI-based implementation achieves a 
relatively low impact on the distributed file system.  

4.1.3 Threaded BLAST 
The other approach is to run BLAST with threads. BLAST 
provides a threaded implementation using OpenMP that allows 
the user to use all the available cores in one node. The achieved 
speedup is not optimal due to the nature of the code, but it does 
improve the performance of the sequential version of BLAST 
while also reducing the impact on the file system when compared 
with having one sequential instance per core on the node. In this 
case, as each Stampede node has 16 cores, so up to 16 threads per 
node is possible. In Stampede we can allocate several nodes, and 
run one instance of BLAST per node. Each of those instances will 
use the 16 cores available at the node using threads. However, if 
all the instances use the same input and the same database, they 
will all perform the same computations. So the approach is to split 
the input into as many parts as there are allocated nodes (or 
BLAST instances). Thus, each instance will work on a subset of 
the input data. Once all the BLAST instances have finished, the 



results are joined together. Initially we launched a set of jobs with 
this configuration, and the number of I/O requests per second 
quickly rose to over 600000. While this value is also very large, it 
was not high enough to create a problem in the system by itself, 
however it could become a problem if other users have heavy I/O 
at the same time.  
With these results, and with the aim of reducing the impact on the 
file system, we decided to move all the files from the parallel file 
system to the local disk that each node has. This requires a larger 
change in the script used to submit the job: 

 Instead of running BLAST directly, the job runs a 
script. 

 The script copies all files required from the parallel file 
system to the local disk of the node 

 Since every time a job is submitted it will likely be 
allocated to a different node, and since the local node 
disk is emptied once the job has finished, this copy must 
be performed with each job run. Because the outputs of 
the different nodes have to be combined at the end of 
the execution, the script retrieves the rank of each 
individual node. This rank is used to create unique 
names for the output files. 

By using this method, the impact of running BLAST on large 
number of cores in the parallel file system is almost negligible. In 
fact, when increasing the number of cores, the number of requests 
to the MDS remained almost constant. However, in this case the 
bandwidth of the local disk becomes a bottleneck. For large files, 
it might take several minutes to transfer the files. And it also 
introduces a limitation, as there are only 72GB available on the 
local disk of each node in Stampede. If the files are larger than the 
available space, this technique will not work. 
5. Results 
With blastx, for 244,022 sequences, more than 62% (152,882) of 
the total query sequences had a match in the UniRef90 database. 
Among these matches, 97,735 had e-value less than 0.01. 
Similarly with blastp (translated proteins), for 87,782 sequences, 
more than 98% (81,292) had matches in the UniRef90 database 
(with 76,353 hits of e-value less than 0.01).   
Regarding the performance of the different approaches for 
running BLAST that we previously presented, Figure 1 shows the 
time required by the described dataset when using mpiBLAST and 
BLAST with OpenMP and the local disk. It shows that for small 
numbers of cores, BLAST is able to run faster than mpiBLAST. 
However, as the number of cores increases, mpiBLAST 
outperforms BLAST. This is due to the time required by the 
BLAST execution to copy all the required files from the 
distributed file system to the local disk. This is an almost constant 
time considering that we are always using the same dataset. The 
results of running BLAST (without OpenMP) with the launcher 
tool are not included here since the impact on the file system 
performance of this method is so high that it does not represent a 
valid alternative in Stampede. 
With these results, it is clear that the best approach is to use 
mpiBLAST when possible. However, if subsequent steps in the 
analyses require custom output formats of the traditional BLAST, 
our method will be the solution that is most applicable. For 
smaller databases, the proposed model using the local disk should 
provide much better scalability and its results should be closer to 
those achieved with mpiBLAST. 

 
Fig 1. Time required by our dataset when using mpiBLAST or 
BLAST with OpenMP and local disk 

6. Conclusion and future outlook 
Our approach provides a convenient way to speed up the basic 
BLAST algorithm on Stampede. By design, NCBI-BLAST cannot 
take advantage of distributed infrastructures available in most of 
the high performance compute clusters. But the program can be 
trivially parallelized by splitting the input file into smaller files. 
Although, running several BLAST jobs generates heavy burden 
on I/O, it can be mitigated by using the local disk of the compute 
nodes to store the database files. Another alternative for the 
BLAST is using MPI-enabled BLAST program such as 
mpiBLAST. Such programs can provide huge improvements in in 
the run time, but with limited parameter configurations for 
BLAST. If this limitation does not represent a problem, its 
simplicity and performance make it the best approach. When 
mpiBLAST is not an option, the approach that we have presented 
in this paper using the local disk of each node still achieves 
excellent results. Based on our results, we strongly recommend to 
members of the biology community working with these large data 
sets to use one of the two above approaches rather than sequential 
BLAST.  

6.1.1 Significance 
In this study, we used the XSEDE resource, Stampede, to assign 
function to Trinity transcripts from the Seriola lalandi, from 
curated proteins database (UniRef90) in a more reasonable 
amount of time than our local infrastructure could provide. Using 
both nucleotide sequences as well translated sequences (with open 
reading frames), we found over 62% and 98% of the sequences 
with matches in the database, respectively. High percent of 
matches with the protein sequences are as expected, because the 
translation step eliminates most of the sequences without open 
reading frames (spurious sequences). Protein sequences are also 
able to find deeper evolutionary relationship among the sequences 
as compared to nucleotide sequences. With this method, we were 
able to eliminate non-fish transcripts to obtain high quality 
Seriola lalandi transcripts. These transcripts and assigned 
functions will eventually find their way into the annotation of 
functions for the predicted gene models of the Seriola genome 
project currently underway. A website that includes a genome 
browser with these gene models and their corresponding 
annotations will eventually be created. The utilization of XSEDE 
resources will significantly speed up the most time consuming 



steps in the process of creating these type of genomic resources 
for new species. 

7. Availability 
All the scripts used in this study for running optimized BLAST on 
Stampede along with the documentation are available on GitHub: 
https://github.com/ISUgenomics/StampedeBLAST. 
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