
NCBI-BLAST programs optimization on XSEDE resources

for sustainable aquaculture
Arun Seetharam

Genome Informatics Facility, Iowa
State University
228 Science I

Ames, IA 50014, USA
+1 (515) 294-6407

arnstrm@iastate.edu

John R. Hyde
NOAA Fisheries, Southwest Fisheries

Science Center
8901 La Jolla Shores Drive
La Jolla, California 92037

+1 (858) 546-7086

John.Hyde@noaa.gov

Antonio Gomez
Texas Advanced Computing Center

10100 Burnet Road (R8700)
Austin, TX 78758
+1 (512) 232-7794

agomez@tacc.utexas.edu

Philip D. Blood

Pittsburgh Supercomputing Center,
Carnegie Mellon University

300 S.Craig St.
Pittsburgh, PA 15213
+1 (412) 268-9329

blood@psc.edu

Catherine M. Purcell
NOAA Fisheries, Southwest Fisheries

Science Center
8901 La Jolla Shores Drive
La Jolla, California 92037

+1 (858) 546-7189

Catherine.Purcell@noaa.gov

Andrew J. Severin
Genome Informatics Facility, Iowa

State University
207 Science I

Ames, IA 50014, USA
+1 (515) 294-1320

severin@iastate.edu

ABSTRACT
The development of genomic resources of non-model organisms
is now becoming commonplace as the cost of sequencing
continues to decrease. The Genome Informatics Facility in
collaboration with the Southwest Fisheries Science Center
(SWFSC), NOAA is creating these resources for sustainable
aquaculture in Seriola lalandi. Gene prediction and annotation are
common steps in the pipeline to generate genomic resources,
which are computationally intense and time consuming. In our
steps to create genomic resources for Seriola lalandi, we found
BLAST to be one of our most rate limiting steps. Therefore, we
took advantage of our XSEDE Extended Collaborative Support
Services (ECSS) to reduce the amount of time required to process
our transcriptome data by 300 percent. In this paper, we describe
an optimized method for the BLAST tool on the Stampede cluster,
which works with any existing datasets or database, without any
modification. At modest core counts, our results are similar to the
MPI-enabled BLAST algorithm (mpiBLAST), but also allow the
much needed and improved flexibility of output formats that the
latest versions of BLAST provide. Reducing this time-consuming
bottleneck in BLAST will be broadly applicable to the annotation
of large sequencing datasets for any organism.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and Genetics.

General Terms

Algorithms, Performance, Experimentation.

Keywords
NCBI-BLAST; mpi-BLAST; optimization; Stampede.

1. INTRODUCTION
It is now commonplace for researchers to use high throughput
genome sequencing technologies to generate terabytes of short
read DNA/RNA sequencing data in order to explore a particular
scientific question. Our primary research focus is the development
of genomic resources that lead to environmentally friendly and
economically sustainable production in crops, livestock, and
aquaculture.
In our current project, we are creating genomic resources for a
fish species, Seriola lalandi. This research will advance
aquaculture practices for the U.S. Seriola industry and can be
used to help insure viability and success of domestic finfish
aquaculture programs. We are in the process of developing a
toolkit that will not only provide an immediate benefit to
aquaculture facilities to improve production capacity for Seriola

species, but the genetic resources we are developing will also be
powerful tools for further studies of economically important traits
in the long-term. One critical step in our pipeline involves
searching large sequence databases to putatively assign function
to assembled transcripts and gene models.
One of the most popular tools for sequence similarity searches is
the Basic Local Alignment Search Tool (BLAST) by NCBI [1].
Unfortunately, using BLAST to assign functions to transcript and
gene models is a computationally intensive process that requires
many cpu hours and cannot be achieved in a reasonable amount of
time on our local infrastructure. To overcome this limiting step,
we took advantage of the XSEDE Extended Collaborative
Support Services (ECSS) and created an optimized method for the
BLAST tool on the Stampede cluster. The large life sciences
community that uses Stampede can benefit from this work. An
efficient usage of this cluster can result in a very valuable resource
for this community. Also, the lessons learned might be applied to

© 2015 Association for Computing Machinery. ACM acknowledges
that this contribution was authored or co-authored by an employee,
contractor or affiliate of the United States government. As such, the
United States Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for
Government purposes only.

XSEDE '15, July 26 - 30, 2015, St. Louis, MO, USA

© 2015 ACM. ISBN 978-1-4503-3720-5/15/07$15.00

DOI: http://dx.doi.org/10.1145/2792745.2792749

other computational resources that do not need to be specially
designed to address the requirements of this specific community.
BLAST uses a heuristic method, to find matches between the
sequences. Rather than using the entire sequence for finding a
match, it uses short segments (seeds) of the sequence of interest
(query) to find a perfect match in the sequence database (target).
Once it finds the match, local alignment is performed and
alignment is extended. The match is determined to be statistically
significant based on the score and e-value calculated based on the
similarity matrix and the database size. Recent surge in the
sequencing projects due to the ever-decreasing cost to generate
sequencing data has resulted in an exponential growth of these
databases and thus has increased the computational time required
for the sequence similarity finding algorithms. In addition, the
BLAST algorithm reads the query sequence sequentially and
performs a search against the database, thereby consuming larger
amounts of time with the increasing number of query sequences.
Although, several optimizations have been performed over the
original BLAST program, including the MPI-enabled BLAST,
they have limitations. Some optimizations follow a nested-
sequence approach, wherein smaller sequences are fused together
to make a large query sequence for comparison to the database,
reducing the total number of query sequences (megablast) [7].
Another popular approach is to trivially parallelize the problem by
splitting the input sequences into to smaller files and performing
BLAST against the database separately. There are also several
GUI based front-ends developed for this purpose that handle the
input splitting, sequence searching and merging output files
automatically. GPU-acceleration has also been implemented in an
attempt to speed up the BLAST algorithm but it has not taken off
due to the Moore’s law increase in cpu speed every year [5]. A
parallel implementation of the BLAST program called mpiBLAST
is available that can perform BLAST searches more efficiently
using large number of processors [4]. All of these
implementations result in an increase in the processing speed of
large sequencing queries. However, each have their limitations: 1)
nested BLAST changes statistical scores for the query sequences
and requires further parsing for obtaining readable results, 2)
splitting input files creates a huge burden on I/O, and reduces the
performance, 3) GUI based front-ends are not open source, 4) not
all compute clusters provide GPU acceleration., and finally 5)
mpiBLAST provides very little flexibility on the output
configurations. Not all NCBI-BLAST options are available in
mpiBLAST. Output options are limited to tabular (with or without
headers), xml and regular BLAST output, whereas regular BLAST
allows 11 output formats. Certain tasks such as identifying the
contaminant sequences using BLAST require re-configuring
tabular output (by including taxonomical IDs as a field), or in
some cases listing only subject sequence ids (without description)
are necessary; these options are not allowed in mpiBLAST.
Taxonomic classification is becoming increasingly important in
the field of metagenomics where hundreds to tens of thousands of
organisms are being sequenced simultaneously.
In this study, we have optimized NCBI-BLAST to efficiently run
on our dataset using Stampede high performance computing
cluster. We present a set of studies on how to efficiently run
BLAST on Stampede. Because of the wide use of BLAST in the
community, the impact that a set of optimal settings for running
BLAST on this XSEDE resource is of high relevance for many
users. We have fine-tuned the performance of the BLAST
algorithm and have automated splitting of input files, job

submission and merging of results in a manner that has a tolerable
load on I/O.

2. Algorithm
NCBI-BLAST suite of programs provide tools for searching query
sequences against various databases. Among the most popular
algorithms: blastn, searches nucleotide query sequence against the
nucleotide database; blastp, searches protein query sequence
against the proteins sequence database; blastx, searches translated
nucleotide sequence against the protein database; tblastn, uses
protein query sequence to search against translated nucleotide
database and tblastx uses translated nucleotide query against
translated nucleotide database. All of these programs are identical
except input query and/or database; protein or nucleotide.

All of our BLAST optimizations were performed using the NCBI-
BLAST (version 2.2.28+). The basic BLAST algorithm is simple
and robust, meaning that it can be used in many ways to inform on
a particular biological question of interest by utilizing the
available sequence databases. Here is a brief overview of some of
the more common uses.

 Gene model identification: An unknown sequence from a
biological sample of an organism that has a database of
known gene models.

 Motif/domain searches: A subset of genes that contain
regulatory elements or specific protein domains can be
identified in a database.

 Gene function prediction: The function of gene
models/transcripts from new species can be predicted based
on similarity to sequences with known functions in existing
databases.

 Taxonomic classification: Using sequence similarity scores,
sequences of unknown origin can be placed into taxonomic
groups. This is especially helpful for metagenomic samples
where many species are sequenced simultaneously.

 Contamination removal: Samples sometimes contain
unwanted sequences. Using similarity and taxonomy, these
can be removed prior to deposition into a database. This is
vital to ensure the integrity of our sequence databases as
these databases are used to assign function and clade to
unknown sequences.

 Synteny: By combining gene model order contained in a
sequence with the sequence similarity of gene models
between organisms stretches of sequences can be identified
that originated from a common ancestor.

For comparative purposes, we tested our optimizations against the
mpiBLAST (version 1.6.0) tool developed at Synergy Lab;
Virginia Tech. The mpiBLAST program uses database
segmentation approach for running the basic BLAST programs in
parallel. Like BLAST, mpiBLAST can also be used across
different databases using either nucleotide or protein sequence as
query. The statistical values (score and evalue) are comparable
with the basic BLAST. Although this program speeds up linearly
with the huge sequence databases, it provides limited
configurations with respect to output as compared to basic
BLAST, limiting the usefulness of mpiBLAST for some of the
uses described above.

3. Research Problem
Seriola species (S. dumerili, S. lalandi, S. rivoliana, S.

quinqueradiata), collectively known as amberjacks, are fish of
particular interest to the growing aquaculture industry due to their
high value, forming a billion dollar plus component of the sashimi
industry. In many locations, one or more of these species
comprise a large percentage of the total marine finfish in culture
(e.g., over 60% of total mariculture in Japan). Culture of these
species has traditionally relied heavily on harvesting and growout
of wild juveniles, which can be unpredictable in supply and puts
excessive pressure on natural populations. In the U.S. and
elsewhere, hatchery production of Seriola lalandi is rapidly
growing but has been hindered by a propensity for deformities
and growth heterogeneity developed during larval and early
juvenile stages that limit the production capacity and efficiency.
In order to develop environmentally friendly and economically
sustainable Seriola lalandi aquaculture, an understanding of the
genetic basis of traits that currently limit/enhance the development
and progress of domestic aquaculture is needed. To this end,
approximately 1 billion reads were generated from an Illumina
HiSeq 2500 instrument. These reads were assembled using
Trinity [3], and resulted in 240,022 transcripts (82,782 translated
proteins) These transcripts were BLASTed against the curated
protein database (UniRef 90) [2], to putatively assign function as
well as remove any potential contaminants. While the Trinity was
successfully run on our local clusters, we required more
computational power to run our BLAST jobs and therefore
created this optimization for BLAST on Stampede. We used both
nucleotide transcripts as well as transcoded protein sequences as
queries (blastx and blastp). Gene model annotation is an
important step in the creation of genomic resources for non-model
organisms, which is becoming increasing popular as the cost of
sequencing decreases and the quality of the assemblies increases.

3.1 Database
UniProt Reference Clusters (UniRef) provides clustered sets of
sequences from the UniProt Knowledgebase (including isoforms)
and selected UniParc records. A subset of these, that have at least
90% sequence identity (referred as UniRef90 proteins) were used
as our target database for BLAST. With over 32 million
sequences, all with rich functional annotation, they can be readily
used to assign function for the unknown sequences.

4. Running BLAST on Stampede
We needed an efficient parallel implementation of BLAST on
Stampede for processing these increasingly common and larger
datasets. This type of application represents a challenge for the
distributed parallel file system due to the continuous requests to
the metadata server (MDS). This produces high loads in the MDS
and can lead to instabilities in the file system and even crashes.
This is particularly critical when large numbers of instances of
BLAST run at the same time. Stampede has two different modules
for BLAST available for all the users: BLAST (versions 2.28 and
2.29) and mpiBLAST 1.6.0.
Stampede contains 6400 dual socket eight-core Sandy-Bridge E5-
2680 server nodes with 32 GB of memory. The nodes are
interconnected by InfiniBand HCAs in FDR mode and the
operating system used is CentOS 6.4 with kernel 2.6.32-358.el6.
Each node has its own local disk with 72 GB of disk available for
the users to write temporary files using the /tmp folder.

4.1 Computational challenges
As mentioned, the considerable impact of these applications on
the file system necessitate finding an optimal approach for
efficiently running large numbers of BLAST instances in parallel
without leading to instabilities in the file system. We present three
different alternatives for using BLAST on Stampede: sequential
BLAST with Launcher, mpiBLAST, and threaded BLAST.

4.1.1 Sequential BLAST with Launcher
A typical scenario for running BLAST on Stampede is to submit
many independent jobs where each one job runs a single
sequential instance of BLAST. Since each BLAST instance uses
only one core, the other 15 cores on each node are still available
as resources. Stampede provides a tool called launcher [6] for this
type of serial applications. This tool enables the user to utilize all
available cores on each node, so that each core runs a serial
application. While this scenario is typically ideal for these
applications, for other applications that are I/O demanding, this
can represent a problem especially when large numbers of these
jobs are submitted. For example, when 20 jobs were running at
the same time (320 cores), then the number of I/O requests per
second were greater than 2000000. This already high load may be
additionally taxed by several hundred users also accessing the file
system during the same period.
 In our experience with Stampede, this high load can create
instabilities in the file system if different users require so many
accesses at the same time. Therefore this is not an approach that
can be recommended.

4.1.2 mpiBLAST
The first step to run mpiBLAST is to reformat the database since
this code uses its own format. The database only needs to be
reformatted once, so we do not include the time required for
formatting in the results in the next section. It is recommended to
set the stripes for the file system to at least 60.
BLAST and mpiBLAST typically require a set of variables to be
defined in a .ncbirc file. In our experience with Stampede, using
this file with large number of cores can lead to timeouts that will
also lead to MPI aborts since all the processes will try to access
the file at the same time. The solution is to define these variables
as environment variables.
The mpiBLAST allows the use of a very large numbers of cores
(as shown in Sec. 5) and its MPI-based implementation achieves a
relatively low impact on the distributed file system.

4.1.3 Threaded BLAST
The other approach is to run BLAST with threads. BLAST
provides a threaded implementation using OpenMP that allows
the user to use all the available cores in one node. The achieved
speedup is not optimal due to the nature of the code, but it does
improve the performance of the sequential version of BLAST
while also reducing the impact on the file system when compared
with having one sequential instance per core on the node. In this
case, as each Stampede node has 16 cores, so up to 16 threads per
node is possible. In Stampede we can allocate several nodes, and
run one instance of BLAST per node. Each of those instances will
use the 16 cores available at the node using threads. However, if
all the instances use the same input and the same database, they
will all perform the same computations. So the approach is to split
the input into as many parts as there are allocated nodes (or
BLAST instances). Thus, each instance will work on a subset of
the input data. Once all the BLAST instances have finished, the

results are joined together. Initially we launched a set of jobs with
this configuration, and the number of I/O requests per second
quickly rose to over 600000. While this value is also very large, it
was not high enough to create a problem in the system by itself,
however it could become a problem if other users have heavy I/O
at the same time.
With these results, and with the aim of reducing the impact on the
file system, we decided to move all the files from the parallel file
system to the local disk that each node has. This requires a larger
change in the script used to submit the job:

 Instead of running BLAST directly, the job runs a
script.

 The script copies all files required from the parallel file
system to the local disk of the node

 Since every time a job is submitted it will likely be
allocated to a different node, and since the local node
disk is emptied once the job has finished, this copy must
be performed with each job run. Because the outputs of
the different nodes have to be combined at the end of
the execution, the script retrieves the rank of each
individual node. This rank is used to create unique
names for the output files.

By using this method, the impact of running BLAST on large
number of cores in the parallel file system is almost negligible. In
fact, when increasing the number of cores, the number of requests
to the MDS remained almost constant. However, in this case the
bandwidth of the local disk becomes a bottleneck. For large files,
it might take several minutes to transfer the files. And it also
introduces a limitation, as there are only 72GB available on the
local disk of each node in Stampede. If the files are larger than the
available space, this technique will not work.
5. Results
With blastx, for 244,022 sequences, more than 62% (152,882) of
the total query sequences had a match in the UniRef90 database.
Among these matches, 97,735 had e-value less than 0.01.
Similarly with blastp (translated proteins), for 87,782 sequences,
more than 98% (81,292) had matches in the UniRef90 database
(with 76,353 hits of e-value less than 0.01).
Regarding the performance of the different approaches for
running BLAST that we previously presented, Figure 1 shows the
time required by the described dataset when using mpiBLAST and
BLAST with OpenMP and the local disk. It shows that for small
numbers of cores, BLAST is able to run faster than mpiBLAST.
However, as the number of cores increases, mpiBLAST
outperforms BLAST. This is due to the time required by the
BLAST execution to copy all the required files from the
distributed file system to the local disk. This is an almost constant
time considering that we are always using the same dataset. The
results of running BLAST (without OpenMP) with the launcher
tool are not included here since the impact on the file system
performance of this method is so high that it does not represent a
valid alternative in Stampede.
With these results, it is clear that the best approach is to use
mpiBLAST when possible. However, if subsequent steps in the
analyses require custom output formats of the traditional BLAST,
our method will be the solution that is most applicable. For
smaller databases, the proposed model using the local disk should
provide much better scalability and its results should be closer to
those achieved with mpiBLAST.

Fig 1. Time required by our dataset when using mpiBLAST or
BLAST with OpenMP and local disk

6. Conclusion and future outlook
Our approach provides a convenient way to speed up the basic
BLAST algorithm on Stampede. By design, NCBI-BLAST cannot
take advantage of distributed infrastructures available in most of
the high performance compute clusters. But the program can be
trivially parallelized by splitting the input file into smaller files.
Although, running several BLAST jobs generates heavy burden
on I/O, it can be mitigated by using the local disk of the compute
nodes to store the database files. Another alternative for the
BLAST is using MPI-enabled BLAST program such as
mpiBLAST. Such programs can provide huge improvements in in
the run time, but with limited parameter configurations for
BLAST. If this limitation does not represent a problem, its
simplicity and performance make it the best approach. When
mpiBLAST is not an option, the approach that we have presented
in this paper using the local disk of each node still achieves
excellent results. Based on our results, we strongly recommend to
members of the biology community working with these large data
sets to use one of the two above approaches rather than sequential
BLAST.

6.1.1 Significance
In this study, we used the XSEDE resource, Stampede, to assign
function to Trinity transcripts from the Seriola lalandi, from
curated proteins database (UniRef90) in a more reasonable
amount of time than our local infrastructure could provide. Using
both nucleotide sequences as well translated sequences (with open
reading frames), we found over 62% and 98% of the sequences
with matches in the database, respectively. High percent of
matches with the protein sequences are as expected, because the
translation step eliminates most of the sequences without open
reading frames (spurious sequences). Protein sequences are also
able to find deeper evolutionary relationship among the sequences
as compared to nucleotide sequences. With this method, we were
able to eliminate non-fish transcripts to obtain high quality
Seriola lalandi transcripts. These transcripts and assigned
functions will eventually find their way into the annotation of
functions for the predicted gene models of the Seriola genome
project currently underway. A website that includes a genome
browser with these gene models and their corresponding
annotations will eventually be created. The utilization of XSEDE
resources will significantly speed up the most time consuming

steps in the process of creating these type of genomic resources
for new species.

7. Availability
All the scripts used in this study for running optimized BLAST on
Stampede along with the documentation are available on GitHub:
https://github.com/ISUgenomics/StampedeBLAST.

8. ACKNOWLEDGMENTS
This work was made possible by the XSEDE research allocation
(Grant ID MCB140217) and Extended Collaborative Support
Service (ECSS). We are also thankful for Gary Polking and
Michael Baker in ISU DNA facility, for helping with our
sequencing needs.

9. REFERENCES
[1] ALTSCHUL, S.F., GISH, W., MILLER, W., MYERS,

E.W., and LIPMAN, D.J., 1990. Basic local alignment
search tool. J Mol Biol 215, 3 (Oct 5), 403-410. DOI=
http://dx.doi.org/10.1016/S0022-2836(05)80360-2.

[2] CHAN, W.M. and CONSORTIUM, U., 2010. The
UniProt Knowledgebase (UniProtKB): a freely
accessible, comprehensive and expertly curated protein
sequence database. Genetics Research 92, 1 (Feb), 78-
79.

[3] GRABHERR, M.G., HAAS, B.J., YASSOUR, M.,
LEVIN, J.Z., THOMPSON, D.A., AMIT, I.,
ADICONIS, X., FAN, L., RAYCHOWDHURY, R.,
ZENG, Q.D., CHEN, Z.H., MAUCELI, E.,
HACOHEN, N., GNIRKE, A., RHIND, N., DI
PALMA, F., BIRREN, B.W., NUSBAUM, C.,
LINDBLAD-TOH, K., FRIEDMAN, N., and REGEV,
A., 2011. Full-length transcriptome assembly from
RNA-Seq data without a reference genome. Nature

Biotechnology 29, 7 (Jul), 644-U130. DOI=
http://dx.doi.org/DOI 10.1038/nbt.1883.

[4] LIN, H.S., MA, X.S., FENG, W.C., and
SAMATOVA, N.F., 2011. Coordinating Computation
and I/O in Massively Parallel Sequence Search. Ieee

Transactions on Parallel and Distributed Systems 22, 4
(Apr), 529-543. DOI= http://dx.doi.org/Doi
10.1109/Tpds.2010.101.

[5] VOUZIS, P.D. and SAHINIDIS, N.V., 2011. GPU-
BLAST: using graphics processors to accelerate protein
sequence alignment. Bioinformatics 27, 2 (Jan 15), 182-
188. DOI=
http://dx.doi.org/10.1093/bioinformatics/btq644.

[6] WILSON, L.A. and FONNER, J.M., 2014. Launcher: A
Shell-based Framework for Rapid Development of
Parallel Parametric Studies. In Proceedings of the

Proceedings of the 2014 Annual Conference on

Extreme Science and Engineering Discovery

Environment (Atlanta, GA, USA2014), ACM, 2616534,
1-8. DOI= http://dx.doi.org/10.1145/2616498.2616534.

[7] ZHANG, Z., SCHWARTZ, S., WAGNER, L., and
MILLER, W., 2000. A greedy algorithm for aligning
DNA sequences. J Comput Biol 7, 1-2 (Feb-Apr), 203-
214. DOI=
http://dx.doi.org/10.1089/10665270050081478.

http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/DOI
http://dx.doi.org/Doi
http://dx.doi.org/10.1093/bioinformatics/btq644
http://dx.doi.org/10.1145/2616498.2616534
http://dx.doi.org/10.1089/10665270050081478

