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ABSTRACT
Differentially private collaborative filtering is a challenging
task, both in terms of accuracy and speed. We present a
simple algorithm that is provably differentially private, while
offering good performance, using a novel connection of differ-
ential privacy to Bayesian posterior sampling via Stochastic
Gradient Langevin Dynamics. Due to its simplicity the al-
gorithm lends itself to efficient implementation. By careful
systems design and by exploiting the power law behavior of
the data to maximize CPU cache bandwidth we are able to
generate 1024 dimensional models at a rate of 8.5 million
recommendations per second on a single PC.

Keywords
Differential Privacy, Collaborative Filtering; Scalable Ma-
trix Factorization

1. INTRODUCTION
Privacy protection in recommender systems is a notori-

ously challenging problem. There are often two compet-
ing goals at stake: similar users are likely to prefer similar
products, movies, or locations, hence sharing of preferences
between users is desirable. Yet, at the same time, this exac-
erbates the type of privacy sensitive queries, simply since we
are now not looking for aggregate properties from a dataset
(such as a classifier) but for properties and behavior of other
users ‘just like’ this specific user. Such highly individualized
behavioral patterns are shown to facilitate provably effective
user de-anonymization [23, 36].

Consider the case of a couple, both using the same location
recommendation service. Since both spouses share much of
the same location history, it is likely that they will receive
similar recommendations, based on other users’ preferences
similar to theirs. In this context sharing of information is
desirable, as it improves overall recommendation quality.

Moreover, since their location history is likely to be very
similar, each of them will also receive recommendations to
visit the place that their spouse visited (e.g. including places
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of ill repute), regardless of whether the latter would like
to share this information or not. This creates considerable
tension in trying to satisfy those two conflicting goals.

Differential privacy offers tools to overcome these prob-
lems. Loosely speaking, it offers the participants plausible
deniability in terms of the estimate. That is, it provides
guarantees that the recommendation would also have been
issued with sufficiently high probability if another specific
participant had not taken this action before. This is pre-
cisely the type of guarantee suitable to allay the concerns in
the above situation [8].

Recent work, e.g. by Mcsherry and Mironov [18] has fo-
cused on designing custom built tools for differential private
recommendation. Many of the design decisions in this con-
text are hand engineered, and it is nontrivial to separate
the choices made to obtain a differentially private system
from those made to obtain a system that works well. Fur-
thermore, none of these systems [18, 35] lead to very fast
implementations.

In this paper we show that a large family of recommender
systems, namely those using matrix factorization, are well
suited to differential privacy. More specifically, we exploit
the fact that sampling from the posterior distribution of a
Bayesian model, e.g. via Stochastic Gradient Langevin Dy-
namics (SGLD) [34], can lead to estimates that are suffi-
ciently differentially private [33]. At the same time, their
stochastic nature makes them well amenable to efficient im-
plementation. Their generality means that we need not
custom-design a statistical model for differential privacy but
rather that is possible to retrofit an existing model to satisfy
these constraints. The practical importance of this fact can-
not be overstated — it means that no costly re-engineering
of deployed statistical models is needed. Instead, one can
simply reuse the existing inference algorithm with a trivial
modification to obtain a differentially private model.

This leaves the issue to performance. Some of the best
reported results are those using GraphChi [14], which show
that state-of-the-art recommender systems can be built us-
ing just a single PC within a matter of hours, rather than
requiring hundreds of computers. In this paper, we show
that by efficiently exploiting the power law properties inher-
ent in the data (e.g. most movies are hardly ever reviewed on
Netflix), one can obtain models that achieve peak numerical
performance for recommendation. More to the point, they
are 3 times faster than GraphChi on identical hardware.

In summary, this paper describes the by far the fastest
matrix factorization based recommender system and it can
be made differentially privately using SGLD without losing
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performance. Most competing approaches excel at no more
than one of those aspects. Specifically,
1. It is efficient at the state of the art relative to other matrix

factorization systems.

• We develop a cache efficient matrix factorization frame-
work for general SGD updates.

• We develop a fast SGLD sampling algorithm with book-
keeping to avoid adding the Gaussian noise to the whole
parameter space at each updates while still maintaining
the correctness of the algorithm.

2. And it is differentially private.

• We show that sampling from a scaled posterior distri-
bution for matrix factorization system can guarantee
user-level differential privacy.

• We present a personalized differentially private method
for calibrating each user’s privacy and accuracy.

• We only privately release V to public, and design a local
recommender system for each user.

Experiments confirm that the algorithm can be implemented
with high efficiency, while offering very favorable privacy-
accuracy tradeoff that nearly matches systems without dif-
ferential privacy at meaningful privacy level.

2. BACKGROUND
We begin with an overview of the relevant ingredients,

namely collaborative filtering using matrix factorization, dif-
ferential privacy and a primer in computer architecture. All
three are relevant to the understanding of our approach. In
particular, some basic understanding of the cache hierarchy
in microprocessors is useful for efficient implementations.

2.1 Collaborative Filtering
In collaborative filtering we assume that we have a set of
U users, rating V items. We only observe a small number of
entries rij in the rating matrix R. Here rij means that user
i rated item j. A popular tool [13] to deal with inferring

entries in R ∈ R|U|×|V| is to approximate R by a low rank
factorization, i.e.

R ≈ UV > where U ∈ R|U|k and V ∈ R|V|k (1)

for some k ∈ N, which denotes the dimensionality of the
feature space corresponding to each item and movie. In
other words, (user,item) interactions are modeled via

rij ≈ 〈ui, vj〉+ bui + bmj + b0. (2)

Here ui and vj denote row-vectors of U and V respectively,
and bui and bmj are scalar offsets responsible for a specific
user or movie respectively. Finally, b0 is a common bias.

A popular interpretation is that for a given item j, the el-
ements of vj measure the extent to which the item possesses
those attributes. For a given user i the elements of ui mea-
sure the extent of interest that the user has in items that
score highly in the corresponding factors. Due to the condi-
tions proposed in the Netflix contest, it is common to aim
to minimize the mean squared error of deviations between
true ratings and estimates. To address overfitting, a norm
penalty is commonly imposed on U and V . This yields the
following optimization problem

min
u,v

∑
i,j∈R

(rij − 〈ui, vj〉 − bui − bmj − b0)2 + λ(||U ||22 + ||V ||22)

A large number of extensions have been proposed for this
model. For instance, incorporating co-rating information
[27], neighborhoods, or temporal dynamics [12] can lead to
improved performance. Since we are primarily interested
in demonstrating the efficacy of differential privacy and the
interaction with efficient systems design, we focus on the
simple inner-product model with bias.
Bayesian View. Note that the above optimization problem
can be viewed as an instance of a Maximum-a-Posteriori
estimation problem. That is, one minimizes

− log p(U, V |R, λr,Λu,Λv) = − logN (R| 〈U, V 〉 , λ−1
r )

− logN (U |0,Λ−1
u )− logN (V |0,Λ−1

v )

where, up to a constant offset

− log p(rij |ui, vj) = λr(rij − 〈ui, vj〉 − bui − bmj − b0)2

and − log p(U) = UΛuU
> and likewise for V . In other

words, we assume that the ratings are conditionally normal,
given the inner product 〈ui, vj〉, and the factors ui and vj are
drawn from a normal distribution. Moreover, one can also
introduce priors for λr,Λu,Λv with a Gamma distribution
G(·|α, β).

While this setting is typically just treated as an afterthought
of penalized risk minimization, we will explicitly use this
when designing differentially private algorithms. The ratio-
nale for this is the deep connection between samples from
the posterior and differentially private estimates. We will
return to this aspect after introducing Stochastic Gradient
Langevin Dynamics.
Stochastic Gradient Descent. Minimizing the regular-
ized collaborative filtering objective is typically achieved by
one of two strategies: Alternating Least Squares (ALS) and
stochastic gradient descent (SGD). The advantage of the
former is that the problem is biconvex in U and V respec-
tively, hence minimizing U |V or V |U are convex. On the
other hand, SGD is typically faster to converge and it also
affords much better cache locality properties. Instead of ac-
cessing e.g. all reviews for a given user (or all reviews for a
given movie) at once, we only need to read the appropriate
tuples. In SGD each time we update a randomly chosen
rating record by:

ui ← (1− ηtλ)ui + ηtvj
(
rij − 〈ui, vj〉 − bui − bmj − b0

)
vj ← (1− ηtλ)vj + ηtui

(
rij − 〈ui, vj〉 − bui − bmj − b0

)
(3)

One problem of SGD is that trivially parallelizing the proce-
dure requires memory locking and synchronization for each
rating, which could significantly hamper the performance.
[25] shows that a lock-free scheme can achieve nearly opti-
mal solution when the data access is sparse. We build on this
statistical property to obtain a fast system which is suitable
for differential privacy.

2.2 Differential Privacy
Differential privacy (DP) [7, 9] aims to provide means to

cryptographically protect personal information in the database,
while allowing aggregate-level information to be accurately
extracted. In our context this means that we protect user-
specific sensitive information while using aggregate informa-
tion to benefit all users.

Assume the actions of a statistical database are modeled
via a randomized algorithm A. Let the space of data be X
and data sets X,Y ∈ Xn. Define d(X,Y ) to be the edit



distance or Hamming distance between data set X and Y ,
for instance if X and Y are the same except one data point
then we have d(X,Y ) = 1.

Definition 1 (Differential Privacy). We call a randomized
algorithm A (ε, δ)-differentially private if for all measurable
sets S ⊂ Range(A) and for all X,X ′ ∈ Xn such that the
hamming distance d(X,X ′) = 1,

P(A(X) ∈ S) ≤ exp(ε)P(A(X ′) ∈ S) + δ

If δ = 0 we say that A is ε-differential private.

The definition states that if we arbitrarily replace any indi-
vidual data point in a database, the output of the algorithm
doesn’t change much. The parameter ε in the definition
controls the maximum amount of information gain about an
individual person in the database given the output of the
algorithm. When ε is small, it prevents any forms of linkage
attack to individual data record (e.g., linkage of Netflix data
to IMDB data [23]). We refer readers to [8] for detailed in-
terpretations of the differential privacy in statistical testing,
Bayesian inference and information theory.

An interesting side-effect of this definition in the context
of collaborative filtering is that it also limits the influence
of so-called whales, i.e. of users who submit extremely large
numbers of reviews. Their influence is also curtailed, at
least under the assumption of an equal level of differential
privacy per user. In other words, differential privacy confers
robustness for collaborative filtering.

Wang et al. [33] show that posterior sampling with bounded
log-likelihood is essentially exponential mechanism [19] there-
fore protecting differential privacy for free (similar observa-
tions were made independently in [21, 5]). Wang et al. [33]
also suggests a recent line of works [34, 4, 6] that use stochas-
tic gradient descent for Hybrid Monte Carlo sampling essen-
tially preserve differential privacy with the same algorithmic
procedure. The consequence for our application is very inter-
esting: if we trust that the MCMC sampler has converged,
i.e. if we get a sample that is approximately drawn from the
posterior distribution, then we can use one sample as the
private release. If not, we can calibrate the MCMC proce-
dure itself to provide differential privacy (typically at the
cost of getting a much poorer solution).

2.3 Computer Architecture
A key difference between generic numerical linear algebra,

as commonly used e.g. for deep networks or generalized lin-
ear models, and the methods used for recommender systems
is the fact that the access properties regarding users and
items are highly nonuniform. This is a significant advan-
tage, since it allows us to exploit the caching hierarchy of
modern CPUs to benefit from higher bandwidth than what
disks or main memory access would permit.

A typical computer architecture consists of a hard disk,
solid-state drive (SSD), random-access memory (RAM) and
CPU cache. Many factors affect the real available band-
width, such as read and write patterns, block sizes, etc. We
measured this for a desktop computer. See Table 1 for a
quick overview. A good algorithm design should be pushing
the data flow to CPU cache level and hide the latency from
SSD or even RAM and amplify the available bandwidth.

The key strategy in obtaining high throughput collabora-
tive filtering systems is to obtain peak bandwidth on each of

Device Capacity Bandwidth read Bandwidth write
Hard Disk 3TB 150MB/s 100MB/s
SSD 256GB 500MB/s 350MB/s
RAM 16GB 14GB/s 9GB/s
L3 Cache 6MB 16-44GB/s 7-30GB/s
L1 Cache 32KB 74-135GB/s 44-80GB/s

Table 1: Performance (single threaded) on a Mac-
book Pro (2011) using an Intel Core i7 operating at
2.0 GHz and 160MT/s transfer rate and 2 memory
banks. The spread in L1 and L3 bandwidth is due
to different packet sizes.

the subsystems by efficient caching. That is, if a movie is fre-
quently reused, it is desirable to retain it in the CPU cache.
This way, we will neither suffer the high latency (100ns per
request) of a random read from memory, nor will we have to
pay for the comparably slower bandwidth of RAM relative to
the CPU cache. This intuition is confirmed in the observed
cache miss rates reported in the experiments in Section 6.

3. DIFFERENTIALLY PRIVATE
MATRIX FACTORIZATION

We start by describing the key ideas and algorithmic frame-
work for differentially private matrix factorization. The
method, which involves preprocessing data and then sam-
pling from a scaled posterior distribution, is provably dif-
ferentially private and has profound statistical implications.
Then we will describe a specific Monte Carlo sampling al-
gorithm: Stochastic Gradient Langevin Dynamics (SGLD)
and justify its use in our setting. We then come up with
a novel way to personalize the privacy protection for indi-
vidual users. Finally, we discuss how to develop fast cache-
efficient solvers to exploit bandwidth-limited hardware such
that it can be used for general SGD-style algorithms.

Our differential privacy mechanism relies on a recent ob-
servation that posterior sampling preserves differential pri-
vacy, provided that the log-likelihood of each user is uni-
formly bounded [33]. This simple yet remarkable result sug-
gests that sampling from posterior distribution is differen-
tially private for free to some extent. In our context, the
claim is that, if1 maxU,V,R,i

∑
j∈Ri(rij −〈ui, vj〉)

2 ≤ B then
the method that outputs a sample from

P (U, V ) ∝ exp

−∑
(i,j)∈R

(rij − 〈ui, vj〉)2 + λ(‖U‖2F + ‖V ‖2F )


preserves 4B-differential privacy. Moreover, when we want
to set the privacy loss ε to another number, we can easily
do this by simply rescaling the entire expression by ε/4B.

The question now is whether max
U,V,R,i

∑
j∈Ri(rij−〈ui, vj〉)

2

is bounded. Since the ratings are bounded between 1 ≤
rij ≤ 5 and we can consider a reasonable sublevel set {U, V |
maxi,j |uTi vj | ≤ κ}, we have every summand to be bounded
by (5 + κ)2. This does not affect the privacy claim as long
as κ is chosen independent to the data.
B could still be large, if some particular users rated many

movies. This issue is inevitable even if all observed users

1For convenience of notation we will omit the biases from
the description below in favor of a slightly more succinct
notation.



have few ratings, since differential privacy also protects users
not in the database. We propose two theoretically-inspired
algorithmic solutions to this problem:

Trimming: We may randomly delete ratings for those who
rated a lot of movies so that the maximum number of
ratings from a single user τ will not be too much larger
than the average number of ratings. This procedure is
the underlying gem that allows OptSpace (the very
first provable matrix factorization based low-rank ma-
trix completion method) [11] to work.

Reweighting: Alternatively, one can weight each user ap-
propriately so that those who rated many movies will
have smaller weight for each rating. Mcsherry and
Mironov [18] used this reweighting scheme for control-
ling privacy loss. A similar approach is considered in
the study of non-uniform and power-law matrix com-
pletion [20, 29], where the weighted trace norm has the
same effect as if we reweight the loss-functions.

In addition, these procedures have their practical benefits
for the robustness of the recommendation system, since they
prevent any malicious user from injecting too much impact
into the system, see e.g., Wang and Xu [32], Mobasher et al.
[22]. Another justification of these two procedures is that, if
the fully observed matrix is truly in a low-dimensional sub-
space, neither of these two procedures changes the underly-
ing subspace. Therefore, the solutions should be similar to
the non-preprocessed version.

The procedure for differentially private matrix factoriza-
tion (DPMF) is summarized in Algorithm 1. Note that this
is a conceptual sketch (we will discuss an efficient variant
thereof later). The following theorem guarantees that our
procedure is indeed differentially private.

Algorithm 1 Differentially Private Matrix Factorization

Require: Partially observed rating matrix R ∈ Rm×n with
observation mask Ω. m = # of movies, n = # of users.
Privacy parameter ε, a predefined positive parameter κ
such that {U, V | uTi vj ∈ [1 − κ, 5 + κ] ∀i, j}, rating
range [1, 5], max allowable number of ratings per-user τ ,
number of ratings of each user {m1, ...,mn}, weight of
each user w, tuning parameter λ.

1: B ← maxi=1,...,n min{τ,mi}wi(5− 1 + κ)2. . Compute
uniform upper bound.

2: Trim all users with ratings > τ .
3: F (U, V ) :=

∑
i∈[i],j∈Ωi

wi(Rij−uTi vj)2 +λ(‖U‖2F +‖V ‖2F ).

4: Sample (U, V ) ∼ P (U, V ) ∝ e−
ε

4B
F (U,V )

5: while uTi vj /∈ [1− κ, 5 + κ] for some i, j do

6: Sample (U, V ) ∼ P (U, V ) ∝ e−
ε

4B
F (U,V )

7: return (U, V )

Theorem 1. Algorithm 1 obeys ε-differential privacy if the
sample is exact and (ε, (1 + eε)δ)-differential privacy if the
sample is from a distribution δ-away from the target distri-
bution in L1 distance.

The proof (given in the appendix), shows that this proce-
dure uses in fact the exponential mechanism [19] with utility
function being the negative MF objective and its sensitivity
being 2B. Note that this can be extended to considerably

more complex models. This is the strength of our approach,
namely that a large variety of algorithms can be adapted
quite easily to differential privacy capable models.
Statistical properties. How about the utility of this pro-
cedure? We argue that we do not lose much accuracy by
sampling from the a distribution instead of doing exact op-
timization. Here we define utility/accuracy to be how well
this output predicts for new data.

Our matrix factorization formulation can be treated as
a maximum a posteriori (MAP) estimator of the Bayesian
Probabilistic Matrix Factorization (BPMF) [26], therefore,
this distribution we are sampling from is actually a scaled-
version of the posterior distribution.

When ε = 4B, Wang et al. [33] shows that a single sam-
ple from the posterior distribution is consistent whenever
the Bayesian model that gives rise to f(θ) is consistent and
asymptotically only a factor of 2 away from matching the
Cramér-Rao lower bound whenever the asymptotic normal-
ity (Bernstein-Von Mises Theorem) of the posterior distri-
bution holds. Therefore, we argue that by taking only one
sample from the posterior distribution, our results will not
be much worse than estimating the MAP or the posterior
mean estimator in BPMF. Moreover, since the results do not
collapse to a point estimator, the output from this sampling
procedure does not tend to overfit [34].

When ε < 4B we will start to lose accuracy, but since
we are still sampling from a scaled posterior distribution,
the same statistical property applies and the result remains
asymptotically near optimal with asymptotic relative effi-
ciency 1 +

√
4B/ε. In fact, monotonic rescaling of U and V

leaves the relative order of ratings unchanged.

3.1 Personalized Differential Privacy
Another interesting feature of the proposed procedure is

that it allows us to calibrate the level of privacy protection
for every user independently, via a novel observation that
weights assigned to different users are linear in the amount
of privacy we can guarantee for that particular user.

We will use the same sampling algorithm, and our guar-
antees in Theorem 1 still hold. The idea here is that we can
customize the system so that we get a lower basic privacy
protection for all users, say ε = 4B. As we explained ear-
lier this is the level of privacy that we can get more or less
“for free”. The protection of DP is sufficiently strong as to
include even those users that are not in the database.

By adjusting the weight parameter, we can make the pri-
vacy protection stronger for particular users according to
how much they set they want privacy. This procedure makes
intuitive sense because if some user wants perfect privacy, we
can set their weight to 0 and they are effectively not in the
database anymore. For people who do not care about pri-
vacy, their ratings will be assigned default weight. Formally,
we define personalized differential privacy as follows:

Definition 2 (Personalized Differential Privacy). An algo-
rithm A is (ε, δ)-personalized differentially private for User
i in database X if for any measureable set S in the range of
the algorithm A

P(A(X) ∈ S) ≤ eεP(A(X ′) ∈ S) + δ.

for any X ∈ Xn and X ′ is either X ∪ {xi} or X\{xi}.

We claim that:



Theorem 2. If we set wi for User-i such that

Bi := min{τ,mi}wi(4 + κ)2 ≤ B,

then Algorithm 1 guarantees εBi
2B

-personalized differential pri-
vacy for User i.

The proof is a straigtforward verification of the definition.
We defer it to the Appendix. Note that if we set ε = 4B (so
we are essentially sampling from the posterior distribution),
we get 2Bi-Personalized DP for user i.

In summary, if we simply set ε = 4B, the method protects
4B-differential privacy for everybody at very little cost and
by setting the weight vector w, we can provide personalized
service for users who demands more stringent DP protection.
To the best of our knowledge, this is the first method of its
kind to protect differential privacy in a personalized fashion.

4. EFFICIENT SAMPLING VIA SGLD
Clearly, sampling from exp

(
− ε

4B
F (U, V )

)
is nontrivial.

For a tractable approach we use a recent MCMC method
named stochastic gradient Langevin dynamics (SGLD) [34],
which is an annealing of stochastic gradient descent and
Langevin dynamics that samples from the posterior distri-
bution [24]. The basic update rule is

(ui, vj) = (ui, vj)− ηt∇̂(ui,vj)F (U, V ) +N (0, ηtI) (4)

where ∇̂(ui,vj)F (U, V ) is a stochastic gradient computed us-
ing only one or a small number of ratings. In other words,
the updates are almost identical to those used in stochastic
gradient descent. The key difference is that a small amount
of Gaussian noise is added to the updates. This allows us to
solve it extremely efficiently. We will describe our efficient
implementation of this algorithm in Section 5.4.

The basic idea of SGLD is that when we are far away from
the basin of convergence, the gradient of the log-posterior

∇̂(ui,vj)F (U, V ) is much larger than the additional noise so
the algorithm behaves like stochastic gradient descent. As
we approach the basin of convergence and ηt becomes small,√
ηt � ηt so the noise dominates and it behaves like a Brow-

nian motion. Moreover, as ηt gets small, the probability of
accepting the proposal in Metropolis-Hastings adjustment
converges to 1, so we do not need to do this adjustment at
all as the algorithm proceeds, as designed above.

This seemingly heuristic procedure was later shown to be
consistent in [28, 30], where asymptotic“in-law”and“almost
sure” convergence of SGLD to the correct stationary distri-
bution are established. More recently, Teh et al. [31] further
strengthens the convergence guarantee to include any finite
iterations. This line of work justifies our approach in that if
we run SGLD for a large number of iterations, we will end
up sampling from the distribution that provides us (ε, δ)-
differential privacy. By taking more iterations, we can make
δ arbitrarily small.

5. SYSTEM DESIGN
The performance improvement over existing libraries such

as GraphChi are due to both cache efficient design, prefetch-
ing, pipelining, the fact that we exploit the power law prop-
erty of the data, and by judicious optimization of random
number generation. This leads to a system that comfortably
surpasses even moderately optimized GPU codes.

We primarily focus on the Stochastic Gradient Descent
solver and subsequently we provide some details on how to
extend this to SGLD. Inference requires a very large number
of following operations on data:

• Read a rating triple (i, j, rij), possibly from disk, un-
less the data is sufficiently tiny to fit into RAM.

• For each given pair (i, j) of users and items fetch the
vectors ui and vj from memory.

• Compute the inner product 〈ui, vj〉 on the CPU.

• Update ui, vj and write their new values to RAM.

To illustrate the impact of these operations consider train-
ing a 2, 048 dimensional model on the 108 rating triples of
Netflix. Per iteration this requires over 3.2TB read/write op-
erations to RAM. At a main memory bandwidth of 20GB/s
and a latency of 100ns for each of the 200 million cache
misses each pass would take over 6 minutes. Instead, our
code accomplishes this task in approximately 10 seconds by
using the steps outlined below.

5.1 Processing Pipeline
To deal with the dataflow from disk to CPU, we use a

pipelined design, decomposing global and local state akin
to [1]. This means that we process users sequentially, thus
reducing the retrieval cost per user, since the operations are
amortized over all of their ratings. This effectively halves
IO. Moreover, since the data cannot be assumed to fit into
RAM, we pipeline reads from disk. This hides latency and
avoids stalling the CPUs. The writer thread periodically
snapshots the model, i.e. U and V to disk.

Note that for personalized recommender systems that re-
quire considerable personalized hidden state, such as topic
models, or autoregressive processes, we may want to write a
snapshot of the user-specific data, too.

Algorithm 2 Cache efficient Stochastic Gradient Descent

Require: parameters U , V ; ratings R; P threads,
1: preprocessing Split R into B blocks;
2: procedure Read . Keep pipeline filled
3: while #blocks in flight ≤ P do
4: Read: block b from disk
5: Sync: notify Update about b

6: procedure Update . Update U , V
7: while at least one of P processors is available do
8: Sync: receive a new block b from Read
9: for user i in b do

10: for each rating rij ∈ b from user i do
11: Prefetch next movie factor vj+1 from data

stream
12: ui ← ui − ηt∇̂ui
13: vj ← vj − ηt∇̂vj
14: (∇̂ is either the exact or private gradient)

15: procedure Write
16: if Bt blocks processed then save U, V

5.2 Cache Efficiency
The previous reasoning discussed how to keep the data

pipeline filled and how to reduce the user-specific cache misses
by preaggregating them on disk. Next we need to address



cache efficiency with regard to movies. More to the point,
we need to exploit cache locality relative to the CPU core
rather than simply avoiding cache misses. The basic idea is
that each CPU core exactly reads a cache line (commonly 64
bytes) from RAM each time, so algorithm designers should
not waste it until that piece of cache line is fully utilized.

We exploit the fact that movie ratings follow a power law
[10], as is evident e.g. on Netflix in Figure 1. This means
that if we succeed at keeping frequently rated movies in the
CPU cache, we should see substantial speedups. Note that
traditional matrix blocking tricks, as widely used for matrix
multiplications operations are not useful, due to the sparsity
of the rating matrix R. Instead, we decompose the movies
into tiers of popularity. To illustrate, considering a decom-
position into three blocks consisting of the Top 500, the Next
4000, and the remaining long tail.

Within each block, we process a batch of users simultane-
ously. This way we can preserve the associated user vectors
ui in cache and we are likely to cache the movie vectors, too
(in particular for the Top 500 block). Also, parallelizing all
the updates for multiple users does not require locks. Movie
parameters are updated in a Hogwild fashion [25].

This design is particularly efficient for low-dimensional
models since the Top 500 block fits into L1 cache (this
amounts to 44% of all movie ratings in the Netflix dataset),
the Next 4000 fits into L2, and ratings will typically reside
in L3. Even in the extreme case of 2048 dimensions we can
fit about 55% of all ratings into cache, albeit L3 cache.

5.3 Latency Hiding and Prefetching
To avoid the penalty for random requests we perform la-

tency hiding by prefetching. That is, we actively request
vj in advance before the rating rij is to be updated. For
dimensions less than 256, accurate prefetching leads to a
dataflow of vj into L1 cache. Beyond that, the size of the
latent variables could be too big to benefit from the lowest
level of caching due to limited size of caches in modern com-
puters. We provide a detailed caching analysis in Section 6
to illustrate the effect of these techniques.

5.4 Optimizations for SGLD
The data flow of SGLD is almost analogous to that in

SGD, albeit with a number of complications. First off, note
that (4) applies to the whole parameter matrix U, V rather
than just to a single vector. Following [3] we can derive an

unbiased approximation of ∇̂ui in (4) which is nonzero only
for (ui, vj) as follows:

∇̂ui = −Nλr (rij − 〈ui, vj〉) vj +
N

Ni
u>i Λuui

where N,Ni denote number of rating data rated by all and
rated by user i respectively. The parameters λr,Λu,Λv do
not incur any major cost — Λu,Λv are diagonal matrices
with a Gamma distribution over them. We simply per-
form Gibbs sampling once per round. However, the most
time-consuming part is to sample the remaining vectors, i.e.
P(U−i, V −i|R, rest) since it both requires dense updates and
moreover, it requires many random numbers, which adds
nontrivial cost.

Dense Updates: Note that unless we encounter the triple
(i, j, rij) all other parameters are only updated by adding
Gaussian noise. This means that by keeping track
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Figure 1: Distribution of items (Movies/Music
pieces) as a function of their number of ratings.
Many movies have 100 ratings or less, while the ma-
jority of ratings focuses on a small number of movies.

of when a parameter was last updated, we can sim-
ply aggregate the updates (the Normal distribution is
closed under addition). That is, ci subsequent addi-
tions amount to a single draw from N (0, ciη). The is
possible since we only need to know the value of ui, vj
whenever we encounter a new triple.

Table Lookup: Drawing iid samples from a Gaussian is
quite costly, easily dominating all other floating point
operations combined. We address this by pre-generating
a large table of numbers [17] and then by performing
random lookup within the table. More to the point,
a lookup table of r random numbers is statistically
indistinguishable from the truth until we draw O(r2)
samples from it (this follows from the slow rate of con-
vergence for two-sample tests), hence a few MB of data
suffice. Finally, for cache efficiency, we read contigu-
ous segments with random offset (this adds a small
amount of dependence which is easily addressed by
using a larger table).

A cautionary note is that the impact of this approach



on privacy, namely how it affects the stationary distri-
bution of the SGLD, is unknown. In our experiments,
the results are indistinguishable for any moderately
sized finite look-up tables (see our experiments in Sec-
tion 6.4).

6. EXPERIMENTS AND DISCUSSION
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Figure 3: Throughput on Yahoo over different num-
ber of cores with dimension 2048.

We now investigate the efficiency and accuracy of our
fast SGD solver and Stochastic Gradient Langevin Dynam-
ics solver, compared with state-of-the-art available recom-
menders. We also explore the differentially private accuracy
by using our proposed method while varying different pri-
vacy budgets.

6.1 Comparisons
We compare the performance of both the SGD solver and

the SGLD solver to other publicly available recommenders
and one closed-source solver. In particular, we compare to
both CPU and GPU solvers, since the latter tend to excel
in massively parallel floating point operations.

GraphChi Most of our experiments focus on a direct com-
parison to GraphChi [14]. This is primarily due the
fact that the code for GraphChi is publicly available
as open source and its very good performance.

GraphLab Create is a closed source data analysis plat-
form [16]. It is currently the fastest recommender
system available, being slightly faster than GraphChi.
We compared our system to GraphLab Create, albeit
without fine-grained diagnostics that were possible for
GraphChi.

BidMach is a GPU based system [37]. It reports runtimes
of 90, 129 and 600 seconds respectively for 100, 200
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Figure 4: Size of Gaussian lookup table vs. test
RMSE on Netflix data with dimension 16.

and 500 dimensions using an Amazon g2.2xlarge in-
stance for the Netflix dataset.2 This is slower than the
runtimes of 48, 63, and 83 seconds for 128, 256, and
512 that we achieve without GPU optimization on a
c3.8xlarge instance.

Spark is a distributed system (Spark MLlib) for inferring
recommendations and factorization. In recent com-
parison the argument has been made that it is some-
what slower3 than GraphLab while being substantially
faster than Mahout.

6.2 Data
We use two datasets — the well known Netflix Prize dataset,

consisting of a training set of 99M ratings spanning 480k
customers and their ratings on almost 18k, each movie be-
ing rated at a scale of 1 to 5 stars. Additionally, we use
their released validation set which consists of 1.4M ratings
for validation purposes.

Secondly, we use the Yahoo music recommender dataset,
consisting of almost 263M ratings of 635k music items by
1M users. We also use the released validation set which
consists of 6M ratings for validation. We re-scale each rat-
ing at a scale of 0 to 5. We compare performance on both
datasets since their sampling strategies are somewhat in-
comparable (e.g. Netflix has considerable covariate shift in
the test dataset). Moreover, this larger dataset poses further
challenges on the cache efficiency due to the larger number
of items to be recommended.

2http://github.com/BIDData/BIDMach/wiki/Benchmarks
3http://stanford.edu/~rezab/sparkworkshop/slides/
xiangrui.pdf, Slide 31

http://github.com/BIDData/BIDMach/wiki/Benchmarks
http://stanford.edu/~rezab/sparkworkshop/slides/xiangrui.pdf
http://stanford.edu/~rezab/sparkworkshop/slides/xiangrui.pdf
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Figure 2: Runtime comparisons of the C-SGD solver, differentially private SGLD solver vs. non-private
GraphChi/Graphlab on identical hardware, a Amazon AWS c3.8xlarge instance. Note that regardless of the
dimensionality of the factors (512, 2048) our C-SGD is approximately 2-3 times faster than GraphChi, and
differentially private SGLD also can be comparable with Graphchi in very high dimension (Top: Netflix,
Bottom: Yahoo).

6.3 Runtime
For efficient computation, GraphChi first needs to pre-

process data into shards by the proposed parallel sliding
windows [14]. Once the data is partitioned, it can process
the graphs efficiently. For comparison, we partition both
rating matrix of Netflix prize data and Yahoo Music data
into blocks with each block contains all the ratings come
from around 1000 users. Each time our algorithms read one
block from disk. For Graphchi and Graphlab Create we use
the default partition strategy. We run all the experiments on
an Amazon c3.8xlarge instance running Ubuntu 14.04 with
32 CPUs and 60GB RAM.

For SGD-based methods We initialize the initial learning
rate and regularizer η0 = 0.02, λ = 5 · 10−3 for Netflix data,
and η0 = {0.1, 0.08, 0.06}, λ = 5·10−2 for Yahoo Music data.
We update learning rate per round as ηt = η0/t

γ . We also

use the same decay rate γ = 1 for both dataset. For our
fast SGLD solver, we set η0 = {2 · 10−10, 1 · 10−10, 9 · 10−11}
and hyperparameters α = 1.0, β = 100.0. And we set decay
rate γ = 0.6 for Netflix data and γ = {0.8, 0.9} for Yahoo
data. In practice to speed up SGLD’s burn-in procedure,
we multiply learning rate by a temperature parameter ζ [4]
in the Gaussian noise N (0, ζ · ηt) with

√
ζ · ηt � ηt. We set

ζ = {0.07, 0.9} for Netflix data and Yahoo data.
Since it is nontrivial to observe the test RMSE error in

each epoch when using Graphlab Create, we only report
the timing of Graphlab Create and all other methods in
Figure 5. Note that we were unable to obtain performance
results from BidMach for the Yahoo dataset, since Scala
encountered memory management issues. However, we have
no reason to believe that the results would be in any way
more favorable to BidMach than the findings on the Netflix
dataset. For reproducibility the results were carried out on



an AWS g2.8xlarge instance.
To illustrate the convergence over time. We run all the

methods in a fixed number of epochs. That is 15 epochs and
30 epochs respectively because we observe that our SGD
solver can reach the convergence at that time. Figure 2
shows our timing results along with convergence while we
vary dimensions of the models.

Both of our solvers, i.e. C-SGD and Fast SGLD benefit
from our caching algorithm. C-SGD is around 2 to 3 times
faster than GraphChi and Graphlab while simultaneously
outperforming the accuracy of GraphChi. The primary rea-
son for the discrepancy in performance can be found in the
order in which GraphChi processes data: it partitions data
(bother users and items) into random subsets and then op-
timizes only over one such subblock at a time. While the
latter is fast, it negatively affects convergence, as can be seen
in Figure 2.

Note that the algorithm required for Fast SGLD is rather
more complex, since it performs sampling from the Bayesian
posterior. Consequently, it is slower than plain SGD. Nonethe-
less, its speed is comparable to GraphChi in terms of through-
put (despite the latter solving a much simpler problem). One
problem of SGLD is that the more complex the models are,
the worse its convergence becomes, due to the fact that we
are sampling from a large state space. This is possibly due
to the slow mixing of SGLD, which is a known problem of
SGLD [2]. Improving the mixing rate by considering a more
advanced stochastic differential equation based sampler, e.g.
[4, 6], while keeping the cache efficiency during the updates
will be important future work. To our best knowledge we
are the first to report the convergence results of SGLD at
this scale.

6.4 Convergence
As described above, the convergence of SGLD and SGD

based methods are quite different. We illustrate the con-
vergence on a small dimension in Figure 6. Basically the
C-SGD can find a MAP estimate using several rounds and
then begin overfitting. While SGLD first needs to burn-in
and then start sampling procedure. Note that SGLD can
converge very fast in this case. But for higher dimensions,
SGLD is slower to converge. Careful tuning of the learning
rate is critical here.

We also investigated the accuracy of the model as a func-
tion of the size of the Gaussian lookup table. That is, we
checked whether replacing explicit access to samples from
the Normal distribution by looking up a consecutive number
of precomputed parameters from memory is valid. As can
be seen in Figure 4, for all but the smallest sets, this suffices.
That is, already once we have more than 10,000 numbers,
we no longer need a Gaussian random number generator and
the results obtained are essentially indistinguishable (obvi-
ously for large numbers of dimensions somewhat more terms
are needed).

6.5 Cache-efficient Design
We show the cache efficiency of C-SGD and Graphchi in

this section. Our data access pattern can accelerate the
hardward cache prefetching. In the meanwhile we also use
software prefetching strategies to prefetch movie factors in
advance. But software prefetching is usually dangerous in
practice while implementing in practice because we need to
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Figure 5: Timing comparisons on Netflix (top, 15
epochs) and Yahoo (bottom, 30 epochs).

know the prefetching stride in advance. That is when to
prefetch those movie factors. In our experiments we set
prefetching stride to 2 empirically. We set the experiments
as follows. In each gradient update step given rij , once
the parameters e.g. ui and vj in (3) been read they will
stay in cache for a while until they be flushed away by new
parameters. What we really care about in this section is
if the first time each parameter be read by CPU is already
staying in cache or not. If it is not in cache then there
will be a cache miss and will push CPU to idle. After that
the succeeding updates (the specific updates depend on the
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K SC-SGD GraphChi
L1 Cache L3 Cache L1 Cache L3 Cache

16 2.84% 0.43% 12.77% 2.21%
256 2.85% 0.50% 12.89% 2.34%
2048 3.3% 1.7% 15% 9.8%

Table 2: Cache miss rates in C-SGD and GraphChi.
The results were obtained using Cachegrind. The
cache miss rate in GraphChi is considerably higher,
which explains to some extent the speed difference.

algorithms e.g. SGD or SGLD) for ui and vj will run on
cache level.

We use Cachegrind [15] as a cache profiler and analyze
cache miss for this purpose. The result in Table 2 shows
that our algorithm is quite cache friendly when compared
with GraphChi on all dimensions. This is likely due to the
way GraphChi ingests data: it traverses one data and item
block at a time. As a result it has a less efficient portfolio
of access frequency and it needs to fetch data from memory
more frequently. We believe this to be both the root cause of
decreased computational efficiency and slower convergence
in the code.

6.6 Privacy and Accuracy
We now investigate the influence of privacy loss on ac-

curacy. As discussed previously, a small rescaling factor
B can help us to get a nice bound on the loss function.
For private collaborative filtering purposes, we first trim
the training data by setting each user’s maximum allow-
able number of ratings τ = 100 and τ = 200 for the Net-
flix competition dataset and Yahoo Music data respectively.

We set B = τ(5 − 1 + κ)2 and weight of each user as
wi = min(ρ, B

mi(5−1+κ)2
) where κ is set to 1. According to

different trimming strength we have B = 2500 and B = 5000
for Netflix data and Yahoo data respectively. Note that a
maximum allowable rating from 100 to 200 is quite reason-
able, since in practice most users rate quite a bit fewer than
200 movies (due to the power law nature of the rating dis-
tribution). Moreover, for users who have more than 200
ratings, we actually can get a quite a good approximation
of their profiles by only using a reasonable size of random
samples of these ratings. As such we get a dataset with 33M
ratings for Netflix and 100M ratings for Yahoo Music data.
We study the prediction accuracy, i.e. the utility of our pri-
vate method by varying the differential privacy budget ε for
fixed model dimensionality K = 16.

The parameters of the experiment are set as follows. For
Netflix data, we set η0 = {6 · 10−10, 3 · 10−9, 3.2 · 10−8},
γ = 0.6, ζ = {7 · 10−2, 2.5 · 10−3}, ρ = {1, 10}. For Yahoo
data, we set η0 = {1.5 · 10−10, 1.5 · 10−9, 5 · 10−10, 2 · 10−9},
and γ = {0.8, 0.9}, ζ = {0.05, 0.01, 0.005}, ρ = {1, 30}.
In addition, because we are sampling P(U, V |rest) we fix
regularizer parameters Λu,Λv which are estimated by a non-
private SGLD in this section.

While we are sampling (U, V ) jointly, we essentially only
need to release V . Users can then apply their own data to
get the full model and have a local recommender system:

ui ≈

λ1 +
∑

j|(i,j)∈S

vjv
>
j

−1∑
j

vjrij (5)

The local predictions, i.e. in our context the utility of dif-
ferentially private matrix factorization method, along the
different privacy loss ε are shown in Figure 7.

More specifically, the model (5) is a two-stage procedure
which first takes the differentially private item vectors and
then use the latter to obtain locally non-private user param-
eter estimates. This is perfectly admissible since users have
no expectation of privacy with regard to their own ratings.

6.7 Rating privacy, user privacy and average
personalized privacy

Interpreting the privacy guarantees can be subtle. A pri-
vacy loss of ε = 250 as in Figure 7 may seem completely
meaningless by Definition 1 and the corresponding results
in Mcsherry and Mironov [18] may appear much better.

We first address the comparison to Mcsherry and Mironov
[18]. It is important to point out that our privacy loss ε is
stated in terms of user level privacy while the results in Mc-
sherry and Mironov [18] are stated in terms of rating level
privacy, which offers exponentially weaker protection. ε-user
differential privacy translates into ε/τ -rating differential pri-
vacy. Since τ = 200 in our case, our results suggest that we
almost lose no accuracy at all while preserving rating dif-
ferential privacy with ε < 1. This matches (and slightly
improves) Mcsherry and Mironov [18]’s carefully engineered
system.

On the other hand, we note that the plain privacy loss
can be a very deceiving measure of its practical level of pro-
tection. Definition 1 protects privacy of an arbitrary user,
who can be a malicious spammer that rates every movie in
a completely opposite fashion as what the learned model
would predict. This is a truly paranoid requirement, and
arguably not the right one, since we probably should not
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Figure 7: Test RMSE vs. privacy loss ε on Netflix
(top) and Yahoo (bottom). A modest decrease in
accuracy affords a useful gain in privacy.

protect these malicious users to begin with. For an average
user, the personalized privacy (Definition 2) guarantee can
be much stronger, as the posterior distribution concentrates
around models that predict reasonably well for such users.
As a result, the log-likelihood associated with these users
will be bounded by a much smaller number with high prob-
ability. In the example shown in Figure 7, a typical user’s
personal privacy loss is about ε/25, which helps to reduce
the essential privacy loss to a meaningful range.

7. CONCLUSION
In this paper we described an algorithm for efficient collab-

orative filtering that is compatible with differential privacy.
In particular, we showed that it is possible to accomplish
all three goals: accuracy, speed and privacy without any
significant sacrifice on either end.

Moreover, we introduced the notion of personalized differ-
ential privacy. That is, we defined (and proved) the notion of
obtaining estimates that respect different degrees of privacy,
as required by individual users. We believe that this notion
is highly relevant in today’s information economy where the
expectation of privacy may be tempered by, e.g. the cost
of the service, the quality of the hardware (cheap netbooks
deployed with Windows 8.1 with Bing), and the extent to
which we want to incorporate the opinions of users.

Our implementation takes advantage of the caching prop-
erties of modern microprocessors. By careful latency hiding
we are able to obtain near peak performance. In particu-

lar, our implementation is approximately 3 times as fast as
GraphChi, the next-fastest recommender system. In sum,
this is a strong endorsement of Stochastic Gradient Langevin
Dynamics to obtain differentially private estimates in recom-
mender systems while still preserving good utility.
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APPENDIX
Proof of Theorem 1. The ε-DP claim follows by choosing
the utility function to be the −F (U, V ) and apply the ex-
ponential mechanism [19] which protects ε-DP by output
(U, V ) with probability proportional to exp(− ε

2∆F (U,V )
F (U, V )

Where he sensitivity of function f be defined as

∆f(X) = sup
X,X′∈Xn:d(X,X′)≤1

‖f(X)− f(X ′)‖2.

All we need to do is to work out the sensitivity for F (U, V )
here. By the constraint in U, V and 1 ≤ rij ≤ 5, we know
(rij−uTi vj)2 ≤ (5+κ)2. Since one user contributes only one
row to the data the trimming/reweighting procedure ensures
that for any U, V and any user, the sensitivity of F (U, V )
obeys

∆F (U, V ) ≤ 2wi min{mi, τ}(5 + κ)2 := 2B,

as specified in the algorithm. The (ε, δ)−DP claim is simple
(given in Proposition 3 of [33]) and we omit here.

Lastly, we note that the“retry if fail”procedure will always
sample from the the correct distribution of P conditioned on
(U, V ) satisfying our constraint that uTi vi is bounded, and it
does not affect the relative probability ratio of any measur-
able event in the support of this conditional distribution.

Proof of Theorem 2. For generality, we assume the parame-
ter vector is θ and all regularizers is capture in prior p(θ).

The posterior distribution p(θ|x1, ...,xn) =
∏n
i=1 p(xi|θ)p(θ)∫

θ

∏n
i=1 p(xi|θ)p(θ)dθ

.

For any x1, ...,xn, if we add (removing has the same proof) a
particular user x′ whose log-likelihood is uniformly bounded
by B′. The probability ratio can be factorized into

p(θ|x1, ...,xn,x
′, )

p(θ|x1, ...,xn)
=
p(x′|θ)

∏n
i=1 p(xi|θ)p(θ)∏n

i=1 p(xi|θ)p(θ)︸ ︷︷ ︸
Factor 1

×
∫
θ

∏n
i=1 p(xi|θ)p(θ)dθ∫

θ
p(x′|θ)

∏n
i=1 p(xi|θ)p(θ)dθ︸ ︷︷ ︸

Factor 2

.



It follows that

Factor 1 = p(x′|θ) = elog p(x′|θ) ≤ eB
′
,

Factor 2 =

∫
θ

∏n
i=1 p(xi|θ)p(θ)dθ∫

θ
p(x′|θ)

∏n
i=1 p(xi|θ)p(θ)dθ

=

∫
θ

∏n
i=1 p(xi|θ)p(θ)dθ∫

θ
elog p(x′|θ)

∏n
i=1 p(xi|θ)p(θ)dθ

≤
∫
θ

∏n
i=1 p(xi|θ)p(θ)dθ∫

θ
e−Bi

∏n
i=1 p(xi|θ)p(θ)dθ

≤ eB
′
.

As a result, the whole thing is bounded by e2B′
.

In Algorithm 1, denote θ = (U, V ). We are sampling from

a distribution proportional to e
ε

4B
F (Θ). This is equivalent

to taking the above posterior p to have the log-likelihood

of User x′ bounded by ε2B′

4B
= εB′

2B
, therefore the algorithm

obeys εB′

2B
personalized differential privacy for user x′. Take

B′ to be any customized subset of B1, ..., Bn adjustied using
w we get the expression as claimed.
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