
An Optimal Ancestry Labeling Scheme

with Applications to XML Trees and Universal Posets∗

Pierre Fraigniaud

CNRS and Univ. Paris Diderot

pierre.fraigniaud@liafa.univ-paris-diderot.fr

Amos Korman

CNRS and Univ. Paris Diderot

amos.korman@liafa.univ-paris-diderot.fr

Abstract

In this paper we solve the ancestry-labeling scheme problem which aims at assigning the
shortest possible labels (bit strings) to nodes of rooted trees, so that ancestry queries between
any two nodes can be answered by inspecting their assigned labels only. This problem was
introduced more than twenty years ago by Kannan et al. [STOC ’88], and is among the most
well-studied problems in the field of informative labeling schemes. We construct an ancestry-
labeling scheme for n-node trees with label size log2 n + O(log log n) bits, thus matching the
log2 n+ Ω(log log n) bits lower bound given by Alstrup et al. [SODA ’03]. Our scheme is based
on a simplified ancestry scheme that operates extremely well on a restricted set of trees. In
particular, for the set of n-node trees with depth at most d, the simplified ancestry scheme
enjoys label size of log2 n + 2 log2 d + O(1) bits. Since the depth of most XML trees is at
most some small constant, such an ancestry scheme may be of practical use. In addition, we
also obtain an adjacency-labeling scheme that labels n-node trees of depth d with labels of size
log2 n+3 log2 d+O(1) bits. All our schemes assign the labels in linear time, and guarantee that
any query can be answered in constant time.

Finally, our ancestry scheme finds applications to the construction of small universal partially
ordered sets (posets). Specifically, for any fixed integer k, it enables the construction of a
universal poset of size Õ(nk) for the family of n-element posets with tree-dimension at most k.
Up to lower order terms, this bound is tight thanks to a lower bound of nk−o(1) due to Alon
and Scheinerman [Order ’88].

∗Preliminary results of this paper appeared in the proceedings of the 42nd ACM Symposium on Theory of Com-
puting (STOC), 2010, the 21st ACM-SIAM Symposium on Discrete Algorithms (SODA), 2010, and the 21st ACM
Symposium on Parallel Algorithms and Architectures (SPAA), 2009, as part of [21, 22, 23]. This research is supported
in part by the ANR project DISPLEXITY, and by the INRIA project GANG.

ar
X

iv
:1

61
1.

02
58

9v
1

 [
cs

.D
S]

 8
 N

ov
 2

01
6

1 Introduction

1.1 Background and motivation

How to represent a graph in a compact manner is a fundamental data structure question. In most
traditional graph representations, the names (or identifiers) given to the nodes serve merely as
pointers to entries in a data structure, and thus reveal no information about the graph structure
per se. Hence, in a sense, some memory space is wasted for the storage of content-less data. In
contrast, Kannan et al. [36] introduced the notion of informative labeling schemes, which involves
a mechanism for assigning short, yet informative, labels to nodes. Specifically, the goal of such
schemes is to assign labels to nodes in such a way that allows one to infer information regarding any
two nodes directly from their labels. As explicated below, one important question in the framework
of informative labeling schemes is how to efficiently encode the ancestry relation in trees. This is
formalized as follows.

The ancestry-labeling scheme problem: Given any n-node rooted tree T , label the nodes
of T using the shortest possible labels (bit strings) such that, given any pair of nodes u and v in T ,
one can determine whether u is an ancestor of v in T by merely inspecting the labels of u and v.

The following simple ancestry-labeling scheme was suggested in [36]. Given a rooted n-node
tree T , perform a DFS traversal in T starting at the root, and provide each node u with a DFS
number, dfs(u), in the range [1, n]. (Recall, in a DFS traversal, a node is visited before any
of its children, thus, the DFS number of a node is smaller than the DFS number of any of its
descendants). The label of a node u is simply the interval I(u) = [dfs(u),dfs(u′)], where u′ is
the descendant of u with the largest DFS number. An ancestry query then amounts to an interval
containment query between the corresponding labels: a node u is an ancestor of a node v if and
only if I(v) ⊆ I(u). Clearly, the label size, namely, the maximal number of bits in a label assigned
by this ancestry-labeling scheme to any node in any n-node tree, is bounded by 2 log n bits1.

The 2 log n bits scheme of [36] initiated an extensive research [1, 3, 11, 34, 35, 43] whose goal
was to reduce the label size of ancestry-labeling schemes as much as possible. The main motivation
behind these works lies in the fact that a small improvement in the label size of ancestry-labeling
schemes may contribute to a significant improvement in the performances of XML search engines.
Indeed, to implement sophisticated queries, XML documents are viewed as labeled trees, and
typical queries over the documents amount to testing relationships between document items, which
correspond to ancestry queries among the corresponding tree nodes [2, 18, 48, 49]. XML search
engines process such queries using an index structure that summarizes this ancestry information. To
allow good performances, a large portion of the XML index structure resides in the main memory.
Hence, the length of the labels is a main factor which determines the index size. Thus, due to the
enormous size of the Web data, even a small reduction in the label size may contribute significantly
to both memory cost reduction and performance improvement. A detailed explanation regarding
this application can be found in various papers on ancestry-labeling schemes (see, e.g., [1, 35]).

In [5], Alstrup et al. proved a lower bound of log n + Ω(log log n) bits for the label size of an
ancestry-labeling scheme. On the other hand, thanks to a scheme by Abiteboul et al. [1], the

1All logarithms in this paper are taken in base 2.

1

current state of the art upper bound is log n+O(
√

log n) bits. Thus, a large gap is still left between
the best known upper and lower bounds on the label size. The main result of this paper closes the
gap. This is obtained by constructing an ancestry-labeling scheme whose label size matches the
aforementioned lower bound.

Our scheme is based on a simplified ancestry scheme that operates extremely well on a restricted
set of trees. In particular, for the set of n-node trees with depth at most d, the simplified ancestry
scheme enjoys label size of log2 n+ 2 log2 d+O(1) bits. This result can be of independent interest
for XML search engines, as a typical XML tree has extremely small depth (cf. [14, 17, 39, 38]). For
example, by examining about 200,000 XML documents on the Web, Mignet et al. [38] found that
the average depth of an XML tree is 4, and that 99% of the trees have depth at most 8. Similarly,
Denoyer and Gallinari [17] collected about 650,000 XML trees taken from the Wikipedia collection2,
and found that the average depth of a node is 6.72.

In addition, our ancestry-labeling scheme on arbitrary trees finds applications in the context
of universal partially ordered sets (posets). Specifically, the bound on the label size translates to
an upper bound on the size of the smallest universal poset for the family of all n-element posets
with tree-dimension at most k (see Section 2 for the definitions). It is not difficult to show that the
smallest size of such a universal poset is at most n2k. On the other hand, it follows from a result
by Alon and Scheinerman [12] that this size is also at least nk−o(1). As we show, it turns out that
the real bound is much closer to this lower bound than to the n2k upper bound.

1.2 Related work

1.2.1 Labeling schemes

As mentioned before, following the 2 log n-bit ancestry-labeling scheme in [36], a considerable
amount of research has been devoted to improve the upper bound on the label size as much as
possible. Specifically, [3] gave a first non-trivial upper bound of 3

2 log n+O(log log n) bits. In [34],
a scheme with label size log n + O(d

√
log n) bits was constructed to detect ancestry only between

nodes at distance at most d from each other. An ancestry-labeling scheme with label size of
log n + O(log n/ log log n) bits was given in [43]. The current state of the art upper bound of
log n + O(

√
log n) bits was given in [11] (that scheme is described in detail in the journal publi-

cation [1] joint with [3]). Following the aforementioned results on ancestry-labeling schemes for
general rooted trees, [35] gave an experimental comparison of different ancestry-labeling schemes
over XML tree instances that appear in “real life”.

The ancestry relation is the transitive closure of the parenthood relation. Hence, the following
parenthood-labeling scheme problem is inherently related to the ancestry-labeling scheme problem:
given a rooted tree T , label the nodes of T in the most compact way such that one can determine
whether u is a parent of v in T by merely inspecting the corresponding labels. The parenthood-
labeling scheme problem was also introduced in [36], and a very simple parenthood scheme was
constructed there, using labels of size at most 2 log n bits. (Actually, [36] considered adjacency-
labeling schemes in trees rather than parenthood-labeling schemes, however, such schemes are

2XML trees taken from the Wikipedia collection have actually relatively larger depth compared to usual XML
trees [16].

2

equivalent up to a constant number of bits in the label size3). By now, the parenthood-labeling
scheme problem is almost completely closed thanks to Alstrup and Rauhe [10], who constructed a
parenthood scheme for n-node trees with label size log n+O(log∗ n) bits. In particular, this bound
indicates that encoding ancestry in trees is strictly more costly than encoding parenthood.

Adjacency labeling schemes where studied for other types of graphs, including, general graphs [9],
bounded degree graphs [4], and planar graphs [24]. Informative labeling schemes were also pro-
posed for other graph problems, including distance [5, 26, 42], routing [20, 43], flow [31, 33], vertex
connectivity [27, 31, 32], and nearest common ancestor in trees [6, 8, 40].

Very recently, Dahlgaard et al. [15] and Alstrup et al. [7] claim to provide asymptotically
optimal schemes for the ancestry problem and the adjacency problem on trees, respectively.

1.2.2 Universal posets

When considering infinite posets, it is known that a countable universal poset for the family of all
countable posets exists. This classical result was proved several times [19, 29, 30] and, in fact, as
mentioned in [28], has motivated the whole research area of category theory.

We later give a simple relation between the label size of consistent ancestry-labeling schemes
and the size of universal posets for the family of all n-element posets with tree-dimension at most k
(see Section 2 for the corresponding definitions). The 2 log n-bit ancestry-labeling scheme of [36] is
consistent, and thus it provides yet another evidence for the existence of a universal poset with n2k

elements for the family of all n-element posets with tree-dimension at most k. It is not clear whether
the ancestry-labeling schemes in [3, 11, 34, 43] can be somewhat modified to be consistent and still
maintain the same label size. However, even if this is indeed the case, the universal poset for the
family of all n-element posets with tree-dimension at most k that would be obtained from those
schemes, would be of size Ω(nk2k

√
logn).

The lower bound of [5] implies a lower bound of Ω(n log n) for the number of elements in a
universal poset for the family of n-element posets with tree-dimension 1. As mentioned earlier,
for fixed k > 1, the result of Alon and Scheinerman [12] implies a lower bound of nk−o(1) for the
number of elements in a universal poset for the family of n-element posets with tree-dimension at
most k.

1.3 Our contributions

The main result of this paper provides an ancestry-labeling scheme for n-node rooted trees, whose
label size is log n + O(log log n) bits. This scheme assigns the labels to the nodes of any tree in
linear time and guarantees that any ancestry query is answered in constant time. By doing this,
we solve the ancestry-labeling scheme problem which is among the main open problems in the field
of informative labeling schemes.

3To see this equivalence, observe that one can construct a parenthood-labeling scheme from an adjacency-labeling
scheme in trees, as follows. Given a rooted tree T , first label the nodes of T using the adjacency-labeling scheme
(which ignores the fact that T is rooted). Then, for each node u, in addition to the label given to it by the adjacency-
labeling scheme, add two more bits, for encoding d(u), the distance from u to the root, calculated modulo 3. Now
the parenthood-labeling scheme follows by observing that for any two nodes u and v in a tree, u is a parent of v if
and only if u and v are adjacent and d(u) = d(v)− 1 modulo 3.

3

Our main scheme is based on a simplified ancestry scheme that is particularly efficient on a
restricted set of trees, which includes the set of n-node trees with depth at most d. For such trees,
the simplified ancestry scheme enjoys label size of log2 n+2 log2 d+O(1) bits. A simple trick allows
us to use this latter ancestry-labeling scheme for designing a parenthood -labeling scheme for n-node
trees of depth at most d using labels of size log n+ 3 log d+O(1) bits. Each of these two schemes
assigns the labels to the nodes of any tree in linear time. The schemes also guarantee that the
corresponding queries are answered in constant time.

Our schemes rely on two novel tree-decompositions. The first decomposition, called spine
decomposition, bears similarities with the classical heavy-path decomposition of Sleator and Tar-
jan [41]. It is used for the construction of our simplified ancestry-labeling scheme. Our main
ancestry-labeling scheme uses another tree-decomposition, called folding decomposition. The spine
decomposition of the folding decomposition of any tree has a crucial property, that is heavily
exploited in the construction of our main labeling scheme.

Finally, we establish a simple relation between compact ancestry-labeling schemes and small
universal posets. Specifically, we show that there exists a consistent ancestry-labeling scheme for
n-node forests with label size ` if and only if, for any integer k ≥ 1, there exists a universal poset
with 2k` elements for the family of n-element posets with tree-dimension at most k. Using this
equivalence, and slightly modifying our ancestry-labeling scheme, we prove that for any integer k,
there exists a universal poset of size Õ(nk) for the family of all n-element posets with tree-dimension
at most k. Up to lower order terms4, this bound is tight.

1.4 Outline

Our paper is organized as follows. Section 2 provides the essential definitions, including the def-
inition of the spine decomposition. In Section 3 we describe our labeling schemes designed for a
restricted family of trees, which includes trees of bounded depth. The main result regarding the
construction of the optimal ancestry-labeling scheme is presented in Section 4. Our result concern-
ing small universal posets appears in Section 5. Finally, in Section 6, we conclude our work and
introduce some directions for further research on randomized labeling schemes.

2 Preliminaries

Let T be a rooted tree, i.e., a tree with a designated node r referred as the root of T . A rooted
forest is a forest consisting of several rooted trees. The depth of a node u in some (rooted) tree T
is defined as the smallest number of nodes on the path leading from u to the root. In particular,
the depth of the root is 1. The depth of a rooted tree is defined as the maximum depth over all its
nodes, and the depth of a rooted forest is defined as the maximum depth over all the trees in the
forest.

For two nodes u and v in a rooted tree T , we say that u is an ancestor of v if u is one of the
nodes on the shortest path in T connecting v and the root r. (An ancestor of v can be v itself;
Whenever we consider an ancestor u of a node v, where u 6= v, we refer to u as a strict ancestor

4The Õ notation hides polylogarithmic terms.

4

of v). For two nodes u and v in some (rooted) forest F , we say that u is an ancestor of v in F if
and only if u and v belong to the same rooted tree in F , and u is an ancestor of v in that tree.
A node v is a descendant of u if and only if u is an ancestor of v. For every non-root node u, let
parent(u) denote the parent of u, i.e., the ancestor of u at distance 1 from it.

The size of T , denoted by |T |, is the number of nodes in T . The weight of a node u ∈ T , denoted
by weight(u), is defined as the number of descendants of u, i.e., weight(u) is the size of the subtree
hanging down from u. In particular, the weight of the root is weight(r) = |T |.

For every integer n, let T (n) denote the family of all rooted trees of size at most n, and let
F(n) denote the family of all forests of rooted trees, were each forest in F(n) has at most n nodes.

For two integers a ≤ b, let [a, b] denote the set of integers {a, a + 1, · · · , b}. (For a < b, we
sometimes use the notation [a, b) which simply denotes the set of integers {a, a+ 1, · · · , b− 1}). We
refer to this set as an interval. For two intervals I = [a, b] and I ′ = [a′, b′], we say that I ≺ I ′ if
b < a′. The size of an interval I = [a, b] is |I| = b− a+ 1, namely, the number of integers in I.

2.1 The spine decomposition

Our ancestry scheme uses a novel decomposition of trees, termed the spine decomposition (see
Figure 1). This decomposition bears similarities to the classical heavy-path decomposition of Sleator
and Tarjan [41]. Informally, the spine decomposition is based on a path called spine which starts
from the root, and goes down the tree along the heavy-path until reaching a node whose heavy
child has less than half the number of nodes in the tree. This is in contrast to the heavy-path which
goes down until reaching a node v whose heavy child has less than half the number of nodes in the
subtree rooted at v. Note that the length of a spine is always at most the length of the heavy-path
but can be considerably smaller. (For example, by augmenting a complete binary tree making it
slightly unbalanced, one can create a tree with heavy-path of length Ω(log n) while its spine is of
length O(1).)

Formally, given a tree T in some forest F , we define the spine of T as the following path S.
Assume that each node v holds its weight ω(v) (these weights can easily be computed in linear
time). We define the construction of S iteratively. In the ith step, assume that the path S contains
the vertices v1, v2, · · · vi, where v1 is the root r of T and vj is a child of vj−1, for 1 < j ≤ i. If the
weight of a child of vi is more than half the weight of the root r then this child is added to S as
vi+1. (Note, there can be at most one such child of vi.) Otherwise, the construction of S stops.
(Note that the spine may consist of only one node, namely, the root of T .) Let v1, v2, · · · , vs be the
nodes of the spine S (Node v1 is the root r, and vs is the last node added to the spine). It follows
from the definition that if 1 ≤ i < j ≤ s then vi is a strict ancestor of vj . The size of the spine S
is s. We split the nodes of the spine S to two types. Specifically, the root of T , namely v1, is called
the apex node, while all other spine nodes, namely, v2, v3, · · · , vs, are called heavy nodes. (Recall
that the weight of each heavy node is larger than half the weight of the apex node).

By removing the nodes in the spine S (and the edges connected to them), the tree T breaks
into s forests F1, F2, · · · , Fs, such that the following properties holds for each 1 ≤ i ≤ s:

• P1. In T , the roots of the trees in Fi are connected to vi;

• P2. Each tree in Fi contains at most |T |/2 nodes;

5

v i

v1

vs

Fi

F1

Fs

Figure 1: Spine decomposition

• P3. The forests Fi are unrelated in terms of the ancestry relation in T .

The spine decomposition is constructed iteratively, where each level of the process follows the
aforementioned description. That is, given a forest F , after specifying the spine S of each tree T in
F , we continue to the next level of the process, operating in parallel on the forests F1, F2, · · · , Fs.
The recursion implies that each node is eventually classified as either apex or heavy. The depth of
the spine decomposition of a forest F , denoted Spine-Depth(F) is the maximal size of a spine,
taken over all spines obtained in the spine decomposition of F . Note that Spine-Depth(F) is
bounded from above by the depth of F .

For any two integers n and d, let F(n, d) denote the set of all rooted forests with at most n
nodes, whose spine decomposition depth is at most d.

2.2 Ancestry labeling schemes

An ancestry-labeling scheme (M,D) for a family F of forests of rooted trees is composed of the
following components:

1. A marker algorithm M that assigns labels (i.e., bit strings) to the nodes of all forests in F .

2. A decoder algorithm D that given any two labels `1 and `2 in the output domain ofM, returns
a boolean value D(`1, `2).

These components must satisfy that if L(u) and L(v) denote the labels assigned by the marker
algorithm to two nodes u and v in some rooted forest F ∈ F , then

D(L(u), L(v)) = 1 ⇐⇒ u is an ancestor of v in F .

6

It is important to note that the decoder algorithm D is independent of the forest F . That is,
given the labels of two nodes, the decoder algorithm decides the ancestry relationship between the
corresponding nodes without knowing to which forest in F they belong.

The most common complexity measure used for evaluating an ancestry-labeling scheme is the
label size, that is, the maximum number of bits in a label assigned by M, taken over all nodes
in all forests in F . When considering the query time of the decoder algorithm, we use the RAM
model of computation, and assume that the length of a computer word is Θ(log n) bits. Similarly to
previous works on ancestry-labeling schemes, our decoder algorithm uses only basic RAM operations
(which are assumed to take constant time). Specifically, the basic operations used by our decoder
algorithm are the following: addition, subtraction, multiplication, division, left/right shifts, less-
than comparisons, and extraction of the index of the least significant 1-bit.

Let F be a family of forests of rooted trees. We say that an ancestry-labeling scheme (M,D) for
F is consistent if the decoder algorithm D satisfies the following conditions, for any three pairwise
different labels `1, `2 and `3 in the output domain of M:

• Anti-symmetry: if D(`1, `2) = 1 then D(`2, `1) = 0, and

• Transitivity: if D(`1, `2) = 1 and D(`2, `3) = 1 then D(`1, `3) = 1.

Note that by the definition of an ancestry-labeling scheme (M,D), the decoder algorithm D
trivially satisfies the two conditions above if `i = L(ui) for i = 1, 2, 3, and u1, u2 and u3 are different
nodes belonging to the same forest in F .

2.3 Small universal posets

The size of a partially ordered set (poset) is the number of elements in it. A poset (X,≤X) contains
a poset (Y,≤Y) as an induced suborder if there exists an injective mapping φ : Y → X such that
for any two elements a, b ∈ Y : we have

a ≤Y b ⇐⇒ φ(a) ≤X φ(b).

A poset (X,≤) is called universal for a family of posets P if (X,≤) contains every poset in P as an
induced suborder. If (X,≤) and (X,≤′) are orders on the set X, we say that (X,≤′) is an extension
of (X,≤) if, for any two elements x, y ∈ X,

x ≤ y =⇒ x ≤′ y.

A common way to characterize a poset (X,≤) is by its dimension, that is, the smallest number of
linear (i.e., total order) extensions of (X,≤) the intersection of which gives rise to (X,≤) [44]. The
following fact is folklore, and its proof straightforward (this proof is however stated for the sake of
completeness).

Fact 1 The smallest size of a universal poset for the family of n-element posets with dimension at
most k is at most nk.

7

Proof. Let ≤ be the natural total order defined on the set of integers. We present a universal
poset (U,�) for the family of n-element posets with dimension at most k. The set of elements U is

U = [1, n]k = {u = (u1, u2, · · · , uk) | ui ∈ [1, n] for all i ∈ [1, k]},

and the relation � is defined for two elements u, v ∈ U by:

u � v ⇐⇒ ui ≤ vi, ∀i ∈ [1, k].

Clearly U has nk elements. Now consider any n-element poset (X,E) with dimension at most k.
For i ∈ [1, k], let (Li,≤i) be the total orders the intersection of which gives rise to (X,E). By the
definition of intersection, there exists a collection of injective mappings ψi : X → Li such that for
any two elements x, y ∈ X, we have

xE y ⇐⇒ ψi(x) ≤i ψi(y), ∀i ∈ [1, k].

For every i ∈ [1, k], since (Li,≤i) is a total order, it is isomorphic to ([1, n],≤), that is, there exists
an injective and onto mapping φi : Li → [1, n] such that for a, b ∈ Li, we have

a ≤i b ⇐⇒ φi(a) ≤ φi(b).

We define the mapping f : X → U so that for any x ∈ X, we have the ith coordinate f(x)i ∈ [1, n]
of f(x) be defined as f(x)i = φi ◦ ψi(x). The fact that f preserves the order E, i.e., the fact that,
for every x, y ∈ X,

xE y ⇐⇒ f(x) � f(y).

is now immediate. �

Another way of characterizing a poset (X,≤) is by its tree-dimension. A poset (X,≤) is a tree5

[13, 46] if, for every pair x and y of incomparable elements in X, there does not exist an element
z ∈ X such that x ≤ z and y ≤ z. (Observe that the Hasse diagram [44] of a tree poset is a forest of
rooted trees). The tree-dimension [13] of a poset (X,≤) is the smallest number of tree extensions
of (X,≤) the intersection of which gives rise to (X,≤).

For any two positive integers n and k, let P(n, k) denote the family of all n-element (non-
isomorphic) posets with tree-dimension at most k. The following fact follows rather directly from
previous work.

Fact 2 Fix an integer k and let M(n) denote the smallest size of a universal poset for P(n, k). We
have nk−o(1) ≤M(n) ≤ n2k.

Proof. The fact that the smallest size of a universal poset for P(n, k) is at most n2k follows
from Fact 1, and from the well known fact that the dimension of a poset is at most twice its
tree-dimension6. For the other direction, Alon and Scheinerman showed that the number of non-
isomorphic n-element posets with dimension at most k is at least nn(k−o(1))/n! (this result is explicit

5Note that the term “tree” for ordered sets is used in various senses in the literature, see e.g., [45].
6This follows from the fact that a tree-poset T = (X,�) has dimension at most 2. Indeed, consider the two linear

orders for T obtained as follows. We perform two DFS traversals over the Hasse diagram of T , which is a directed
forest F , starting from the root in each tree in F , so that to provide every element x with two DFS numbers, dfs1(x)
and dfs2(x). DFS1 is arbitrary, and DFS2 reverses the order in which the trees are considered in DFS1, and in which
the children are visited in DFS1, so that x � y if and only if dfs1(x) ≤ dfs1(y) and dfs2(x) ≤ dfs2(y).

8

in the proof of Theorem 1 in [12]). Since the dimension of a poset is at least its tree-dimension,
this result of [12] yields also a lower bound on the number of non-isomorphic n-element posets with
tree-dimension at most k, specifically, we have

nn(k−o(1))/n! ≤ |P(n, k)| .

On the other hand,

|P(n, k)| ≤
(
M(n)

n

)
by definition of M(n). Therefore, by combining the above two inequalities, it directly follows that
M(n) ≥ nk−o(1). �

3 Labeling schemes for forests with bounded spine decomposition
depth

In this section we construct an efficient ancestry-labeling scheme for forests with bounded spine
decomposition depth. Specifically, for forests with spine decomposition depth at most d, our scheme
enjoys label size of log n+2 log d+O(1) bits. (Note that the same bound holds also for forests with
depth at most d.) Moreover, our scheme has O(1) query time and O(n) construction time.

3.1 Informal description

Let us first explain the intuition behind our construction. Similarly to the simple ancestry scheme
in [36], we map the nodes of forests to a set of intervals I, in a way that relates the ancestry relation
in each forest with the partial order defined on intervals through containment. I.e., a label of a
node is simply an interval, and the decoder decides the ancestry relation between two given nodes
using the interval containment test on the corresponding intervals. While the number of intervals
used for the scheme in [36] is O(n2), we managed to show that, if we restrict our attention to forests
with spine decomposition depth bounded by d, then one can map the set of such forests to a set
of intervals I, whose size is only |I| = O(nd2). Since a label is a pointer to an interval in I, the
bound of log n+2 log d+O(1) bits for the label size follows. In fact, we actually manage to provide
an explicit description of each interval, still using log n + 2 log d + O(1) bits, so that to achieve
constant query time.

3.1.1 Intuition

Let F(n, d) be the family of all forests with at most n nodes and spine decomposition depth at
most d. The challenge of mapping the nodes of forests in F(n, d) to a small set of intervals I
is tackled recursively, where the recursion is performed over the number of nodes. That is, for
k = 1, 2, · · · , log n, level k of the recursion deals with forests of size at most 2k. When handling the
next level of the recursion, namely level k + 1, the difficult case is when we are given a forest F
containing a tree T of size larger than 2k, i.e., 2k < |T | ≤ 2k+1. Indeed, trees in F of size at most

9

2k are essentially handled at level k of the recursion. To map the nodes of Tree T , we use the spine
decomposition (see Subsection 2.1).

Recall the spine S = (v1, . . . , vs) of T and the forests F1, F2, · · · , Fs, obtained by removing S
from T . Broadly speaking, Properties P2 and P3 of the spine decomposition give hope that the
forests Fi, i = 1, 2, · · · , s, could be mapped relying on the previous level k of the recursion. Once we
guarantee this, we map the s nodes of the spine S in a manner that respects the ancestry relations.
That is, the interval associated with a spine node vi must contain all intervals associated with
descendants of vi in T , which are, specifically, all the spine nodes vj , for j > i, as well as all nodes
in Fj , for j ≥ i. Fortunately, the number of nodes on the spine is s ≤ d, hence we need to deal
with only few such nodes.

The intervals in I are classified into logn levels. These interval levels correspond to the levels of
the recursion in a manner to be described. Level k of the recursion maps forests (of size at most 2k)
into Ik, the set of intervals of level at most k. In fact, even in levels of recursion higher than k,
the nodes in forests containing only trees of size at most 2k are mapped into Ik. (In particular, a
forest consisting of n singleton nodes is mapped into I1.) Regarding level k + 1, a forest of size at
most 2k+1 contains at most one tree T , where 2k < |T | ≤ 2k+1. In such a case, the nodes on the
spine S of T are mapped to level-(k+ 1) intervals, and the forests F1, F2, · · · , Fs are mapped to Ik.

As mentioned before, to have the ancestry relations in T correspond to the inclusion relations
in I, the level-(k + 1) interval I(vi) to which some spine node vi is mapped, must contain the
intervals associated with nodes which are descendants of vi in T . In particular, I(vi) must contain
all the intervals associated with the nodes in the forests Fi, Fi+1, · · · , Fs. Since the number of such
intervals is at least

∑i
j=1 |Fi| (note, this value can be close to 2k+1), the length of I(vi) must be

relatively large. Moreover, since level-1 intervals are many (at least n because they need to be
sufficiently many to handle a forest containing n singleton nodes), and since I contains all level-k
intervals, for log n values of k, we want the number of level-k intervals to decrease with k, so that
the total number of intervals in I will remain small (recall, we would like to have |I| = O(nd2)).
Summing up the discussion above, in comparison with the set of level-k intervals, we would like
the set of level-(k + 1) intervals to contain fewer but wider intervals.

Example 1 Let us consider the example depicted in Figure 2. We have a tree T of size roughly
2k+1, with two spine nodes v1 and v2 and two corresponding forests F1 and F2. We would like
to map v2 to some interval I(v2) and map all nodes in F2 to intervals contained in I(v2). In
addition, we would like to map v1 to some interval I(v1) containing I(v2), and map all nodes in F1

to intervals contained in I(v1) \ I(v2).

The mapping in the above example can be done using the method in [36]. Specifically, v1
is mapped to I(v1) = [1, n], and v2 is mapped to I(v2) = [n − |F2| + 1, n]. The nodes of F2

are mapped to intervals, all of which are contained in I(v2), and the nodes of F1 are mapped to
intervals which are contained in I(v1) \ I(v2). Note that this scheme guarantees that all intervals
are contained in [1, n]. One of the crucial properties making this mapping possible is that fact
that the interval I(v2) = [n − |F2| + 1, n] exists in the collection of intervals used in [36], for all
possible sizes of F2. Unfortunately, this property requires many intervals of level k + 1, which is
undesirable (the scheme in [36] uses n2 intervals in total). In a sense, restricting the number of
level-(k + 1) intervals costs us, for example, the inability to use an interval I(v2) that precisely

10

v1

v2

F1

F2

I(v)2

k+1
k

2
1

I(v)1

I(F)1 I(F)2

(a) (b)

Figure 2: Illustration of Example 1

level k:
I(k,a,b)1 N

xk

x ak x (a+b)k

xk 2xk

Figure 3: A level-k interval Ik,a,b

covers the set of intervals associated with F2. In other words, in some cases, I(v2) must strictly
contain I(F2) :=

⋃
v∈F2

I(v). In particular, we cannot avoid having |I(v2)| ≥ x+ |I(F2)|, for some
(perhaps large) positive x. In addition, the nodes in F1 must be mapped to intervals contained
in some range that is outside of I(v2) (say, to the left of Interval I(v2)), and Node v1 must be
mapped to an interval I(v1) that contains all these intervals, as well as I(v2). Hence, we cannot
avoid having |I(v1)| ≥ x + x′ + |I(F2)| + |I(F1)|, for positive integers x and x′. Therefore, the
total slack (in this case, coming from x and x′), does not only propagate over the s spine nodes,
but also propagates up the levels. One of the artifacts of this propagation is the fact that we can
no longer guarantee that all intervals are contained in [1, n] (as guaranteed by the scheme of [36]).
Somewhat surprisingly, we still manage to choose the parameters to guarantee that all intervals in
I are contained in the range [1, N], where N = O(n).

Being slightly more formal, we introduce a hierarchy of intervals called bins. A bin J of level
k is an interval of length ck2

k, i.e., |J | = ck2
k, for some value ck to be described. Intuitively,

the length ck2
k corresponds to the smallest length of a bin J for which our scheme enables the

proper mapping of any forest of size at most 2k to J . It is important to note that this property
is shift-invariant, that is, no matter where in [1, N] this bin J is, the fact that its length is at
least ck2

k should guarantee that it can potentially contain all intervals associated with a forest of
size at most 2k. Because of the aforementioned unavoidable (non-negligible) slack that propagates
up the levels, we must allow ck to increase with k.

11

xk+1

kx

level k+1

level k

I(v)1 I(v)sI(v)2

J1 J2 Js

I(F)1 I(F)2 I(F)s

bin J

I(U F)
i=1 i
s

c |F |k 1 c |F |k 2 c |F |k s

Figure 4: Overview of the bins and intervals assignment in level k + 1

3.1.2 The intuition behind the tuning of the parameters

We now describe the set of intervals I, and explain the intuition behind the specific choice of
parameters involved. Consider a level k, and fix a resolution parameter xk for interval-level k, to
be described later. Let Ak ≈ N/xk and Bk ≈ ck2

k/xk. The level-k intervals are essentially all
intervals in [1, N] which are of the form:

Ik,a,b = [a xk, (a+ b) xk) where a ∈ [1, Ak] and b ∈ [1, Bk]. (1)

See Figure 3. The resolution parameter xk is chosen to be monotonically increasing with k in a
manner that will guarantee fewer intervals of level k, as k is increasing. Moreover, the largest
possible length of an interval of level k is xkBk = ck2

k, which is the length of a bin sufficient to
accommodate the intervals of a tree of size at most 2k. This length is monotonically increasing
with the level k, as desired.

Consider now a bin J of length ck+12
k+1 located somewhere in [1, N]. This bin J should suffice

for the mapping of a tree T of size 2k+1. By executing the spine decomposition, we obtain the spine
nodes v1, v2, · · · , vs and the forests F1, F2, · · ·Fs (see Figure 1). We allocate a level-(k+ 1) interval
I(vi) to each spine node vi, and a bin Ji ⊆ J to each forest Fi, i = 1, . . . , s, in the same spirit as
we did in the specific Example 1 (see Figure 2).

The general allocation is illustrated in Figure 4. Since I(v1) is of the form Ik+1,a,b, and should
be included in Bin J , and since this interval I(v1) must contain all intervals assigned to nodes in F1,
Bin J1 is chosen to start at the leftmost multiple of xk+1 in Bin J . Note that F1 contains trees of
size at most 2k each. Hence, by induction on k, each of these trees, T ′, can be properly mapped to
any bin of size ck|T ′|. Therefore, setting J1 of size ck|F1| suffices to properly map all trees in F1.
The bin J2, of size ck|F2|, is then chosen to start at the leftmost multiple of xk+1 to the right of the

12

end point of J1, in the bin J . And so on: we set Ji of size ck|Fi|, and place it in J so that to start
at the leftmost multiple of xk+1 to the right of the end point of Ji−1, 1 < i ≤ s. The level-(k + 1)
intervals associated to the spine nodes are then set as follows. For i = 1, . . . , s, the interval I(vi)
starts at the left extremity of Ji (which is a multiple of the resolution xk+1). All these intervals end
at the same point in [1, N], which is chosen as the leftmost multiple of xk+1 to the right of Js, in J .
Putting the right end-point of J at the point where all the intervals of spine nodes end, suffices to
guarantee that J includes all the intervals I(vi), and all the bins Ji, for i = 1, . . . , s.

Observe that the length of I(vs) must satisfy |I(vs)| ≈ ck|Fs| + xk+1, where the slack of xk+1

comes from the fact that the interval must start at a multiple of the resolution xk+1. More generally,
for 1 ≤ i < s, the length of I(vi) must satisfy

|I(vi)| ≈ ck|Fi|+ xk+1 + |I(vi+1)| ≈ ck(
s∑
j=i

|Fi|) + i · xk+1.

Therefore, the length of I(v1) must satisfy |I(v1)| ≈ ck(
∑s

i=1 |Fi|) + s · xk+1 ≈ ck · 2k+1 + s · xk+1.
Now, since J may start at any point between two multiples of the resolution xk+1, we eventually get
that setting the bin J to be of length |J | ≈ ck · 2k+1 + (s+ 1) ·xk+1 suffices. Since s can be at most
the spine decomposition depth d, we must have |J | be approximately ck+12

k+1 ≈ ck2
k+1+d ·xk+1.

To agree with the latter approximation, we choose the values of ck so that:

ck+1 − ck ≈ d · xk+1

2k+1
. (2)

Ultimately, we would like to map that whole n-node forest to a bin of size clogn ·n. This bin must fit
into [1, N], hence, the smallest value N that we can choose is clogn ·n. Since we also want the value
of N to be linear in n, we choose the ck’s so that clogn = O(1). Specifically, for k = 1, 2, · · · , log n,
we set

ck ≈
k∑
j=1

1

j1+ε

for some small ε > 0. Note that ck ≥ 1 for each k, and the ck’s are increasing with k. Moreover, we
take ε large enough so that the sum

∑∞
j=1 1/j1+ε converges. Hence, all the ck’s are bounded from

above by some constant γ. In particular, clogn ≤ γ, and thus N = O(n). The fact that all ck’s are
bounded, together with Equation 2, explains why we choose

xk ≈
2k

d · k1+ε
.

This choice for the resolution parameter xk implies that the number of level-k intervals is

O(Ak ·Bk) = O(nd2k2(1+ε)/2k),

yielding a total of O(nd2) intervals in I, as desired. In fact, in order to reduce the label size even
further, by playing with the constant hidden in the big-O notation, we actually choose ε less than
a constant. Indeed, we will later pick

ck ≈
k∑
j=1

1

j log2 j
and xk ≈

2k

d · k log2 k
.

13

3.2 The ancestry scheme

We now turn to formally describe the desired ancestry-labeling scheme (M,D) for F(n, d). For
simplicity, assume without loss of generality that n is a power of 2.

3.2.1 The marker algorithm M

We begin by defining the set I = I(n, d) of intervals. For integers a, b and k, let

Ik,a,b = [a xk, (a+ b) xk)

where

x1 = 1 and xk =

⌈
2k−1

(d+ 1)k log2 k

⌉
for k > 1.

For integer 1 ≤ k ≤ log n, let ck be defined as follows. Let c1 = 1, and, for any k, 2 < k ≤ log n, let

ck = ck−1 + 1/k log2 k = 1 +
k∑
j=2

1/j log2 j .

Note that the sum
∑

j≥2 1/j log2 j converges, and hence all the ck’s are bounded from above by
some constant

γ = 1 +
∞∑
j=2

1/j log2 j .

Let us set:
N = γn.

Then let A1 = N , B1 = 0, and, for k = 2, . . . , log n, let us set

Ak = 1 +

⌈
N(d+ 1)k log2 k

2k−1

⌉
and Bk = d2ck(d+ 1)k log2 ke

Next, define the set of level-k intervals:

Sk = {Ik,a,b | a ∈ [1, Ak], and b ∈ [1, Bk]}.

Finally, define the set of intervals of level at most k as

Ik =
k⋃
i=1

Si ,

and let
I = Ilogn .

Definition 1 Let F ∈ F(n, d). We say that a one-to-one mapping I : F → I is a legal-containment
mapping if, for every two nodes u, v ∈ F , we have

u is an ancestor of v in F ⇐⇒ I(v) ⊆ I(u).

14

Note that since a legal-containment mapping is one-to-one, we get that if u is a strict ancestor
of v in F , then I(v) ⊂ I(u), and vice-versa.

We first wish to show that there exists a legal-containment mapping from every forest in F(n, d)
into I. For this purpose, we introduce the concept of a bin, which is simply an interval of integers.
For a bin J , and for any integer k, 1 ≤ k ≤ log n, we use the following notation:

Ik(J) = {Ii,a,b ∈ Ik | Ii,a,b ⊆ J} .

I.e., Ik(J) is the set of all intervals of level at most k which are contained in the bin J .

Claim 1 Let F be a forest, and let F1, F2, · · · , Ft be pairwise-disjoint forests such that ∪ti=1Fi = F .
Let J be a bin and let J1, J2, · · · , Jt be a partition of J into t pairwise-disjoint bins, i.e., J = ∪ti=1Ji
with Ji ∩ Jj = ∅ for any 1 ≤ i < j ≤ t. For any level k, 1 ≤ k ≤ log n, if there exists a legal-
containment mapping from Fi to Ik(Ji) for every i, 1 ≤ i ≤ t, then there exists a legal-containment
mapping from F to Ik(J).

Proof. The proof follows directly from the definitions above. More specifically, for every integer i,
1 ≤ i ≤ t, we embed the forest Fi into Ik(Ji) using a legal-containment mapping. For two nodes v
and u in the same forest Fi, the condition specified in Definition 1, namely, that u is an ancestor of v
in F if and only if I(v) ⊆ I(u), holds by the fact that each Fi is embedded using a legal-containment
mapping. On the other hand, if v and u are in two different forests Fi and Fj , then the condition
holds simply because Ji ∩ Jj = ∅. �

We are now ready to state the main technical lemma of this section.

Lemma 1 For every k, 1 ≤ k ≤ log n, every forest F ∈ F(2k, d), and every bin J ⊆ [1, N), such
that |J | = bck|F |c, there exists a legal-containment mapping from F into Ik(J). Moreover this
mapping can be computed in O(|F |) time.

Proof. We prove the lemma by induction on k. The case k = 1 is simple and can be verified easily.
Assume now that the claim holds for k with 1 ≤ k < log n, and let us show that it also holds for
k + 1. Let F be a forest of size |F | ≤ 2k+1, and let J ⊆ [1, N) be a bin, such that |J | = bck+1|F |c.
Our goal is to show that there exists a legal-containment mapping of F into Ik+1(J). We consider
two cases.

• The simpler case: when all the trees in F are of size at most 2k. For this case, we show
that there exists a legal-containment mapping of F into Ik(J) for every bin J ⊆ [1, N) such that
|J | = bck|F |c. (Note that this claim is slightly stronger than what is stated in Lemma 1)7.

Let T1, T2, · · ·Tt be an arbitrary enumeration of the trees in F . We divide the given bin J of
size bck|F |c into t + 1 disjoint sub-bins J = J1 ∪ J2 · · · ∪ Jt ∪ J ′, where |Ji| = bck|Ti|c for every i,
1 ≤ i ≤ t. This can be done because

∑t
i=1 bck|Ti|c ≤ bck|F |c = |J |. By the induction hypothesis,

we have a legal-containment mapping of Ti into Ik(Ji) for every i, 1 ≤ i ≤ t. The stronger claim
thus follows by Claim 1.

7Indeed, we show that the size of Bin J can be only bck|F |c, which is smaller than bck+1|F |c (that is, the size
required to prove the lemma) by an additive term of −|F |/(k + 1) log2(k + 1) .

15

Observe that, in the above, the enumeration of the trees T1, T2, · · ·Tt in F was arbitrary. In the
context of our general scheme described in the next section, it is important to enumerate these trees
in a specific order. Once this order is fixed, we can implement the mapping of F by choosing the
disjoint sub-bins J1, . . . , Jt of J , so that Ji is “to the left” of Ji+1, i.e., Ji ≺ Ji+1, for i = 1, . . . , t−1.
This will guarantee that all the intervals associated with the nodes in Ti are “to the left” of all the
intervals associated with a nodes of Tj , for every 1 ≤ i < j ≤ t. We state this observation as a fact,
for further reference in the next section.

Fact 3 Let ` be a positive integer. Let T1, T2, · · ·Tt be an arbitrary enumeration of the trees in a
forest F , all of size at most 2`, and let J ⊆ [1, N) be a bin with |J | = bc`|F |c. Then, our legal-
containment mapping from F into I`(J) guarantees that for every u ∈ Ti and v ∈ Tj where j > i,
we have I(u) ≺ I(v).

• The more involved case: when one of the subtrees in F , denoted by T̂ , contains more than 2k

nodes. Our goal now is to show that for every bin Ĵ ⊆ [1, N), where |Ĵ | = bck+1|T̂ |c, there exists
a legal-containment mapping of T̂ into Ik+1(Ĵ). Indeed, once this is achieved we can complete the
proof as follows. Let F1 = F \ T̂ , and F2 = T̂ . Similarly to the simple case above, let J1 and J2 be
two consecutive intervals in J (starting at the leftmost point in J) such that |J1| = bck|F1|c and
|J2| = |Ĵ |. Since we have a legal-containment mapping that maps F1 into Ik(J1), and one that
maps F2 into Ik+1(J2), we get the desired legal-containment mapping of F into Ik+1(J) by Claim 1.
(The legal-containment mapping of F1 into Ik(J1) can be done by the induction hypothesis, because
|F1| ≤ 2k.)

For the rest of the proof, our goal is thus to prove the following claim:

Claim 2 For every tree T of size 2k < |T | ≤ 2k+1, and every bin J ⊆ [1, N), where |J | = bck+1|T |c,
there exists a legal-containment mapping of T into Ik+1(J).

In order to prove the claim, we use the spine decomposition described in Subsection 2.1. Recall
the spine S = (v1, v2, · · · , vs), and the corresponding forests F1, F2, · · · , Fs. The given bin J can be
expressed as J = [α, α+ bck+1|T |c) for some integer α < N − bck+1|T |c. We now describe how we
allocate the sub-bins J1, J2 . . . , Js of J so that, later, we will map each Fi to Ik(Ji).

The sub-bins J1, J2 . . . , Js of J : For every i = 1, . . . , s, we now define a bin Ji associated with Fi.
Let us first define J1. Let a1 be the smallest integer such that α ≤ a1xk+1. We let

J1 = [a1xk+1, a1xk+1 + bck|F1|c) .

Assume now that we have defined the interval Ji = [aixk+1, aixk+1 + bck|Fi|c) for 1 ≤ i < s. We
define the interval Ji+1 as follows. Let bi be the smallest integer such that bck|Fi|c ≤ bixk+1, that
is

(bi − 1)xk+1 < bck|Fi|c ≤ bixk+1 . (3)

Then, let ai+1 = ai + bi, and define

Ji+1 = [ai+1xk+1, ai+1xk+1 + bck|Fi+1|c).

16

Hence, for i = 1, 2, · · · , s, we have |Ji| = bck|Fi|c. Moreover,

Ji ⊆ [aixk+1, (ai + bi)xk+1) = Ik+1,ai,bi . (4)

Also observe that, for every i, 1 ≤ i ≤ s− 1, we have:

Ji ≺ Ji+1. (5)

Since a1xk+1 < α+xk+1, and since we have a “gap” of at most xk+1−1 between any consecutive
sub-bins Ji and Ji+1, we get that

s⋃
i=1

Ik+1,ai,bi ⊆
[
α, α+ (s+ 1)(xk+1 − 1) + bck|T |c

)
.

Now, since s ≤ d and 2k < |T |, and since (d+ 1)(xk+1 − 1) ≤
⌊

2k

(k+1) log2(k+1)

⌋
, it follows that,

s⋃
i=1

Ik+1,ai,bi ⊆
[
α, α+

⌊
|T |

(k + 1) log2(k + 1)
+ ck|T |

⌋)
= [α, α+ bck+1|T |c) = J . (6)

Since
⋃s
i=1 Ji ⊆

⋃s
i=1 Ik+1,ai,bi , we finally get that

s⋃
i=1

Ji ⊆ J.

On the other hand, since, for 1 ≤ i ≤ s, the length of Ji is bck|Fi|c, and since each tree in Fi
contains at most 2k nodes, we get, by the induction hypothesis, that there exists a legal-containment
mapping of each Fi into Ik(Ji). We therefore get a legal-containment mapping from

⋃s
i Fi to Ik(J),

by Claim 1.

By Equation 5, we have Ji ≺ Ji+1 for every i, i = 1, 2, · · · , s − 1. This guarantees that all the
intervals associated with the nodes in Fi are “to the left” of all the intervals associated with a nodes
of Fj , for every 1 ≤ i < j ≤ s. We state this observation as a fact, for further reference in the next
section.

Fact 4 Let ` be a positive integer. Let F1, F2, · · ·Fs be the forests of the spine S = (v1, v2, . . . , vs)
of the tree T with 2`−1 < |T | ≤ 2`, and let J ⊆ [1, N) be a bin satisfying |J | = bc`|T |c. Our
legal-containment mapping from T into I`(J) guarantees that, for every u ∈ Fi and v ∈ Fj where
j > i, we have I(u) ∈ Ji and I(v) ∈ Jj, and hence I(u) ≺ I(v).

It is now left to map the nodes in the spine S into Ik+1(J), in a way that respects the ancestry
relation.

The mapping of spine nodes into level-(k + 1) intervals: For every i, 1 ≤ i ≤ s, let
b̂i =

∑s
j=i bj where the bjs are defined by Equation 3. We map the node vi of the spine to the

interval
I(vi) = I

k+1,ai ,̂bi
.

17

Observe that, by this definition,

I(vi) =
s⋃
j=i

Ik+1,ai,bi .

By Equations 4 and 6, we get
s⋃
j=i

Jj ⊆ I(vi) ⊆ J .

To show that I(vi) is indeed in Ik+1(J), we still need to show that ai ∈ [1, Ak+1] and b̂i ∈ [1, Bk+1].
Before showing that, let us make the following observation resulting from the combination of
Equation 5 and Fact 4, to be used for further reference in the next section.

Fact 5 Let ` be a positive integer. Let F1, F2, · · ·Fs be the forests of the spine S = (v1, v2, . . . , vs)
of the tree T with 2`−1 < |T | ≤ 2`, and let J ⊆ [1, N) be a bin satisfying |J | = bc`|T |c. Our
legal-containment mapping from T into I`(J) guarantees that, for every u ∈ Fi, i ∈ {1, . . . , s− 1},
and for every j > i, we have I(u) ≺ I(vj).

Let us now show that I(vi) is indeed in Ik+1(J). It remains to show that ai ∈ [1, Ak+1] and
that b̂i ∈ [1, Bk+1]. Recall that J is of the form J = [α, α+ bck+1|T |c) with 1 ≤ α < N −bck+1|T |c.
Note that,

N ≤
⌈
N

(d+ 1)(k + 1) log2(k + 1)

2k

⌉⌈
2k

(d+ 1)(k + 1) log2(k + 1)

⌉
= (Ak+1 − 1)xk+1.

Therefore, we get that
α < (Ak+1 − 1)xk+1 − bck+1|T |c . (7)

On the other hand, by definition of the ai’s, we get that, for every i,

aixk+1 ≤ a1xk+1 + i · xk+1 +
i∑

j=1

bck|Fi|c ≤ a1xk+1 + d · xk+1 + bck|T |c .

Moreover, by the minimality of a1, we have a1xk+1 ≤ α+xk+1. Combining the latter two inequalities
we get

aixk+1 ≤ α+ (d+ 1) · xk+1 + bck|T |c .

Combining this with Equation 7, we get

aixk+1 ≤ Ak+1xk+1 + (d · xk+1 + bck|T |c − bck+1|T |c) .

It follows directly from the definition of xk+1 and ck, and from the fact that |T | > 2k, that
d · xk+1 + bck|T |c − bck+1|T |c ≤ 0, implying that ai ≤ Ak+1, as desired.

Let us now show that b̂i ∈ [1, Bk+1]. Recall that, by definition, b̂i ≤
∑s

j=1 bj for every i,
1 ≤ i ≤ s. So it is enough to show that

∑s
i=1 bi ≤ Bk+1. By construction,

xk+1

s∑
i=1

bi ≤ |J | = bck+1|T |c ≤ ck+12
k+1.

18

So, it suffices to show that ck+12
k+1/xk+1 ≤ Bk+1. Fortunately, this holds by definition of the

three parameters ck+1, xk+1, and Bk+1.

The above discussion shows that for all i = 1, . . . , s, we have ai ≤ Ak+1 and b̂i ≤ Bk+1, which
implies that I(vi) ∈ Ik+1(J).

We now show that our mapping is indeed a legal-containment mapping. Observe first that, for
i and j such that 1 ≤ i < j ≤ s, we have

I
k+1,ai ,̂bi

⊃ I
k+1,aj ,̂bj

.

Thus, I(vi) ⊃ I(vj), as desired.

In addition, recall that, for every j = 1, . . . , s, the forest Fj is mapped into Ik(Jj). Therefore,
if I(v) is the interval of some node v ∈ Fj , then we have I(v) ⊂ Jj . Since Jj ⊂ Ik+1,ai ,̂bi

for every i

such that 1 ≤ i ≤ j ≤ s, we obtain that I(v) is contained in I(vi), the interval associated with vi.
This establishes the fact that I : F → Ik+1(J) is a legal-containment mapping. Since the recursive
spine decomposition of a forest F takes O(|F |) time, it follows that this legal-containment mapping
also takes O(|F |) time. This completes the proof of Lemma 1. �

Lemma 1 describes the interval assignments to the nodes. We now describe the labeling process.

The label assignment: By Lemma 1, we get that there exists a legal-containment mapping
I : F → I, for any F ∈ F(n, d). The marker M uses this mapping to label the nodes in F .
Specifically, for every node u ∈ F , the interval I(u) = Ik,a,b ∈ I is encoded in the label L(u) of u
as follows. The first dlog ke bits in L(u) are set to 0 and the following bit is set to 1. The next
dlog ke bits are used to encode k. The next log d+ log k+ 2 log log k+O(1) bits are used to encode
the value b ∈ Bk, and the next log n+ log d+ log k + 2 log log k − k +O(1) bits to encode a. Since
2(log k + 2 log log k)− k = O(1), we get the following.

Lemma 2 The marker algorithm M assigns the labels of nodes in some forest F ∈ F(n, d) in
O(n) time, and each such label is encoded using log n+ 2 log d+O(1) bits.

3.2.2 The decoder D

Given a label L(u) of some node u in some forest F ∈ F(n, d), the decoder D extracts the interval
I(u) = Ik,a,b as follows. First, since F ∈ F(n, d), the decoder D knows d, and thus knows log d. By
finding the first bit that equals 1 it can extract the value dlog ke. Then by inspecting the next dlog ke
bits it extracts the value k. Subsequently, the decoder inspects the next log d+ log k+ 2 log log k+
O(1) bits and extracts b. Finally, D inspects the remaining log n+log d+log k+2 log log k−k+O(1)
bits in the label to extract a ∈ Ak. At this point the decoder has k, a, and b and it can recover
Ik,a,b using O(1) multiplication and division operations. Recall, in the context of this section, we
assume that such operations take constant time. We thus get the following.

Observation 1 Given a label L(u) of some node u in some forest F ∈ F(n, d), the decoder D can
extract I(u) = Ik,a,b in constant time.

19

Given the labels L(u) and L(v) of two nodes u and v is some rooted forest F ∈ F(n, d), the
decoder finds the ancestry relation between the nodes using a simple interval containment test
between the corresponding intervals, namely I(u) and I(v).

The fact that the intervals are assigned by a legal-containment mapping ensures the following:

Lemma 3 (M,D) is a correct ancestry-labeling scheme for F(n, d).

Lemmas 2 and 3 imply that there exists an ancestry-labeling scheme for F(n, d) with label size
at most log n+ 2 log d+O(1) bits. Recall that F(n, d) denotes the set of all forests with at most n
nodes, and spine-decomposition depth at most d, while F(n) denotes the set of all forests with at
most n nodes. In general, an ancestry scheme that is designed for a family F of forests may rely on
a decoder that takes advantage from the fact that the labels are the ones of nodes belonging to a
forest F ∈ F . For instance, in the case of F = F(n, d), the decoder can rely on the knowledge of n
and d. Although the ancestry-labeling scheme described above was designed for forests in F(n, d),
we show that a slight modification of it applies to all forests, at a very small cost in term of label
size. This will establish our main theorem for this section.

3.2.3 Main theorem for forests with bounded spine-decomposition depth

Theorem 1

1. There exists an ancestry-labeling scheme for F(n) such that any node in a forest of spine
decomposition depth at most d is labeled using at most log n+ 2 log d+O(1) bits.

2. There exists an ancestry-labeling scheme for the family of all forests such that any node in
a forest of size at most n and spine decomposition depth at most d is labeled using at most
log n+ 2 log d+ 2 log log d+O(1) bits.

In both schemes, the query time of the scheme is constant, and the time to construct the scheme
for a given forest is linear.

Proof. Lemma 3 together with Lemma 2 and Observation 1 establishes the fact that there exists
an ancestry-labeling scheme for F(n, d) with label size at most log n+2 log d+O(1) bits. Moreover,
the query time of the scheme is constant, and the time to construct the scheme for a given forest
is linear.

To obtain a scheme for F(n), we can no longer assume that the decoder of the scheme knows d.
However, by applying a simple trick we show that the scheme for F(n, d) can be easily transformed
to a scheme for F(n) with the desired bound. We define a labeling scheme (M,D) for F(n). Given
a forest F ∈ F(n) of spine-decomposition depth d, let d̂ = 2dlog de, i.e., d̂ is the smallest integer
larger than d which is a power of 2. Obviously, F ∈ F(n, d̂). The first part of the proof tells us that
there exists an ancestry-labeling scheme (M

d̂
,D

d̂
) for F(n, d̂) which uses labels each composed of

precisely L = log n+ 2 log d̂+O(1) bits. (By padding enough zeros to the left of the label, we can
assume that each label consists of precisely L bits.) Moreover, the labels are assigned in O(|F |)
time. The markerM uses this scheme to label the nodes in F . The decoder D operates as follows.

20

Given the labels of two nodes u and v in F , the decoder D first finds out what is d̂ (this can be
done, since n and L are known to D, and since d̂ is a power of 2), and then uses the (constant time)
decoder D

d̂
to interpret the relation between u and v. The bound on the size of a label follows as

L = log n+ 2 log d+O(1).

Finally, we now show that, with a slight increase on the label size, one can have an ancestry-
labeling scheme for the family of all forests (i.e., in such a scheme, given the labels of two nodes in
a forest F , the decoder doesn’t have bounds on neither the size of F nor on its spine-decomposition
depth). Let F be a forest with n nodes and depth d. Let n̂ = 2dlogne. We label the nodes of F
using the marker of the scheme (Mn̂,Dn̂) for F(n̂) mentioned above. By adding 2dlog log de bits to
the label of each node in F , one can assume that given a label of a node in F , the decoder knows
the value of log d. Now given a label of a node in F , the decoder can extract log n̂ (using the size
of the label, in a method similar to one described above). Since n̂ = 2log n̂, we can assume that the
decoder knows n̂. Thus, to extract the ancestry relation between the two nodes in F , the decoder
uses Dn̂. �

Note that the depth of a forest F is bounded from above by the spine decomposition depth of F .
Hence, all our aforementioned results for forests with bounded spine decomposition depth hold also
restricted to bounded depth forests. Hence, Theorem 1 translates to the following corollary.

Corollary 1

1. There exists an ancestry-labeling scheme for F(n) such that any node in a forest of depth at
most d is labeled using at most log n+ 2 log d+O(1) bits.

2. There exists an ancestry-labeling scheme for the family of all forests such that any node in a
forest of size n and depth at most d is labeled using at most log n+ 2 log d+ 2 log log d+O(1)
bits.

In both schemes, the query time of the scheme is constant, and the time to construct the scheme
for a given forest is linear.

3.3 A parenthood-labeling scheme

The ancestry-labeling scheme described in Corollary 1 can be advantageously transformed into
a parenthood-labeling scheme which is very efficient for trees of small depth. Recall that an
parenthood-labeling scheme for the family of rooted forests F is a pair (M,D) of marker and
decoder, satisfying that if L(u) and L(v) are the labels given by the markerM to two nodes u and
v in some forest F ∈ F , then: D(L(u), L(v)) = 1 ⇐⇒ u is the parent of v in F .

Similarly to the ancestry case, we evaluate a parenthood-labeling scheme (M,D) by its label
size, namely the maximum number of bits in a label assigned by the marker algorithm M to any
node in any forest in F .

For two nodes u and v in a rooted forest F , u is a parent of v if and only if u is an ancestor
of v and depth(u) = depth(v) − 1. It follows that one can easily transform any ancestry-labeling
scheme for F(n) to a parenthood-labeling scheme for F(n) with an extra additive term of dlog de

21

bits to the label size (these bits are simply used to encode the depth of a vertex). The following
theorem follows.

Theorem 2

1. There exists a parenthood-labeling scheme for F(n) such that any node in a forest of depth at
most d is labeled using log n+ 3 log d+O(1) bits.

2. There exists a parenthood scheme for the family of all rooted forests such that any node in an
n-node forest of depth at most d is labeled using log n+ 3 log d+ 2 log log d+O(1) bits.

For both schemes, the query time is constant and the time to construct the scheme for a given forest
is linear.

4 The general ancestry-labeling scheme

This section is dedicated to the construction of an ancestry-labeling scheme for forests, which has
label size log n + O(log log n) bits for n-node forests. Moreover, given an n-node forest F , the
labels can be assigned to the nodes of F in O(n) time, and any ancestry query can be answered in
constant time.

In Section 3, we managed to construct an efficient ancestry labelling scheme for forests with
bounded spine decomposition depth. Unfortunately, the situation becomes more difficult if the
input forests can have long spines. To handle this case, we introduce a new tree-decomposition,
called the folding decomposition. Applying this decomposition to a forest F results in a forest F ∗,
on the same set of vertices, whose spine decomposition is of depth at most 2. Moreover, this
transformation partially preserves the ancestry relation in F in the following sense: if v is an
ancestor of u in F ∗ then v is also an ancestor of u in F . Next, we apply the ancestry scheme
from Section 3 over F ∗, resulting in labels of size log n + O(1) for the nodes of F ∗. Giving the
corresponding labels to the nodes of F enables the decoder to detect all ancestry relations in F that
are preserved in F ∗. At this point, it remains to deal with ancestry relations that are not preserved
by this transformation. For this purpose, we shall provide nodes with additional information which
can be encoded using O(log log n) bits per node. To explain how we do so, let us first describe the
folding decomposition.

4.1 The folding decomposition

We construct the folding decomposition recursively, according to the recursive construction of the
spine decomposition, as described in Subsection 2.1. In a given level of the recursion, we are given
a tree T with spine S = (v1, v2, · · · , vs) (see Figure 5). In the folding decomposition T ∗ of T , the
apex node v1 remains the root, and all its children in T remain children of v1 in T ∗. In addition,
all heavy nodes v2, v3, · · · , vs also become children of v1 in T ∗. Furthermore, given a heavy node vi,
2 ≤ i ≤ s, all of its non-heavy children in T remain children of vi also in T ∗. The next level of the
recursion now applies separately to all trees in all forests F1, F2, · · · , Fs resulting from removing
the spine nodes from the tree (see Subsection 2.1). Note that all these trees have at most half the

22

v i

v1

vsFi

F1

Fs

v i
vs

Fi

F1

Fs

v2*=

v1 v1*=

*F1

F2*=

(a) (b)

v j

v j

u1 u2

u1u2 v2

v2

Figure 5: Folding decomposition T ∗ (b) from the spine decomposition of T (a)

number of nodes in T . Also note that the roots of these trees are going to be apex nodes in the
next level of the recursion.

The following lemma provides a critical property of the folding decomposition.

Lemma 4 Let T be a tree, and let T ∗ be its folding decomposition. The spine decomposition depth
of T ∗ is at most 2. Moreover, if v is a strict ancestor of u in T ∗, then v is an ancestor of apex(u)
in T ∗.

Proof. Consider a level ` of the folding decomposition of T , dealing with some subtree T ′ of T
(see Figure 5). Let S = (v1, . . . , vs) be the spine of T ′, and recall that F ′i is the forest consisting of
all subtrees rooted at the apex children of vi in T ′, for i = 1, . . . , s. For every 1 ≤ i < s, we have
|F ′i | < |T ′|/2, because vi has a heavy child vi+1 whose subtree contains at least |T ′|/2 nodes. Thus,
the spine of T ′∗ contains the root v1 of T ′ and the last heavy node vs on the spine S (which can
be v1 itself). Thus the spine of T ′∗ contains at most two nodes. This completes the proof of the
first part of the lemma. Assume now that v is a strict ancestor of u in T ∗. If v is an apex, then
v is an ancestor of apex(u) in T ∗. If v is heavy, then all its children are apexes, and therefore it
follows that v is an ancestor of apex(u) in T ∗. �

Observe that, as mentioned above, the ancestry relation in T is partially preserved in T ∗. To
see why, notice first that no new ancestry relations are created in T ∗, that is, if v is an ancestor of
u in T ∗ then v is also an ancestor of u in T . Second, consider a node v and one of its descendants u
in T . If v is an apex node in T ∗, then v is also an ancestor of u in T ∗. If v is heavy, namely, v = vi,
for some 2 ≤ i ≤ s in a spine v1, v2, · · · , vs, then there are two cases. If u belongs to Fi then v is

23

also an ancestor of u in T ∗. However, if u ∈ Fj for j > i, then the ancestry relation between v and
u is not preserved in T ∗. (Note, in this case u is a descendant of vj in both T and T ∗ but vi and vj
are siblings in T ∗ – each being a child of the corresponding apex node v1). In other words, the
only case where the ancestry relation between a node v and its descendant u in T is not preserved
in T ∗ is when v is heavy, i.e., v = vi in some spine S = (v1, v2, · · · , vs) where 1 < i < s, and u is a
descendant in T of v’s heavy child vi+1 (including the case where u = vi+1). In this case, v is an
ancestor of u in T but not in T ∗.

For a node v, let apex(v) be the closest ancestor of v in T that is an apex. Note that if v is an
apex then apex(v) = v. Recall that every node is either heavy or apex. Consider a DFS traversal
over T that starts from the root and visits apex children first. For any node u, let dfs(u) be the
DFS number of u (where the DFS number of the root is 1).

The following lemma provides a characterization of the ancestry relations in T in terms of the
structure of T ∗.

Lemma 5 For any two different nodes v and u, we have: v is an ancestor of u in T if and only if
at least one of the following two conditions hold

• C1. Node v is an ancestor of u in T ∗;

• C2. Node apex(v) is a strict ancestor of u in T ∗ and dfs(v) < dfs(u).

Proof. Consider first the case that v is an ancestor of u in T . If v is an apex node in T ∗, then, by
construction, v is also an ancestor of u in T ∗, and thus Condition C1 holds. If v is heavy, namely,
v = vi, for some 2 ≤ i ≤ s in some spine S = (v1, v2, · · · , vs), then there are two cases. If u belongs
to Fi then v is also an ancestor of u in T ∗, and thus Condition C1 holds. If u ∈ Fj or u = vj , for
j > i, then we show that Condition C2 holds. First, since v is an ancestor of u in T , we immediately
get that dfs(v) < dfs(u). Second, apex(v) is the apex v1 which is, by definition, an ancestor of all
nodes in the subtree of T rooted at v1. Therefore, since apex(v) is an apex, apex(v) is an ancestor
of u in T ∗. In fact, apex(v) is a strict ancestor of u in T ∗ since u = vj for j > i > 1, and thus
u 6= v1 = apex(v).

Conversely, consider the case that either Condition C1 or Condition C2 holds. If Condition C1
holds, i.e., v is an ancestor of u in T ∗, then the fact that v is an ancestor of u in T is immediate since
no new ancestry relations are created in T ∗. (Indeed, for any two nodes w and w′, if w is a parent
of w′ in T ∗ then w is an ancestor or w′ in T). Consider now the case that Condition C2 holds.
Assume, by way of contradiction, that v is not an ancestor of u in T . Since dfs(v) < dfs(u) it
follows that u is not an ancestor of v, and hence v and u have a least common ancestor w in T which
is neither v or u. Since the DFS traversal visits apex nodes first, and since v is visited before u, we
get that v is a descendant of one of w’s apex children z (because w has at most one heavy child).
Hence, apex(v) is either the apex z or a strict descendant of it in T . In either case, apex(v) is not
an ancestor of u in T . This contradicts Condition C2 since no new ancestry relations are created
in T ∗. �

24

4.2 The labeling scheme

4.2.1 Informal description

An important property of the folding decomposition is that its spine decomposition depth is at
most 2 (cf. Lemma 4). Essentially, our ancestry scheme is based on Lemma 5. We first apply
the scheme described in Section 3 on T ∗, resulting in each node u having a label I(u) which is an
interval encoded using log n + O(1) bits. Given the intervals I(u) and I(v) of two nodes u and
v, we can then detect whether or not Condition C1 holds. Indeed, given two nodes u and v, if
I(u) ⊆ I(v) holds, then v is an ancestor of u in T ∗, and hence also in T . This takes care of all
ancestry relations preserved under the folding decomposition, and in particular the case where v is
an apex. To handle unpreserved ancestry relations, it is sufficient, by Lemma 5, to check whether
or not Condition C2 holds. For this purpose, we would like our decoder to reconstruct not only
the interval I(v), but also the interval I(apex(v)). Indeed, having I(apex(v)) and I(u) already
enables to detect whether or not the first part of Condition C2 holds, namely, whether apex(v)
is a strict ancestor of u in T ∗. To detect whether or not dfs(v) < dfs(u) we shall actually use
a specific implementation of our ancestry labelling scheme from Section 3, which will relate the
interval relation ≺ (defined in Section 2) to the DFS numbering in T . This implementation will
guarantee that, for any heavy node v, dfs(v) < dfs(u) if and only if I(v) ≺ I(u).

It is now left to explain how to obtain, for every node u, the interval I(apex(u)), given the label
of u resulting from the scheme described in Section 3, and using few additional bits (apart from the
ones used to encode I(u)). First, we use one additional bit of information in the label of each node
u, for indicating whether or not u is an apex. In the case u is an apex, we already have u = apex(u),
and hence, no additional information is required to reconstruct I(apex(u)). For the case that u is
heavy, we use additional O(log log n) bits of information at the label of u. Specifically, in addition
to its own interval I(u), every node u stores the level of the interval I(apex(u)), consuming dlog ke
bits. Now, notice that I(u) ⊂ I(apex(u)). Moreover, we will later prove that, in the scheme
described in Section 3, for every level k, the number of intervals J used by the scheme on level k,
such that I(u) ⊂ J , is at most B2

k (where Bk is defined in Subsection 3.2.1). Thus, once we know
level k of I(apex(u)), and the interval I(u), additional 2 logBk bits are sufficient to reconstruct
I(apex(u)). Note that 2 logBk = 2 log k +O(log log k) because Bk = O(k log2 k). Since k ≤ log n,
the total information per node (stored in its label) amounts to log n+ 3 log log n+O(log log log n)
bits.

We are now ready to describe our ancestry labeling scheme formally.

4.2.2 The marker algorithm M

Given a forest F , we describe the labels assigned to the nodes of each tree T in F , so that to enable
detecting ancestry relations. First, we apply the spine decomposition to T . Next, we consider a
DFS traversal over T that starts from the root, numbered 1, and visits apex children first. For any
node u, let dfs(u) be the DFS number of u. (These DFS numbers will not be directly encoded
in the labels, since doing that would require the consumption of too many bits; however, these
numbers will be used by the marker to assign the labels). From the spine decomposition of T , we
construct the folding decomposition T ∗ of T , as described in Subsection 4.1. Recall from Lemma 4
that the spine decomposition depth of T ∗ is at most 2.

25

Next, we apply to T ∗ the ancestry scheme defined in Section 3. More specifically, we perform
a particular implementation of this ancestry scheme, as described now. Consider a level k of the
recursive procedure applied by the marker for assigning labels to the nodes in T ∗. At this level,
the marker is dealing with some subtree T ∗′ of T ∗ with size at most 2k. We revisit the assignment
of the intervals and bins considered by the marker at this level, for T ∗′. Note that the nodes in T ∗′

are the nodes of a subtree T ′ of T . In fact T ∗′ is the folding decomposition of T ′. Thus, in order to
avoid cumbersome notations, in the remaining of this description, we replace T ′ and T ′∗ by T and
T ∗, respectively. The reader should just keep in mind that we are dealing with the general case of
a given tree of a given level k in the recursion, and not necessarily with the whole tree in the first
level of this recursion. So, given T , and T ∗, both of size at most 2k, we show how to implement
our ancestry scheme in a special manner on T ∗.

Recall the DFS traversal over the whole tree, which assigns a DFS number dfs(u) to every
node u in the tree. This DFS traversal induces a DFS traversal on (the subtree) T that starts from
the root of T and visits apex children first.

Let S = (v1, . . . , vs) be the spine of T , and Fi be the forest consisting of all subtrees rooted at
the apex children of vi in T , for i = 1, . . . , s. Hence, T ∗ consists of a tree rooted at v1, where v1
has s− 1 children v2, . . . , vs, plus v1’s apex children u1, . . . , ut in T (see Figure 5). We order these
nodes ui so that dfs(ui) < dfs(ui+1). Therefore, we get the following important ordering implied
by the DFS traversal:

dfs(u1) < dfs(u2) < . . . < dfs(ut) < dfs(v2) < dfs(v3) < . . . < dfs(vs−1) < dfs(vs). (8)

As mentioned in the proof of Lemma 4, in T ∗, vs is the heavy child of v1, and all the other children
of v1 are apexes. Therefore, the spine of T ∗ is (v∗1, v

∗
2) = (v1, vs). (Recall, it maybe the case that

v1 = vs, in which case the spine would consist of a single node, namely v1). Moreover, the forest F ∗1
consists of all trees in T ∗ hanging down from u1, . . . , ut, as well as all trees in T ∗ hanging down
from v2, . . . , vs−1. Similarly, the forest F ∗2 (if it exists) consists of all trees in T ∗ hanging down from
the children of vs in T .

In this level k of the recursion of our ancestry scheme, we are given a bin J of size bck|T ∗|c, and
we need to allocate intervals to the nodes in T ∗ contained in J . For this purpose, we assign intervals
to v∗1 and v∗2, and bins to the forests F ∗1 and F ∗2 . These bins are J1 and J2, and, by Equation 5, we
have J1 ≺ J2. Moreover, if v1 6= vs, then, by Facts 4 and 5, we get that:

for every v ∈ F ∗1 and every u ∈ F ∗2 ∪ {v∗2}, we have I(v) ≺ I(u). (9)

Furthermore, observe that all trees in F ∗1 are of size at most 2k−1. Therefore, the assignment of
intervals to the nodes of F ∗1 are performed according to the simpler case described in the proof of
Lemma 1. We order the trees Ti, i = 1, . . . , t+ s− 2, in F ∗1 according to the DFS numbers of their
roots. In particular, for i = 1, . . . , t, the root of Ti is ui, and, for i = 1, . . . , s− 2, the root of Tt+i
is vi+1. By Fact 3, we get that the interval assignment satisfies the following.

For every v ∈ Ti and u ∈ Tj where j > i, we have I(v) ≺ I(u). (10)

We are now ready to state the crucial relationship between the ancestry relations in the whole
tree and the assignment of intervals to nodes in its folding decomposition. Essentially, this lemma
replaces the dependencies on the DFS numbering mentioned in the statement of Lemma 5 by a

26

dependency on the relative positions of the intervals according to the partial order ≺. This is
crucial because the DFS numbers are not part of the labels.

Lemma 6 For any two different nodes v and u, we have: v is an ancestor of u in T if and only if
at least one of the following two conditions hold

• Node v is an ancestor of u in T ∗;

• Node apex(v) is a strict ancestor of u in T ∗ and I(v) ≺ I(u).

Proof. Given Lemma 5, we only need to prove that if v is not an ancestor of u in T ∗, but apex(v)
is a strict ancestor of u in T ∗, then

dfs(v) < dfs(u) ⇐⇒ I(v) ≺ I(u).

Let us consider the subtrees of T and T ∗, rooted at apex(v). By slightly abusing notation, we
reuse the same notation as before. Recall the spine S = (v1, . . . , vs), whose apex is v1 = apex(v).
The children of apex(v) in T ∗ are the apex nodes u1, . . . , ut, v2, . . . , vs−1, plus the heavy node vs.
Each apex child is the root of a tree Ti for some i ∈ {1, . . . , t+ s− 2}. All these trees belong to F ∗1 .
All the trees in F ∗2 are rooted at children of vs.

Since v is not an ancestor of u in T ∗, but apex(v) is an ancestor of u in T ∗, we get that
v 6= apex(v). It follows that v must be one of the spine nodes v2, . . . , vs, say v = vj with j ≥ 2.
Node u is a strict descendent of apex(v), but is not a descendent of v. Therefore, u belongs either
to one of the trees Ti, i = 1, . . . , t+ s− 2, i 6= j, in F ∗1 , or to F ∗2 ∪ {vs} in case v 6= vs.

Assume first that dfs(v) < dfs(u). In that case, v cannot be vs. Indeed, if v = vs then u
cannot be in F ∗2 ∪ {vs} because v is not an ancestor of u. Hence, u belongs to one of the trees Ti.
This contradicts the fact that dfs(v) < dfs(u), by Equation 8. So, v = vj , 2 ≤ j < s. Since
dfs(v) < dfs(u), we know that u belongs either to one of the trees Ti, i = t+ j + 1, . . . , t+ s− 2,
or to F ∗2 ∪{vs}. In the former case, we get I(v) ≺ I(u) by applying Equation 10; In the latter case,
we get I(v) ≺ I(u) by applying Equation 9.

Conversely, assume that I(v) ≺ I(u). In that case, again v cannot be vs. Indeed, if v = vs
then u cannot be in F ∗2 ∪ {vs} because v is not a ancestor of u. Hence, u belongs to one of the
trees Ti. This contradicts the fact that I(v) ≺ I(u) by Equation 10. So v = vj , 2 ≤ j < s. In that
case, u belongs to one of the trees Ti, i = t + j + 1, . . . , t + s − 2, of F ∗1 or to F ∗2 ∪ {vs}, which
implies that dfs(v) < dfs(u) by Equation 8. �

Lemma 6 provides a characterization for ancestry in T with respect to properties of the intervals
assigned to the nodes of T ∗. More specifically, the fact that v is an ancestor of u can be detected
using the intervals I(v) and I(u), as well as the interval I(apex(v)) of apex(v). The interval I(v)
is encoded directly in the label of v using log n + O(1) bits. Directly encoding I(apex(v)) would
consume yet another log n + O(1) bits, which is obviously undesired. We now show how to en-
code I(apex(v)) in the label of v using few bits of information in addition to the ones used to
encode I(v). We use the following trick (see Figure 6). Let k′, a′, and b′ be such that

I(apex(v)) = Ik′,a′,b′ = [xk′a
′, xk′(a

′ + b′)].

27

level k':

I(v)

N

x a'k' x (a'+b')k'

level k:

k',a',b'I
x a"k'

Figure 6: Encoding I(apex(v)) using I(v) and few additional bits

Since 1 ≤ k ≤ log n and 1 ≤ b′ ≤ Bk′ , we get that 2 log log n+O(log log log n) bits suffice to encode
both k′ and b′. To encode a′, the marker algorithm acts as follows. Let I(v) = [α, β], and let a′′

be the largest integer such that xk′a
′′ ≤ α. We have, a′′ − Bk′ ≤ a′′ − b′ because b′ ≤ Bk′ . Since

I(v) ⊆ I(apex(v)), we also have xk′(a
′ + b′) ≥ β ≥ α ≥ xk′a

′′. Thus a′′ − b′ ≤ a′. Finally, again
since I(v) ⊆ I(apex(v)), we have xk′a

′ ≤ α, and thus a′′ ≥ a′. Combining the above inequalities,
we get that a′ ∈ [a′′−Bk′ , a′′]. The marker algorithm now encodes the integer t ∈ [0, Bk′] such that
a′ = a′′ − t. This is done in consuming another logBk′ = log log n + O(log log log n) bits. Hence,
we obtain:

Lemma 7 The marker algorithm M assigns labels to the nodes of n-node trees in linear time, and
each label is encoded using log n+ 3 log log n+O(log log log n) bits.

Proof. Let v be a node of an n-node tree T . The label of v consists of the interval I(v) plus
the additional information that will later be used to extract I(apex(v)), namely, according to the
notations above, the values of t, k′, and b′. The leftmost part of the label L(v) will be dedicated
to encode these latter values t, k′, and b′. Each of these values can be separately encoded using
log logn+O(log log log n) bits. By adding O(log log log n) bits per value, we can describe where the
binary encoding of each of these values starts and ends. Therefore, in total, encoding these three
values together with their positioning in the label requires 3 log log n + O(log log log n) bits. Now,
since I(v) is encoded using log n + O(1) bits, each label uses log n + 3 log log n + O(log log log n)
bits. �

Note that the bound on the label size in Lemma 7 includes the encoding of the positioning of
the different fields in the label, each of which being encoded using O(log log log n) bits.

4.3 The decoder algorithm D

Now, we describe our decoder algorithm D. Given the labels L(v) and L(u) assigned byM to two
different nodes v and u in some tree T , the decoder algorithm D needs to find whether v is an
ancestor of u in T . (Observe that since each node receives a distinct label, the decoder algorithm
can easily find out if u and v are in fact the same node, and, in this trivial case, it simply outputs 1.)

28

The decoder algorithm first extracts the three values t, k′, and b′ by inspecting the first
3 log log n + O(log log log n) bits of L(v), and then the interval I(v) by inspecting the remain-
ing log n+O(1) bits of L(v). Using this information, it computes I(apex(v)). Now, given the two
intervals I(v) and I(apex(v)), as well as the interval I(u) of a node u, the decoder acts according
to the characterization stated in Lemma 6, that is: D(L(v), L(u)) = 1 if and only if at least one of
the following two conditions holds:

• I(u) ⊆ I(v);

• I(u) ⊂ I(apex(v)) and I(v) ≺ I(u).

The fact that D(L(v), L(u)) = 1 if and only if v is an ancestor of u in T follows from Lemma 6 and
the correctness of the interval assignment to the nodes of T ∗ given by Lemma 3. This establishes
the following result.

Lemma 8 (M,D) is a correct ancestry-labeling scheme for the family of all forests.

By combining Lemmas 7 and 8, we obtain the main result of the paper.

Theorem 3 There exists an ancestry-labeling scheme for the family of all forests, using label size
log n+ 3 log log n+O(log log log n) bits for n-node forests. Moreover, given an n-node forest F , the
labels can be assigned to the nodes of F in O(n) time, and any ancestry query can be answered in
constant time.

Remark: The ancestry-labeling scheme described in this section uses labels of optimal size log n+
O(log log n) bits, to the price of a decoding mechanism based of an interval condition slightly more
complex than the simple interval containment condition. Although this has no impact on the
decoding time (our decoder still works in constant time), the question of whether there exists an
ancestry-labeling scheme with labels of size log n + O(log log n) bits, but using solely the interval
containment condition, is intriguing. In Section 3, we have shown that, at least in the case of trees
with bounded spine-decomposition depth, extremely small labels can indeed be coupled with an
interval containment decoder.

5 Small universal posets

Recall that an ancestry-labeling scheme for F(n) is consistent if the decoder satisfies the anti-
symmetry and transitivity conditions (see Section 2.2). Our next lemma relates compact consistent
ancestry-labeling schemes with small universal posets.

Lemma 9 There exists a consistent ancestry-labeling scheme for F(n) with label size ` if and only
if for every integer k, there exists a universal poset of size 2k` for P(n, k).

Proof. Assume first that for every integer k there exists a universal poset (U,�) of size 2k` for
P(n, k). In particular, there exists a universal poset (U,�) of size 2` for P(n, 1), i.e., for the family

29

of n-element posets with tree-dimension 1. We construct the following ancestry-labeling scheme
(M,D) for F(n). The marker algorithmM first considers some bijective mapping φ : U → [1, |U |].
Given a rooted forest F ∈ F(n), view F as a poset whose Hasse diagram is F . I.e., F is a poset
with tree-dimension 1. Now, let ρ : F → U be a mapping that preserves the partial order of F .
The marker algorithm assigns the label

L(u) = φ(ρ(u))

to each node u ∈ F . Given the labels L(u) and L(v) of two nodes u and v in some F ∈ F(n), the
decoder algorithm acts as follows:

D(L(u), L(v)) = 1 ⇐⇒ φ−1(L(u)) ≤ φ−1(L(v)) .

By construction, (M,D) is a consistent ancestry-labeling scheme for F(n) with label size log |U | = `.

For the other direction, assume that there exists a consistent ancestry-labeling scheme (M,D)
for F(n) with label size `. Note that it may be the case that D(a, b) is not defined for some
a, b ∈ [1, 2`], which may happen if the marker M is not using all values in [1, 2`]. In that case, we
set D(a, b) = ⊥, that is D has now three possible outputs {0, 1,⊥}. Let U = [1, 2`]k. We define a
relation � between pairs of elements in U . For two elements u, v ∈ U , where u = (u1, u2, · · · , uk)
and v = (v1, v2, · · · , vk), we set

u � v ⇐⇒ ∀i ∈ [1, k], D(ui, vi) = 1 .

Recall that every poset in P(n, k) is the intersection of k tree-posets, each of which having a Hasse
diagram being a forest. Since the ancestry relations in those forests precisely captures the ordering
in the forest, it follows that (U,�) is a universal poset for P(n, k). The lemma follows. �

For the purpose of constructing a small universal poset for P(n, k), let us revise the ancestry-
labeling scheme (M,D) for F(n) given by Theorem 3, in order to make it consistent. We define
a new decoder algorithm D′ as follows. Recall that the marker M assigns to each node u a label
L(u) that encodes the pair (I(u), I(apex(u)). Given two labels L(v) and L(u), we set the modified
decoder as follows: D′(L(v), L(u)) = 1 if and only if at least one of the following three conditions
holds:

• [D0]: L(u) = L(v);

• [D1]: I(u) ⊂ I(v) and I(apex(u)) ⊆ I(v);

• [D2]: I(u) ⊂ I(apex(v)), I(v) ≺ I(u), and I(apex(u)) ⊆ I(apex(v)).

Lemma 10 (M,D′) is a consistent ancestry-labeling scheme for F(n) whose label size is log n +
3 log log n+O(log log log n) bits.

Proof. The required label size of (M,D′) follows directly from Theorem 3. The correctness of
the ancestry-labeling scheme (M,D′) follows from the observation that the additional conditions
to the definition of the decoder D are redundant in the case v and u belong to the same forest. To
see why this observation holds, we just need to consider the situation in which v in an ancestor of
u in some tree, and check that D′(L(v), L(u)) = 1. By the correctness of D, since v is an ancestor
of u, we get that either

30

• I(u) ⊆ I(v), or

• I(u) ⊂ I(apex(v)) and I(v) ≺ I(u).

– If I(u) ⊆ I(v), then either I(u) = I(v) or I(u) ⊂ I(v). In the former case, we actually have
u = v because u and v are in the same tree, and thus D0 holds. In this latter case, u is a strict
descendant of v in the folding decomposition T ∗. By Lemma 4, apex(u) is a descendent of v in
T ∗, implying that D1 holds.

– If I(u) ⊂ I(apex(v)) and I(v) ≺ I(u), then just the strict inclusion I(u) ⊂ I(apex(v))
already implies I(apex(u)) ⊆ I(apex(v)), and hence D2 holds.

It remains to show that (M,D′) is consistent. To establish the anti-symmetry property, let `1
and `2 be two different labels in the domain of M, and assume that D′(`1, `2) = 1. We show that
D′(`2, `1) = 0. Let u and v be two nodes, not necessarily in the same forest, such that L(v) = `1
and L(u) = `2. Since `1 6= `2, we have that either D1 or D2 holds. Therefore, either I(u) ⊂ I(v)
or I(v) ≺ I(u). This implies that D′(L(u), L(v)) = 0, by the anti-symmetry of both relations ⊂
and ≺.

To establish the transitivity property, let `1, `2 and `3 be three pairwise different labels in the
domain ofM, and assume that D′(`1, `2) = 1 and D′(`2, `3) = 1. We show that D′(`1, `3) = 1. Let
u, v, and w be three nodes, not necessarily in the same forest, such that L(w) = `1, L(v) = `2, and
L(u) = `3. Since the three labels are pairwise different, D0 does not hold, and thus we concentrate
the discussion on D1 and D2. In other words, we must have the situation:

• [D1(v, u)]: I(u) ⊂ I(v) and I(apex(u)) ⊆ I(v); or

• [D2(v, u)]: I(u) ⊂ I(apex(v)), I(v) ≺ I(u), and I(apex(u)) ⊆ I(apex(v)).

and

• [D1(w, v)]: I(v) ⊂ I(w) and I(apex(v)) ⊆ I(w); or

• [D2(w, v)]: I(v) ⊂ I(apex(w)), I(w) ≺ I(v), and I(apex(v)) ⊆ I(apex(w)).

We examine each of the four combinations of the above conditions, and show that, for each of them,
at least one of the following two conditions holds:

• [D1(w, u)]: I(u) ⊂ I(w) and I(apex(u)) ⊆ I(w);

• [D2(w, u)]: I(u) ⊂ I(apex(w)), I(w) ≺ I(u), and I(apex(u)) ⊆ I(apex(w)).

– Case 1.1: [D1(v, u)] and [D1(w, v)] hold. We get immediately that I(u) ⊂ I(w), and I(apex(u)) ⊆
I(w) by transitivity of ⊆ and ⊂, and thus [D1(w, u)] holds.

– Case 1.2: [D1(v, u)] and [D2(w, v)] hold. We show that [D2(w, u)] holds. First, we have
I(u) ⊂ I(v) ⊂ I(apex(w)). Second, I(u) ⊂ I(v) and I(w) ≺ I(v), so I(w) ≺ I(u). Finally,
I(apex(u)) ⊆ I(v) ⊆ I(apex(v)) ⊆ I(apex(w)). Thus [D2(w, u)] holds.

– Case 2.1: [D2(v, u)] and [D1(w, v)] hold. We show that [D1(w, u)] holds. First, I(u) ⊂
I(apex(v))) ⊆ I(w). Second, I(apex(u)) ⊆ I(v)) ⊆ I(w). Thus [D1(w, u)] holds.

31

– Case 2.2: [D2(v, u)] and [D2(w, v)] hold. We show that [D2(w, u)] holds. First, I(u) ⊂
I(apex(v)) ⊆ I(apex(w)). Second, I(w) ≺ I(v) ≺ I(u). Finally, I(apex(u)) ⊆ I(apex(v)) ⊆
I(apex(w)). Thus [D2(w, u)] holds.

This completes the proof of the lemma. �

By combining Lemma 9 and Lemma 10, we obtain the following.

Theorem 4 For every integer k, there exists a universal poset of size O(nk log3k+o(k) n) for
P(n, k).

6 Further work

In this paper, we solved the ancestry-labeling scheme problem. In general, by now, the area of
informative labeling-schemes is quite well understood in the deterministic setting. In particular,
for many of the classical problems, tight bounds for the label size are established (see Section 1.2).
In contrast, the randomized framework, initiated in [21], remains widely open. We conclude this
paper by mentioning one open problem in the framework of randomized ancestry-labeling schemes
in order to illustrate the potential of randomization in this domain.

We describe a simple one-sided error ancestry-labeling scheme with label size dlog ne bits. The
scheme guarantees that if u is an ancestor of v, then, given the corresponding labels Lu and Lv, the
decoder is correct, that is, D(Lu, Lv) = 1, with probability 1; and if u is not an ancestor of v then
the decoder is correct, that is, D(Lu, Lv) = 0, with probability at least 1/2. The scheme operates
as follows. Given a tree T , the marker first randomly chooses, for every node v, an ordering of v’s
children in a uniform manner, i.e., every ordering of the children of v has the same probability to
be selected by the marker. Then, according to the resulted orderings, the marker performs a DFS
traversal that starts at the root r, and labels each node it visits by its DFS number. Given two
labels i, j, the decoder outputs:

D(i, j) =

{
1 if i < j;
0 otherwise.

Let u and v be two nodes in T , and let Lu = dfs(u) and Lv = dfs(v) denote their labels. If u is an
ancestor of v, then Lu < Lv, no matter which orderings were chosen by the marker. Thus, in this
case, D(Lu, Lv) = 1 with probability 1. Now, if u is not an ancestor of v, we consider two cases.
First, if u is a descendant of v then Lu > Lv and therefore D(Lu, Lv) = 0. If, however, u and v
are non-comparable, i.e., neither one is an ancestor of the other, then the probability that the DFS
tour visited u before it visited v is precisely 1/2, i.e., Pr[Lu < Lv] = 1/2. Hence the guarantee for
correctness in this case is 1/2. It was also shown in [21] that a one-sided error ancestry-labeling
scheme with constant guarantee must use labels of size log n−O(1). An interesting open question
is whether for every constant p, where 1/2 ≤ p < 1, there exists a one-sided error ancestry-labeling
scheme with guarantee p that uses labels of size log n+O(1).

Acknowledgments. The authors are very thankful to William T. Trotter, Sundar Vishwanathan
and Jean-Sebastien Séreni for helpful discussions.

32

References

[1] S. Abiteboul, S. Alstrup, H. Kaplan, T. Milo and T. Rauhe. Compact labeling schemes for
ancestor queries. SIAM Journal on Computing 35, (2006), 1295–1309.

[2] S. Abiteboul, P. Buneman and D. Suciu. Data on the Web: From Relations to Semistructured
Data and XML. Morgan Kaufmann, (1999).

[3] S. Abiteboul, H. Kaplan, and T. Milo. Compact labeling schemes for ancestor queries. In
Proc. 12th ACM-SIAM Symp. on Discrete Algorithms (SODA), 2001.

[4] D. Adjiashvili and N. Rotbart. Labeling Schemes for Bounded Degree Graphs. ICALP, 375-386,
2014.

[5] S. Alstrup, P. Bille and T. Rauhe. Labeling Schemes for Small Distances in Trees. In Proc.
14th ACM-SIAM Symp. on Discrete Algorithms (SODA), 2003.

[6] S. Alstrup, C. Gavoille, H. Kaplan and T. Rauhe. Nearest Common Ancestors: A Survey and
a new Distributed Algorithm. Theory of Computing Systems 37, (2004), 441–456.

[7] S. Alstrup, S. Dahlgaard, M. Baek, and T. Knudsen. Optimal induced universal graphs and
adjacency labeling for trees. Arxiv report: CoRR abs/1504.02306 (2015).

[8] S. Alstrup, E. B. Halvorsen, and K. G. Larsen. Near-optimal labeling schemes for nearest
common ancestors. In Proc. 25th ACM-SIAM Symposium on Discrete Algorithms (SODA),
972-982, 2014.

[9] S. Alstrup, H. Kaplan, M. Thorup and U. Zwick. Adjacency labeling schemes and induced-
universal graphs. In 47th Annual Symposium on the Theory of Computing (STOC), 2015.

[10] S. Alstrup and T. Rauhe. Small induced-universal graphs and compact implicit graph repre-
sentations. In Proc. 43rd IEEE Symp. on Foundations of Computer Science (FOCS), 2002.

[11] S. Alstrup and T. Rauhe. Improved labeling scheme for ancestor queries. In Proc. 13th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 947-953, 2002.

[12] N. Alon and E. R. Scheinerman. Degrees of Freedom Versus Dimension for Containment
Orders. In Order 5 (1988), 11–16.

[13] G. Behrendt. On trees and tree dimension of ordered sets. Order 10(2), (1993), 153–160.

[14] Cohen, E., Kaplan, H., and Milo, T. Labeling dynamic XML trees. In Proc. 21st ACM Symp.
on Principles of Database Systems (PODS), 2002.

[15] S. Dahlgaard, M. Baek, T. Knudsen, and Noy Rotbart. Improved ancestry labeling scheme for
trees. Arxiv report: CoRR abs/1407.5011 (2014).

[16] L. Denoyer. Personnal communication, 2009.

[17] L. Denoyer and P. Gallinari. The Wikipedia XML corpus. SIGIR Forum Newsletter 40(1):
64-69 (2006)

33

[18] A. Deutsch, M. Fernndez, D. Florescu, A. Levy and D. Suciu. A Query Language for XML.
Computer Networks 31, (1999), 1155-1169.

[19] R. Fraisse Theory of relations. North-Holland, Amsterdam, 1953.

[20] P. Fraigniaud and C. Gavoille. Routing in trees. In Proc. 28th Int. Colloq. on Automata,
Languages, and Programing (ICALP), LNCS 2076, pages 757–772, Springer, 2001.

[21] P. Fraigniaud and A. Korman. On randomized representations of graphs using short labels. In
Proc. Proc. of the 21st Ann. ACM Symp. on Parallel Algorithms and Architectures (SPAA),
2009, pages 131–137.

[22] P. Fraigniaud and A. Korman. Compact Ancestry Labeling Schemes for XML Trees. In Proc.
21st ACM-SIAM Symp. on Discrete Algorithms (SODA), 2010, pages 458–466.

[23] P. Fraigniaud and A. Korman. An optimal ancestry-labeling scheme and small universal posets.
In Proc. of the 42nd ACM Symp. on Theory of Computing (STOC), 2010, pages 611–620.

[24] C. Gavoille and A. Labourel. Shorter implicit representation for planar graphs and bounded
treewidth graphs. In 15th Annual European Symposium on Algorithms (ESA), pages 582–593,
2007.

[25] C. Gavoille and C. Paul. Split decomposition and distance labelling: an optimal scheme for
distance hereditary graphs. In Proc. European Conf. on Combinatorics, Graph Theory and
Applications, Sept. 2001.

[26] C. Gavoille, D. Peleg, S. Pérennes and R. Raz. Distance labeling in graphs. In Proc. 12th
ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 210–219, 2001.

[27] T. Hsu and H. Lu. An Optimal Labeling for Node Connectivity. In Proc. 20th International
Symposium on Algorithms and Computation (ISAAC), 303–310, 2009.

[28] J. Hubicka and J. Neetril. Universal partial order represented by means of oriented trees and
other simple graphs. Euro. J. of Combinatorics 26(5), (2005), 765 – 778.

[29] B. Jonson. Universal relational systems. Math Scan. 4, (1956), 193–208.

[30] J. B. Johnston. Universal infinite partially ordered sets. Proc. Amer. Math. Soc. 7, (1957),
507–514.

[31] M. Katz, N.A. Katz, A. Korman, and D. Peleg. Labeling schemes for flow and connectivity.
SIAM Journal on Computing 34 (2004),23–40.

[32] A. Korman. Labeling Schemes for Vertex Connectivity. ACM Transactions on Algorithms,
6(2) (2010).

[33] A. Korman and S. Kutten. Distributed Verification of Minimum Spanning Trees. Distributed
Computing 20(4): 253-266 (2007).

[34] H. Kaplan and T. Milo. Short and simple labels for small distances and other functions. In
Workshop on Algorithms and Data Structures, Aug. 2001.

34

[35] H. Kaplan, T. Milo and R. Shabo. A Comparison of Labeling Schemes for Ancestor Queries.
In Proc. 19th ACM-SIAM Symp. on Discrete Algorithms (SODA), 2002.

[36] S. Kannan, M. Naor, and S. Rudich. Implicit representation of graphs. SIAM J. on Discrete
Math 5, (1992), 596–603.

[37] A. Korman, D. Peleg, and Y. Rodeh. Constructing Labeling Schemes Through Universal
Matrices. Algorithmica 57(4): 641–652 (2010).

[38] L. Mignet, D. Barbosa and P. Veltri. Studying the XML Web: Gathering Statistics from an
XML Sample. World Wide Web 8(4), (2005), 413–438.

[39] I. Mlynkova, K. Toman and J. Pokorny. Statistical Analysis of Real XML Data Collections.
In Proc. 13th Int. Conf. on Management of Data, (2006), 20–31.

[40] D. Peleg. Informative labeling schemes for graphs. Theoretical Computer Science 340(3),
(2005), 577–593.

[41] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comp. and Sys. Sci.,
26(3), 362–391, 1983.

[42] M. Thorup. Compact oracles for reachability and approximate distances in planar digraphs.
J. of the ACM 51, (2004), 993–1024.

[43] M. Thorup and U. Zwick. Compact routing schemes. In Proc. 13th ACM Symp. on Parallel
Algorithms and Architecture (SPAA), pages 1–10, 2001.

[44] W. T. Trotter. Combinatorics and partially ordered sets: Dimension theory. The Johns
Hopkins University Press, (1992).

[45] W.T. Trotter and J. I. Moore. The dimension of planar posets J. Comb. Theory B 22, (1977),
54–67.

[46] E.S. Wolk. The comparability graph of a tree. Proc. Amer. Math. Soc. 3, (1962), 789–795.

[47] W3C.Extensive markup language (XML) 1.0. http://www.w3.org/TR/REC-xml.

[48] W3C. Exensive stylesheet language (xsl) 1.0. http://www.w3.org/Style/XSL/.

[49] W3C. Xsl transformations (xslt) specification. http://www.w3.org/TR/WD-xslt

35

http://www.w3.org/TR/REC-xml
http://www.w3.org/Style/XSL/
http://www.w3.org/TR/WD-xslt

	1 Introduction
	1.1 Background and motivation
	1.2 Related work
	1.2.1 Labeling schemes
	1.2.2 Universal posets

	1.3 Our contributions
	1.4 Outline

	2 Preliminaries
	2.1 The spine decomposition
	2.2 Ancestry labeling schemes
	2.3 Small universal posets

	3 Labeling schemes for forests with bounded spine decomposition depth
	3.1 Informal description
	3.1.1 Intuition
	3.1.2 The intuition behind the tuning of the parameters

	3.2 The ancestry scheme
	3.2.1 The marker algorithm M
	3.2.2 The decoder D
	3.2.3 Main theorem for forests with bounded spine-decomposition depth

	3.3 A parenthood-labeling scheme

	4 The general ancestry-labeling scheme
	4.1 The folding decomposition
	4.2 The labeling scheme
	4.2.1 Informal description
	4.2.2 The marker algorithm M

	4.3 The decoder algorithm D

	5 Small universal posets
	6 Further work

