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Abstract

We tackle the problem of counting the number of k-cliques in large-scale graphs, for any constant
k ≥ 3. Clique counting is essential in a variety of applications, among which social network analysis.
Due to its computationally intensive nature, we settle for parallel solutions in the MapReduce
framework, which has become in the last few years a de facto standard for batch processing of
massive data sets. We give both theoretical and experimental contributions.

On the theory side, we design the first exact scalable algorithm for counting (and listing) k-
cliques. Our algorithm uses O(m3/2) total space and O(mk/2) work, where m is the number of
graph edges. This matches the best-known bounds for triangle listing when k = 3 and is work-
optimal in the worst case for any k, while keeping the communication cost independent of k. We
also design a sampling-based estimator that can dramatically reduce the running time and space
requirements of the exact approach, while providing very accurate solutions with high probability.

We then assess the effectiveness of different clique counting approaches through an extensive
experimental analysis over the Amazon EC2 platform, considering both our algorithms and their
state-of-the-art competitors. The experimental results clearly highlight the algorithm of choice in
different scenarios and prove our exact approach to be the most effective when the number of k-
cliques is large, gracefully scaling to non-trivial values of k even on clusters of small/medium size.
Our approximation algorithm achieves extremely accurate estimates and large speedups, especially
on the toughest instances for the exact algorithms. As a side effect, our study also sheds light on
the number of k-cliques of several real-world graphs, mainly social networks, and on its growth rate
as a function of k.

Keywords: Clique listing, graph algorithms, MapReduce, parallel algorithms, experimental algo-
rithmics
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1 Introduction

The problem of counting small subgraphs with specific structural properties in large-scale networks
has gathered a lot of interest from the research community during the last few years. Counting
– and possibly listing – all instances of triangles, cycles, cliques, and other different structures is
indeed a fundamental tool for uncovering the properties of complex networks [24], with wide-ranging
applications that include spam and anomaly detection [6, 14], social network analysis [17, 31], and the
discovery of patterns in biological networks [32].

Since many interesting graphs have by themselves really large sizes, developing analysis algorithms
that scale gracefully on such instances is rather challenging. Designing efficient sequential algorithms
is often not enough: even assuming that the input graphs could fit into the memory of commodity
hardware, subgraph counting is a computationally intensive problem and the running times of sequen-
tial algorithms can easily become unacceptable in practice. To overcome these issues, many recent
works have focused on speeding up the computation by exploiting parallelism (e.g., using MapRe-
duce [13]), by working in external memory models [37], or by settling for approximate – instead of
exact – answers (as done, e.g., in data streaming [25]).

In this paper we tackle the problem of counting the number of k-cliques in large-scale graphs, for
any constant k ≥ 3. This is a fundamental problem in social network analysis (see, e.g., [17] – Chapter
11) and algorithms that produce a census of all cliques are also included in widely-used software
packages, such as UCINET [8]. We present simple and scalable algorithms suitable to be implemented
in the MapReduce framework [13] that, together with its open source implementation Hadoop [3],
has become a de facto standard for programming massively distributed systems both in industry
and academia. MapReduce indeed offers programmers the possibility to easily run their code on
large clusters while neglecting any issues related to scheduling, synchronization, communication, and
error detection (that are automatically handled by the system). Computational models for analyzing
MapReduce algorithms are described in [21, 15, 30].

k-clique counting is a natural generalization of triangle counting, where k = 3: this is the simplest,
non-trivial version of the problem and has been widely studied in the literature. Appendix A describes
related works in a variety of models of computation. Focusing on MapReduce, two different exact
algorithms for listing triangles have been proposed by Suri and Vassilvitskii [35] and validated on real
world datasets. One of these algorithms has been recently extended to count arbitrary subgraphs
by Afrati et al. [1], casting it into a general framework based on the computation of multiway joins.
A sampling-based randomized approach whose output estimate is strongly concentrated around the
true number of triangles (under mild conditions) has been finally described by Pagh and Tsourakakis
in [28]. We remark that subgraph counting becomes more and more computationally demanding as
the number k of nodes in the counted subgraph gets larger, due to the combinatorial explosion of the
number of candidates. This is especially true for k-cliques, as we will also show in this paper, since
certain real world graphs (such as social networks) are characterized by high clustering coefficients
and very large numbers of small cliques.

Our results. The contribution in this paper is two-fold and includes both theoretical and exper-
imental results. On the theory side, we design and analyze the first scalable exact algorithm for
counting (and listing) k-cliques as well as sampling-based approximate solutions. In more details:

• Our exact k-clique counting algorithm uses O(m3/2) total space and O(mk/2) work, where m is the
number of graph edges. The local space and the local running time of mappers and reducers are
O(m) and O(m(k−1)/2), respectively. For k = 3, total space and work match the bounds for triangle
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counting achieved in [35]. Similarly to the multiway join algorithm from [1], our algorithm is work-
optimal in the worst case for any k. However, our total space is proportional to m3/2 regardless of
k: this means that, differently from [1], the communication cost does not grow when k gets larger.

• Our sampling-based estimators reduce dramatically running time and local space requirements of
the exact approach, while providing very accurate solutions w.h.p. These algorithms can be proved
to belong to the class MRC [21] for a suitable choice of the probability parameters. For k = 3, our
concentration results require weaker conditions than the triangle counting algorithm from [28].

To assess the effectiveness of different clique counting approaches, we conducted a thorough experi-
mental analysis over the Amazon EC2 platform, considering both our algorithms and those described
in [1] and [35]. We used publicly available real data sets taken from the SNAP graph library [34] and
synthetic graphs generated according to the preferential attachment model [5]. As a side effect, our
experimental study also sheds light on the number of k-cliques of several SNAP datasets and on its
growth rate as a function of k. The outcome of our experiments can be summarized as follows:

• Even for small values of k, some of the input graphs contain a number qk of k-cliques that can
be in the order of tens or hundreds of trillions (recall that a trillion is 1012): in these cases, the
output of the k-clique listing problem could easily require Terabytes or even Petabytes of storage
(assuming no compression). As k increases, we witnessed different growth rates of qk for different
graph instances: while on some graphs qk+1 < qk (even for small values of k), on other instances
qk+1 ≫ qk, up to two orders of magnitude in our observations. Graphs with a quick growth of the
number of k-cliques represent particularly tough instances in practice.

• Among the exact algorithms considered in our analysis, our approach proves to be the most effective
when the number of k-cliques is large. There are cases where it is outperformed by the triangle
counting algorithm of [35] and by the multiway join algorithm of [1]: this happens either for k = 3, 4
or on “easy” instances where parallelization does not pay off (we observed that in these cases a simple
sequential algorithm would be even faster). On the tough instances, however, our algorithm can
gracefully scale as k gets larger, differently from the multiway join approach [1]. We provide a
theoretical justification of these experimental findings.

• Our approximate algorithms exhibit rather stable running times on all graphs for the considered
values of k, and make it possible to solve in a few minutes instances that were impossible to be solved
exactly. The quality of the approximation is extremely good: the error is around 0.08% on average,
with more accurate estimates on datasets that are more challenging for the exact algorithms. The
variance across different executions, even on different clusters, also appears to be negligible.

Overall, the experiments show the practical effectiveness of our algorithms even on clusters of small/
medium size, and suggest their scalability to larger clusters. The full experimental package is available
at https://github.com/CliqueCounter/QkCount/ for the purpose of repeatability.

2 Preliminaries

Throughout this paper we denote by qk the number of cliques on k nodes. For a given graph G and
any node u in G, Γ(u) is the set of neighbors of node u (u is not included); moreover d(u) = |Γ(u)|.
We define a total order ≺ over the nodes of G as follows: ∀x, y ∈ V (G), x ≺ y iff d(x) < d(y) or
d(x) = d(y) and x < y (we assume nodes to have comparable labels). Denote by Γ+(u) ⊆ Γ(u)
the high-neighborhood of node u, i.e., the set of neighbors x of u such that u ≺ x; symmetrically,
Γ−(u) = Γ(u) \ Γ+(u). Given two graphs G(V,E) and G1(V1, E1), G1 is a subgraph of G if V1 ⊆ V
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and E1 ⊆ E. G1 is an induced subgraph of G if, in addition to the above conditions, for each u, v ∈ V1

it also holds: (u, v) ∈ E1 if and only if (u, v) ∈ E. We denote the subgraph induced by the high-
neighborhood Γ+(u) of a node u as G+(u). Our algorithms do not require graphs to be connected.
However, since their input is given as a set of edges and isolated nodes are irrelevant for clique counting,
we can assume n ≤ 2m. Moreover, we assume the endpoints of each edge to be labeled with their
degree (the degree of each node can be precomputed in MapReduce very efficiently [21]). Additional
preliminary results used in our proofs are given in Appendix B.

MapReduce. A MapReduce program is composed of (usually a small number of) rounds. Each
round is conceptually divided into three consecutive phases: map, shuffle, and reduce. Input/output
values of a round, as well as intermediate data exchanged between mappers and reducers, are stored
as 〈key; value〉 pairs. In the map phase pairs are arbitrarily distributed among mappers and a
programmer-defined map function is applied to each pair. Mappers are stateless and process each
input pair independently from the others. The shuffle phase is transparent to the programmer: dur-
ing this phase, the intermediate output pairs emitted by the mappers are grouped by key. All pairs
with the same key are then sent to the same reducer, that will process each of them by executing a
programmer-defined reduce function. Parallelism comes from concurrent execution of mappers as well
as reducers. The authors of [21] made an effort to pinpoint the critical aspects of efficient MapReduce
algorithms. In particular: (1) the memory used by a single mapper/reducer should be sublinear with
respect to the total input size (this allows to exclude trivial algorithms that simply map the whole
input to a single reducer, which then solves the problem via a sequential algorithm); (2) the total
number of machines available should be sublinear in the data size; (3) both the map and the reduce
functions should run in polynomial time with respect to the original input length. The model also
requires programs to be composed of a polylogarithmic number of rounds, since shuffling is a time
consuming operation, and to have a total memory usage (which coincides with the communication cost
from [1] for the purpose of this paper) that grows substantially less than quadratically with respect
to the input size. Algorithms respecting these conditions are said to belong to the class MRC.

3 Exact counting

Our algorithms use the total order ≺ to decide which node of a given clique Q is responsible for
counting Q. In particular, Q is counted by its smallest node, i.e., the node u ∈ Q such that u ≺ x, for
all x ∈ Q \ {u}. At a high level, the strategy is to split the whole graph in many subgraphs, namely
the subgraphs G+(u) induced by Γ+(u), for each u ∈ V (G), and count the cliques in each subgraph
independently (both nodes and edges of G can appear in more than one subgraph). Our counting
algorithm, called FFFk, works in three rounds (see Algorithm 1 for the pseudocode):

Round 1: high-neighborhood computation. The computation of Γ+(u), for all nodes u in G, exploits
the degree information attached to the edges; mappers emit the pair 〈x; y〉 for each edge (x, y) such
that x ≺ y, thus allowing the reduce instance with key u to aggregate all nodes x ∈ Γ+(u).

Round 2: small-neighborhoods intersection. The aim of the round is to associate each edge (x, y) with
Γ−(x)∩Γ−(y), i.e., with the set of nodes u such that G+(u) contains (x, y). This is done as follows.
The map instance with input 〈u; Γ+(u)〉 emits a pair 〈(x, y);u〉 for each pair (x, y) ∈ Γ+(u)×Γ+(u)
such that x ≺ y. Besides the output of round 1, similarly to [35] mappers are fed with the original
set of edges and emit a pair 〈(x, y); $〉 for each edge (x, y) with x ≺ y. This allows the reduce
instance with key (x, y) to check whether (x, y) is an edge by looking for symbol $ among its input
values. At the same time this instance would receive the set Γ−(x) ∩ Γ−(y), which is exactly the
set of nodes u needing edge (x, y) to construct G+(u).
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Algorithm 1 : FFFk

Map 1: input 〈(u, v); ∅〉
if u ≺ v then emit 〈u; v〉

Reduce 1: input 〈u; Γ+(u)〉
if |Γ+(u)| ≥ k − 1 then emit 〈u; Γ+(u)〉

Map 2: input 〈u; Γ+(u)〉 or 〈(u, v); ∅〉
if input of type 〈(u, v); ∅〉 and u ≺ v then

emit 〈(u, v); $)〉
if input of type 〈u; Γ+(u)〉 then

for each xi, xj ∈ Γ+(u) s.t. xi ≺ xj do

emit 〈(xi, xj);u〉

Reduce 2: input 〈(xi, xj); {u1, . . . , uk} ∪ $〉
if input contains $ then

emit 〈(xi, xj); {u1, . . . , uk}〉

Map 3: input 〈(xi, xj); {u1, . . . , uk}〉
for h ∈ [1, k] do

emit 〈uh; (xi, xj)〉

Reduce 3: input 〈u;G+(u)〉
let qu,k−1 = number of (k − 1)-cliques in G+(u)
emit 〈u; qu,k−1〉

Round 3: (k − 1)-clique counting in high-neighborhoods. For each node u, count the number of k-
cliques for which u is responsible. Map instances correspond to graph edges. The map instance
with key (x, y) emits a pair 〈u; (x, y)〉 for each node u ∈ Γ−(x) ∩ Γ−(y). After shuffling, the reduce
instance with key u receives as input the whole list of edges between nodes in Γ+(u). Hence,
it can reconstruct the subgraph G+(u) induced by the high-neighbors of u and, by counting the
(k−1)-cliques in this graph, can compute locally the number of k-cliques for which u is responsible.

Notice that the round 3 reducers could be easily modified to output, for each node v, the number of
cliques in which v is contained, so that the overall number of cliques containing v could be obtained by
summing up the contributions from each subgraph G+(u). The following theorem, proved in Appendix
B, analyzes work and space usage of FFFk:

Theorem 1. Let G be a graph and let m be the number of its edges. Algorithm FFFk counts the
number of k-cliques of G using O(m3/2) total space and O(mk/2) work. The local space and the local
running time of mappers and reducers are O(m) and O(m(k−1)/2), respectively.

With respect to the requirements defined in [21], algorithm FFFk does not fit in the class MRC due
to the local space requirements of reduce 2, map 3, and reduce 3 instances. These are linear in n or m
whereas the MRC class requires them to be in O(m1−ε), for some small constant ε > 0. However, as
we will see from the experimental evaluation we performed, local memory did not show any criticality
in practice, whereas local complexity (which is almost completely neglected in the class MRC) and
global work proved to be the real challenge, since they can grow significantly as k gets larger. Our
approximate algorithms presented in Section 6 overcome these issues.

Similarly to the triangle counting algorithms from [35] and to the multiway join subgraph counting
algorithm from [1], cast to the specific case of cliques (in short, AFUk), the work of FFFk is optimal
with respect to the clique listing problem. Moreover, the total space of FFFk is Θ(m3/2) regardless
of k, matching the triangle counting bound of the Node Iterator++ algorithm from [35] when k = 3.
Conversely, both AFUk and the straightforward generalization to k-cliques of the Partition algorithm
from [35] have a communication cost that depends both on a number b of buckets, chosen as a param-
eter, and on the number k of clique nodes (see [1] and [35] for details). In AFUk, reducers are identified
by k-tuples of buckets 〈bi ≤ b2 ≤ . . . ≤ bk〉. Each edge corresponds to a pair 〈i, j〉 of buckets (those
to which its endpoints are hashed) and is sent to all the reducers whose k-tuple contains both i and
j. Each edge is thus replicated Ω(bk−2) times, for an overall communication cost Θ(m · bk−2). Similar
arguments apply to the generalization of Partition. We will see the implications in Section 5. We
also notice that, differently from AFUk and Partition, algorithm FFFk needs no parameter tuning.
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n (= q1) m (= q2) q3 q4 q5 q6 q7

citPat 3.8× 106 1.6× 107 7.5× 106 3.5× 106 3.0 × 106 3.1× 106 1.9 × 106

youTube 1.1× 105 3.0× 106 3.0× 106 5.0× 106 7.2 × 106 8.4× 106 8.0 × 106

locGowalla 2.0× 105 9.5× 105 2.7× 106 6.1× 106 1.5 × 107 2.9× 107 4.8 × 107

socPokec 1.6× 106 2.2× 107 3.3× 107 4.3× 107 5.3 × 107 6.5× 107 8.4 × 107

webGoogle 8.7× 105 4.3× 106 1.3× 107 3.4× 107 1.0 × 108 2.5× 108 6.0 × 108

webStan 2.8× 105 2.0× 106 1.1× 107 7.9× 107 6.2 × 108 4.9× 109 3.5 × 1010

asSkit 1.7× 106 1.1× 107 2.9× 107 1.5× 108 1.2 × 109 9.8× 109 7.3 × 1010

orkut 3.1× 106 1.2× 108 6.3× 108 3.2× 109 1.6 × 1010 7.5× 1010 3.5 × 1011

webBerkStan 6.8× 105 6.6× 106 6.5× 107 1.1× 109 2.2 × 1010 4.6× 1011 9.4 × 1012

comLiveJ 4.0× 106 3.5× 107 1.8× 108 5.2× 109 2.5 × 1011 1.1× 1013 4.4× 1014

socLiveJ1 4.8× 106 4.3× 107 2.9× 108 9.9× 109 4.7 × 1011 2.1× 1013 8.6× 1014

egoGplus 1.1× 105 1.2× 107 1.1× 109 7.8× 1010 4.7 × 1012 2.4× 1014 1.1× 1016

Table 1: Benchmark statistics: order of magnitude of n, m, and qk (numbers of nodes, edges, and
k-cliques, respectively) for k ∈ [3, 7]. Clique numbers in italic are estimates obtained by the algorithm
described in Section 6. The table in Appendix C shows the exact values and the clique growth rates.

4 Experimental setup

Algorithms and implementation details. Besides algorithm FFFk, we included in our test suite
the Node Iterator++ triangle counting algorithm from [35] (called SV) and the one-round subgraph
counting algorithm AFUk based on multiway joins [1], cast to k-cliques. We did not consider the
Partition algorithm from [35] because AFU3 is its optimized version. Both the reduce 3 instances
of FFFk and the reducers of AFUk use as a subroutine an efficient clique counting algorithm based on
neighborhood intersection, inspired by the fastest (optimal) triangle listing algorithm described in [26].
In the case of AFUk, we took care of exploiting bucket orderings to discard as soon as possible k-cliques
that do not fit in the k-tuple of a given reducer. According to our tests, this results in slightly faster
running times w.r.t. to the plain version. All the implementations have been realized in Java using
Hadoop 2.2.0. The code is instrumented so as to collect detailed statistics of map/reduce instances at
each round, including sizes of the subgraphs involved in a computation (e.g., |Γ+(u)|, |Γ−(x)∩Γ−(y)|,
and |G+(u)|) and detailed running times. The algorithms have been tested in a variety of settings,
using different parameter choices, instance families, and cluster configurations, as described below.

Data sets. We used several real-world graphs from the SNAP graph library [34] as well as syn-
thetic graphs generated according to the preferential attachment model [5]. We preprocessed all
graphs so that they are undirected and each edge endpoint is associated with its degree. Degree
computation is a common step to both SV and FFFk, and can be done very easily and quickly in
MapReduce [21]. Throughout the paper we report on the results obtained for a variety of online social
networks (called orkut, socPokec, youTube, locGowalla, socLiveJ1, comLiveJ, egoGplus), Web
graphs (webBerkStan, webGoogle, webStan), an Internet topology graph (asSkit), and a citation
network among US Patents (citPat). The main characteristics of these datasets are summarized in
Table 1. Notice that only the number q3 of triangles was available from [34] before our study. With
respect to q3, the number of k-cliques for larger values of k can grow considerably, up to the order of
tens or even hundreds of trillions.

Platform. The experiments have been carried out on three different Amazon EC2 clusters, running
Hadoop 2.2.0. Besides the master node, the three clusters included 4, 8, and 16 worker nodes, respec-
tively, devoted to both Hadoop tasks and the HDFS. We used Amazon EC2 m3.xlarge instances,
each providing 4 virtual cores, 7.5 GiB of main memory, and a 32 GB solid state disk. We set the
number of reduce tasks to match the number of virtual cores in each cluster and disabled speculative

5



SV FFF3 AFU3 FFF4 AFU4 FFF5 AFU5 FFF6 AFU6 FFF7 AFU7

citPat 2:44 3:22 2:23 3:11 3:11 3:13 2:18 3:13 2:19 3:09 2:24
youTube 2:06 2:04 1:25 2:39 1:41 2:34 1:33 2:36 1:39 2:38 1:49

locGowalla 2:36 3:08 1:18 3:04 1:21 3:02 1:30 3:04 1:24 3:03 1:30
socPokec 4:03 4:15 2:18 4:02 2:29 4:13 2:39 4:15 2:51 4:09 3:02
webGoogle 2:13 2:44 1:23 2:43 1:27 2:43 1:32 2:40 1:40 2:40 1:52
webStan 2:02 2:39 1:15 2:29 1:27 2:37 2:06 2:36 4:00 2:05 14:12
asSkit 2:44 3:14 1:43 3:17 2:59 3:18 5:34 3:14 25:30 4:12 >40
orkut 30:07 24:00 8:21 23:08 20:17 23:10 >50 23:22 >50 28:08 -

webBerkStan 2:28 3:00 1:37 3:01 2:53 3:08 8:24 4:56 >30 50:17 -
comLiveJ 5:31 5:31 2:53 5:24 4:06 6:13 14:02 41:22 >170 - -
socLiveJ1 6:36 6:33 3:14 6:43 5:10 7:51 23:35 86:34 >180 - -
egoGplus 22:54 17:19 2:06 17:54 16:55 39:01 >90 - - - -

Table 2: Running time (minutes:seconds) of the algorithms on a 16-node cluster with 64 total cores.
To minimize the costs, we killed some executions of AFUk that took more than twice the time of FFFk.
For the sake of comparison, the running times of algorithm SV reported in [35] are 1.90, 1.77, and 5.33
minutes on asSkit, webBerkStan, and socLiveJ1, respectively, on a 1636-node cluster.

execution. We also modified the memory requirements of the containers in order to improve load
balancing on the cluster. The precise Hadoop configuration used on the Amazon clusters is provided
with our experimental package available on github.

5 Computational experiments

In this section we summarize our main experimental findings. We first present results obtained on
a 16-node Amazon cluster, analyzing the effects of k on the performance of the algorithms, and we
then address scalability issues on different cluster sizes. Our experiments account for more than 60
hours of computation over the EC2 platform. Table 2 is the main outcome of this study, showing the
running times of all the evaluated algorithms for k ≤ 7 on the SNAP graphs ordered by increasing
q7 (see Appendix C). Results for synthetic instances were consistent with real datasets and are not
reported.

Triangle counting: the costs of rounds. Since the overhead of setting up a round – including
shuffling – is non-negligible in MapReduce, the one-round AFU3 algorithm is always much faster than
SV and FFF3, which respectively require two and three rounds. FFF3 is slower than SV on most datasets,
but faster on orkut and egoGplus, which have the largest number of triangles (see also Table 1). We
conjectured that this may be due to the early computation of length-2 paths performed in SV by the
round 1 reducers (see [35] for details), which uselessly increases the communication cost of round 1.
To test our hypothesis, we engineered a variant of SV that delays 2-path computation to the map
phase of round 2. The variant showed largely improved running times, solving orkut and egoGplus

in 22 and 12 minutes (instead of 30 and 23, resp.) and being faster than FFF3 on all benchmarks.

Running time analysis for k ≥ 4. Algorithm FFF4 can compute the number of 4-cliques within
roughly the same time required to count triangles. AFU4 remains faster than FFF4, but is always slower
than AFU3: see, in particular, orkut and egoGplus. In general, when k ≥ 5, FFFk proves to be more
and more effective than AFUk and its running times scale gracefully with k, especially on the most
difficult instances characterized by a steep growth of the number of k-cliques (asSkit, the LiveJournal
networks, orkut, webBerkStan, and egoGplus). To explain this behavior, recall that AFUk requires
to choose the number b of buckets that, together with k, determines the number of reducers. The
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Figure 1: Round-by-round running times of FFFk on four representative datasets for k ∈ [5, 7].

communication cost, as observed in Section 3, grows as Θ(m · bk−2), which in practice calls for small
values of b: if b is too large, even a small input graph could quickly grow to Terabytes of disk usage
for moderate values of k. On the other hand, since the local running times of reducers are inversely
proportional to b, if b is too small w.r.t. k the worst-case reducers incur high running times (if, e.g.,
k > b/2, some k-tuple contains more than half of the buckets and the corresponding reducer will
receive more than half of the total number of edges). The running times of such reducers (as well
as their memory requirements) remain comparable to that of the sequential algorithm. The practical
implication of this communication/runtime tradeoff is that the best performance of AFUk have been
obtained within our experimental setup using rather small values of b. We nevertheless performed
experiments with different choices of b: as suggested in [1], we first set b so that

(b+k−1
k

)
is as close as

possible to the available reducers, and we then considered a variety of different values. Table 2 always
reports the fastest running time that we could obtain by separately tuning b for each instance and k.

The Θ(m3/2) communication cost of FFFk proved to be a bottleneck only in a few datasets, while
the actual clique enumeration remains the most time-consuming phase. However, the running times of
reducers are much shorter, not only in theory but also in practice, than the application of a sequential
algorithm to the whole graph: hence, using more rounds results in poor performance only when the
overall task has a short duration, but quickly outperforms both AFUk and sequential algorithms on the
most demanding graphs and as k increases. Insights on round analysis are given below.

Round-by-round analysis of FFFk. In Figure 1 we compare the running times of each round of
FFFk on a selection of benchmarks. Round 1 is typically negligible, regardless of the benchmark and
of the value of k. Round 2, which computes 2-paths and small-neighborhoods intersections, is the
most expensive step for k ≤ 5, but its running time can only decrease when k grows (due to the test
|Γ+(u)| ≥ k− 1 performed by reduce 1 instances, see Algorithm 1). Round 3 becomes more and more
expensive as k gets larger, and dominates the running time on webBerkStan and comLiveJ already for
k = 6. This confirms the intuition supported by our theoretical analysis: computing (k−1)-cliques on
the subgraphs G+(u) induced by high-neighborhoods can be rather time-consuming and becomes the
dominant operation as k gets larger. Figure 2a shows the cumulative distribution of |G+(u)|, focusing
on reduce 3 instances that required more than 100 ms: notice that a constant fraction of nodes has
rather large induced subgraphs (e.g., in egoGplus about 5000 nodes have high neighborhoods with a
number of edges in-between 216 and 218, which is the largest |G+(u)|).
Scalability on different clusters. Since MapReduce algorithms are inherently parallel, a natural
question is how their running times are affected by the cluster size (and ultimately, by the available
number of cores). Figure 3 exemplifies the running times on three clusters of 4, 8, and 16 nodes. We
focus on FFFk, which proved to be the algorithm of choice for k ≥ 5. As an example, the average
speedups of FFF6 when doubling the cluster size from 4 to 8 nodes and from 8 to 16 nodes are 1.44 and
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Figure 2: Analysis of reduce instances of round 3 of algorithm FFFk on a selection of benchmarks.

1.53, respectively (the average is taken over the three graph instances). We remark that the maximum
theoretical speedup is 2. Similar values can be obtained for the other values of k.

While we could not experiment on considerably larger clusters (Amazon AWS limits the number
of on-demand instances that can be requested), Figure 2 provides some insights. We focus on round
3, which proved to be the most expensive step when qk is large (see, e.g., webBerkStan and comLiveJ

in Figure 1). Figure 2b shows the cumulative distribution of the running times of reduce 3 instances
(for executions longer than 100 ms). We focused on the least favorable scenarios, corresponding to
large values of k for which the problem is more computationally intensive. The rightmost point on
each curve gives the runtime of the slowest reduce instance, that reaches 9 minutes when computing
q7 on webBerkStan. Although most curves are steeper for short durations, in all cases there are
hundreds or even thousands of reduce instances with running times comparable to the slowest one:
e.g., in egoGplus more than 2000 reducers are within a factor 8× of the slowest one, and even in
the q7 computation for webBerkStan 169 instances require more than one minute. This suggests
that FFFk is amenable to further parallelization: we expect that, on a larger cluster, the abundant
time-demanding instances could be effectively scheduled to different nodes, yielding globally shorter
running times. This analysis is in line with the distribution of induced subgraph sizes observed in
Figure 2a, supporting the conclusion that the harmful “curse of the last reducer” phenomenon [35]
– where typically 99% of the map/reduce instances terminate quickly, but a very long time could be
needed waiting for the last task to succeed – can be kept under control even when k is increased.

6 Approximate counting

In this section we analyze two variants of a sampling strategy that allows us to decrease the overall
space usage, starting from the output of map 2 instances. The space saving in map 2 instances
propagates to the following phases, reducing the space used by reduce 2 as well as map and reduce 3
instances, and also results in an improved running time (due to reduced local complexities and global
work). Instead of performing the sampling directly on the list of edges of the graph, we work by
sampling pairs of high-neighbors that are emitted by map 2 instances. If each pair of high-neighbors
of a given node u is emitted with probability p, then each edge of G+(u) will be included with
probability p in the subgraph built by the reduce 3 instance with key u; however, the same edge
e in two distinct subgraphs G+(u) and G+(u′) is sampled independently, which results in improved
concentration around the mean.

Plain pair sampling. We first address the case when pairs of high neighbors are sampled uniformly
at random. In details, map 2 instances emit the key-value pair 〈(xi, xj);u〉, for all pairs (xi, xj) with
xi ≺ xj in Γ+(u), with probability p, and reduce 3 instances emit the pair 〈u; qu/p(k−1)(k−2)/2〉. The
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Figure 3: Scalability on different cluster sizes: asSkit, webBerkStan, and comLiveJ (left-to-right).

following results concerning space usage, correctness, and concentration of the estimate around its
mean are proved in Appendix B.

Lemma 1. Let p ≤ 1 be the edge sampling probability of algorithm FFFk and let α be a constant in
[0, 1) such that 1/mα ≤ p. Then algorithm FFFk with sampling probability p uses local space O(mp)
with high probability.

Theorem 2. Let G be a graph with m edges and qk k-cliques. Let q̃k be the estimate returned by
algorithm FFFk with edge sampling probability p. For any constant ε > 0, there exists a constant h > 0

such that |q̃k − qk| ≤ εqk with high probability if p(k−1)(k−2)/2 > hm(k−3)/2 lnm
ε2qk

.

Color-based sampling. The authors of [28] proposed a sampling technique that allows to increase
the expected number of sampled cliques without increasing the number of sampled edges. This is
achieved by coloring the nodes of the graph and sampling all monochromatic edges. The same idea
can be applied in our setting to sample the emitted pairs in map 2 instances by coloring all nodes in
each Γ+(u) with c colors and emitting all monochromatic pairs. This has the following implications.
Each edge in G+(u) is sampled with probability 1/c. A k-clique Qi with smallest node u is sampled
with probability 1/ck−2, given by the probability of assigning all nodes in Qi\{u} with the same color.
Hence, reduce 3 instances have to be modified in order to return 〈u; quck−2〉 as partial estimates of
the number of k-cliques of G. Let us call the resulting approximation algorithm cFFFk.

The analysis of plain pair sampling can be naturally extended to cFFFk as described in Appendix
B. Concentration around the mean is achieved with high probability under the following conditions:

Theorem 3. Let G be a graph of m edges and qk k-cliques. Let q̃k be the estimate returned by algorithm
cFFFk with c colors. For any constant ε > 0 there exist a constant h > 0, such that |q̃k − qk| ≤ εqk
with high probability if 1/ck−2 > hmk−2 lnm

ε2qk
.

For the case k = 3, Theorem 3 guarantees (with high probability) concentration around the mean
when 1/c ≥ (hm lnm)/(ε2q3), which improves the bound in [28], whose worst-case analysis imposes
1/c2 ≥ (h′n2 lnn)/(ε2q3) to guarantee concentration on an n-node graph.

Discussion. Our estimators fit in the class MRC as long as p ≤ 1/mα (and equivalently c ≥
mα), for a small constant α, as shown by Lemma 1. Moreover, the space reduction translates in
improved bounds for the local complexities (in particular for reduce 3 instances that are the most
computationally intensive) and work. Notice that the concentration result in Theorem 3 is weaker
than that in Theorem 2. However, the color-based sampling strategy increases the expected number
of sampled cliques, using sampling probability p = 1/c, with respect to plain pair sampling. The
expected number of sampled cliques shrinks by a factor p(k−1)(k−2)/2 for plain sampling, and only
by a factor pk−2 for color-based sampling. In practice, this boosts the accuracy of the color-based
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cFFF3 cFFF4 cFFF5 cFFF6 cFFF7

time sp. err. time sp. err. time sp. err. time sp. err. time sp. err.

asSkit 2:53 1.12 0.01 2:51 1.15 0.23 2:49 1.17 0.86 2:49 1.15 4.39 2.44 1.54 1.06
orkut 6:08 3.91 0.02 5:52 3.94 0.05 6:09 3.77 0.08 5:57 3.93 0.34 6:30 4.33 2.39

webBerkSt 2:45 1.09 0.05 2:46 1.09 0.16 2:47 1.13 0.17 2:42 1.83 1.22 2:44 18.4 0.39
comLiveJ 3:24 1.62 0.05 3:27 1.57 0.03 3:29 1.78 0.21 3:25 12.11 0.24 3:22 - -
socLiveJ1 3:42 1.77 0.02 3:40 1.83 0.03 3:31 2.23 0.03 3:36 24.05 0.61 3:41 - -
egoGplus 4:18 4.03 0.01 4:18 4.16 0.02 4:17 9.11 0.08 4:36 - - 5:34 - -

Table 3: Running time, speedup, and approximation quality of cFFFk for k ∈ [3, 7]. The speedup is
with respect to FFFk (see also Table 2) and the error is given as a percentage.

algorithm, which becomes better and better than plain sampling when k grows. We clearly observed
this phenomenon, which was also discussed in [28] for triangles, in our experiments.

Experiments with approximate counting. We experimented with both edge-based and color-
based sampling, choosing different sampling probabilities and running each algorithm three times on
the same instance and platform configuration to increase the statistical confidence of our results. We
briefly report on the results obtained by algorithm cFFFk, whose accuracy in practice outperformed
edge sampling. As predicted by the theoretical analysis, sampling is beneficial for round 2, since
reduces the number of emitted 2-paths. In turn, this decreases the number of edges in the induced
subgraphs constructed at round 3, yielding substantial benefits on the running time of this round: in
particular, in all our tests we observed that the running time of reduce 3 instances of cFFFk remains
almost constant as k increases. Table 3 summarizes the behavior of cFFFk, showing elapsed time,
speedup over the exact algorithm, and accuracy. The experiments were performed on the 16-node
cluster using 10 colors, which corresponds to a sampling probability 0.1. The achieved speedups are
dramatic (up to 24× in socLiveJ1) in all those cases where the exact algorithm took a long time.
We were able to compute in a few minutes the estimated number of q6 and q7 of graphs where the
exact computation would have required several hours. The accuracy is very good, especially on the
datasets that were most difficult for the exact algorithm: the 24× faster computation on socLiveJ1,
for instance, returned an estimate that was only 0.61% away from the exact value of q6.

7 Concluding remarks

We have proposed and analyzed, both theoretically and experimentally, a suite of MapReduce algo-
rithms for counting k-cliques in large-scale undirected graphs, for any constant k ≥ 3. Our experi-
ments, conducted on the Amazon EC2 platform, clearly highlight the algorithm of choice in different
scenarios, showing that our algorithms gracefully scale to non-trivial values of k, larger instances, and
diverse cluster sizes. It is worth noticing that our approach could be slightly modified in order to
trade overall space usage for local running time. The actual count of (k − 1)-cliques at round 3 could
be indeed postponed for all nodes u such that G+(u) is too large. In an additional round, map in-
stances would replicate each “uncounted” subgraph G+(u) once per high-neighbor v of u, distributing
the workload to many reducers. The reduce instance with key (u, v) would thus count the number of
(k− 2)-cliques in its copy of G+(u). This process could be repeated up to k− 4 times, before copying√
m times G+(u) becomes more expensive than counting: each iteration would increase by a factor√
m the global space usage and reduce by the same factor the local running times of the reducers,

without affecting the total work. We expect this tradeoff to be rather effective on very large clusters,
especially for skewed distributions of the high-neighborhoods sizes and large values of k, and regard
assessing its practicality as an interesting direction.
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[16] A. Hajnal and E. Szemerédi. Proof of a conjecture of Erdös. Combinatorial Theory and Its Applications,
2:601–623, 1970.

[17] R. A. Hanneman and M. Riddle. Introduction to social network methods. University of California, Riverside,
Riverside, CA, 2005.

[18] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM J. Comput., 7(4):413–423, 1978.

11



[19] H. Jowhari and M. Ghodsi. New streaming algorithms for counting triangles in graphs. In Computing and
Combinatorics, pages 710–716. Springer, 2005.

[20] D. M. Kane, K. Mehlhorn, T. Sauerwald, and H. Sun. Counting arbitrary subgraphs in data streams.
In Proc. 39th Int. Colloquium on Automata, Languages and Programming (ICALP 2012), volume 7392 of
LNCS, pages 598–609, 2012.

[21] H. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for MapReduce. In Proc. Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’10, pages 938–948, 2010.

[22] M. N. Kolountzakis, G. L. Miller, R. Peng, and C. E. Tsourakakis. Efficient triangle counting in large
graphs via degree-based vertex partitioning. Internet Mathematics, 8(1-2):161–185, 2012.

[23] M. Manjunath, K. Mehlhorn, K. Panagiotou, and H. Sun. Approximate counting of cycles in streams. In
Algorithms–ESA 2011, pages 677–688. Springer, 2011.

[24] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs: simple
building blocks of complex networks. Science, 298(5594):824–827, 2002.

[25] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends in Theoretical
Computer Science, 1(2), 2005.

[26] M. Ortmann and U. Brandes. Triangle listing algorithms: Back from the diversion. In C. C. McGeoch and
U. Meyer, editors, ALENEX, pages 1–8. SIAM, 2014.

[27] R. Pagh and F. Silvestri. The input/output complexity of triangle enumeration. In Proc. 33rd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’14, pages 224–233.
ACM, 2014.

[28] R. Pagh and C. E. Tsourakakis. Colorful triangle counting and a mapreduce implementation. Inf. Process.
Lett., 112(7):277–281, 2012.

[29] A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu. Counting and sampling triangles from a graph
stream. PVLDB, 6(14):1870–1881, 2013.

[30] A. Pietracaprina, G. Pucci, M. Riondato, F. Silvestri, and E. Upfal. Space-round tradeoffs for mapreduce
computations. In Proc. 26th ACM Int. Conf. on Supercomputing (ICS’12), pages 235–244, 2012.

[31] A. Rajaraman and J. D. Ullman. Mining of Massive Datasets. Cambridge University Press, 2012.

[32] B. Saha, A. Hoch, S. Khuller, L. Raschid, and X.-N. Zhang. Dense subgraphs with restrictions and
applications to gene annotation graphs. In Research in Computational Molecular Biology, pages 456–472.
Springer, 2010.

[33] T. Schank and D. Wagner. Approximating clustering coefficient and transitivity. J. Graph Algorithms
Appl., 9(2):265–275, 2005.

[34] SNAP graph library. http://snap.stanford.edu/.

[35] S. Suri and S. Vassilvitskii. Counting triangles and the curse of the last reducer. In Proc. 20th International
Conference on World Wide Web, WWW ’11, pages 607–614, 2011.

[36] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos. DOULION: Counting triangles in massive
graphs with a coin. In Proc. 15th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining
(KDD’09), pages 837–846, 2009.

[37] J. S. Vitter. Algorithms and data structures for external memory. Found. Trends Theor. Comput. Sci.,
2(4):305–474, 2008.

12



Appendix A: extended related work

Many related works focus on triangle counting, which is a fundamental algorithmic problem with
a variety of applications. For instance, it is closely related to the computation of the clustering
coefficient of a graph, which is in turn a widely used measure in the analysis of social networks [22].
Many exact and approximate algorithms tailored to triangles have been developed in the literature in
different computational models. The best known sequential counting algorithm is based on fast matrix

multiplication [2] and has running time O(m
2ω
ω+1 ), where ω is the matrix multiplication exponent: this

makes it infeasible even for medium-size graphs. Practical approaches match the O(m3/2) bound
first achieved in [18] and [12], which is optimal for the listing problem. As shown in [26], many
listing algorithms hinge upon a common abstraction that also yields the state-of-the-art sequential
implementations for the enumeration of triangles. The input/output complexity of the triangle listing
problem is addressed in [27]. Approximate counting algorithms that operate in the data stream model,
where the input graph is streamed as a list of edges and the algorithm must compute a solution using
small space, are presented in [4, 19, 9, 29, 10], and a randomization technique to speed-up any triangle
counting algorithm while keeping a good accuracy is proposed in [36].

A few works have addressed counting problems for subgraphs different from (and more difficult
than) triangles. For instance, the techniques in [29] also allow to approximate the number of small
cliques, the algorithm from [9] can be extended to any subgraph with 3 or 4 nodes [7], while [23]
tackles the problem of counting cycles. All these works focus on graph streams and return estimates,
typically concentrated around the true number with high probability. The more general problem of
enumerating arbitrary small subgraphs has been also studied in the data stream model [20].
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Appendix B: proofs

Tools from the literature

The following property, which is folklore in the triangle counting literature [33], will be crucial in the
analysis of our clique estimators (we report its short proof for completeness):

Theorem I. In a graph with m edges, |Γ+(u)| ≤ 2
√
m for each node u.

Proof. Let h be the number of nodes with degree larger than
√
m: since there are m edges, it must be

h ≤ 2
√
m. If d(u) >

√
m, then nodes in Γ+(u) must also have degree larger than

√
m and their number

is upper bounded by h ≤ 2
√
m. If d(u) ≤ √

m, the claim trivially holds since Γ+(u) ⊆ Γ(u).

In the analysis of our approximate estimators we make use of the following (weaker) version of the
Chernoff concentration inequality [11]:

Theorem II. Let X1, . . . ,Xh be independent identically distributed Bernoulli random variables, with
probability of success p. Let X =

∑h
i=1Xi be a random variable with expectation µ = p · h. Then, for

any ε ∈ (0, 1), Pr{|X − µ| > εµ} ≤ 2e−ε2µ/3.

We will also exploit the following conjecture of Paul Erdös, proved in 1970 by Hajnal and Sze-
meredi [16]:

Theorem III. Every n-node graph with maximum degree ∆ is (∆+1)-colorable with all color classes
of size at least n/∆.

We say that an event has high probability when it happens, for a graph G of m nodes, with
probability at least 1− 1/m, for large enough m.

Exact counting

Theorem 1. Let G be a graph and let m be the number of its edges. Algorithm FFFk counts the k-
cliques of G using O(m3/2) total space and O(mk/2) total work. The local space and the local running
time of mappers and reducers are O(m) and O(m(k−1)/2), respectively.

Proof. The total space usage in round 1 is O(m). Map 2 instances produce key-value pairs of constant

size, whose total number is upper bounded by
∑

u∈V

(|Γ+(u)|
2

)
, which is at most 2

√
m ·∑u∈V |Γ+(u)| =

O(m3/2) by Theorem I. The data volume can only decrease after the execution of reduce 2 instances
and is not affected by round 3. Hence, the total space usage is O(m3/2).

We now consider local space. Map 1 instances use constant memory. By Theorem I, the input to
any reduce 1 instance has size O(

√
m). Similarly, any map 2 instance receives O(

√
m) input edges

and produces O(m) key-value pairs. Consider a reduce 2 instance and let (x, y) be its key. The input
of this instance is Γ−(x) ∩ Γ−(y) ⊆ V (without any repetition), and its size is thus O(n). In round 3,
map and reduce instances use memory O(n) and O(m), respectively, which concludes the proof of the
local space claim (recall that n ≤ 2m).

By similar arguments, the running time of map instances is O(1), O(m), and O(n), respectively,
in the three rounds. Reduce instances require time O(

√
m) and O(n) in rounds 1 and 2, while reduce

3 instances run on graphs of at most
√
m nodes and require O(m(k−1)/2) time. The total work of

the algorithm is dominated by the costs of the reducers of the last phase, which is upper bounded by
O(
∑

u∈V |Γ+(u)|k−1). By Theorem I, this is O(m(k−2)/2
∑

u∈V |Γ+(u)| = O(mk/2).
Each clique is counted exactly once by the reducer associated to its minimum node (according to

≺), proving the correctness of the algorithm.
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Approximate counting

We now prove the results about space usage, correctness, and concentration of the plain pair sampling
algorithm described in Section 6. Let Q = {Q1, . . . , Qqk} be the set of k-cliques of G. Let Qi ∈ Q
be a clique and let u be its smallest node (according to ≺). We say that Qi is sampled if all pairs in
Qi \ {u} were emitted by the map 2 instance with key u.

Lemma 1. Let p ≤ 1 be the edge sampling probability of algorithm FFFk and let α be a constant in
[0, 1) such that 1/mα ≤ p. Then algorithm FFFk with sampling probability p uses local space O(mp)
with high probability.

Proof. We will prove the claim for reduce 3 instances; similar arguments can be used to prove the
bounds for reduce 2 and map 3 instances, recalling that n ≤ 2m.

By Theorem I each subgraph G+(u) has at most 2
√
m nodes. Since the reduce 3 instance with

key u receives an edge (x, y) ∈ G+(u) if and only if the map 2 instance with key u sampled the pair
(x, y) (event that has probability p), we have that the expected input size of any reduce 2 instance is
at most 2pm.

Being each pair of high-neighbors of a node u sampled independently by all the other, a simple
application of the Chernoff bound allows to prove that the probability of one reduce 3 instance to
receive more than 4pm values is less than e−2pm/3, and a union bound gives that the probability of any
of the reduce 3 instances to receive more than 4pm values is bounded by n/e2pm/3. Since p ≥ 1/mα,
for large enough m this probability is smaller than 1/m, which concludes the proof.

Claim 1. Algorithm FFFk with edge sampling returns an estimate q̃k with expected value E[q̃k] = qk,
where qk is the number of k-cliques in the input graph G.

Proof. Let Qi ∈ Q be a clique in G and let u be its smallest node (according to ≺). Clique Qi

contributes to the estimate of the number of cliques inG if the map 2 instance handling input 〈u; Γ+(u)〉
emits all pairs of nodes inQi\u, i.e., if it is sampled. LetXi be the random variable indicating the event
“the clique Qi is sampled”. Since each pair is sampled by the algorithm independently with probability
p and there are

(k−1
2

)
distinct (unordered) pairs in a set of k−1 elements, Pr{Xi = 1} = p(k−1)(k−2)/2,

hence E[Xi] = p(k−1)(k−2)/2. Now we can define X =
∑qk

i=1 Xi, and by linearity of expectation we
have that E[X] = qkp

(k−1)(k−2)/2. Since q̃k = X/p(k−1)(k−2)/2 the claim follows.

Theorem 2. Let G be a graph with m edges and qk k-cliques. Let q̃k be the estimate returned by
algorithm FFFk with edge sampling probability p. For any constant ε > 0, there exists a constant h > 0

such that |q̃k − qk| ≤ εqk with high probability if p(k−1)(k−2)/2 > hm(k−3)/2 lnm
ε2qk

.

Proof. We proved that the expected value of q̃k is qk in Claim 1; we will now deal with the concentration
of q̃k around its mean. Let H be the graph defined as follows:

• The node set of H is the set of k-cliques Q of G.

• Let Qi and Qj be two k-cliques with the same smallest node u: there is an edge between Qi and
Qj in H if and only if Qi \ {u} and Qj \ {u} have at least one common edge.

Cliques that are adjacent in H must thus share at least three of their k nodes, including the smallest
node. Considering that graphs G+(u) have at most

√
m nodes, we have that the maximum degree of

a node in H is therefore O(m(k−3)/2).
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Theorem III by Hajnal and Szemeredi implies that there exists a node coloring of H, using C ∈
O(m(k−3)/2) colors, such that each monochromatic set of nodes has size Θ(qk/m

(k−3)/2), since H has
qk nodes.

For each j ∈ [1, qk], let Xj be the indicator variable that is 1 when Qj is sampled. Let S1, . . . , SC

be the sets of monochromatic nodes in H and, for each i ∈ [1, C], let

XSi =
∑

j:Qj∈Si

Xj (1)

The terms of XSi are independent. Hence, we can apply to XSi the Chernoff bound as in Theorem II
obtaining:

Pr{|XSi − µi| > εµi} ≤ 2e−µiε2/3 .

where µi = E[XSi ]. By Equation 1, for each set Si we have:

µi ∈ Θ

(
p(k−1)(k−2)/2qk

m(k−3)/2

)

since E[Xj ] = p(k−1)(k−2)/2, as shown in the proof of Claim 1. By the same proof, µ =
∑C

i=1 µi =
p(k−1)(k−2)/2qk.

If we define X =
∑C

i=1 XSi and we apply the union bound we can conclude that

Pr{|X − µ| > εµ} ≤ c1m
k−3
2 e

−
c2ε

2qkp(k−1)(k−2)/2

m(k−3)/2

by appropriately choosing constants c1 and c2. By imposing

c1m
k−3
2 e

−
c2ε

2qkp(k−1)(k−2)/2

m(k−3)/2 ≤ 1

m

the claim follows with standard algebraic calculations.

The analysis above can be naturally extended to algorithm cFFFk. Lemma 1 holds for algorithm
cFFFk just by using p = 1/c. The estimate returned by algorithm cFFFk has expected value qk, and
this can be proved using arguments similar to those in the proof of Claim 1. The arguments of the
proof of Theorem 2 can also be used to prove concentration around the mean for algorithm cFFFk,
considering that correlation of sampled k-cliques arises as soon as the cliques share a node besides the
minimum node, instead of an edge. Hence, concentration is achieved with high probability under the
conditions expressed by Theorem 3.

We observed in Section 6 that, for k = 3, our concentration results require weaker conditions
than the triangle counting algorithm from [28]. This is due to the fact that we color the same node
x ∈ Γ+(u) ∩ Γ+(v) independently for u and v, which allows us to reduce the maximum degree of the
interference graph H in the application of the Hajnal-Szemeredi theorem.
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n (= q1) m (= q2) q3 q4 q5 q6 q7

citPat 3 774 768 16 518 947 7 515 023 3 501 071 3 039 636 3 151 595 1 874 488
(264.0 MB) (4.38×) (0.45×) (0.47×) (0.87×) (1.04×) (0.6×)

youTube 1 134 890 2 987 624 3 056 386 4 986 965 7 211 947 8 443 803 7 959 704
(38.7 MB) (2.63×) (1.02×) (1.63×) (1.44×) (1.17×) (0.94×)

locGowalla 196 591 950 327 2 273 138 6 086 852 14 570 875 28 928 240 47 630 720
(11.1 MB) (4.83×) (2.39×) (2.67×) (2.39×) (1.98×) (1.65×)

socPokec 1 632 803 22 301 964 32 557 458 42 947 031 52 831 618 65 281 896 83 896 509
(309.1 MB) (13.65×) (1.46×) (1.32×) (1.23×) (1.18×) (1.28×)

webGoogle 875 713 4 322 051 13 391 903 39 881 472 105 110 267 252 967 829 605 470 026
(59.5 MB) (4.93×) (3.1×) (2.98×) (2.63×) (2.40×) (2.39×)

webStan 281 903 1 992 636 11 329 473 78 757 781 620 210 972 4 859 571 082 34 690 796 481
(26.4 MB) (7.07×) (5.68×) (6.95×) (7.87×) (7.83×) (7.13×)

asSkit 1 696 415 11 095 298 28 769 868 148 834 439 1 183 885 507 9 759 000 981 73 142 566 591
(149.1 MB) (6.54×) (2.59×) (5.17×) (7.95×) (8.24×) (7.49×)

orkut 3 072 441 117 185 083 627 584 181 3 221 946 137 15 766 607 860 75 249 427 585 353 962 921 685
(1 687.8 MB) (38.14×) (5.35×) (5.13×) (4.89×) (4.77×) (4.70×)

webBerkStan 685 230 6 649 470 64 690 980 1 065 796 916 21 870 178 738 460 155 286 971 9 398 610 960 254
(89.4 MB) (9.70×) (9.73×) (16.48×) (20.52×) (21.04×) (20.42×)

comLiveJ 3 997 962 34 681 189 177 820 130 5 216 918 441 246 378 629 120 10 990 740 312 954 445 377 238 737 777
(501.6 MB) (8.67×) (5.12×) (29.34×) (47.22×) (44.6×) (40.52×)

socLiveJ1 4 847 571 42 851 237 285 730 264 9 933 532 019 467 429 836 174 20 703 476 954 640 849 206 163 678 934
(627.7 MB) (8.84×) (6.67×) (34.7×) (47.05×) (44.29×) (41.01×)

egoGplus 107 614 12 238 285 1 073 677 742 78 398 980 887 4 727 009 242 306 242 781 609 271 577 11 381 161 386 691 540
(538.5 MB) (113.72×) (87.73×) (73.01×) (60.29×) (51.36×) (46.87×)

Benchmark statistics: number n of nodes, number m of edges, numbers of cliques on 3, 4, 5, 6, and 7 nodes (clique numbers
in italic are approximations obtained by our color-based sampling algorithm, using 10 colors). Benchmarks are sorted by increasing
q7. For each benchmark, we also report in parentheses the storage in MB with no compression and the ratio qk+1/qk (which is half
the average node degree for k = 1). Notice the large values of these ratios for benchmarks socLiveJ1, comLiveJ, webBerkStan, and
egoGplus.
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