
Neural Networks and Particle Swarm Optimization for
Function Approximation in Tri-SWACH Hull Design

Sam Palmer
Dept. of Computer Science
University College London

London WC1E 6BT
+44 (0)207 679 7039

ucabsdp@ucl.ac.uk

Denise Gorse
Dept. of Computer Science
University College London

London WC1E 6BT
+44 (0)207 679 7214

ucacdgo@ucl.ac.uk

Ema Muk-Pavic
Dept. of Mechanical Engineering

University College London
London WC1E 6BT

+44 (0)207 679 3252

e.muk-pavic@ucl.ac.uk

ABSTRACT
Tri-SWACH is a novel multihull ship design that is well suited to
a wide range of industrial, commercial, and military applications,
but which because of its novelty has few experimental studies on
which to base further development work. Using a new form of
particle swarm optimization that incorporates a strong element of
stochastic search, Breeding PSO, it is shown it is possible to use
multilayer nets to predict resistance functions for Tri-SWACH
hullforms, including one function, the Residual Resistance
Coefficient, which was found intractable with previously explored
neural network training methods.

Categories and Subject Descriptors
• Computing methodologies~Bio-inspired approaches; Particle
swarm optimization; • Applied computing~Engineering;
Hullform resistance prediction;

Keywords
Particle swarm optimization; function approximation; Tri-
SWACH; multihull resistance; hullform design.

1. INTRODUCTION
As the world's needs for natural resources increase, technology
develops to satisfy the demand. The oceans are a resource that has
so far not been extensively tapped; however as demands grow and
onshore resources are increasingly depleted we are turning toward
this potentially massive resource. In addition to the traditional
fishing, shipping and offshore oil and gas industries we now see
progress in food production, seabed mining, and tidal and offshore
wind energy harvesting. All these sectors require the development
of technologies able to deal with working in the ocean
environment, the main challenges being harsh climatic conditions,
remoteness, communication and security issues, and
environmental impact.

There are currently a large number of creative ideas in ship design
fast-tracking toward prototypes able to address some of these new
challenges, Trimaran Small Waterplane Area Centre Hull (Tri-
SWACH), being one of them. However due to the novelty of the
design there is a lack of experimental data, and in addition no
analytical solution or reliable numerical method able to

approximate water resistance for this hullform.

Artificial neural networks (ANNs) and other bio-inspired
metaheuristic techniques such as particle swarm optimization
offer the possibility of being able to extract the underlying physics
from limited experimental data, to build a resistance model that
could be used to refine and scale up the Tri-SWACH hull design.
In the current work it will be shown that a multilayer perceptron,
training with Breeding PSO (BrPSO), a new form of particle
swarm optimization developed for this work, can be used to
predict Tri-SWACH hull resistance.

2. BACKGROUND
2.1 Tri-SWACH
Tri-SWACH is a novel ship hullform concept presenting a hybrid
of a SWATH (Small Waterplane Area Twin Hull) centerhull and
two small sidehulls, as depicted in outline in Figures 1 and 2.
Initial research shows that this vessel has outstanding motion
performance allowing for operations in very harsh weather
conditions.

Figure 1. Tri-SWACH hullform (figure from [3]).

2.2 Previous Application of ANNs to Tri-
SWACH Design
While neural networks and other bio-inspired metaheuristics have
found many applications in engineering and design, these methods
have more slowly infiltrated the field of naval architecture, though
these applications have been notably successful and are growing
in number [1]. Of particular interest are cases in which ANNs
have been used as prediction tools for multihull resistance.
Multihulls pose particular problems for designers due to the
complex wave interactions created by the hulls; these wave
patterns, which are very difficult to model, depend on the sidehull
configuration and can either cause a destructive (decreasing
resistance) or constructive (increasing resistance) effect. ANNs
however have been shown to be able to successfully predict both



catamaran [2] and trimaran [3] resistance, outperforming
traditional statistical regression models, which gives confidence
that similar methods could be applied also to Tri-SWACH.

Two prior studies [4, 5] have been carried out with direct bearing
on the current work. The results of Carter [4] were very
encouraging, showing it was possible to train an ANN to capture
the overall shape of the Total Resistance (RT) function shown in
Figure 4. However it proved difficult to predict the shape of the
RT curve in detail, in particular the 'hump' in the resistance curve
due to wave interference effects, whose shape and position as a
function of speed depend on the sidehull configuration. The work
of Chaggar [5] represented a significant advance, as in this case it
proved possible to predict the full shape of the RT curve, including
the prismatic hump. The major differences between this work and
[4] were in the learning methodology (Bayesian Regularization in
[5], the Levenberg-Marquardt method in [4]) and in the selection
of data (data from a single source, the Webb Institute [6], was
used in [5], avoiding possible problems introduced by data
gathered in different locations).

However this later study too had its limitations. It was originally
intended to predict resistance solely on the basis of the sidehull
geometry and a single speed-related input, Froude number (Fr),
but it proved impossible to do this without adding further inputs
(Reynolds numbers for the center and sidehulls) that should not
have been necessary on strictly physical grounds. In addition,
while Chaggar was able to obtain good predictions for RT and for
the dimensionless Total Resistance Coefficient, it proved much
harder in this work to predict Residual Resistance and the
corresponding Residual Resistance Coefficient (C R). The latter of
these functions was especially badly predicted, with no
modification of the network architecture able to make a
significant difference to the results.

It was then suspected the underlying difficulty was the relative
scarcity of data; however, as will be seen later, the data are
sufficient, but these resistance function approximation problems
appear to be characterized by a very complex search space,
requiring the deployment of an ANN learning method with strong
stochastic search features, the Breeding PSO (BrPSO) algorithm
used in this study and described in Section 4 below. It will also be
demonstrated that BrPSO can solve the resistance prediction
problems with only the three originally intended network inputs.

3. PROBLEM DEFINITION AND DATA
SET
The Atlantic Center for the Innovative Design and Control of
Small Ships (ACCeSS) is a consortium of university and industry
partners. As a part of their current programme this center is
looking into Tri-SWACH hydrodynamics and design, aiming for
an improved understanding that will allow assessment of the
overall performance of the vessel, providing confidence in its
application. Although the Tri-SWACH hullform resembles that of
a trimaran, its hydrodynamic characteristics are different and still
not fully understood. Under the ACCeSS program a series of
towing tank experiments, investigating the resistance
characteristics of the Tri-SWACH design in calm water, have
been conducted at the Stevens and Webb Institutes and at the
United States Naval Academy (USNA).

In the ACCeSS towing tank experiments nine sidehull
configurations were considered, comprised of three possible
lateral positions of the sidehulls relative to the central hull
(inboard (closest to central hull), middle, and outboard (furthest

from central hull)) and three longitudinal (forward (furthest from
stern), middle, and aft (closest to stern)) positions of the sidehulls
relative to the centerhull strut front end (see Figure 1). These
sidehull positions are illustrated in Figure 2.

However not all consortium members took measurements at all
positions.Among the ACCeSS data, that from the Webb Institute
[6] is the only complete set of experimental data from a single
source; it was decided to follow [5] in using these data alone for
resistance predictions, since experimental setups necessarily differ
in detail, and [5] gives evidence of a discrepancy between
resistance measurements for the same hull configurations obtained
by different institutes.

The experimental setup used in the towing tank experiments of
[6], from which our data were obtained, is shown in Figure 3.The
sidehull locations considered are shown in outline in Figure 2, and
relevant measurements given in Table 1, in which %LS is a
dimensionless measure of longitudinal sidehull position (the
longitudinal location from the centerhull strut front end divided by
the length of the centerhull), and %TS is a corresponding measure
for the transverse sidehull position, given as the transverse
location from the centerhull's center line divided by ten times the
beam of the centerhull (the factor of 10 being a scale factor used
in [4, 5] to bring %TS into line with the magnitude of %LS).

Figure 2. Tri-SWACH model sidehull locations for towing
tank tests (figure from [3]).

Table 1. The nine sidehull positions considered, together with
dimensionless descriptors of the geometry (used here as ANN

inputs); highlighted column E will be the test data.

position A B C D E F G H I

fwd-
outer

fwd-
mid

fwd-
inbd

mid-
outer

mid-
mid

mid-
inbd

aft-
outer

aft-

mid

aft-
inbd

%LS 37 37 37 47 47 47 57 57 57

%TS 10.1 12.8 15.5 10.1 12.8 15.5 10.1 12.8 15.5

Each combination of longitudinal and transverse sidehull
positions contributes 34 data points, for Froude numbers between
0.1 and 0.5. Eight of the position combinations (columns A–D and
F–I) will be used as training data, and column E (as also in [5]) as
test data for the prediction of the resistance functions R T (Figure
4) and CR (Figure 5). It should however be noted that in contrast
to [4,5] predictions will here be based only on the minimal three
inputs %LS, %TS, and Froude number (Fr).



Figure 3. Tri-SWACH model used to obtain experimental
towing tank resistance data (figure from [6]).

A validation data set, as will be discussed also in Section 5.1, was
not used, as no evidence of overfitting was seen in preliminary
experiments and the amount of non-testing data available was
very limited. While it may seem surprising that overfitting was
not observed, it is explicable by the fact that these are data
gathered in strictly managed laboratory conditions, and that the
standard procedure in towing tank experiments is to filter the raw
signal data and average the measured resistance over the test time,
thus reducing experimental noise to a minimum.

Figure 4. Total Resistance (RT) as a function of Froude
number (Fr); the curve in bold is the test data (mid-mid;

sidehull position E in Table 1).

Figure 5. Residual Resistance Coefficient (CR) as a function of
Froude number (Fr); the curve in bold is the test data (mid-
mid; sidehull position E in Table 1), whose most significant
features (the peak and side-lobes) could not be effectively
predicted in [5] using any network architecture.

4. METHODS
4.1 Particle Swarm Optimization (PSO)
Particle swarm optimization (PSO) [7] is a biologically inspired,
population based search algorithm that has been applied
successfully in many areas for classification, prediction, and
function approximation. The method is inspired by observations
of social behavior in birds and other animals, and in its operation
mixes the tendency of a swarm member (which here represents a
suitably encoded solution to the problem at hand) both to return to
positions (solutions) found previously to be effective and to
follow a leader (that particle whose current position in the
parameter space represents the best solution so far found by any
particle). Solutions can be encoded in many ways, one of which is
as the weights of a multilayer neural network.

In the algorithm introduced originally by Kennedy and Eberhart
[7] every particle in a PSO swarm has a velocity vi and position xi,
where the latter will here correspond to the full list of weights
possessed by the ith (where i=1..N) particle, and the equations
used to update each particle's velocity and position are

vi,t+1 = Wvi,t + ϕ1β1(pi,t – xi,t) + ϕ2β2(gt – xi,t) (1a)

xi,t+1 = xi,t + vi,t+1 (1b)

where pi,t is the personal best, the best position (weight set) found
at time t by particle (net) i, gt (global best) is the best position
found at this time by any particle, β1, β2 are random numbers
chosen uniformly from the interval [0,1], and W is an iteration-
decreasing inertia weight whose use improves swarm
convergence.

This basic algorithm works well for many problems, but while it
generally performs far better than gradient-based methods in
search spaces with many local minima it can even so be troubled
by convergence to sub-optimal solutions. For this reason it is
frequently modified to a local-best form in which the role of the
global best in (1a) is taken by a neighborhood best, a particle's
neighborhood being defined for example in the ring topology as
those particles indexed i±1 in a list of N particles numbered from
0 to N–1 (applying mod N arithmetic operations), and the global
best used as the final output solution being the best of these
guiding local bests.

The PSO used here was initially of the ring topology form, but
because of the complexity of the search space the algorithm was
discovered insufficient for the Tri-SWACH resistance prediction
problem. A novel and more powerful formalism was therefore
deployed, Breeding PSO (BrPSO), that as well as the basic PSO
search mechanisms described above also utilizes evolutionary
elements.

4.2 Breeding PSO (BrPSO)
While standard PSO, as described above, is better able to navigate
high-dimensional complex search spaces than a gradient-based
method, its use of stochastic search is limited. In particular
standard PSO, even in its local-best variant, lacks the ability to
explore promising new areas far away from the directions of local
and global convergence. BrPSO, a new form of PSO developed by
one of us (SP) for use in this and other function approximation
problems, attempts to resolve these issues by forming a hybrid
between PSO, Differential Evolution [8,9], and Genetic
Algorithms, using a PSO swarm that evolves rapidly via natural
selection.



Table 2. Comparison of performance of standard and Breeding PSO (BrPSO) on the RT training data set, in terms of Euclidean

Distance (ED) and Mean Average Error (MAE) achieved after 10,000 iterations (50 runs)

Training
Method

Architecture
ED (training data) MAE (training data)

Average Min Average Min

Standard PSO 3-20-1 6.467±0.713 4.878 0.245±0.016 0.205

Standard PSO 3-10-10-1 3.066±0.386 2.144 0.135±0.015 0.100

BrPSO 3-20-1 3.613±1.024 2.148 0.152±0.035 0.094

BrPSO 3-10-10-1 2.110±0.446 1.078 0.094±0.016 0.051

BrPSO is inspired by the CLPSO [10,11] and Global-Local
Differential Evolution (GLDE) [12] algorithms. In CLPSO the

local-best PSO algorithm is adapted so that there is no fixed
topology; a particle instead has a probability of obtaining

information from two randomly selected competing local best
particles (while for position updates only global best information
is used). GLDE is in contrast based on the evolution/ cross-
breeding of solutions within a fixed topology. BrPSO merges the
successful components of both these algorithms with vanilla PSO.

The main difference between BrPSO and standard PSO is the
breeding operation used in the former. On swarm initialization,
each particle has a probability PPR assigned to it, from the range
[0,0.5]; this will be the probability of its being potentially replaced
by the child particle whose creation will next be described. In the
mating procedure the global best ’mates’ with the strongest
particle out of two other randomly selected particles (picked with
probabilities 1/(N–1), 1/(N–2)), the strongest being that with the
better personal best position. A child is then created in which the
weight vector value associated with each dimension has a certain
probability (cross-over probability PCO, here set to 0.5) of either
taking on the equivalent value from the global best or from the
personal best for the global best's selected partner. Once the child
has been created its fitness is then compared to that of a chosen
replacement candidate; if it is better this particle takes on the
child's position, and that particle's personal best and the swarm
global best are updated in the usual manner if applicable. In
BrPSO there are thus two extra parameters, PPR and PCO,
controlling the rate of additional exploration from breeding and
from the formation of newly bred solutions respectively. If PPR is
zero for all particles BrPSO reduces to vanilla PSO.

4.3 Network Architectures and Data
Processing
In the experiments of [5] it was discovered better results could be
obtained from nets with larger numbers of hidden units than had
been used in the earlier work of [4]; it was thus decided here to
focus on the use of nets with either a single layer of 20 hidden
units (following [5], and referred to here—since three inputs will
be used—as a 3-20-1 net) or two hidden layers of 10 hidden units
each (3-10-10-1 net). The tanh function was used as a hidden
layer neuron output function, functionally equivalent to the tansig
used in [4, 5], and all swarms used in the experiments below
consisted of 100 particles.

Input scaling: the definition of the %TS parameter included a
division by 10 to make it of similar magnitude to %LS; it was
decided here to divide both these inputs by an additional factor of
10 to make them of a similar magnitude to the Froude number
input. Output scaling: none was done for the RT prediction
problem, but given the very small magnitude of CR it was decided
to multiply the targets by 100 during training to better separate the
values.

5. RESULTS
Different measures were used for training and for test
performance assessment. It was discovered that training was most
effective when using as fitness function the Euclidian Distance
(ED) between the estimated and the target function values.
However for the out-of-sample test data, the accuracy was
measured in terms of the Mean Absolute Error (MAE), this choice
being made in order to better compare our results against previous
work [5] in which the MAE was the quoted measure.

As mentioned earlier in Section 3, the resistance prediction
problems considered here, both of which used a data set derived
solely from towing tank experiments in which the data gathered
were postprocessed to remove noise, did not display any evidence
of overfitting even after 10,000s of iterations. This was discovered
during initial runs in which randomly selected subsets (20% of the
272 nontesting data points) were set aside for validation; no
evidence of overfitting on the set-aside data was seen, only a
degradation of training performance due to the lessened amount of
available data. Thus it was decided to use all of the nontesting
data in columns A–D and F–I of Table 1 for training.

5.1 Prediction of Total Resistance (RT)
As Figure 3 shows, the variation of RT with Froude number Fr for
all sidehull configurations is in most places a smooth function,
one that can in fact be well-approximated by a quadratic,

RT(Fr)=25.269Fr
2+7.525Fr–0.7129; it was thus decided to fit this

function to the 272 training data examples and predict instead the
residuals, notable only in the region of the prismatic humps.

The first series of experiments compared the performance of
BrPSO with standard PSO on the training data set only,
considering two alternate architectures with the same number of
hidden units, but deployed differently in terms of layers. The
objective of these initial experiments was to gain an
understanding of the intrinsic level of difficulty of the problem
and the degree to which BrPSO was able to outperform standard
PSO using nets with the same number of hidden neurons, but
deployed differently, in either one or two hidden layers. Because
of the time-demanding nature of these experiments and the need
to carry out a substantial number of runs it was decided to restrict
the number of PSO iterations to 10,000, and compare performance
at that point.

The results of the above experiments are shown in Table 2 at the
top of this page: it is clear BrPSO outperforms standard PSO for
both architectures, and also that a net with two hidden layers is the
more effective choice. The latter is an interesting observation in
the light of the current high interest in deep learning architectures
[13], and the many studies which have shown that deep nets are



more effective than broad, shallow nets for problems with
complex input data such as traffic sign recognition [14]. While
deep neural network architectures have in the past been trained
primarily using gradient-based methods such as error
backpropagation there is now an interest in exploring non-gradient
based learning for these networks, including nature-inspired
methods such as PSO [15].

A series of 10 runs were then carried out using BrPSO and the 3-
10-10-1 architecture, stopping when either no updates had been
made to the swarm for 1000 iterations or after 106 iterations, at
which point the global best weights were used to make a
prediction for the mid-mid test data. The average MAE was
0.118±0.026, with 190867±97662 iterations being taken (min
96061, max 419350), compared to a quoted average MAE of
0.132 in [5]. The predicted RT curve from an example run is
shown in Figure 6. While these MAEs are not dissimilar it should
again be noted that the BrPSO results are being obtained with
only three inputs, %TR, %LS, and Fr, while the work of [4,5]
required two additional Reynolds number inputs in order to make
any reasonable prediction for the resistance functions.

Figure 6. Test data comparison of BrPSO prediction with
actual RT

5.2 Prediction of Residual Resistance
Coefficient (CR)
As in the case of RT, 10 runs were performed, with the same
convergence criterion, giving in this case an average MAE of
2.424e-4±0.493e-4, with 27656±11209 iterations being taken (min
15708, max 55332). When compared to the results of [5] (see
Figure 7) it is clear BrPSO is performing far better for this
function than Bayesian Regularization, which was in turn more
effective than the Levenberg-Marquardt training used in the Tri-
SWACH work of [4]. Using a challenging application in
hydrology as a testbed it has been shown in [16] that Differential
Evolution, which as discussed above is one of the key inspirations
behind the BrPSO algorithm, is considerably more effective than
Levenberg-Marquardt training, which was itself superior to a
range of other nature-inspired methods including standard PSO.

An example CR prediction is shown in Figure 6, together with a
representative example from [5] using training via Bayesian
Regularization. While the BrPSO-generated curve does not quite
hit the resistance peak around Fr=0.25, or show the full
complexity of the sidelobes, it can be seen to capture the essential
features of the function, and in particular the position of the
'hump'.

Figure 7. Test data comparison of BrPSO prediction with
actual resistance coefficient CR

6. DISCUSSION
This paper has introduced a new form of particle swarm
optimization, Breeding PSO (BrPSO), and demonstrated its
capacity to learn to approximate a complex function, the Residual
Resistance Coefficient CR, which is used to describe hull residual
resistance in multihull ship design. The detailed approximation of
this function was outside the capability of the gradient-based
methods previously employed for this purpose [4,5] and also
beyond the ability of standard PSO.

The curve showing Residual Resistance Coefficient as a function
of Froude Number (Fr) presented in Figure 7 confirms that BrPSO
predictions match experimental data very closely. Although the
peak value is not exactly captured, the position of the curve
‘hump’ is. The ability to correctly predict this range of Fr is of a
significant value as it corresponds to a real life phenomenon: the
superposition of the multihull wave patterns on the water surface
between the hulls. While the value of the residual resistance will
most likely change as the hullform design progresses, the position
of the ‘hump’ will not change much and therefore brings
confidence that appropriate configuration of centerhull and
sidehulls is selected early on in Tri-SWACH design.

Although excellent resistance prediction was achieved by the
BrPSO-trained ANN, the results obtained are limited by the
experimental data to a one specific Tri-SWACH hullform, with
only two parameters (%TS and %LS) varied in this configuration.
However there are other significant sidehull parameters that
impact resistance: length, breadth, volume, sidehull alignment
against centerhull, and so on. It would be beneficial to expand the
investigation for this configuration to consider a wider range of
parameters, and to also consider variations in outrigger shapes.
This will help us understand better the hydrodynamic behavior of
these novel hullforms and the interaction between the centerhull
and sidehulls.

As available experimental data is very limited, we might
additionally explore the use of numerical simulations obtained by
Computational Fluid Dynamics (CFD) tools. At the moment these
simulations are still too resource expensive (in terms of time,
hardware, and the availability of expert users) to be widely used in
ship concept design investigation. Their application is usually
limited to the later stages of design when the hullform type is
already selected. Unfortunately at that point the main design



parameters have already been fixed and any change would be very
demanding (in terms of time and budget).

However CFD tools can also be used to generate systematic
resistance data series that could be used for ANN training. This
will allow us to cover not only a large range of Tri-SWACH
parameters but also to expand the investigation to cover all
trimaran type hullforms within one systematic data set.

If CFD is successfully coupled with ANN/BrPSO, these models
would be able to quickly predict resistance for any configuration
(within series limitations) and would therefore be very useful for
design space exploration. Being in this way able to quickly predict
resistance for various hullforms would allow a designer to quickly
investigate a design space looking for optimal overall ship
performance in the very early ship concept exploration phase and
compare different hullform options: monohull, catamaran,
trimaran, SWATH, Tri-SWACH and possibly more radical,
innovative hullform configurations that are outside the scope of
current design methodologies.
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