
Hasso Plattner Institute for Software Systems Engineering
System Analysis and Modeling Group

Thesis

Modeling Collaborations in
Adaptive Systems of Systems

Dissertation
zur Erlangung des akademischen Grades

”doctor rerum naturalium”
(Dr. rer. nat.)

in der Wissenschaftsdisziplin
”Systemanalyse und Modellierung”

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Universität Potsdam

von
Sebastian Wätzoldt

Potsdam, October 11, 2016

This work is licensed under a Creative Commons License:
Attribution – Noncommercial – Share Alike 4.0 International
To view a copy of this license visit
http://creativecommons.org/licenses/by-nc-sa/4.0/

Published online at the
Institutional Repository of the University of Potsdam:
URN urn:nbn:de:kobv:517-opus4-97494
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-97494

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

Abstract
Recently, due to an increasing demand on functionality and flexibility, beforehand isolated
systems have become interconnected to gain powerful adaptive System of Systems (SoS)
solutions with an overall robust, flexible and emergent behavior. The adaptive SoS comprises
a variety of different system types ranging from small embedded to adaptive cyber-physical
systems. On the one hand, each system is independent, follows a local strategy and optimizes
its behavior to reach its goals. On the other hand, systems must cooperate with each other
to enrich the overall functionality to jointly perform on the SoS level reaching global goals,
which cannot be satisfied by one system alone. Due to difficulties of local and global behavior
optimizations conflicts may arise between systems that have to be solved by the adaptive SoS.

This thesis proposes a modeling language that facilitates the description of an adaptive
SoS by considering the adaptation capabilities in form of feedback loops as first class entities.
Moreover, this thesis adopts the Models@runtime approach to integrate the available knowledge
in the systems as runtime models into the modeled adaptation logic. Furthermore, the modeling
language focuses on the description of system interactions within the adaptive SoS to reason
about individual system functionality and how it emerges via collaborations to an overall
joint SoS behavior. Therefore, the modeling language approach enables the specification of
local adaptive system behavior, the integration of knowledge in form of runtime models and
the joint interactions via collaboration to place the available adaptive behavior in an overall
layered, adaptive SoS architecture.

Beside the modeling language, this thesis proposes analysis rules to investigate the modeled
adaptive SoS, which enables the detection of architectural patterns as well as design flaws and
pinpoints to possible system threats. Moreover, a simulation framework is presented, which
allows the direct execution of the modeled SoS architecture. Therefore, the analysis rules
and the simulation framework can be used to verify the interplay between systems as well as
the modeled adaptation effects within the SoS. This thesis realizes the proposed concepts of
the modeling language by mapping them to a state of the art standard from the automotive
domain and thus, showing their applicability to actual systems. Finally, the modeling language
approach is evaluated by remodeling up to date research scenarios from different domains,
which demonstrates that the modeling language concepts are powerful enough to cope with a
broad range of existing research problems.

– I –

Zusammenfassung
Seit einiger Zeit führen ein ansteigender Bedarf nach erweiterter Systemfunktionalität und
deren flexible Verwendung zu vernetzten Systemen, die sich zu einem übergeordneten adap-
tiven System von Systemen (SoS) zusammenschließen. Dieser SoS Zusammenschluss zeigt
ein gewünschtes, robustes und flexibles Gesamtverhalten, welches sich aus der Funktionalität
der einzelnen Systeme zusammensetzt. Das SoS beinhaltet eine Vielzahl von verschiedenen
Systemarten, die sich von eingebetteten bis hin zu Cyber-Physical Systems erstrecken. Ei-
nerseits optimiert jedes einzelne System sein Verhalten bezüglich lokaler Ziele. Anderseits
müssen die Systeme miteinander interagieren, um neue, zusammengesetzte Funktionalitäten
bereitzustellen und damit vorgegebene SoS Ziele zu erreichen, welche durch ein einzelnes
System nicht erfüllt werden können. Die Schwierigkeit besteht nun darin, Konflikte zwischen
lokalen und globalen Verhaltensstrategien zwischen Systemen innerhalb des SoS zu beseitigen.

Diese Doktorarbeit stellt eine Modellierungssprache vor, welche für die Beschreibung von
adaptiven SoS geeignet ist. Dabei berücksichtigt die Modellierungssprache die Adaptionslogik
des SoS in Form von periodischen Adaptationsschleifen als primäres Sprachkonstrukt. Au-
ßerdem übernimmt diese Arbeit den Models@runtime Ansatz, um verfügbares Systemwissen
als Laufzeitmodelle in die Adaptationslogik des Systems zu integrieren. Weiterhin liegt der
Fokus der Modellierungssprache auf der Beschreibung von Systeminteraktionen innerhalb
des SoS. Dies ermöglicht Schlussfolgerungen von individuellem Systemverhalten sowie deren
Aggregation zu kollaborativem Verhalten im Kontext von Systeminteraktionen im SoS. Damit
unterstützt die entwickelte Modellierungssprache die Beschreibung von lokalem adaptivem
Verhalten, die Integration von Wissen über die Modellierung von Laufzeitmodellen und Sys-
teminteraktionen in Form von kollaborativem Verhalten. Alle drei Aspekte werden in die
adaptive SoS Architektur integriert.

Neben der entwickelten Modellierungssprache führt diese Doktorarbeit Analyseregeln zur
Untersuchung des modellierten SoS ein. Diese Regeln ermöglichen die Erkennung von Archi-
tekturmustern und möglichen Schwächen im Systementwurf. Zusätzlich wird eine Simulati-
onsumgebung für die Modellierungssprache präsentiert, welche die direkte Ausführung von
einer modellierten SoS Architektur erlaubt. Die Analyseregeln und die Simulationsumgebung
dienen demnach sowohl der Verifizierung von Systeminteraktionen als auch der spezifizierten
Adaptationslogik innerhalb des SoS. Die vorliegende Arbeit implementiert die vorgestellten
Konzepte der Modellierungssprache durch deren Abbildung auf einen aktuellen Standard
im Automobilbereich und zeigt damit die Anwendbarkeit der Sprache auf gegenwärtige Sys-
teme. Zum Schluss findet eine Evaluierung der Modellierungssprache statt, wobei aktuelle
Forschungsszenarien aus unterschiedlichen Bereichen erneut mit der vorgestellten Sprache
modelliert werden. Dies zeigt, dass die Modellierungskonzepte geeignet sind, um weite Bereiche
existierender Forschungsprobleme zu bewältigen.

– III –

Acknowledgement
This thesis would not have been possible without my great family, friends and colleagues.
First and foremost, I am very grateful for the endless support of my parents Marco and Evelin
Wätzoldt, who enabled my studies and never doubted about my scientific career. Furthermore,
I like to express my gratitude to colleagues from the System Analysis and Modeling group
for fruitful teamwork and countless discussions about my research. Especially, I am very
thankful to Thomas Beyhl for keeping me back to real life, whenever I had a new weird
idea that would far extend the focus of my research topic, for providing tool support what
enables the implementation of the simulation environment described in this thesis, and for
being a great office colleague with many patience listening my ideas in combination with
constructive feedback. I thank Stefan Neumann for the fruitful discussions about embedded-
systems engineering, real-time analysis and the good teamwork in the laboratory. I would
like to thank the professors and colleagues from the HPI research school for their sincere and
constructive feedback. For their assistance in organizational and bureaucratic matters, I thank
Kerstin Miers and Sabine Wagner. I also thank the students, who refined the tool support,
namely Paul Geppert and Michael Fabian. For great proofreading, I am very thankful to Inga
Melching, who rigorously read this very long thesis. A deep, great thanks is for my friend
Tonio-Erik Schultze, who supports me in all circumstances of all the highs and lows during
my life. Last but not least, I am deeply grateful to my partner, Friederike Melching, who is
my quiescent point in this hectic world and, even under difficult circumstances, was able to
motivate me to finish this thesis.

– V –

CC©

”The only source of knowledge is experience.”
Albert Einstein1

1Picture from https://openclipart.org/detail/213786/albert-einstein

– VII –

https://openclipart.org/detail/213786/albert-einstein

Contents

Contents

1. Introduction 1
1.1. Research Challenges and Goals . 2
1.2. Contributions . 7
1.3. Structure . 10

2. Preliminaries 13
2.1. System Types . 13

2.1.1. Self-Adaptive System . 13
2.1.2. Cyber-Physical System . 16
2.1.3. Networked Cyber-Physical System . 17
2.1.4. System of Systems . 18
2.1.5. Internet of Things . 18
2.1.6. Adaptive Systems of Systems . 19

2.2. Model-Driven Engineering . 20
2.2.1. Model . 21
2.2.2. Metamodel . 22
2.2.3. Runtime Model . 23
2.2.4. Model Management . 25
2.2.5. Model Manipulation . 26

2.3. Eurema Modeling Language . 29
2.4. Collaborations in SoS . 32
2.5. Running example . 35

3. Modeling Language Requirements 39
3.1. Characteristics . 39
3.2. Requirements . 45
3.3. State of the Art . 52

4. Overview 57
4.1. Deurema Modeling Language . 59

4.1.1. Modeling the Adaptation Logic . 60
4.1.2. Knowledge as Runtime Models . 62
4.1.3. Modeling Collaborations . 63
4.1.4. Modeling the Adaptive SoS Architecture 65

4.2. Deurema Analysis . 66
4.3. Deurema Simulation . 67
4.4. Deurema Realization . 68

– IX –

Contents

5. Deurema Modeling Language 71
5.1. Deurema Core Concepts . 71
5.2. Deurema Runtime Models . 75

5.2.1. Runtime Model Categorization . 77
5.2.2. Runtime Model Integration . 83
5.2.3. Runtime Model Example . 85
5.2.4. Runtime Model Metamodel . 87
5.2.5. Runtime Model Summary . 88

5.3. Deurema Module Templates . 89
5.3.1. Template Variables and Runtime Model Views 92
5.3.2. Feedback Loop Module Template . 93
5.3.3. Software Module Template . 103
5.3.4. Application Module Template . 106
5.3.5. Behavior Module Template . 115

5.4. Deurema Adaptive System Architecture . 123
5.5. Deurema Collaboration . 127

5.5.1. Collaboration Structure . 129
5.5.2. Collaboration Knowledge . 131
5.5.3. Collaboration Choreography . 132
5.5.4. Collaboration Role Interfaces . 140
5.5.5. Collaboration Role Mapping . 141
5.5.6. Collaboration Deployment . 142

5.6. Deurema Reflection, Reconfiguration and Adaptation 145
5.6.1. Runtime Reconfiguration . 150
5.6.2. Runtime Adaptation . 153
5.6.3. Meta-Adaptation . 155

5.7. Deurema Modeling Language Discussion . 158
5.7.1. Summary of Deurema concepts . 158
5.7.2. Design Decisions . 163
5.7.3. Coverage of Requirements . 165

6. Analysis 167
6.1. Basic Metrics . 169

6.1.1. Causality . 169
6.1.2. Knowledge . 177
6.1.3. Adaptation Purpose . 179

6.2. Complex Metrics . 181
6.2.1. Combining Causality and Adaptation Purpose 181
6.2.2. Combining Knowledge and Adaptation Purpose 183
6.2.3. Combining Knowledge and Causality 184
6.2.4. Complex Analysis Rule Combination 186

6.3. Architectural Patterns and Design Smells . 186
6.4. Discussion . 190

– X –

Contents

7. Simulation 193
7.1. Execution State Models . 195

7.1.1. Modules and Interactions . 195
7.1.2. Module Template Elements . 199

7.2. Interpreter . 201
7.2.1. Execution Semantic Module . 201
7.2.2. Execution Semantic Deurema Elements 202
7.2.3. Execution Semantic Behavior Model 203
7.2.4. Execution Semantic Interaction . 205

7.3. Simulator . 205
7.4. Simulation Run Example . 208
7.5. Runtime Analysis . 210
7.6. Discussion . 213

8. Realization 215
8.1. Scope . 216
8.2. AUTOSAR . 217
8.3. Systems and Modules . 220
8.4. Software Module Template . 221
8.5. Application Module Template . 223
8.6. Feedback Loop Module Template . 226
8.7. Behavior Module Template . 226
8.8. Discussion . 227

8.8.1. Deurema Modeling Process . 227
8.8.2. Software Tools . 231

9. Application 233
9.1. Case Studies . 233

9.1.1. Traffic Monitoring System . 234
9.1.2. Smart Home . 238

9.2. Ensemble-Based Component Systems . 241

10.Related Work 245
10.1. General Purpose Modeling Languages . 245
10.2. Domain Specific Languages and Approaches 250
10.3. Frameworks and Patterns . 259
10.4. Experience from the Research Group . 264
10.5. Discussion . 268

11.Conclusion 269
11.1. Discussing Goals and Contribution . 269
11.2. Modeling Language Requirements and Deurema 270
11.3. Future Work . 272

– XI –

Contents

Bibliography 275
Author’s References . 275
Other References . 276

Appendix A. Deurema Metamodel 291

Appendix B. Interaction Message 301

Appendix C. Analysis Rules 305
C.1. Annotation Types . 307
C.2. Analysis Rules . 309

Appendix D. Simulation Rules 341
D.1. Simulation Rules . 341
D.2. Simulation Metrics . 362

List of Figures 367

List of Tables 375

List of Abbreviations 377

– XII –

1. Introduction
Embedded software-intensive systems can be found in many application domains such as
mobile devices, vehicles, avionics, buildings, or production systems [45, 59, 69, 71, 124, 187].
Recently, due to an increasing demand on functionality and flexibility, such beforehand isolated
systems have become interconnected to gain powerful System of Systems (SoS) solutions with
an overall robust, flexible and emergent behavior. On the one hand, SoS are envisioned to
realize modern demands on intelligent systems such as smart cities that optimize electrical
power production in so-called smart grids [112] or dynamically reorganize the traffic flow
avoiding traffic jams [69, 71, 112]. Another important domain are smart homes [45, 57]
that are designed to adapt their pool of functionality to available resources such as sensors
and actuators, different users, and situations to increase comfortability, security, and to
save costs. Additionally, SoS became important for managing catastrophic scenarios such
as search and rescue or firefighting. There, unreliable sensor networks, mobile devices and
different software systems must be spontaneously interconnected and coordinated to handle
the catastrophic situation appropriately. On the other hand, the inherent distributed nature
of SoS, the complexity of contained systems as well as their interaction raises challenges for
the development, understanding and execution of such systems [58, 81, 111, 127].

In the context of this thesis, there are two important research areas tackling the complexity
of SoS. First, the Model-Driven Engineering (MDE) approach provides standards and
techniques, where models are used as first class entities during the system development and
lifetime describing key aspects of the (software) system. In general, models raise the level of
abstraction, which enables the handling of complexity [75]. Furthermore, analysis techniques
can be applied on models to verify the overall system against its requirements and finally,
model transformation approaches as for example code generation support the implementation
of complex systems. This thesis considers the MDE research direction that is related to the
use of runtime models, where development models are kept alive during system execution,
describing key artifacts of interest, and manipulating the system behavior at runtime [38].
Such runtime models are used to specify the available knowledge within the system, where
the provided system functionality operates on this knowledge base.

The second research direction tackling the complexity of SoS is in the context of (self-)
adaptive systems. Such systems are able to react on changing environmental conditions,
requirements or user interaction by adapting its runtime behavior accordingly [156]. Conse-
quently, adaptive systems can be designed to show an overall robust system behavior that is
able to cope with software and hardware errors as well as uncertain situations. Unfortunately,
new demands concerning the modeling of such adaptive system behavior and the interplay
between different adaptive systems inside a SoS arise [49, 162].

A SoS contains several independent and diverse systems, which further show adaptive
capabilities coping with changing environmental conditions. Additionally, the isolated system
solutions have to cooperate with each other on the SoS level to reach global goals that
cannot be fulfilled by one system alone. Thereby, each system has to keep local goals in
mind, which may generate conflicts between local and global system goal optimizations. The
cooperation between systems in combination of the local adaptive capabilities lead to an

– 1 –

1. Introduction

overall emergent adaptive SoS behavior, where the SoS dynamically establishes and reorganizes
collaboration links between systems. This thesis focus on modeling such adaptive SoS, which
comprises the local adaptation capabilities of the independent systems, the representation of
the available knowledge using the runtime model approach, and the explicit specification of
system interactions by means of collaborations between independent and possibly distributed
systems. Modeling the collaboration aspects within the adaptive SoS as first class entities
further enables the analysis of the overall emergent behavior as well as helps understanding
the impact of system interactions for the local system functionality. The concrete challenges
of adaptive SoS modeling and the corresponding goals for this thesis are discussed in the next
section. Afterwards, the contributions of this thesis are outlined.

1.1. Research Challenges and Goals

In this section, the main research challenges and goals for this thesis are discussed as
they are depicted in the overview in Figure 1.1. The National Academy of Science and
Engineering emphasizes the evolution of self-contained embedded systems to Cyber-Physical
Systems (CPS) into the Internet of Things (IoT) [69]. As a consequence, single system
solutions become interconnected and finally, merge their pool of functionality into an overall
System of Systems (SoS) [130]. A key characteristic for embedded systems is the interaction
with the environment that can be a human or another system. Usually, the interaction is
enabled by physical actors that can directly manipulate parts of the system surroundings.
Beside the influence of the environment via actors, embedded systems are often equipped
with sensors to retrieve status information from the environment. Because ”the knowledge of
the system [and its environment] is uncertain and incomplete” [54], embedded systems must
permanently react on changing environmental conditions, e. g., user interaction, or changes in
its own system state, e. g., hardware status or battery level. Therefore, embedded systems
are usually designed in form of a periodical control loop following the sense, compute, act
paradigm [54, 70, 125], which enables an adaptive and robust system behavior. Those control
loops are designed close to the hardware capabilities of the embedded system, where the
software part mainly focuses on the realization of the control loop functionality. Because of the
system evolution towards CPS, the software part gains more intention realizing the domain
logic of the system, which on the one hand, extends the pool of functionalities of the system
and on the other hand, exits the focus from the hardware towards software intensive system
parts. Kephart et al. [110] transfer the control loop idea to software intensive systems in the
autonomic computing domain. A so-called feedback loop senses the underlying software system
and optimizes it according to given system requirements. Thereby, Kephart et al. [110] propose
a reference architecture for a feedback loop that consists of four subsequently performed
adaptation activities named Monitor, Analyze, Plan, and Execute (MAPE). The MAPE
feedback loop approach follows the same idea of the sense, compute, act paradigm from the
control engineering domain, but focuses rather on the software capabilities of the system than
on the plant. Therefore, the monitoring step senses the underlying software system to retrieve
the current software system state. The analysis activity checks whether an adaptation is
necessary or not and triggers the corresponding planning activity appropriately. Consequently,
analysis and planning are the compute part of the feedback loop. Finally, the execute
activity corresponds to the act step in the control engineering paradigm and forces the planned
adaptation steps to the running software system. Consequently, the autonomic system becomes
reactive at the software level showing similar adaptive and robustness properties as envisioned

– 2 –

1.1. Research Challenges and Goals

[G
5

] Sim
u

latio
n

[G6] Realization

self-
healing

self-
config

[G1] Adaptation [G2] MART

[G4] Analysis
42%

Rules

Modeling

 Energy

 Traffic

:SmartCar

:Platoon
:SmartCar

[G3] Collaboration

 Platoon

Figure 1.1: Overview of goals

by the control loop paradigm. Moreover, Holland stated ”it is feasible to understand any
System of Systems as an artificial complex adaptive system” [101]. First, because a SoS
consists of several interconnected and diverse system types ranging from small embedded
systems over cyber-physical systems to software intensive systems, it inherits such system
characteristics as adaptiveness, collaborativity and flexibility. Second, a SoS is able to combine
single capabilities by system interaction to offer new services or functionalities that cannot be
realized by a single system alone [39, 81, 130, 140]. Third, the complexity of the overall SoS
raises challenges in describing, analyzing and understanding the emerged system behavior.
The focus of this thesis is the modeling of the adaptive, interactive, emerged system behavior
according to the statement of Kilicay-Ergin et al., who say that ”the challenge is to identify
the right collection of systems that will collaborate to satisfy the client requirements” [111].
For emphasizing the emergent adaptive behavior aspect from collaborating systems within the
SoS, the term adaptive SoS is used for the rest of this thesis. Thus, the adaptation capabilities
of an adaptive SoS, which emerges from the contained systems as well as their collaborations,
must be explicitly considered, which leads to the following goal of this thesis.

Thesis goal G1: One goal of this thesis is to consider the heterogeneous char-
acteristics of an adaptive System of Systems and to model the adaptation capa-
bilities as first class entities.

Beside the first goal of understanding SoS characteristics and modeling the adaptive system
architecture, this thesis focuses on the data (knowledge) inside an adaptive SoS. Combining
the ideas of explicitly modeling the adaptation logic in form of feedback loops and model-
driven techniques that uses models as primary artifacts lead to the Models@runtime (MART)

– 3 –

1. Introduction

approach [38]. Runtime models are an abstract representation of key aspects from the running
software system defining the notion of knowledge in the reference MAPE-K feedback loop
architecture from Kephart et al. [110]. Furthermore, runtime models are maintained during
system execution and represent key points of interest of the running system. The information
in the runtime model changes according to the observed runtime phenomena of the system,
where a change in the system state or environment triggers a corresponding update in the
runtime model representation. Beside the update of system observations to its representation
in the runtime model, the MART approach enables a manipulation of the system by directly
working on the representation in the runtime models. Therefore, a change in the runtime
model leads to a corresponding change in the running system. This two way synchronization
of system observation to runtime models and vice versa is called causal connection [38]. Due
to the causal connection, all changes in the runtime model will affect the running system
itself, which allows an adaptive control of the software system on a much higher level of
abstraction directly working with the corresponding runtime models [32, 38]. Furthermore,
because adaptive SoS are complex and inherent distributed [81, 130] new challenges concerning
the knowledge management arise. For example, if systems inside the adaptive SoS interact
with each other to reach common goals, they must communicate with each other or share
information for coordination purposes to agree on a common knowledge base for further task
processing. In general, systems are not willing to provide their complete data to the outside
and restrict the amount to the minimum that is needed to perform the common tasks. This
leads to partial available knowledge and incomplete views within systems. Furthermore, the
knowledge may become outdated over time if systems miss the updating of it via the joint
interactions. Thus, runtime models may exists in different versions distributed in systems
throughout the adaptive SoS. As a consequence, the adaptive SoS has to deal with partial
available knowledge as well as outdated or versioned runtime models [86], which leads to the
following thesis goal.

Thesis goal G2: One goal of this thesis is to consider the role of knowledge,
which is captured in runtime models, and to integrate it in a modeling approach
for an adaptive System of Systems.

Having an understanding about adaptive SoS characteristics and the used knowledge raises
a new research question for describing such kind of systems. Stankovic et al. emphasize that
building adaptive SoS ”requires a deep understanding of how to model and analyze large-scale
systems’ behaviors, which necessitate large-scale coordination and cooperation” [162]. The
explicit specification of feedback loops, which describe the adaptation logic, raises the level of
abstraction and decouples self-adaptive capabilities from the domain logic [49, 110, 175]. There
are different kinds of self-* systems1 ranging from autonomous self-organizing to hierarchical
self-adaptive systems [58]. Besides single feedback loops controlling the adaptation of the core
system, also multiple feedback loops realizing different adaptation concerns and distributed,
collaborating feedback loops must be considered to achieve the desired self-adaptation for
the whole emergent adaptive SoS behavior. Additionally, in most cases, each system has
some individual self-* capabilities [156] and is aware of its environment to react on changing
demands properly [58]. However, the overall interconnected system is open in the sense that
new systems (e. g., mobile devices) may join or leave over time by providing or removing
additional functionalities. Furthermore, individual systems cooperate with other systems to

1Salehie et al. [156] subsume different adaptive capabilities of systems, as for example self-awareness, self-
optimizing, self-healing, or self-configuring, to so-called self-* properties, which further leads to the
corresponding self-* system realizing this property.

– 4 –

1.1. Research Challenges and Goals

reach overall system goals [45]. On the one hand, because of the dynamics within the system
and an upfront unknown number of system participants, there is a broad range of possible
coordination schemes between systems ranging from central coordination schemes to fully
self-organizing solutions. On the other hand, there are high demands on reliability, availability,
and robustness of systems, which leads to an overall resilient, adaptive SoS. Consequently,
the inherent distributed and flexible nature of adaptive SoS raises new demands of modeling,
understanding and analyzing system interactions [19, 162, 183]. The following thesis goal
focuses on the modeling aspect of system interactions as follows:

Thesis goal G3: One goal of this thesis is the development of a modeling lan-
guage that suits the systematic specification of system interactions by means of
collaborations as first class entities in adaptive Systems of Systems.

Unfortunately, there is currently a lack of a clear understanding of effect propagations via
manipulating runtime models by adaptation activities inside one feedback loop. Even worse,
the impact of the effect propagation for the whole adaptive SoS becomes unclear due to system
interactions [9, 162]. This holds especially for multiple collaborating feedback loops that share
parts of the local knowledge and therefore influence each other by the arising indirect coupling
over the shared knowledge base. As a consequence, effect propagation between distributed and
collaborating feedback loops must be considered. A nonambiguous modeling language enables
the explicit specification of feedback loops together with their interactions. This specification
can be used for further analysis of the overall system for understanding or predicting emergent
behavior and verification of given requirements [19]. This verification of system behavior can
be performed during the development (e. g., by applying static analysis techniques) or during
the lifetime of the adaptive SoS (e. g., by monitoring of system invariants or runtime analysis).
On basis of the beforehand motivated goals of the explicit modeling of the adaptation logic
(G1), the available knowledge (G2) and the system collaborations (G3), this thesis focuses on
the analysis of the modeled adaptive SoS as emphasized by the following goal:

Thesis goal G4: One goal of this thesis is the analysis of the specified adapta-
tion logic, system collaborations and knowledge distribution inside an adaptive
System of Systems to understand the interplay and the coupling over the shared
knowledge base between adaptive systems.

Beside the analysis, simulations of the modeled adaptive SoS behavior during the devel-
opment on different levels are important to verify whether the modeled system behaves as
expected or violates given requirements. For example, looking at system collaborations,
simulation can help understanding a single interaction protocol between systems. Later, the
emergent effects of multiple protocols between several system interactions may be investigated.
Another example is the simulation of one feedback loop on top of a single system that realizes a
specific self-* behavior. If multiple adaptation concerns are modeled by distinct feedback loops,
each concern can be separately investigated during different simulation runs. Afterwards,
emergent or contradicting adaptation effects can be investigated by combining the functionality
of the feedback loops to larger sets during the simulation. Even more, adaptive capabilities
can be grouped and simulated within one system. Finally, more and more systems can be
integrated as well as simulated towards the simulation of the complete adaptive SoS behavior.
Therefore, simulation contributes to the verification of expected adaptive SoS behavior during
the development, but needs a clear semantic of the underlying models for its execution.

Thesis goal G5: One goal of this thesis is the simulation of the modeled adaptive
System of Systems architecture on different levels to enable the investigation of
collaborative and emerged system behavior.

– 5 –

1. Introduction

According to [181], there is lack of complete knowledge, uncertainty, and a missing overall
systematic engineering approach for distributed self-adaptive software. Therefore, the tool
support for the specification of the adaptive systems and its execution as well as simulation
are very important [181]. Beside the analysis and simulation of the modeled system, which
contributes to the verification of the behavior, the modeling language concepts for specifying an
adaptive SoS should be realized in a concrete domain showing that the language concepts can be
implemented and are applicable for actual systems. Furthermore, deriving an implementation
of the modeled adaptive SoS enables its execution as well as simulation in the corresponding
domain. Depending on the domain, modeling language concepts may be differently realized by
following the dominant development paradigm of this domain. This thesis has the following
goal according to the applicability of the modeling language focusing on its realization:

Thesis goal G6: One goal of this thesis is the realization of modeling language
concepts in one specific domain to investigate the emergent behavior of the adap-
tive System of Systems in a concrete implementation and to show that the mod-
eling language concepts can cope with existing development approaches.

In summary, existing approaches enable the modeling of adaptive behavior by means of
feedback loops by adopting well-understood concepts from the control engineering domain
and transfer those to software intensive systems [110]. In the context of this thesis, the ideas
of the feedback loop modeling for adaptive systems are used to develop a modeling language
that suits the specification of adaptive SoS by considering the feedback loop modeling concept
as first class entity (G1). Furthermore, the available knowledge within adaptive systems is
a crucial point. The MART approach proposes the promising runtime model concept [38],
where system phenomena are represented, manipulated, and maintained on a higher level
of abstraction during the lifetime of the system. The goal of this thesis is to integrate the
runtime model concept in a modeling approach together with the adaptation logic of systems
(G2). Furthermore, as outlined above, the modeling approach must also consider new arising
challenges concerning partial knowledge and outdated information on the SoS level. Thus, the
modeling language must have a clear semantic for the runtime models itself, its access by the
adaptation logic as well as between different systems inside the SoS. Even worse, an adaptive
SoS is inherent distributed with emergent behavior [39, 81, 130, 140]. Therefore, contained
systems must collaborate with each other to reach SoS goals by simultaneously optimize their
own behavior according to local goals. This interplay of local and global adaptive behavior
as well as system collaborations must be systematically specified for the overall adaptive
SoS by means of nonambiguous modeling language concepts (G3). Thereby, the coupling
of the knowledge over collaboration must be considered to predict the emergent adaptation
effects. Thus, this thesis focuses on a seamless approach, whose modeling language supports
the explicit design of the adaptation logic (G1), the integration of runtime models (G2), and
the specification of system collaborations within the adaptive SoS (G3). The modeled system
behavior must be analyzable (G4) towards an understanding of adaptation effects and the
prediction to the overall SoS behavior [111, 162]. Furthermore, simulation support (G5) closes
the gap of verifying the behavior against given requirements of the modeled adaptive SoS by
executing feedback loops and system interactions. Thus, the analysis of the modeled adaptive
SoS (G4) and the simulation of the SoS behavior (G5) contributes to the verification of
required system characteristics. Finally, the modeling language concepts should be realizable
(G6) in a concrete domain that supports the implementation of the modeled behavior.

– 6 –

1.2. Contributions

1.2. Contributions

According to the beforehand motivated research challenges and goals, there are the following
contributions of this thesis. An adaptive SoS consists of several diverse system types and thus,
inherits different characteristics from these contained systems. One contribution of this thesis
is to provide a common understanding of SoS characteristics by deriving those from the state
of the art literature. Furthermore, those characteristics are used to derive requirements for a
modeling language that support the specification of the interplay between different system
types, such as embedded systems or CPS, by means of collaborations as well as the modeling
of the complete adaptive SoS architecture.

[G1] Adaptation

self-
healing

self-
config

Therefore, the main contribution of this thesis is the Deurema2

modeling language. First, Deurema considers the adaptive behavior by
means of feedback loops as first class entities. Second, multiple feedback
loops can be modeled that contribute to an overall adaptive, layered SoS
architecture. Thereby, this thesis focuses on the adaptation capabilities
of the system and therefore does not tackle the engineering or modeling
of the domain logic of adaptive systems. However, embedded systems

and CPS need an appropriate representation of the domain logic for enabling real-time static
reconfiguration and dynamic adaptation that considers nonfunctional requirements of these
systems such as time. Therefore, one contribution of this thesis is the support of different,
domain specific development paradigms and providing appropriate modeling concepts that
enable the integration of domain aspects in the adaptive capabilities of the SoS. Additional
to the feedback loops, Deurema supports two state of the art development paradigms. First,
the component-based modeling is the dominant development approach for modern embedded,
robotic and automotive systems. Those system types are contained in an adaptive SoS and
thus, relevant for modeling the adaptation logic. Therefore, Deurema natively supports this
wide range of embedded as well as cyber-physical systems and integrates the component-
based approach with adaptive behavior specifications. Second, inspired by state of the art
modeling techniques from the MDE, one contribution of this thesis is the first class support
of rule-based behavior modeling via graph transformations. The MDE considers models as
primary development artifacts [75, 90], where usually a huge number of different models are
created during the development of the contained systems within the adaptive SoS. Those
models describe different aspects such as the structure or behavior of the system. They
are used to derive an implementation from the modeled system aspects, e. g., using code
generation techniques, towards a realization of the envisioned system. Furthermore, the
development models can be kept alive during the lifetime of the adaptive SoS following the
MART approach [38] as outlined above. As a consequence, models play an important role
during the development and lifetime of the adaptive SoS, which is a main motivation why
they gain a specific attention in the context of this thesis. However, almost all models can
be represented as graphs. Thus, the direct support of the powerful graph transformation
concept within the Deurema modeling language enables the manipulation and integration
of models into the modeling of the adaptation logic. Both paradigms, the component-based
development and graph transformation, complement each other, where the former considers
the development of a wide range of embedded as well as cyber-physical system types and

2The Distributed Eurema with Collaborations (Deurema) modeling language extends a previous modeling
language called Eurema, where this modeling language name is an abbreviation for Executable Runtime
Megamodels (Eurema).

– 7 –

1. Introduction

the latter focuses on the general handling of models caused by the dominant MDE approach
in software engineering. Thus, the integration of both paradigms into a modeling language
for adaptive behavior modeling is a contribution of this thesis and supports a wide range of
adaptive SoS architectures. Summarizing the contributions of this thesis with respect to the
goal G1, this thesis provides the Deurema modeling language that explicitly considers the
adaptive behavior of a system by means of feedback loops together with the local behavior
description, which can be modeled following the component-based development paradigm,
and model manipulations using a rule-based graph transformation approach from the MDE.

[G2] MART

The starting point for describing the adaptation logic of adaptive
SoS is the MAPE-K feedback loop approach from Kephart et al. [110].
This thesis considers the knowledge in this approach as first class
modeling entities in form of runtime models following the MART
approach [38] as emphasized by the goal G2. Because runtime models
encapsulate the complete available knowledge, they must have a clear
semantic that on the one hand, facilitates their integration into the

local adaptation logic and on the other hand, enables an unambiguous handling such as
its access and distribution throughout the adaptive SoS via system collaborations. This
thesis contributes with a runtime model categorization that refines the purpose of runtime
models and gives insights into the contained information. Based on the common notion of
runtime model purposes, this thesis proposes an integration concept for runtime models into
the adaptation logic within the Deurema modeling language. Thereby, this thesis does not
restrict the content of the runtime model information, but rather supports the encapsulation
of arbitrary, domain specific information and proposes a model management concept for the
uniform handling of runtime models for all systems inside the adaptive SoS. Furthermore, the
model management concept facilitates partial knowledge exchange between system interactions
and the modeling of visibility restrictions as motivated above. Finally, this thesis shows how
runtime models can be seamlessly integrated into the beforehand mentioned component-based
and rule-based graph transformation development paradigms, which leads to a consistent
handling of the knowledge across potential multiple domains in the overall adaptive SoS.

[G3] Collaboration

With respect to system interactions as highlighted by the goal G3,
one contribution of this thesis is the systematical specification of
collaborations among independent, distributed feedback loops as they
are contained in the independent systems within the adaptive SoS.
Within Deurema, collaborations are considered as first class entities.
Furthermore, Deurema provides concepts for modeling the interplay
(protocol) between systems during the collaboration. On the one

hand, Deurema fosters the separation of concerns by describing local adaptation behavior
and collaboration related behavior separately. On the other hand, it provides concepts for
integrating the collaboration behavior into the local feedback loops of the adaptive systems.
As a consequence, the integration of the runtime model concept and the two domain specific
modeling paradigms into the collaboration aspects are considered as well. Because different
domains and problems necessitate several modeling guidelines or best practices, it is not
in the focus of this thesis to propose a special development process or architectural design
for a specific problem or domain. The presented modeling concepts suit the specification of
collaborative feedback loops and its dependencies. The use of these concepts depends on
the concrete application or system developer. Therefore, this thesis focuses on the Deurema
modeling language approach that facilitates the specification of the adaptation logic (G1),

– 8 –

1.2. Contributions

the seamless integration of runtime models (G2), and the modeling of system interactions by
means of collaborations (G3) to describe the overall emergent adaptive behavior of a layered
SoS architecture.

[G4] Analysis

On basis of the Deurema modeling language concepts, one contri-
bution of this thesis is the support for the analysis of the adaptive and
collaborative SoS behavior considering the goal G4. First, the explicit
modeling of feedback loops and their collaborations can be used to
describe the local adaptation capabilities as well as the interplay of
systems in the overall adaptive SoS architecture. Therefore, typical

adaptation structures such as hierarchical or distributed control can be identified and their
effects analyzed. Second, due to the complexity of the emergent adaptive SoS behavior, the
overall adaptation effects may be hard to predict. For the verification of the adaptive SoS
behavior, this thesis proposes a set of analysis rules to investigate the causality between
adaptation effects, the usage as well as distribution of knowledge, and the local adaptation
purpose of feedback loops. On basis of this three basic metrics, this thesis combines analysis
rules, such as the causality of adaptation effects together with the access of available runtime
models, to investigate more complex relationships inside the modeled SoS architecture, which
contributes to a common understanding of the emerged SoS behavior. By investigating system
interaction, the coupling of feedback loops becomes visible and the effects of knowledge
propagation can be analyzed. At the highest abstraction layer, this thesis identifies a set of
architectural patterns, such as hierarchical or layered control, as well as architectural flaws,
which identify possible system threats. All presented analysis rules in this thesis can be
statically (at development time) and dynamically (at runtime) applied on the adaptive SoS
architecture, which is modeled with the Deurema language. Therefore, the analysis rules
of this thesis contribute to a common understanding of adaptive SoS behavior (G4) and
propose a general approach, which can be extended and applied for specific investigations in a
corresponding domain.

[G5] Simulation

Another possibility of verifying the modeled SoS architecture is sim-
ulation. In general, simulation techniques can be applied on different
level of abstraction. For example, the testing of one self-* capability
may involve the execution of a single feedback loop, where the veri-
fication of an interaction protocol may comprise several systems and
multiple simulation runs to test different variants of the protocol. This
thesis describes the Deurema execution framework, which can directly

execute Deurema models. Thereby, the developer can choose, which parts of the overall
adaptive SoS should be simulated ranging from a single feedback loop, over the execution
of a more complex system interaction towards the execution of the complete adaptive SoS
architecture. Because of a missing overall formal theory of distributed control, it is not
a focus of this thesis to present formal proofs of the modeled overall collaborative system
behavior. However, the simulation capabilities of the Deurema execution framework help to
understand the interplay between distributed feedback loops and the developer can verify if
the adaptive behavior works as expected. Furthermore, the beforehand mentioned analysis
rules for Deurema models can be applied during simulation, which explicitly pinpoint to
the influencing parts of the executed adaptation behavior and the knowledge propagation
throughout the adaptive SoS. Additionally, the simulation of the collaborative, adaptive
behavior supports timing and probabilistic effects as they are inherently needed for embedded
systems and CPS.

– 9 –

1. Introduction

[G6] Realization

:SmartCar

Beside the analysis and the simulation of the modeled SoS architec-
ture, realizing the modeling language concepts for a concrete execution
platform contributes to a possible implementation of the SoS requested
by the goal G6. Therefore, this thesis discusses the realization of
the Deurema modeling language using a state of the art standard
from the automotive domain called Automotive Open System Architec-

ture (AUTOSAR). Thereby, a mapping of Deurema concepts to the AUTOSAR framework
is presented, which is prototypically implemented with the help of software tools from the
automotive industry. Although the presented realization of the Deurema concepts in this thesis
has the focus on the AUTOSAR standard, the general mapping can be transferred to other
domains of interest or execution frameworks as well. However, the AUTOSAR framework is
the current de facto standard of the automotive industry, which shows the applicability of the
Deurema modeling language to a broad range of actual systems.

Finally, one contribution of this thesis is the application of the Deurema modeling language
to existing approaches. Therefore, state of the art case studies and frameworks from literature
are modeled respectively compared with Deurema. On the one hand, this thesis has not the
focus to judge about existing adaptive architecture or frameworks nor providing metrics to
evaluate existing approaches. On the other hand, the evaluation shows that the concepts of
the Deurema modeling language are powerful enough covering current approaches. Thereby,
typical patterns as introduced by the analysis rules occur in the evaluated case studies, which
strengthened the argumentation of using the proposed analysis rules to highlight special
architectural constellations or interaction patterns.

1.3. Structure

The thesis is structured as follows and the related own former work is cited along for each
chapter.

Chapter 2: This chapter introduces important terms, frameworks and different system
types that are necessary to understand the context of this thesis. Moreover, a running example
for this thesis is introduced that is used for explaining the Deurema modeling language
concepts. This chapter is partially based on definitions and terms as already introduced in
the own former work in [1, 3, 11].

Chapter 3: After having a common understanding about the context of this thesis, this
chapter motivates the need for a new modeling language for adaptive SoS, which at first
necessitates the understanding of adaptive SoS characteristics. Furthermore, requirements for
the Deurema modeling language are derived from the outlined SoS characteristics and the
state of the art literature in modeling adaptive SoS is discussed. This chapter enhances the
previous own work in [11, 14].

Chapter 4: With regards to the discussed modeling gaps in Chapter 3, this chapter gives
an overview about the Deurema modeling language concepts. Thereby, this chapter goes
through the main ideas of modeling the local adaptation logic, integrating the knowledge,
and specifying system collaborations in Deurema. Furthermore, it pinpoints to the ideas
of analyzing, simulating and realizing a modeled adaptive SoS architecture. Based on this
chapter, the main ideas are introduced in detail in the subsequently chapters. This chapter is
based on the former own work in [9, 10].

Chapter 5: The Deurema modeling language is presented in this chapter covering the
goal of the direct modeling of the adaptation logic (G1). Furthermore, this chapter presents

– 10 –

1.3. Structure

the runtime model categorization, which enables the integration of runtime models into the
adaptation logic (G2) and is partially based on former work described in [9]. Afterwards, the
Deurema collaboration concept is introduced in detail, which can be used to explicitly model
system interactions (G3), which is also partially described in [10]. Furthermore, this chapter
considers different domains by means of integrating the component-based and rule-based
paradigms into Deurema. According to the integration of different domains, this thesis benefits
from the research that is not directly connected to the modeling of adaptive SoS, but rather
tackles different domains such as embedded systems and CPS as described in the own former
research in [2, 7, 8, 12, 13, 14]. Finally, reconfiguration and adaptation concepts of Deurema
are introduced in this chapter.

Chapter 6: This chapter discusses the analysis capabilities of the Deurema modeling
language, which contributes to the thesis goal of verifying the modeled, adaptive SoS architec-
ture (G4). Therefore, several concrete analysis rules are introduced that cover dependencies
between feedback loops, knowledge distribution, the causality of adaptation effects, and collab-
orations. An early version of such analysis rules on basis of runtime models is described in [9].
Afterwards, this chapter describes rule combinations to identify patterns and architectural
design flaws within the adaptive SoS.

Chapter 7: This chapter introduces the Deurema simulation framework, which contributes
to the thesis goal G5. First, a model interpreter defines the concrete semantic for each Deurema
model element, which can be aggregated to simulate the adaptive SoS architecture. This
thesis benefits from the former experience of model execution described in [6].

Chapter 8: This chapter comprises a mapping from the Deurema modeling language
concepts to the AUTOSAR standard in the automotive domain as requested by goal G6.
Furthermore, a prototypical implementation for a concrete example is discussed, where the
used industry software tools are outlined. The mapping description is based on experience
discussed in own former research as outlined in [2, 7, 8, 14].

Chapter 9: For the application of the Deurema modeling language, this chapter models
state of the art scenarios and discusses related modeling approaches. The research scenarios
are comprehensively discussed in [11], whereas one is partially modeled in the former work
in [10]. However, this chapter discusses the overall applicability of the Deurema modeling
language and pinpoints to found architectural patterns in the modeled examples, which aims
for the goal G6.

Chapter 10: This chapter compares and shows differences of the Deurema modeling
language with other modeling languages and frameworks. Additionally, it outlines the history
of own former work, which leads to the Deurema modeling language. Finally, it discusses how
the derived requirements from Chapter 3 are realized by Deurema and related approaches.

Chapter 11: This chapter summarizes the thesis, recaps the introduced Deurema concepts
and discusses their conformance to the derived thesis goals in Chapter 1. Furthermore, this
chapter outlines possible future work.

– 11 –

2. Preliminaries
This chapter introduces terms and definitions that are necessary and in the focus of this thesis.
Thereby, it retrieves viewpoints from current literature about different system types to provide
a common understanding for adaptive SoS in Section 2.1. Furthermore, important terms from
the Model-Driven Engineering (MDE) domain are introduced in Section 2.2. Subsequently, the
predecessor modeling language Eurema of the Deurema approach is discussed in Section 2.3
to highlight the research background of this thesis. With this background in mind, a common
understanding of system collaboration is derived from literature in Section 2.4. Finally, the
running example for this thesis is described in Section 2.5.

2.1. System Types
This section subsumes different system types. First, self-adaptive systems are introduced
that provide flexible, dynamic behavior by providing so-called self-* properties. Second,
systems that have to integrate physical elements together with software aspects are discussed.
Therefore, the term Cyber-Physical System is outlined. Afterwards, the system size is
increased, which leads to networks of cyber-physical systems and further to so-called Systems
of Systems. This section ends with a discussion about the different introduced system types
and pinpoints to the term adaptive Systems of Systems, which is in the focus of this thesis.

2.1.1. Self-Adaptive System
Definitions for (self-)adaptive systems vary a lot in the literature depending on the research
viewpoint and the application domain. In general, there are many challenges and research
questions for self-adaptive systems as discussed in [58, 127]. Furthermore, a broad discussion
about different viewpoints concerning self-adaptive software is given by Salehie et al. [156].
They identify different domains, as for example autonomic computing [110], adaptive pro-
gramming, software evolution, or software-intensive systems that influence the definition
and viewpoint for a self-adaptive system. The common basis for all viewpoints is twofold.
First, the life cycle of a self-adaptive system does not end after the development phase of the
software or initial deployment on the target platform, but rather is continued during system
execution [156]. Therefore, the system is able to react on changes in the environment, failures,
or new requirements at runtime. Second, self-adaptive software provides so-called self-*
properties of the system as for example self-configuration, self-optimization, self-healing, or
self-protection [110]. The key requirement for the self-* capabilities is that the system is aware
of its own state (self-awareness [129, 173]), requirements/goals (requirements-awareness [158]),
or context (context-awareness [173]). As a consequence, this thesis refers to those *-aware
property in the definition for a self-adaptive system as follows:

Definition Self-Adaptive System: A Self-Adaptive System (SAS) is a software system
that is aware of its own state, requirements, or context at runtime. Furthermore, the system
uses this runtime information for adjusting its behavior or structure according to the systems’
purposes.

– 13 –

2. Preliminaries

According to the discussed goals in Chapter 1, this thesis focuses on self-adaptive systems
that control their dynamic behavior with the help of a feedback mechanism. This feedback
control is widely used in embedded systems by designing the control algorithm in form of a
feedback loop. In general, there are two ways specifying the adaptive capabilities of a software
system, which are the internal and external approach [156]. The internal approach directly
implements the adaptation logic within the domain logic of a software system, whereas the
external approach splits both into separated parts that are called adaptation engine and
adaptable software as shown on the left in Figure 2.1. Furthermore, from the autonomic
computing domain, Kephart et al. [110] propose a reference architecture with an autonomic
manager (adaptation engine) that is decoupled from the managed system (adaptable software).
In this approach, the managed system runs the application logic, which can be influenced by
the autonomic manager that executed the adaptation logic. As a consequence, the autonomic
manager introduces the beforehand mentioned self-* capabilities to the system. As depicted
on the right in Figure 2.1, Kephart et al. propose four dedicated adaptation activities, namely
Monitor, Analyze, Plan, and Execute (MAPE) that are consecutively executed. The MAPE
activities share a common knowledge base (MAPE-K) that for example consists of a set
of different runtime models. The MAPE activities form a feedback loop that is usually
periodically executed. First, the monitor activity retrieves information from the running
system that is extracted via (software) sensors and updated in the knowledge base. Second,
the analyze activity checks on basis of the updated knowledge whether an adaptation of
the system is needed to fulfill given requirements and goals. The result of the analysis is
also annotated in the common knowledge base. Third, depending on the analysis result,
the planning activity derives proper adaptation strategies for the system that are executed
afterwards. Therefore, the execute activity uses so-called effectors to force the adaptation
changes back to the running system.

Se
lf

-A
d

a
p

ti
ve

 S
o

ft
w

a
re

Se
lf

-A
d

a
p

ti
ve

 S
o

ft
w

a
re

Adaptation Engine
(Adaptation Logic)

Adaptable Software
(Domain Logic)

sensing effecting

Adaptation Engine

Adaptable Software

Knowledge

Sensors Effectors

 Monitor

 Analyze Plan

 Execute

Figure 2.1: On the left: external adaptation approach [156, 175];
On the right: MAPE-K feedback loop [110]

Orthogonal to the external adaptation approach and the proposed reference architecture,
adaptive behavior can be realized using different approaches. The state of the art literature
distinguishes between system reconfiguration and adaptation [117, 120, 134, 156, 169, 180],
whereas both techniques can be applied to change the system behavior via parameter or
structural changes [134].

First, a system reconfigures its behavior by choosing predefined configurations or reconfig-
uring operations for changing its system behavior or structure. The key point to identify a

– 14 –

2.1. System Types

reconfiguration is that the developer has to specify the possible configuration space before
the system adaptation happens. Applying reconfiguration techniques has the advantage that
the possible configuration space is known in advance. Therefore, applying a reconfiguration
suits resource restricted systems such as embedded or cyber-physical systems. Furthermore, it
enables the changing of the system structure or behavior under timing constraints as necessary
for hard real-time systems. Because of the predefined reconfiguration space, applying reconfig-
uration techniques is more statically than using adaptation approaches. The specification of
available reconfiguration capabilities is possible at development time as usually applied for
embedded systems using the AUTOSAR standard [14, 31, 82, 93, 170] or even at runtime [57].
Furthermore, possible reconfigurations are typically specified using variability models [57],
predefined operations [169], or graph transformation techniques [82, 176], where the desired
modeled configurations benefit well the given goals.

Second, system adaptation enables the changing of the systems’ behavior or structure
without defining all possible combinations of the configuration space in advance. Therefore,
the same models can be applied for system adaptation as used for system reconfiguration.
The difference is that the sequence of operations is not specified (or not known) before the
adaptation happens. The system is aware of its adaptation capabilities and dynamically
decides which operations are applied to reach the desired adaptation effect. Thereby, the
system usually has a utility function that estimates the behavior of the system, whereas the
adaptation operations can be used to optimize the behavior step by step towards the given
goals. Consequently, an advantage of using system adaptation techniques is the reduced effort
to specify possible adaptation steps rather than defining all combinations as done for software
reconfiguration as discussed above. Thus, the system is more flexible by moving through the
possible configuration space to reach its goals. A drawback of system adaptation is the raising
complexity of predicting adaptation effects, because the sequence of adaptation operations is
not known in advance. Therefore, the application of system adaptation raises problems in
resource restricted and timing constrained systems.

However, the distinction between software reconfiguration and adaptation is not always
clear in the literature and highly depends on the application domain. Broad discussions about
these two terms and related techniques are given, among others, in [117, 134, 156]. For this
thesis, a system that uses one or both of the approaches discussed above is considered as
adaptive system.

Another dimension is the target of an adaptation that can be a parameter or the structure
of the software system [134]. Because the adaptation effects are similar, and real system
implementation often uses a mixture of both approaches, a clear distinction is hard to define.
Therefore, this thesis considers both, parameter and structural adaptation.

As emphasized by Oreizy et al. [143] not only the adaptive system has to change its behavior
to reach current needs, but also the adaptation logic itself must evolve over time to reflect
changing requirements. The ability of adapting the adaptation engine is known as meta-
adaptation [92, 99]. Examples for the successful application of meta-adaptation are given by
Gui et al. [92], who introduce a framework that reuses adaptive components to change the
adaptation logic, and by Piechnick et al. [149] in the context of smart environments.

Another research direction that uses variability models is Software Product Line Engineering
(SPLE). In contrast to the reconfiguration of the SAS behavior, SPLE focuses on the
customization of the software with respect to the underlying product [150]. Therefore,
variability models in SPLE are planned during the development and describe different variants
of the product, whereas the decision of a chosen configuration is explicitly done during the

– 15 –

2. Preliminaries

development from the product management [135, 150]. Thus, in traditional SPLE the software
configuration is defined during development, leads to an appropriate software deployment on
the corresponding product, and cannot be reconfigured at runtime [94]. However, combining
the ideas of runtime reconfiguration and software product lines leads to the dynamic SPLE
approach, which shifts the decision of an appropriate software configuration to the runtime of
the system (product). Consequently, for the dynamic SPLE approach, the same techniques
for runtime adaptation as in SAS can be applied [94].

In summary, self-adaptation is important for many system types to cope with behavioral
changes during system execution. It is a key feature for fulfilling high demands on flexibility,
elasticity, dependability, and robustness at runtime [58]. Therefore, adaptive characteristics
are needed for large systems, which are discussed below, and lead to different requirements
for a modeling language that copes with collaboration in adaptive SoS. Furthermore, there
are different levels of self-* properties [156] as shown in Figure 2.2 indicating a hierarchy
of adaptive capabilities of the corresponding SAS. At the bottom, primitive properties
enable an awareness of the system concerning its own state, requirements, or context. Major
properties, at the middle layer in Figure 2.2, realize complex adaptive functionalities such
as self-optimizing or self-healing on basis of the available primitive *-awareness properties.
Finally, the general adaptive layer at the top copes with global adaptation strategies for the
whole system. A comprehensive discussion about the taxonomy of self-* properties is given
in [156].

Property
Level

Self-Configuring Self-Healing
Self-Optimizing Self-Protecting

Self-Adaptivness

primitiv

major

general

Self-, Context-, Requirements-
Awareness

enable

enable

Figure 2.2: Hierarchy of self-* properties [156]

2.1.2. Cyber-Physical System

Cyber-Physical Systems (CPS) evolve from embedded systems that ”combine physical processes
with computing” [123, 126]. Whereas embedded systems are mostly closed, self-contained,
and do not ”expose the computing capability to the outside” [123], an increasing number of
devices and demands of combined functionalities lead to a more and more interconnection of
embedded systems to so-called Networked Embedded Systems (NES) [69]. As a consequence,
such isolated control systems and afterwards interconnected embedded systems become open
to their environment and build different variants of cyber-physical systems that integrate
the cyber (software) and physical part [59]. Due to CPS are a federation of interconnected
embedded systems, CPS inherit the sensing and interaction capabilities with the environment
from the characteristics of embedded systems as discussed in [98]. Furthermore, different

– 16 –

2.1. System Types

research fields have to be considered that influence the design and solution space for CPS as
for example distributed control and distributed computing [185].

Although there are several definitions for cyber-physical systems in the literature, e. g.,
from Broy et al. [45], acatech the National Academy of Science [69], or Choi et al. [59], all
definitions emphasize the tight coupling of physical processes and software computation that
is characteristic for a cyber-physical system. Therefore, this thesis uses the following short,
but precise definition from Lee et al. [126].

Definition Cyber-Physical System: A Cyber-Physical System (CPS) is a system that
integrates computation with physical processes.

It has to be noted that integration implies a tight coupling between the cyber and physical
parts with the effect that physical components in the system, e. g., an actuator or sensor may
influence the software part and vice versa. Furthermore, because of the historical roots of CPS
from the embedded domain and control engineering, CPS usually use feedback loops to cope
with uncertainties in the environment or the hardware (e. g., sensor noise). Therefore, CPS
often have several adaptive capabilities as discussed for SAS in Section 2.1.1. A comprehensive
discussion about CPS and related system types is given by Lee [126] and Kim et al. [112].

2.1.3. Networked Cyber-Physical System
The openness of CPS lead to a varying number of subsystems that interactively join and leave
the overall system. As a consequence, clear system borders cannot be defined. This causes
further challenges concerning the availability of a certain functionality, the reliability of the
system, fault tolerance, security and safety issues. In the following, this thesis emphasizes these
additional challenges of an open system that is composed of multiple networked subsystems
by the more specific term Networked Cyber-Physical System (NCPS). Definitions from the
literature, such as Kim et al. [113] or Choi et al. [59], emphasize the distributed nature of a
NCPS and the resulting need for coordination schemes between independent subsystems. This
thesis combines both viewpoints from [113] and [59] to the following definition, which is used
for the rest of this thesis.

Definition Networked Cyber-Physical System: A Networked Cyber-Physical System
(NCPS) consists of distributed components (subsystems) that have diverse capabilities. A
NCPS requires a coordination scheme for its distributed subsystems that must balance between
autonomy and cooperation.

Furthermore, Kim et al. [113] state that the autonomous subsystems must be considered as
unreliable and loosely synchronized. This thesis follows this argumentation due to the openness
characteristic of the NCPS, where subsystems may arbitrary leave or join the NCPS over
time. Additionally, NCPS must deal with the same problems of the tight coupling between
physical components and software parts as described for CPS in Section 2.1.2. Moreover, often
each autonomous subsystem within a NCPS must adapt its behavior according to its peer
subsystems, while considering the interplay between its own behavior, the other subsystems’
behavior, and the overall system-level behavior as defined by the collaborations. Ruling such
NCPS is challenging due to the complexity, dynamics, and emergence and it is often not
feasible to develop once and forever an autonomous subsystem that then lives within a NCPS
in the long term without any need to adapt to changes. Therefore, it is highly attractive
that NCPS are self-adaptive at the level of the individual autonomous subsystems and at the
overall system-level to cope with the emergent behavior, to adapt and absorb open, dynamic,
and deviating NCPS architectures, and to adapt to open and dynamic contexts. However, due
to the composition of subsystems that autonomously adapt to their individual contexts into a

– 17 –

2. Preliminaries

NCPS, also unwanted co-adaptation effects may emerge from interference of the individual
feedback loops placed in the autonomous subsystems [133].

2.1.4. System of Systems

Following the trend of integrating more and more independent subsystems will reach the
point, where system borders become unclear. Isolated system solutions become integrated
into federations of distributed systems. This thesis refers to such kind of systems by using
the term System of Systems (SoS) [172]. Similar observations concerning the emergence
of such systems and the importance of their collaborating subsystems have been made for
many related research areas as for example Ultra-Large-Scale Systems (ULSS) [142], and
for particular technological domains as software-intensive systems [184], next generation of
embedded real-time systems [42, 141, 159, 165], vehicular systems [21], and service-based
systems [68].

This thesis defines the term SoS following the ideas in the research agenda from [172] and
from Gezgin et al. [81] as follows.

Definition System of Systems: A System of Systems (SoS) consist of other (software)
systems, where each system is developed, operated, evolved, and governed independently from
the other systems. Systems in a SoS are networked to achieve common goals.

According to the definition, the overall behavior for the SoS emerges from the capabilities
of each contained system solution and the interaction between contained systems. On the one
hand, each system cannot achieve the overall SoS goals by its own, which is the initial trigger
to cooperate with each other and emerge to a bigger system. On the other hand, systems
still follow local optimization strategies according to their local subgoals. Furthermore, a
clear distinction between NCPS and SoS cannot be given. Depending on different domains
the terms NCPS, SoS, and ULSS are used synonymously in the literature. However, a key
characteristic of a SoS is the independent management and the high heterogeneity of contained
systems in contrast to CPS and NCPS, where system parts become integrated into one system
solution. Consequently, there is no static integration of systems in a SoS and the available
pool of functionality emerges from the independent capabilities of the contained systems.

Krygiel [121] distinguishes a special subset of SoS that are characterized by a completely
decentralized control scheme, named Federation of Systems (FoS). There, a dedicated central
control entity is missing and the systems in the overall FoS must cooperate and collaborate
with each other to reach global goals [140].

2.1.5. Internet of Things

The Internet of Things (IoT) paradigm is the enabling technology to link physical devices
and systems [69]. More and more devices have access to the Internet and thus become
interconnected. As stated by the European Research Cluster in the Internet of Things ”IoT
refers to objects (”things”) and the virtual representations of these objects on the Internet.” [104].
Furthermore, ”the variability and heterogeneity of devices to be considered in this domain
challenges the possibilities of interoperate the devices” [74]. Therefore, on the one hand, the
IoT enables the emergence of devices, services, and systems to the above described SoS [130].
On the other hand, the huge number of different devices introduces a high heterogeneity
of available functions and services as well as different technologies, network protocols, and
modeling techniques. A survey about application domains and a broad discussion about the
evolution of the IoT are given in [20, 104].

– 18 –

2.1. System Types

2.1.6. Adaptive Systems of Systems

Depending on the research domain, different viewpoints on the system types exist in the
literature. This thesis does not claim unifying those different viewpoints, but rather gives
an overview about different kinds of systems by citing the state of the art literature for each
system type. Therefore, characteristics that appear in CPS can also be found in NCPS as well
as in SoS. Because of the different terminology between NCPS, ULSS, and SoS, this thesis
refers to the term SoS as synonym for all those system types. For this thesis, it is important
that a SoS integrates different CPS and therefore has to deal with the complete spectrum of
large software intensive systems as well as the tight coupling to physical elements of the real
world.

Furthermore, with respect to the goals, this thesis focuses on the collaboration aspect of
system interactions within the overall SoS. These system collaborations are the cause of
the emergent SoS behavior. Additionally, systems within the SoS realize individual adaptive
capabilities that optimizes its own local behavior as motivated above. Due to the joint system
interactions, such local adaptive capabilities leave the border of one system, emerges into
the overall SoS behavior, and evolves during the lifetime of the SoS coping with changing
requirements. Thus, there are two main aspects of this thesis focusing on SoS. On the one
hand, it considers the individual, adaptive local behavior of systems as first class entity,
whereas these systems are contained in the SoS. On the other hand, this thesis considers
collaborations as first class entities linking independent systems over joint interactions, which
contributes to the emergent SoS behavior. To emphasize both aspects, the term adaptive
System of Systems is used for the rest of this thesis, which is defined as follows.

Definition Adaptive System of Systems: An adaptive System of Systems is a SoS,
where the individual adaptive capabilities of contained (software) systems leave the local system
borders and emerge via system collaborations into adaptive SoS capabilities. The adaptive SoS
has to balance between global and local goal optimization of available systems by dynamically
arrange, establish, and remove collaborations between those.

Inspired by [69], Figure 2.3 shows the evolution of different system types with respect to
their size and connectivity of contained subsystems, which summarizes the system types
discussed in this section and finally, leads to the adaptive SoS system type as defined above. At
first, embedded systems already introduce important characteristics, such as the use of control
loops, to guarantee a stable set on functionality even in uncertain environments. Furthermore,
they are coupled with the physical context via sensors and actuators, which enables a direct
influence of the system surroundings. Concerning the size, embedded systems are considered
as self-contained, closed systems realizing a dedicated piece of functionality such as the
triggering of an airbag in a car. The next bigger system type in Figure 2.3 describes networked
embedded systems, which are essentially embedded systems that become interconnected via
buses (e. g., in a car) or the Internet (e. g., mobile phones). Cyber-Physical Systems are the
next step on the evolution scale, where the software (cyber) part becomes much more powerful.
Furthermore, a CPS often runs multiple feedback loops and controls several subsystems. Thus,
the diversity of contained systems challenges the design and development of CPS. Examples
for CPS are modern cars that contain more than one hundred interconnected, independent
control units with million lines of code [46]. Finally, SoS (and all other synonymously used
system types) are a federation of several independent systems. Thereby, the openness of SoS
and the need of collaboration among the containing systems are important characteristics.
The IoT can be seen as enabling technology [104] that establishes links between all kind of
system types and devices supporting the interconnection and emergence of such systems.

– 19 –

2. Preliminaries

Size

Evolution

Embedded
System

Networked Embedded
 System

Cyber-Physical System

System of Systems

NCPS

ULSS

Internet of Things as Enabling Technology

FoS

adaptive system collaborations

Adaptive System of Systems

Figure 2.3: System type evolution

Considering the adaptive behavior in combination with the collaboration among systems
within the SoS lead to the adaptive SoS as biggest and heterogeneous system shown at the
top in Figure 2.3.

2.2. Model-Driven Engineering

While following the definitions and discussion of different system types in the former Section 2.1,
an increasing complexity of nowadays systems can be observed. One approach for tackling
the complexity of large software systems is the usage of Model-Driven Engineering (MDE)
techniques. The goals of the MDE are twofold. First, the MDE abstracts from ”complexities
of the underlying implementation platform” [75] by handling models as first-class entities
during the software development. Second, as stated by France et al. MDE ”hide[s] the
complexities of runtime phenomena” [75] by using runtime models that describe the context
of the software system or the system itself during execution. Furthermore, runtime models
can be used to describe system evolution or adaptation of the running system. In former
own research, different MDE techniques such as model transformation [2, 3, 7, 14] or model
verification techniques [6, 8] are applied. Additionally, with respect to the goals of this thesis
as motivated in Chapter 1, the Deurema modeling language is developed that uses different
MDE techniques to enable system analysis and simulation capabilities. In the following, with
this motivation in mind, important terms that are related to MDE are clarified.

First, the term model-driven engineering itself is discussed following the definition from
France et al. [75].

Definition Model-Driven Engineering: In Model-Driven Engineering (MDE), models
are the primary development artifacts. MDE tackles complexity by describing complex software
systems via models at multiple levels of abstraction and from different viewpoints. Furthermore,
MDE supports techniques for model simulation, verification, and transformation.

Beside France et al. also other researches, such as Schmidt [161], discuss that MDE is a
set of different techniques, technologies, and frameworks. The common view is that models
are the primary development artifact. Even source code is seen as a model, representing the
system behavior as stated in [75].

– 20 –

2.2. Model-Driven Engineering

Related to the MDE, the Model-Driven Architecture (MDA), as defined by the Object
Management Group (OMG), takes the idea of using models as first-class entities and extends it
by providing standards as well as a whole development process. The MDA includes standards
for model representation, exchange, modeling languages, transformation, and execution of
models [90]. Furthermore, the OMG defines several layers within a conceptual framework
with different model types. For example, a Platform Independent Model (PIM) is used to
describe high level aspects of the system related to the current problem domain. Additionally,
according to the MDA approach, a Platform Specific Model (PSM), which contains more
specific information about the used realization technology or framework, should be derived
from the PIM using model transformation techniques [44, 90]. Appropriate modeling languages,
e. g., the Unified Modeling Language (UML) [87] or domain specific languages, are needed
for all these model types on different abstraction layers. The transformation between model
types and the definition of modeling languages is enabled by metamodels as further discussed
in the next sections. Comprehensive discussions about MDA principles can be found in [44,
90, 115]. In the following, the key concepts from the MDE, which are used in the context of
this thesis, are subsequently introduced. At first, the model term is defined, because it is the
basic and primary concept within the MDE. Afterwards, metamodels are introduced that
can be used to define the concepts of a model or a modeling language. Subsequently, the
special research direction of using runtime models is discussed, which is the basic concept
of knowledge representation within this thesis. Finally, two MDE techniques are introduced,
whereas the first tackles the management of models during development and runtime, also
known as megamodel approach, and the second technique considers graph transformation for
the manipulation of models.

2.2.1. Model
According to the definition of the MDE, models play a key role for system and software
development. There are varying definitions of a model depending on its purpose of usage.
This thesis follows the definition from own former work in [1] that describe three main
characteristics of a model.

Definition Model: A model is characterized by the following three elements: an (factual
or envisioned) original the model refers to, a purpose that defines what the model should be
used for, and an abstraction function that maps only purposeful and relevant characteristics
of the original to the model.

This definition goes hand in hand with the model definition in the context of the MDA
given by the OMG in [90, p. 5] and enriches the model definition of [98], which focuses on the
abstraction only. Due to the definition, a model is always an incomplete description of the
original or running system. Because of the special purpose of a model, different model types
are used that fit best to the corresponding representation of the original. As for example,
the UML includes different model types for describing the structure of a system, e. g., by
class diagrams or component diagrams, the behavior, e. g., by automata or activity diagrams,
as well as the interaction between system parts, e. g., by sequence diagrams. Additionally,
different viewpoints on the same part of the system are typically modeled in distinct models
that have different model types. Consequently, in a typical setting, the system developer has
to deal with a large set of models using MDE techniques [97].

The example in Figure 2.4 shows on the left a physical car, where the software component
structure of this car is represented as model on the right. The model depicts two software
components Driving and WheelController that are connected via an unnamed interface. The

– 21 –

2. Preliminaries

Original Model

Driving WheelController

Figure 2.4: Original and its model

model in the example fulfills all three requirements of the definition above. First, it refers to
the physical car on the left.1 Second, the purpose is the (partial) description of the software
architecture of the car in form of a component diagram. Third, the model omits unnecessary
information as for example the size and the color of the original car.

2.2.2. Metamodel

As emphasized above, metamodels play an important role enabling MDE techniques such as
model transformation, simulation and verification. For the definition of a metamodel, the
thesis follows the argumentation in [36] and the definition of the OMG in [90].

Definition Metamodel: A metamodel defines the modeling language concepts of a model.
The word ”defines” in the definition means that a ”metamodel is a formal specification” [36]

of a model. Therefore, a metamodel provides concepts (defines the abstract syntax) to create
models that conform to the metamodel. The relation between model and metamodel is similar
to the relation of a program and a programming language. The programming language defines
concepts, usually by a grammar, which define the building blocks that can be used to create
conform programs according to the programming language. A comprehensive discussion about
models and metamodels is given by Bézevin et al. [36].

As an example, on the left in Figure 2.5 an excerpt of a metamodel is depicted that defines
the two concepts Component and Port by an UML class diagram. A component can contain an
arbitrary number of ports indicated by the ports containment reference and the corresponding
multiplicity 0..*. Furthermore, components can request other ports, which is modeled by the
requests reference. The model on the upper right in Figure 2.5 shows a concrete instance
situation in abstract syntax, which uses the metamodel concepts defined on the left. The model
contains the same two components from Figure 2.4 describing the component architecture
of a car. Therefore, the model in abstract syntax comprises two Component instances and
one Port instance, which are connected by the corresponding references. The model on the
lower right in Figure 2.5 shows the same instance situation, depicted in concrete syntax using
the UML component diagram notation, as the model in abstract syntax above. Thus, both
models on the right conform to the metamodel or, with other words, the metamodel defines
the available concepts of the models.

1Of course, the picture on the left in Figure 2.4 is not the original car, but rather a picture of a car and thus,
a model according to the definition as well.

– 22 –

2.2. Model-Driven Engineering

Metamodel Model (abstract syntax)

Component

Port

0..*ports requests0..*

Model (concrete syntax)

Driving
:Component

WheelController
:Component

p:Port
requestsports

Driving WheelController

Figure 2.5: Metamodel with corresponding model

2.2.3. Runtime Model

The MDE research approach Models@runtime (MART) proposes that models, which are
created during the development of a system, can be kept alive during system execution as
runtime models [38]. Therefore, development models can be reused and are still valid after
the deployment of the system. In contrast to development-time models, runtime models
provide ”views of some aspect of an executing system and are thus abstractions of runtime
phenomena” [75]. The idea behind runtime models is to benefit from available MDE techniques
and experience in the same way as it is done during software development. Furthermore,
usually the same models describing parts of the system and created during the development
phase can be used during system execution. This enables abstract system representations at
runtime, which may support dynamic adaptation of the system [75].

Currently, there are different opinions in literature about what exactly a runtime model is
and what not. In the following, a definition for runtime models is given on basis of the former
own work in [1, 9] that is used for the rest of this thesis. Afterwards, differences between
other opinions from literature and related research approaches are discussed.

Definition Runtime Model: (1) A runtime model is a model that describes information
of interest of the system or system context. (2) The runtime model is maintained by the
system and accessible during the system execution. (3) The runtime model has at least an
indirect causal connection to the system.

Different properties can be subsumed for a runtime model according to this definition.
From point (1) and because a runtime model is a model as defined in [128] and discussed
in the former Section 2.2.1, a runtime model is always a partial description concerning the
information of interest. Furthermore, runtime models capture information in the boundaries of
the system and system context, which is contrary to the definition in [75] that focuses on the
system only. The adaptable software together with the adaptation engine realize the overall
adaptable software system (cf. adaptive system discussion in Section 2.1.1). Runtime models
capture information from both parts that are referred to the general term system for the rest
of the thesis. As a consequence, runtime models are conceptually not limited to be maintained
in the adaptation engine. According to the point (2) in the definition, the runtime model
is syntactically defined, e. g., by a metamodel. This enables the maintenance and handling
of the model by the system at runtime. Moreover, runtime models are neither limited to a
modeling language, e. g., UML, the Business Process Model and Notation (BPMN), or the

– 23 –

2. Preliminaries

Knowledge Acquisition in Automated Specification (KAOS) language nor to a specific model
type, e. g., state machines, class diagrams, or goal models as long as it can be accessed at
runtime (2). Finally, the point (3) of the runtime model definition implies that the running
system is interconnected with the runtime model, which is named causal connection. As
described in [129], a causal connected runtime model is linked with the running system in the
sense that changes in the runtime model will cause changes in the corresponding represented
system entity and vice versa. This thesis extends the strict causal connection definition
of [32, 38] and own former work in [1] in two ways. First, there is no strict direct causal
connection to the system required. As a consequence, indirect causal connection dependencies
are also considered. Indirect causal connections appear due to system collaborations within
the adaptive SoS. For example, if one system shares a runtime model with another system
via a joint interaction, the latter system can influence the former system by manipulating the
shared runtime model representation. Due to the causal connection, changes in the runtime
model will affect the represented system entities of the runtime model, which is discussed later
by introducing the runtime model handling of the Deurema modeling language. Second, there
can be an (indirect) causal connection to the adaptable software system or to other systems
and their corresponding runtime models in the SoS. Runtime models that refer to other
systems exist for example in hierarchical self-adaptive systems, which employ meta-adaptation.

A runtime model can have different degrees of complexity. Therefore, a boolean value can
be a runtime model, if for example the system is aware of the fact that the value cannot only
be true or false but rather represents the status of an enabled (disabled) router in a network.
Manipulating the boolean value leads to the effect that the router is switched on/off. This
additional semantic information potentially enables the system performing more intelligent,
as it is done for example in adaptive systems.

In general, runtime models are able to represent system information during system execu-
tion [38]. In the context of this thesis, runtime models are additionally important for the data
exchange and knowledge representation within the collaboration of a system. Furthermore,
such runtime models can be dynamically manipulated on a much higher level of abstraction to
achieve interoperability, e. g., by automatically transforming different formats, force runtime
model manipulations to the running system, or enabling runtime analysis and verification.

Finally, it has to be noticed that executable models are a related research direction to
runtime models. Both approaches emphasize the runtime representation of key aspects from
the running system. Runtime models require an additional causal connection as defined
and discussed above. However, a clear distinctive feature between both approaches cannot
always be given depending on the research community and concrete application domain. For
example, Xiong et al. [107] propose an approach named knowledge-based executable models for
the quantitative evaluation of SoS architectures and claims that it overcomes the limitations
of conventional architectural evaluation methods. The executable models can be used for
simulating the interaction and connections between components in the overall system in order
to assess the components ability to meet the specified capability requirements. However, in this
approach, the executable models of the SoS architecture neither represent the running system
nor have a causal connection. Also Kilicay et al. [111] argue for a shift towards executable
models and the need for simulation tools. They suggest executing the modeled SoS in order to
analyze system state and emergent behavior by the use of Artificial Life tools. The Artificial
Life framework can generate executable SoS models and has the ability to analyze/simulate
the influence of architectural changes on the overall system behavior. Both, Xiong et al. [107]

– 24 –

2.2. Model-Driven Engineering

and Kilicay et al. [111] do not use the executable models as system representative during
runtime but rather for simulation of different system configurations.

2.2.4. Model Management
Due to models are the main artifacts in the MDE, new challenges concerning the model
management arise [97]. In the MDE, models are derived from existing models via model
transformation. Several views may exist describing (overlapping) parts of a model or different
models are created in the different stages during software development, whereas models in
later stages are created on basis of models in former stages. As a consequence, there are a lot
of dependencies between models that are important during software development as well as
system execution, e. g., considering runtime models. The explicit capturing and managing
of such dependencies is done in megamodels. A survey about megamodel approaches and a
comprehensive discussion is given by Hebig et al. [97]. They give an overview about definitions
from the two founders of the term megamodel, which are Bézevin [22, 37]) and Favre [72],
and provide a unified definition of the term together with a core metamodel for megamodels.
This thesis takes the definition from Hebig et al. [97], because the authors already subsume
different viewpoints and the state of the art literature.

Definition Megamodel: A megamodel is a model that contains models and relations
between them.

First of all, this thesis uses megamodels as model management technique for runtime
models and collaborations between systems. Thus, megamodels can be used to maintain
relationships between runtime models such as different views or track influencing requirements
to the corresponding system reflection model. Due to the distributed nature of adaptive
SoS, different runtime model versions may be located in different parts of the SoS that
can be described in megamodels, too. Additionally, megamodels can be used to determine
dependencies between runtime models of collaborating systems. Concerning the collaboration
of systems, megamodels provide techniques describing impact relations due to runtime model
manipulations within the adaptation process of systems. Those impact relations may emerge
over system borders due to the interaction of systems.

Figure 2.6 conceptually depicts a megamodel that contains different models and the
relationships between those models. First, the megamodel contains the component model
from the examples above and two additional model views. Each view is derived from the
component model that shows only one component, which is further refined by additional
internal behavior. Second, the megamodel contains the relationships between the three models
that are the two derive relations. Third, the megamodel has a notion of the relationships, which
allows reasoning about dependencies between models. If for example both derive relations
are operationalized, e. g., due to a graph transformation, and the source component model
changes during the development, the megamodel can automatically update the two views via
the known relationships. Thus, a megamodel can be seen as model storage that facilitates
model management techniques such as maintenance, versioning of models, or model access
control [97, 178].

More recently, the research approach of runtime megamodels combines the idea of runtime
models with the megamodel approach. Thus, the megamodel is kept alive after the deployment
of the corresponding software system. Therefore, the megamodel maintains all contained
models and their relationships during system execution, which is similar to an online model
storage. Furthermore, it can track changes as well as the access to the underlying knowledge
base, which is characterized by the model manipulations of the runtime models during system

– 25 –

2. Preliminaries

Model

Driving WheelController

View 2

Driving

lane

brake

Wheel
Controller

wheel
Control

View 1
<<derive>>

<<derive>>

Megamodel

contained in
contained in contained incontained in

Figure 2.6: Megamodel containing models and relationships

execution. Combining the runtime model and megamodel approach leads to the following
definition, which is used for the rest of this thesis.

Definition Runtime Megamodel: A runtime megamodel is a megamodel that is kept
alive at runtime after the software system deployment.

As a consequence of this definition, an adaptive system can use a runtime megamodel to
benefit from the explicit maintenance of models and their relationships beyond the initial
deployment of the software. Thus, the knowledge base is available at runtime, which enables
the adaptation logic to reason about it. Furthermore, if the megamodel contains runtime
models, each model manipulation by the adaptation logic will cause a corresponding change in
the underlying system due to the causal connection of the runtime model to the software system.
Additional, all changes can be tracked and explicitly maintained by the runtime megamodel.
This enables the reasoning about the evolving changes as well as their optimization as often
done in meta-adaptation approaches. The Eurema approach [175], which is the predecessor
modeling language of Deurema, proposes the runtime megamodel concept in the context
of self-adaptive systems and uses it to explicitly maintain the specified adaptation logic at
runtime as discussed below.

With respect to adaptive SoS, a runtime megamodel can be used to maintain the distribution
of knowledge, which is caused by system interactions. Furthermore, the runtime megamodel
is able to taking care about visibility restrictions to the underlying knowledge base, partial or
versioned views, and can explicitly capture dependencies between collaborating systems by
maintaining the relationships of shared runtime models.

2.2.5. Model Manipulation

Beside the model management, the MDE proposes different approaches for the manipulation
of models. For example, following the MDA development process motivated above, PIM are
created first that describe the design as possible solution of the software system under devel-
opment. Afterwards, PSM are derived from the PIM that enrich the design models by tacking
additional information about the used realization technology into account. This derivation

– 26 –

2.2. Model-Driven Engineering

can be manually applied by the software developer or by means of model transformation
techniques provided by the MDE. The latter has the advantage, that the PIM can be derived
automatically once a model transformation is defined. However, such a model manipulation
by deriving a target model (the PSM in the example above) out of a source model (the PIM)
needs a formal basis to automate the model transformation. Due to the fact that almost
all models in the MDE can be represented as graph structures, graph transformation is a
powerful approach for the formal definition of such model manipulations. Thereby, graph
transformation is a technique in the MDE to create a target graph, which is for example
the target PSM in the example above, from a given base graph, which can be for example
the PIM. Such a graph transformation can enrich the target graph by adding information
in form of nodes and edges, which can be interpreted as adding information in the model.
Furthermore, it can change the graph structure, e. g., by reconnecting nodes, which can be
for example a redesign of the model. Finally, the graph transformation may remove nodes or
edges from the graph, which corresponds to a deletion of information of the corresponding
model.

As outlined in [154], there are semantically different definitions for graph transformation,
whereas the following is important in the context of this thesis. A graph transformation
system consists of a set of graph transformation rules, where each rule is defined by a left-
hand-side (LHS) and right-hand-side (RHS). The LHS of a rule specifies a graph pattern,
which is a subgraph that must be found as isomorphic image in the base graph (called match)
as shown in the schematic sketch at the top in Figure 2.7. If a match is found, the RHS
describes the application effect of the graph transformation rule. Transforming the LHS into
the RHS of a rule is called production [154]. All nodes and edges that are part of the LHS
and not in the RHS are deleted. Furthermore, all elements that appear only in the RHS are
created. Applying the RHS on the found match in the base graph leads to a new modified
target graph, which is called derivation or transformation step. In general, there are two
semantically different algebraic approaches for graph transformation rules. The double-pushout
approach (DPO) forbids the deletion of nodes, if it has edges in the base graph that are
not part of the match (dangling-edge condition). In the semantic sketch in Figure 2.7, the
node 2 could not be deleted because the edge e is not part of the match but exists in the
base graph. The single-pushout approach (SPO) neglects the dangling-edge condition and
additionally removes all edges from and to the deleted node in the base graph. In the context
of this thesis, the SPO approach is used for all occurrences of graph transformation rules.
A comprehensive discussion about graph transformation approaches can be found in [154].
Own former work in [6, 12, 13] uses graph transformation for the definition of the execution
semantic of models, which allows the direct execution of the modeled system by means of a
model interpreter. Furthermore, graph transformation facilitates the mapping of models from
one modeling language to models in another modeling language as shown in own former work
for an industrial case study in the automotive domain in [2].

At the bottom, Figure 2.7 shows a concrete example graph transformation rule separated
into RHS and LHS. The LHS contains two objects (nodes) that are a SmartCar named bmw
and an Electronic Control Unit (ECU) named controller. Both objects are linked via a reference
(edge in the graph). For the sake of simplicity, the type of the edge can be unambiguously
identified and thus, is omitted in the example in Figure 2.7. However, all graph transformation
rules used in this thesis are applied on typed graphs, which implies typed (and optional named)
references in the rules as well. The RHS of the graph transformation rule in the example
depicts the same SmartCar object (denoted by the same name and type) and a new Failure

– 27 –

2. Preliminaries

LHS
Example

RHS
Example

LHS + RHS

bmw
:SmartCar

controller:ECU

bmw
:SmartCar

fc:Failure
bmw

:SmartCar

--controller:ECU

++fc:Failure

--

++

Base Instance Graph Target Instance Graph

LHS RHS

production

derivation

match apply

12
a

1 3
b

12
a

5 4

d
ce

1

5 4

d
c

3
b

Figure 2.7: Graph transformation rule

object. Consequently, if a match for the LHS is found in the base graph, the application of
the RHS will delete the found ECU object and create the new Failure object. Additionally to
the distinct views of the RHS and LHS of the example graph transformation rule, a combined
view including the LHS and RHS is depicted on the right in Figure 2.7 and used as notation
for the rest of this thesis. Thereby, the deletion of an object or reference is indicated by a
red colored border and an additional ”−−” sign. Furthermore, the creation of an object
or reference is denoted by a green colored border and an additional ”++” sign. Thus, the
combined view models exact the same information as the two distinct views on the left in
Figure 2.7. A comprehensive discussion about terms, definitions, and applications of graph
transformation can be found in [3].

In the context of this thesis, all model manipulations are based on graph transformation
rules with the advantage of a clear semantic of the underlying formalism. Moreover, this
thesis manifoldly applies the graph transformation technique for different use cases. At first,
the declarative pattern specification of graph transformation rules and the matching of this
pattern by searching the LHS of the rule in the base graph corresponds to a model query,
which is applied on the underlying knowledge base, e. g., the runtime models contained in the
megamodel. Thereby, the match retrieves the specified part of the model as defined by the
rule pattern. This, can be used for static model analysis, where the rule pattern define those
structures that are searched in the knowledge base afterwards. Even more, due to the runtime
megamodel approach, the analysis rules can be kept alive in the megamodel as well and used

– 28 –

2.3. Eurema Modeling Language

for runtime analysis on all models that are contained in the megamodel. A model analysis
using graph transformation rules focus on such rules, where the LHS equals the RHS. As a
consequence, the LHS is searched in the model and corresponding matches are retrieved, but
there are no side effects on the model base by means of graph manipulations. For an analysis,
the retrieved matches must be evaluated by the software developer, which might improve the
system design during the development. Alternatively, the retrieved matches can be analyzed
by the adaptive system itself during its execution to reason about the current system state
and trigger necessary adaptation steps.

In contrast, if the LHS and RHS of the graph transformation are not equal, applying the rule
might cause a model manipulation by means of creating, reconnecting, or deleting nodes as
well as edges in the underlying graph representation of the model. This thesis uses such model
manipulations for two further cases. The first case uses the rules for model transformation.
Thereby, model views are derived from models contained in the megamodel, which is necessary
for system collaborations inside the adaptive SoS. For example, if to systems share information
by exchanging models, it is reasonable that only an important subset of the complete model
is shared. One possibility of specifying this subset is the definition of the desired amount of
information by means of a rule pattern. The megamodel can use the formal specification of this
rule pattern and can automatically derive the desired view from the knowledge base, which is
shared in the system collaboration afterwards. As second use case, graph transformation rules
facilitate the simulation of the adaptive SoS behavior. For example, if multiple rules define
the access as well as the manipulation effect of an underlying model, a successive execution of
these rules belongs to an evolving model structure over time. This effect is used to implement
a model simulation based on formally defined graph transformation rules.

2.3. Eurema Modeling Language

The starting point for the research described in this thesis is the Executable Runtime Meg-
amodels (Eurema) modeling language. Eurema is a first step towards the explicit specification
of the adaptation logic following the external MAPE-K approach from Kephart et al. [110].
Therefore, the modeling language focuses on feedback loops that consist of adaptation activ-
ities and their use of knowledge in form of runtime models. Furthermore, Eurema models
are kept alive during the execution of the SAS, whereas the megamodel approach as model
management technique is combined with the runtime model approach. As a consequence,
Eurema is a modeling language that considers runtime megamodels to reason about the
adaptation logic during the lifetime of the SAS. Thereby, Eurema focuses on the systematical
modeling of the adaptation engine of a single SAS, which decouples the adaptation logic from
the domain logic following the external adaptation approach as proposed in [156]. Eurema
introduces two diagram types that are Feedback Loop Diagrams (FLD) for the modeling of
the adaptation behavior and Layer Diagrams (LD) to capture the concrete instance situation
of an adaptation engine. In the following, both diagram types are introduced because their
concepts are refined in the presented modeling language of this thesis.

Within a FLD, the Eurema modeling language distinguishes between adaptation activities
and their use of runtime models. An activity is modeled as hexagon block arrow that is labeled
with its name and stereotyped by its purpose of the activity as depicted in Figure 2.8. The
purpose of the activity is related to the adaptation step proposed by the MAPE-K reference
architecture [110] that are Monitor, Analyze, Plan, and Execute. Activities are one basic
concept and treated as black boxes in Eurema. Consequently, the developer is responsible

– 29 –

2. Preliminaries

Concrete Syntax

Self-Configuring

<<Monitor>>

Update

<<MonitoringModel>>

MonitoringRules

r

Monitor

Example

<<ExecutionModel>>

SynchonizationRules

<<EvaluationModel>>

Goals
<<ChangeModel>>

ConfigurationStrategies

<<SystemModel>>

Architecture

<<Plan>>

Optimize

<<Execute>>

Effect

Executed

r
r

r

r r

r

r

w

a
a

<<Analyze>>

CheckTrafficSituation

optimal

else

OK

<<Purpose>>

Activity

t1

t2

<<Purpose>>

Complex Activity

t1

t2

start1

start2

Control Flow

<<Purpose>>

Runtime Model

Model Usage (r,w,a,c,d)

Initial State

Final State

Destruction State

[condition1]

[condition2]

Figure 2.8: Eurema Feedback Loop Diagram (FLD) for Self-Configuring

for the implementation of activities that cannot be modeled within the Eurema language.
However, the execution of an activity may result in different return states, which can be
modeled by outgoing exit compartments of the activity. Beside normal activities, Eurema
supports the modeling of complex activities, which are additionally labeled with an ellipse
placed right next to the purpose (cf. concrete syntax on the right in Figure 2.8). Complex
activities encapsulate another FLD by providing their signature. The entry compartments
correspond to initial nodes of the encapsulated FLD, whereas the exit compartments refer to
the final nodes. During execution of a complex activity, the corresponding FLD is unfolded
and invoked. Finally, the control flow between activities can be described, which includes the
possible specification of conditional branches via decision nodes.

A runtime model is modeled as rectangle that is labeled with its name and stereotyped
by its purpose, whereas the latter was introduced by Vogel et al. [175, 178]. Runtime models
represent the available data of the adaptation engine and can be used by activities via model
operations. Eurema supports the reading, writing, annotating, creating, and destroying of
runtime models.

The FLD example in Figure 2.8 has four activities that describe a Self-Configuring feedback
loop. First, an update activity reads the two runtime models Monitoring Rules and Architecture
and synchronizes system observations with the Architecture model indicated by the writing
model operation. Afterwards, an analysis activity checks if the updated architectural system
model is optimal according to given goals. If the architecture is optimal, the execution of
the feedback loop finishes (modeled by the optimal exit compartment). Otherwise, a planning
activity calculates necessary adaptation steps considering different Configuration Strategies and
annotates those at the architecture model. Finally, the Effect activity forces the planned
adaptation steps to the running software system using the provided Synchronization Rules
runtime model. The execution of the FLD stops at the final node, labeled with the Executed
state.

The modeled Self-Configuring feedback loop in Figure 2.8 can be seen as a template. The
deployment of the template is modeled in Eurema Layer Diagrams (LD) as shown in Figure 2.9.
LD provide a snapshot of the adaptive system by modeling an instance situation of the layered

– 30 –

2.3. Eurema Modeling Language

La
ye

r-
1

La
ye

r-
0

:Self-Configuring

:SmartCar

MAPE

Check;
30s; Monitor

Concrete SyntaxExample

La
ye

r
La

ye
r

Feedback Loop
Module

Software Module

<event>;<period>;<start>
senses

effects

Figure 2.9: Eurema Layer Diagram (LD) for Self-Configuring

architecture of the adaptation engine. There, Eurema supports two types of modules, namely
software modules and feedback loop modules, that can be deployed on different layers. Software
modules encapsulate the domain logic and are treated as black boxes in Eurema, whereas
feedback loop modules are white boxes that instantiate one of the beforehand modeled FLD
templates. Furthermore, the LD specifies the triggering and effecting between modules. The
concrete syntax of an Eurema trigger follows the <event>;<period>;<start> notation. The
first parameter corresponds to the name of the event, whereas the second parameter denotes
the minimal time (period) of two consecutive runs of the module. Finally, the start parameter
identifies the initial node as starting point of the corresponding FLD of the module.

The example LD in Figure 2.9 has two module instances. The SmartCar represents the
adaptable domain logic, which is modeled as black box software module. Additionally, there
is one instance of the beforehand introduced Self-Configuring feedback loop. The corresponding
feedback loop module is labeled with its internal adaptation steps that are in this case a full
MAPE cycle (cf. Figure 2.8). Beside the deployment, a LD defines the trigger dependencies
between modules. In the example, every time the software module sends a Check event, the
feedback loop is triggered starting with the Monitor initial node. Furthermore, a period at
the trigger defines the minimal time between two consecutive executions of the feedback loop.
Consequently, the feedback loop in this example runs every time a Check event occurs, but at
maximum every thirty seconds starting at the monitor initial node.

The resulting Eurema models are kept alive at runtime in a megamodel and can be directly
executed by the Eurema interpreter. The interpreter waits until the modeled system event
occurs and executes the corresponding feedback loop description (the FLD) by following the
modeled control flow between the adaptation activities. Thereby, the internals of adaptation
activities are not known by the interpreter and refer to a domain specific implementation. A
comprehensive introduction of the Eurema modeling language can be found in [175].

Eurema focuses on self-adaptive software with non-distributed feedback loops [175]. There-
fore, Eurema cannot be used for the specification of the adaptive behavior between distributed
system interactions within an adaptive SoS. Furthermore, the Eurema interpreter is not able
to execute multiple, parallel running feedback loops. However, the Eurema approach is a first
step of considering feedback loops in self-adaptive software as first class entities, which operate
on a set of runtime models as shown in the Self-Configuring feedback loop example in Figure 2.8.

– 31 –

2. Preliminaries

Moreover, the Eurema models are kept alive by the corresponding execution environment,
which leads to the runtime megamodel approach as outlined above. In the context of this
thesis, the Eurema concepts are extended with respect to the characteristics of adaptive SoS.
This includes, among others, collaboration aspects between distributed adaptive systems and
the parallel execution of feedback loops, which contributes to the emergent behavior of the
adaptive SoS. Furthermore, different system types from multiple domains within the overall
SoS must be considered.

2.4. Collaborations in SoS

An important aspect in this thesis is the specification of system collaborations inside an
adaptive SoS. Therefore, the term collaboration is at first clarified by retrieving definitions from
the literature. Afterwards, existing approaches that facilitate the modeling of collaborations
are discussed. Unfortunately, there are several synonymously used terms for collaboration
such as cooperation or interaction. Parunak et al. [147] define a taxonomy of terms that are
related to collaboration in multi-agent systems on bases of a literature review in [148].

This thesis uses the terms from Parunak et al. and transfers them in the context of adaptive
SoS. An overview of the terms is depicted in Figure 2.10, where different layers form a
hierarchy of terms. The basic terms of this taxonomy are correlation and coordination,
which are depicted at the bottom of the figure. These basic terms define the notion of the
behavioral joint interaction between systems. On the basis of these two terms, the difference
between cooperation and contention can be defined, which is related to the intention of
system interactions. Finally, at the highest layer in Figure 2.10, the usefulness of system
collaborations can be defined by the terms coherence and congruence. In the following, all
terms are introduced in detail.

Correlation
The correlation of systems inside a SoS is defined as the degree of behavioral joint information.
If the behavior of a system, which can be observed by the visible performed actions, statistically
depends on actions from other systems, both systems are correlated. The correlation metric
can be empirically determined on the visible behavior. Thereby, the internals of the system
must not be known as emphasized by [148]. Thus, the correlation is a number in form of
a statistical fact that describes the degree of influence between systems on basis of joint
information (observable actions).

Coordination
The coordination metric adds to the correlation a causal process [146], which requires commu-
nication between systems. Where correlation inside a SoS may appear between independent,
randomly observable actions, a causal interaction needs an information flow between the
systems, e. g., for negotiation. Furthermore, the fact that communication is necessary implies
an appropriate infrastructure and different communication protocols [160]. There are a
multitude of different protocols in literature depending on the underlying interaction problem
that has to be solved. This thesis does not focus on the presentation of a specific interaction
protocol, but rather provides modeling concepts to specify arbitrary interaction protocols
between systems. The communication can be centralized or decentralized as well as direct or
indirect, where an overview with example communication protocols from current literature is
given in Table 2.1. A direct communication form could be the exchange of messages among
systems in a client-server scenario [84, 109], whereas an indirect communication example

– 32 –

2.4. Collaborations in SoS

global
goal

Coherence Congruence

U
se

fu
ln

es
s

system

behavioral effect

Correlation Coordination

communication

B
e

h
a

vi
o

ra
l J

o
in

t
In

te
ra

ct
io

n

goal goal

Cooperation Contention

In
te

n
ti

o
n

local goal

global goal
solution space

goal

local goal
local goal

local goal

Figure 2.10: Collaboration terms

is the use of a blackboard approach as realized in [108, 190]. Centralized communication
implies a dedicated system or group, which coordinates the message flow. An example for a
decentralized, indirect communication is the stigmergy approach as introduced in [145, 148,
167], which is inspired by biological systems as for example the communication in ant colonies.
In contrast, a decentralized direct message communication is used in peer-to-peer protocols
such as introduced in [136]. Therefore, Figure 2.10 shows at the bottom how an empirical
observation defining the correlation between systems turns into coordination, if communication
is involved. The black dots in the figure are an illustration for systems, whereas the observable
behavior is sketched as outgoing directed arrow. A dependency between systems is visualized
by the appearance of another system (black dot), which starts its behavior after the observed
behavioral action of the former system (the back dot appears at the end of the directed arrow).

– 33 –

2. Preliminaries

Table 2.1: Categories of communication

Centralized Communication Decentralized Communication

Direct Information Flow (1) Client-Server [84, 109] (2) Peer-to-Peer [136]

Indirect Information Flow 3) Blackboard [108, 190] (4) Stigmergy [145, 148, 167],
Competition [114, 132]

Intention of Collaborations
If systems collaborate, e. g., by coordinating their interactions, the intention of each system
defines whether the systems cooperate or work against each other. Therefore, cooperation
requires joint interactions towards a common goal as shown on the left in the middle layer
in Figure 2.10. In contrast, contention appears if the goal (intention) of at least one system
disturbs the goal of another system as indicated by the dashed arrows and goals on the right
in the figure. Therefore, the adaptive SoS should optimize the overall emergent behavior
towards an increasing cooperation between independent systems by simultaneously decreasing
the contention of joint interactions.

Usefulness of Collaborations
The terms coherence and congruence describe the usefulness of correlations, cooperations, and
the intention of systems with respect of reaching local and global goals [148]. As motivated in
Section 2.1.4, an adaptive SoS must balance between reaching its global goals and fulfilling
local requirements of the contained systems. Therefore, the term coherence defines the degree
of non conflicting local goals among systems. This is visualized on the left in the upper layer
in Figure 2.10 by means of an abstract solution space. If local system goals can be realized
within a common solution space, systems are coherent to each other [147]. Furthermore, if
individual, local system goals satisfy or contribute to global SoS goals, the collaboration can
be characterized as congruent as shown on the highest layer on the right in Figure 2.10.

Summarizing the collaboration terms from the literature, the correlation of system interac-
tions defines a statistical fact with respect to observable system behavior. Due to additional
communication, the correlation metric turns into a coordination scheme, which further im-
plies a communication infrastructure and interaction protocol between systems. If systems
coordinate their behavioral interactions, they can cooperate or compete each other, which
is related to the intention of the joint collaboration. Thereby, the overall behavior emerges
from the system collaborations within the adaptive SoS. To evaluate the emergent behavior,
collaborations are defined as coherent if the interaction behavior is useful to reach local
system goals contained in the overall adaptive SoS. Finally, the emergent behavior can be
characterized as congruent, if system collaboration do not only contribute to local goals but
rather facilitate reaching global SoS goals.

Modeling Collaborations
The collaboration concept is important for several system types. Consequently, there are
different modeling approaches to describe system interactions, which comprises the specification
of abstract collaboration roles, the interaction protocol and the communication mechanism.
From the software engineering domain, the UML enables the specification of collaborations
between software entities [87]. Other UML diagrams such as sequence diagrams of activity
diagrams can be used to define the interaction protocol between these entities.

– 34 –

2.5. Running example

The Service-oriented architecture Modeling Language (SoaML) is a special UML profile
that facilitates the collaboration modeling for service-oriented software architectures [88].
The rigSoaML modeling approach described in [30] extends the collaboration modeling for
service-oriented systems by means of a verification concepts of joint system interactions. In
the context of embedded systems, the Mechatronic UML (mUML) approach [100] facilitates
the modeling, verification and simulation of collaboration behavior. None of these approaches
above facilitate the explicit modeling of collaborations in adaptive SoS as done in this thesis.
However, they already introduce preliminary ideas such as the explicit role modeling for joint
system interactions or they emphasize the need of a separate modeling of the interaction
behavior by means of a protocol and the local system behavior. Therefore, a running example
is introduced in the following section, which describes the manifold collaborations within an
adaptive SoS. Subsequently, requirements for a modeling language that facilitates the explicit
collaboration description in adaptive SoS are derived from literature in the next chapter.

2.5. Running example
The running example of this thesis is inspired by the European Telecommunications Standards
Institute, which proposes several use case scenarios and application standards for intelligent
transportation systems for vehicles [71]. As depicted in Figure 2.11, different scenarios are
combined to an adaptive SoS in form of smart cities that have different goals for optimizing
the traffic situation within the city itself. Therefore, the smart city has to interact with
geographically located neighbor cities, e. g., to predict incoming car commuters. Additionally,
it must observe the status of its own traffic situation and interact with local traffic control
systems as for example an intelligent traffic light system. Consequently, within the overall
adaptive SoS, there are diverse systems of varying size that follow different purposes.

The biggest system type in this example is a smart city. In Figure 2.11, there are the two
smart cities Berlin and Potsdam depicted and how they interact with each other by exchanging
knowledge about the current traffic situation. Within each city, there are traffic members such
as cars, buses, and pedestrians but also influencing traffic systems such as traffic lights, road
works, and traffic jams. It is easy to consider a huge number of traffic members (over one
million cars in Berlin) or influencing systems (over two thousand traffic lights in Berlin) in big
cities that arise high demands on managing or predicting the traffic situation. Furthermore,
as outlined by [71], there are several independent traffic scenarios in a smart city, where each
scenario needs some coordination and follows a local strategy to fulfill a certain goal. For
example, cars can build small platoons for saving fuel, autonomous driving, or following the
current traffic flow through the city. Beside these advantages, platooning has high demands on
a real-time communication between cars and positioning accuracy [41, 71]. Another example
could be cameras placed along the roads to detect traffic jams [179]. Furthermore, scenarios
are conceivable, where such cameras interact with the traffic lights or the traffic speed control
system in the city to optimize the overall traffic flow. The requirements on such scenarios
range from non critical information, such as warnings about road works, slow vehicles in front
on the highway, or free parking lots, to critical interactions, as for example platooning or
collision avoidance [71].

– 35 –

2. Preliminaries

Cyber-Physical
Systems

Wheel

Electronic Control Unit

 Monitor

 Analyze Plan

 Execute

 Monitor

 Analyze Plan

 Execute

Berlin

 Monitor
 Analyze Plan

 Execute

 Energy

 Monitor

 Analyze Plan

 Execute

 Traffic

Potsdam

 Platoon

 TMS

 ITL

 TJD

 ABS

 ASR

 ALC ESP

Adaptive Light Control (ALC), Traction Control System (ASR),
Autonomous Driving, Electronic Stability Program (ESP), Antilock Bracking System (ABS)

Motor

 Platoon

Traffic Monitoring System (TMS), Intelligent Traffic Light (ITL), Traffic Jam Detection (TJD)

 Platoon

smart home

smart car

Figure 2.11: Smart city running example

Beside smart cities, this example considers smart cars that provide different adaptive
functionalities to the driver as for example autonomous driving within a platoon, an Adaptive
Light Control (ALC) to avoid blinding cars on the opposite direction, or other driving assistance
functionalities such as an Antilock Braking System (ABS), an Electronic Stability Program
(ESP), and a Traction Control System (ASR). Additionally to smart cars, smart homes
are conceivable. On the one hand, smart homes locally optimize their pool of functionality
according to the user, who lives in the home. For example, a smart home can close the
windows if it starts raining or may start an intruder detection functionality if the user leaves
the house. On the other hand, smart homes contribute to the emergent behavior of the
adaptive SoS by collaborating with other contained systems. For example, the smart home
can communicate with the users car to turn off or on heating if the user leaves respectively
arrives the house. Furthermore, it can report the current energy consumption to the smart
city so that the overall energy production of the adaptive SoS can be optimized.

However, the smart city together with the contained systems such as smart cars and smart
homes show the characteristics that are in the scope of this thesis. First, the overall city is
adaptive according to the current traffic situation that enables the specification of multiple,

– 36 –

2.5. Running example

interacting feedback loops on different levels, e. g., between smart cities, smart cars or smart
homes. Second, there are a various number of system types with different complexity such as
embedded systems and CPS. Third, information on different levels of abstraction must be
exchanged that fits to the idea of using runtime models as knowledge representation within
the adaptive SoS. Fourth, systems must interact with each other to fulfill overall goals, where
one system alone is not able to reach a global goal, which suits the use of specifying the
collaborations between systems. Fifth and finally, the smart city is a large scale example,
which can easily divided into a subset of smaller examples of independent, interacting systems
that targets the need of analyzing and simulating the emergent interaction behavior towards
the understanding of the overall SoS behavior.

– 37 –

3. Modeling Language Requirements
After the definition of different MDE techniques that are important for this thesis and the
common understanding of different system types, this chapter derives characteristics for an
adaptive SoS in Section 3.1. Thereby, the characteristics are subsumed from the state of the art
literature and experience from former own work in [11]. On basis of these characteristics, a set
of requirements for the Deurema modeling language is derived in the subsequent Section 3.2.
Those requirements are considered for the design of the different Deurema concepts and
are important for the evaluation of the modeling language. Finally, the state of the art for
modeling adaptive SoS is discussed in Section 3.3.

3.1. Characteristics
As outlined in Section 2.1, an adaptive SoS is an ensemble of systems that comprises a broad
spectrum of system types including embedded systems, NES, CPS, and NCPS. Therefore,
the overall SoS inherits the characteristics from its contained systems that are derived in this
section.

The main characteristics are already caused by CPS that are stated as a federation of
”open, ubiquitous systems of coordinated computing and physical elements, which interactively
adapt to their context, dynamically and automatically reconfigure themselves, and cooperate
with other CPS” [45]. Therefore, there are five main characteristics of an adaptive SoS that
are the openness (C–1), evolving dynamic structures (C–2), system collaborations (C–3),
system interdependence (C–4), and incomplete knowledge (C–5). On basis of these five main
characteristics, there are further refined SoS properties as follows:

C–1 Openness: The SoS is considered as open, because it is a federation of systems, where
an arbitrary number of unknown, potentially heterogeneous system parts may leave or
join the overall SoS during system operation at arbitrary points in time [24, 39, 45, 140,
172]. As a consequence, system borders evolve over time [107].
C–1.1 Diversity: The diversity property of a SoS refers to a varying set of different

participating system types that enable needed functionality to achieve SoS goals [64].
Furthermore, Moschoglou et al. [140] emphasize the heterogeneity of a SoS with
respect to different system types that join and leave the overall SoS during lifetime,
which is used synonymously for the diversity characteristic. Additionally, Board-
man et al. [39] define a diversity property that refers to the managerial independence
of the system, which is covered by the C–4.3 characteristic below.

C–1.2 Distribution: Within the SoS, the integrated, autonomous systems are inher-
ently distributed, potentially over larger geographic spaces [81, 130, 140]. The
distribution characteristic causes further challenges of controlling and enabling
communication capabilities between spatial separated systems.

C–1.3 Scalability: The integration of independent, diverse system solutions and for
the most cases the self-coordinating, decentralized collaboration scheme between

– 39 –

3. Modeling Language Requirements

those systems leads to a large-scale federation of systems [107]. Thus, SoS must be
considered as scalable by managing a potential huge amount of containing systems.

C–1.4 Flexibility: The flexibility characteristic of the SoS enables the reaction of
the system to changes in the environment and system structure [81, 107]. Board-
man et al. [39] call this property belonging, which goes hand in hand with an elastic
overall system architecture. Furthermore, the SoS is considered as agile, if it is
flexible and able to react on changes rapidly [172].

Running example: The openness and its derived characteristics can be identified within
the smart city running example of this thesis as introduced in Section 2.5. If vehicles
drive from one city to another, the smart city must be open (C–1) to recognize the
changing traffic situation of incoming and leaving vehicles. Furthermore, different vehicle
types such as cars, buses, motor bikes, or bicycles, but also other participants of the smart
city such as smart houses, traffic lights, and the road infrastructure enforce the diverse
(C–1.1) property of the overall adaptive SoS. The distribution (C–1.2) characteristic is
inherent by the spatial distribution of vehicles, smart houses and traffic lights within
a smart city. The potentially huge number of vehicles and other participants refers to
the scalability (C–1.3) characteristic, whereas the dynamic handling of changing traffic
situation requires the mentioned flexibility (C–1.4) of the SoS.

C–2 Dynamic Structure: The dynamic aspect of a SoS is caused by the openness and
describes the ability of the system to change its internal structure (self-modification)
and cooperation scheme according to changes in the environment and current needs [45].
Due to the varying pool of functionality, the dynamics of a SoS raises the challenge of
choosing the correct set of components and capabilities to achieve current goals [64].

C–2.1 Adaptive Behavior: The SoS is adaptive such as each autonomous system can
adapt its structure as well as behavior to the particular needs and constraints in
the current SoS configuration [64]. Furthermore, an adaptive SoS exploits the full
potential of autonomous, beforehand isolated systems by building interconnections
and collaborations [107, 172]. Boardman et al. [39] refer to the adaptive charac-
teristic with the term connectivity. Additionally, the SoS handles the emergent
behavior by dynamically adapt and absorb deviations in the system structure as
emphasized by [81, 140].

C–2.2 Resilience: On the one hand, the SoS is robust in the sense that it reduces the
likelihood to experience failure due to the complexity, the dynamic configuration,
and potential emergent behavior of the SoS (resilience). On the other hand, the
SoS is less vulnerable to catastrophic and single point of failures [172].

Running example: The dynamics (C–2) in the smart city arises by the several adaptive
(C–2.1) capabilities of included systems. For example, a car has different adaptive control
functions as ALC, ASR, ESP, and ABS. Therefore, each vehicle behaves according local
situations, which leads to an overall dynamic, aggregated SoS behavior. Furthermore,
the failure of a vehicle, e. g., due to an accident, or traffic light, e. g., due to a power
supply failure, does not break the overall operation of the smart city. Thus, the SoS is
resilient (C–2.2) to partial system failures, which further causes adaptations (C–2.1) of
the remaining functionality or introduces additional behavior as for example the rescue
of injured humans in the case of a car accident.

– 40 –

3.1. Characteristics

C–3 Collaboration: Due to the definition of a SoS in Section 2.1.4, the independent systems
within the SoS must be collaborative to achieve common goals [45, 111]. The collabora-
tion characteristic is included in the term connectivity from Boardman et al. [39]. Further-
more, collaborations in SoS are a key aspect for Jamshidi [106] and Moschoglou et al. [140],
who refer to the term interoperation instead. From the collaboration term discussion in
Section 2.4, this characteristic is a consequence from the cooperation intention as well
as joint interaction of contained systems inside the SoS.

C–3.1 Emergence: Due to the collaborative nature, emergent behavior is the result
of the overall SoS behavior by aggregating the local behaviors of the contained
autonomous systems and their interactions [39, 81]. Emergent behavior is considered
as nonlinear [64], which means that the overall SoS behavior cannot be derived by
analyzing single system behavior capabilities. Thus, emergent behavior is more than
a simple aggregation of single behavioral aspects, which must include collaborations
and new arising capabilities due to joint interactions. Moschoglou et al. [140] use the
term cooperation synonymously, which includes collaboration and coordination of
systems. According to the collaboration definition of this thesis, Parunak et al. [148]
refer to the overall usefulness of collaborative behavior, which should be coherent
(non conflicting) within the SoS.

C–3.2 Competition: Beside the emergent, collaborative behavior, a SoS is competitive,
because each system follows and optimizes its behavior according to local goals [81].
In the worst case, this leads to contradicting behavior on the SoS level [181].
Consequently, there are the two dimensions in an adaptive SoS of cooperation
and contention (cf. definition in Section 2.4). The SoS is responsible of finding
appropriate trade-offs between local and global goal optimizations, which follows
the argumentation of Parunak et al. [147, 148] looking at the overall congruence in
the SoS behavior.

Running example: The collaboration (C–3) characteristic arises due to the manifold
pool on possible collaborations on different layers in the smart city example. On the
highest abstraction layer, smart cities collaborate with each other to exchange knowledge
about the current traffic situation or energy prosumption.1 Furthermore, within a smart
city, different collaborations as for example platooning, intelligent traffic light control, or
collaborative crossing of junctions lead to an emergence (C–3.1) of behavior. Thereby,
each system tries to optimize local goals. For example, the driver of a car maybe wants
to reach his destination point as quickly as possible, whereas another driver tries to
save fuel. This might introduce competitive (C–3.2) behavior, if both drivers are in
the same platoon or cross the same junction. Thus, the corresponding collaboration or
responsible smart city has to solve such arising conflicts.

C–4 Interdependence: Caused by the collaborative (C–3) characteristic, Correa et al. [64]
emphasize that there is a range between independent and totally dependent systems
inside a SoS, which leads to the combined interdependence characteristic. On the
one hand, as stated in [81], a SoS is independent in the sense that all systems are
independently designed, developed and managed for their own purposes. Furthermore,
systems operate independently at runtime except during the collaborations [45]. On

1The term prosumption is used in the domain of smart grids and combines the two aspects of production and
consumption of energy.

– 41 –

3. Modeling Language Requirements

the other hand, systems may lose some freedom during operation, if central control
authorities coordinate and orchestrate the interaction of systems during collaborations.
The interdependence characteristic determines both dimensions and indicates the varying
combination of dependent and independent behavior within the adaptive SoS.

C–4.1 Local Evolution: The development of a SoS is characterized by uncoordinated,
independent local evolution steps of the autonomous systems, which may influence
each other, rather than a global development plan that is followed. These evolution
steps can happen offline or at runtime depending on changing purposes, demands
or requirements [81, 140].

C–4.2 Autonomous Systems: The SoS is operational independent [81], which means
that the autonomous systems are operated independently from each other and
that no global coordination scheme, concerning the operation of the autonomous
systems, can be assumed [140]. Especially for the FoS type [106], ”there is no central
control entity and decision making is done in collaboration and cooperation” [140].
The operational independence might decrease due to collaborations of systems,
but is necessary to reach global SoS goals and may simultaneously increase the
achievement of local system goals [81].

C–4.3 Incoherent Development: The managerial independence [81] of a SoS implies
that also the management and design of the autonomous systems are not centralized
and thus, the management/design decisions during the development for different
autonomous systems may be conflicting. In general, an independent and incoherent
development of systems, which are later contained in the SoS, should be assumed.

C–4.4 Concurrent Changes: The application effects of a SoS are characterized by
concurrent changes in the environment. Concurrency effects may spread over the
system and influence a bunch of local systems due to established collaboration
connections.

Running example: The interdependence (C–4) characteristic can be reasoned by the
independence of smart cities, vehicles, smart homes, and traffic lights and the dependence
due to collaborations between those entities. Thereby, vehicles may exist in different
product lines or have different variants of the deployed software (e. g., due to software
updates), which is caused by evolutionary (C–4.1) development over time. Also the
aging of hardware in cars and other systems as well as hardware failures lead to an
evolution of available capabilities of the overall adaptive SoS. Furthermore, vehicle
drivers can be seen as operational independent (C–4.2) as long as the driver does not join
collaborations such as platooning. Beside vehicles, traffic lights operate independently
from the current traffic situation, if no intelligent capabilities, such as monitoring the
waiting vehicles, are available. The managerial independence (C–4.3) is enforced by the
fact that vehicle manufactures make different design decisions during the development
as companies that develop traffic lights. Even within one domain as for example the
development of cars, manufactures have to develop different products to sell their cars
on the market. Finally, concurrency (C–4.4) effects can be easily observed in the running
example, e. g., independent driving of cars through the city changes the car position
over time and thus, the state of the environment concurrently.

C–5 Incomplete Knowledge: The incomplete characteristic has the focus on the knowledge
within the SoS. Each independent system has always only incomplete views of the overall

– 42 –

3.1. Characteristics

SoS and its environment. These views may be extended during the collaboration with
other systems or by sensing the local environment [81]. Furthermore, due to concurrency
effects and decentralized coordination, the SoS has to deal with inconsistencies by
aggregation and distribution of the knowledge from and to systems. In general, a
complete and comprehensive view on the overall SoS state with an aggregated, unified
view of the knowledge cannot be given.
C–5.1 Limited Information: Each system maintains local (internal) models for

anticipating or predicting its own architecture and behavior [64]. Because of
privacy aspects, systems are not in general willing to provide all internal data to the
outside. The provision and discovering of data is necessary for joint collaboration,
which leads to partial access and visibility restrictions to foreign knowledge [140].
Therefore, the limited information characteristic of a SoS considers the restricted
access to knowledge and partial knowledge exchange.

C–5.2 Fluent Communication: Correa et al. [64] emphasize that the flow of ex-
changed information varies through the whole lifetime of the SoS. Due to changing
collaborations, needs, or available systems, the information flow must be always
adapted to achieve given goals. Thus, the SoS has a fluent knowledge transfer,
which includes changing communication partners and mechanisms.

Running example: In the smart city, knowledge must be transferred between different
system types. Within a platoon, vehicles must coordinate with each other and share
information about the platoon status, own state, and observed environmental aspects of
interest (e. g., obstacles). However, each vehicle provides only enough data to successfully
operate in the platoon. Another example is the exchange of traffic information between
smart cities. First each smart city has a local, restricted view on its own traffic situation,
which is a subset of the overall traffic situation on the complete road network and thus,
incomplete (C–5). Second, each smart city provides, on the one hand, only traffic data
that is necessary to guarantee proper traffic flow management as it is defined by the
corresponding collaboration. On the other hand, smart cities are not allowed to violate
governmental laws by collecting or publishing private data. Therefore, each smart city
has only limited (C–5.1) access to the data in the overall adaptive SoS. Third and
finally, the knowledge about the traffic situation changes all the time, which causes an
unlimited data flow (C–5.2) by collecting and transferring the knowledge. Changes in
the available communication channels or technologies further influence the way of how
the knowledge is transmitted.

Concerning the goals of this thesis, the characteristics above influence the design as well as
collaboration concepts of the Deurema modeling language. The openness characteristic (C–1)
implies that the overall SoS is composed of a varying number of systems. As a consequence,
clear SoS borders cannot be defined because systems interactively join and leave the overall
SoS at arbitrary points in time [45, 107]. Furthermore, the overall behavior of the SoS emerges
from the available systems, whereas the size and number of systems are usually neither
known upfront nor limited during the SoS lifetime. Therefore, a SoS must be considered
as a federation of a large number of integrated systems that goes hand in hand with the
diversity (C–1.1) and distribution (C–1.2) characteristics. This distribution of the system can
be twofold. As first aspect, the SoS can be logically distributed in different parts that are
executed on one physical node. Additionally, because of the potential large size of the SoS,
the geographic distribution of the overall system is very likely [172]. Beside the distribution

– 43 –

3. Modeling Language Requirements

aspect, the SoS offers high potentials concerning scalability (C–1.3) and flexibility (C–1.4)
characteristics. The resulting elasticity and agility of the overall SoS is needed to cope with
the permanent changing of the inner system architecture as well as with the interaction
with an unknown affecting environment [172]. This causes further challenges concerning the
availability of a certain functionality, the reliability of the system, fault tolerance, security and
safety issues. With respect to collaboration, the Deurema modeling language must be aware
that new collaboration capabilities may potentially arise or disappear at every point in time.

Caused by the openness, the dynamic characteristic (C–2) of a SoS arises from the integration
of beforehand isolated system solutions such as CPS. Edward A. Lee emphasizes that a
”Cyber-Physical System is an integration of computation with physical processes [...] usually
with feedback loops” [126]. Those feedback loops enable a dynamic adaptation (C–2.1) of the
CPS according to changes in the environment or the system itself. The adaptation ability
of each CPS or other system types emerges in the overall adaptive SoS. Furthermore, the
adaptation capabilities (C–2.1) of the SoS in combination with the flexibility capabilities
(C–1.4) lead to the resilient (C–2.2) characteristic of the SoS in the sense that the likelihood
of catastrophic and single point of failures is drastically reduced [172]. From the modeling
perspective, the modeling of feedback loops is well known for physical aspects as widely done
for embedded systems. Modeling the physical system is not enough for CPS, NCPS and SoS.
Here, the cyber part has to be considered, too. Especially, feedback loops controlling the
software part of the autonomous systems and their interaction with other systems have to be
covered as well [58, 111, 127].

The importance of modeling the interaction aspects between systems is strengthened by
the collaborative characteristic (C–3) of an adaptive SoS, which can be derived from the
openness (C–1) and dynamics (C–2) capabilities. Usually, each autonomous system inside
an adaptive SoS must adapt its behavior according to its peer systems, while considering
the interplay between its own behavior, the other systems’ behavior, and the overall system-
level behavior. Therefore, on the one hand, the overall system behavior emerges (C–3.1)
from the contained systems in the sense that different system parts work together to reach
global goals that cannot be achieved by a single system alone. On the other hand, each
system behaves according to local optimization strategies that might influence, or even worse,
contradict other systems [181]. This phenomenon is described by the competition characteristic
(C–3.2), where the SoS is responsible of finding appropriate trade-offs between local and global
requirements [81, 148]. Moreover, due to the composition of systems that autonomously adapt
(C–2.1) to their individual contexts into the SoS, also unwanted co-adaptation effects may
emerge from interference of the individual feedback loops [133]. A modeling language for
collaboration should comprise such effects and should be able to visualize, analyze as well as
simulate them.

Ruling such adaptive SoS is challenging due to the complexity (C–1), dynamics (C–2), and
emergence (C–3). The fourth characteristic C–4 copes with the interdependence of a SoS.
At first, the autonomous systems evolve over time (C–4.1) caused by hardware and software
aging. This holds for the evolutionary development cycles as well as for the evolution of
the system during system execution, e. g., due to maintenance activities as outlined in [58,
127]. Such local evolutions steps in independent systems leads to uncoordinated evolution
in the overall adaptive SoS. Another aspect is the operational independence (C–4.2) [81] of
the systems within the adaptive SoS. In general, a global coordination scheme controlling
the operation of all systems cannot be assumed. Therefore, each system must be seen as
operational independent from the other systems following local strategies. The operational

– 44 –

3.2. Requirements

independence goes hand in hand with the managerial independence (C–4.3) [81] of the adaptive
SoS. In general, no central instance exists that is able to coordinate the interaction between
all systems and determines all local management, design, or development decisions. Thus,
the adaptive SoS is characterized by a decentralized coordination scheme. Additionally, the
concurrent characteristic (C–4.4) inherently arise due to the independent behavioral effects of
the contained systems of the adaptive SoS.

The last, major characteristic focuses on the partial knowledge aspect and denotes the
view over the available knowledge in the adaptive SoS as incomplete (C–5). Each system
has always a local view, which is only a part of the overall SoS and its own environment,
as basis for its own decision making. The local knowledge can be updated by sensing the
environment or extended via exchanging data in collaborations. However, the adaptive SoS
should be aware of different local views in the systems, outdated knowledge, limited access
(C–5.1) to data, or inconsistencies by updating data from different sources. In general, it is
not possible to provide one unified, global knowledge base that describes the whole SoS and
its environment. However, due to sensing activities and collaborations, there is a continuous
knowledge flow (C–5.2) throughout the adaptive SoS.

In summary, considering the discussed characteristics, it is highly attractive that SoS are
self-adaptive at the level of the individual autonomous systems and at the overall SoS level
to cope with the emergent behavior, to adapt and absorb open, dynamic, and deviating
SoS architectures, and to adapt to open and dynamic contexts, while considering the shared
ownership of knowledge inside the systems. On basis of the discussed characteristics, model
language requirements are derived in the next section.

3.2. Requirements

According to the goals of this thesis and the discussed characteristics of adaptive SoS, the
engineering of self-adaptive SoS must explicitly cover the coordination among the individual
systems. Because the systems themselves usually have adaptive capabilities, which further
can be realized in form of feedback loops [49, 58, 126], the focus of this thesis is on SoS
that are composed of systems, which contain such feedback loops. Furthermore, feedback
loops follow the MAPE-K blueprint from [110] as introduced in Section 2.1.1. This imposes
several requirements for designing (modeling) and realizing the coordination. The following
requirements are derived from the characteristics discussed in the former section, from
Weyns et al. [183], who enumerate several research questions for decentralized and distributed
control loops, from the Eurema modeling language, which is the predecessor modeling language
to Deurema, and from own former work in [10, 11]. Requirements that are directly taken
from the Eurema modeling language [175] are marked with a ’*’. Furthermore, differences to
existing requirements in [175] are highlighted in the detailed requirement discussion below.

The modeling language requirements are semantically grouped in six different parts that
are feedback loops and coordination modeling (R–01 to R–08), runtime models for knowledge
representation (R–09 to R–12), communication mechanisms (R–13 to R–14), adaptation
concepts (R–15 to R–17), development (R–18 to R–20), and analysis (R–21 to R–25).

Feedback Loops and Coordination Requirements
R–01* Explicit Feedback Loops: Following the external adaptation approach [156] decou-

ples the adaptation logic from the domain logic into the two parts adaptation engine
and adaptable software (cf. Section 2.1.1). Therefore, the design and analysis of the

– 45 –

3. Modeling Language Requirements

adaptive behavior becomes a crucial point by modeling the software system. Thus, the
explicit description of feedback loops is required [49]. Furthermore, existing approaches
separate the feedback loop in dedicated activities as described by Kephart et al. [110],
which should be supported by a modeling language, too.

R–02* Intra-Loop Coordination: The existence of different activities inside a feedback
loop causes the need of specifying a causal order between activities. The modeling
language should support the design of intra-loop coordination by means of explicitly
modeling of the control flow between activities [179].

R–03* Inter-Loop Coordination: On the one hand, a SoS contains several systems. This
further causes new demands on modeling the coordination between multiple, decen-
tralized feedback loops [183]. On the other hand, even within one system, different
concerns, such as performance optimization and failure handling, are usually modeled in
distinct feedback loops [174, 182]. However, multiple feedback loops must be meaningful
coordinated to reach the expected adaptation effects. Modeling dependencies between
feedback loops is known as inter-loop coordination [179], which should be supported
by the modeling language. The existence of several feedback loops causes further
requirements such as triggering, distribution, and collaboration.

R–04* Triggering: Modeling the inter-loop coordination allows the specification of a causal
order between feedback loops. Furthermore, temporal aspects should be considered that
describe when a feedback loop is executed. This can be modeled with trigger conditions,
which include causal and temporal aspects.

R–05* Distribution: As emphasized by the distribution characteristic (C–1.2), adaptive
SoS are potentially distributed over large geographic spaces. Furthermore, the inter-loop
coordination requirement (R–03) directly raises the question towards the distribution
of feedback loops and their deployment to systems. Therefore, a modeling language
should be aware that interacting systems and the corresponding feedback loops can be
distributed over large distances or may run on different execution nodes. This affects,
among others, the communication mechanisms between systems, causes timing delays
during knowledge exchange, or arises security issues by crossing system boundaries over
collaborations. Consequently, a modeling language should consider such distribution
effects and should provide modeling concepts for that.

R–06 Delegation: The availability of multiple adaptation capabilities and their distribution
over several systems allows the delegation of adaptation activities. Therefore, a modeling
language should support the invocation of available, possible distributed adaptation
activities (services) or the transfer of resource intensive computing tasks.

R–07 Roles: The coordination of distributed feedback loops should cover the specification of
the different participants. It seems reasonable to specify the coordinating participants by
means of roles to foster separation of concerns with respect to behavior of participants
relevant and irrelevant to the coordination. For example, the invocation of a remote
service as requested in R–06 should explicitly specify the provider and the consumer
of the service. This includes the specification of the local behavior of MAPE activities
relevant for the coordination to accomplish the self-adaptation.

– 46 –

3.2. Requirements

R–08 Protocol: The interplay between roles should be specified in a protocol to achieve the
aim of the coordination. Likewise, some processing or filtering of exchanged knowledge
according the current role is conceivable before sending or after receiving the knowledge.
Therefore, the modeling language should support the specification of the employed
protocol coordinating the behavior among distributed MAPE activities, that is, the
sequence of interactions among them such as push-pull, request-reply, or negotiation.
This corresponds to the sequence of exchanged messages or knowledge among MAPE
activities. Additionally, operational (C–4.2) and managerial (C–4.3) independence of
systems requires well-defined collaboration contracts and interfaces that define in which
form the required knowledge is exchanged.
Running example: The smart cities and the contained systems such as vehicles in the
running example of this thesis in Figure 2.11 separate the adaptation logic from the
domain logic following the MAPE-K approach, which imposes the explicit modeling of
feedback loops (R–01). Furthermore, there are different adaptation activities that have
to be coordinated, which is described by the intra-loop dependencies (R–02) within
the corresponding system. Because the running example considers several adaptive
subsystems within one vehicle, multiple feedback loops have to be coordinated (R–03),
too. The spatial distribution as well as coordination of the adaptation logic in different
vehicles and cities directly cause the need of considering trigger conditions (R–04) as
well as distribution aspects (R–05). For example, a car may trigger a dedicated service
to provide its current position in the road network, whereas the nearest service center is
used according to the spatial distribution. Additionally, modern cars allow connecting
the mobile phone with the car to enable a hand-free speaking during driving. In this case,
the delegation of tasks (R–06), as for example voice processing or mobile connection
handling, from the resource restricted mobile phone to the more powerful car is thinkable.
Thereby, different protocols (R–08) can be deployed that further define dedicated roles
(R–07), such as hierarchical client-server communication.

Runtime Models Requirements
R–09* Runtime Models: Feedback loops are characterized by MAPE activities sharing

a common knowledge base [110] and thus, the available knowledge influences the col-
laboration and adaptation capabilities of the system. The modeling language should
support runtime representations of knowledge. Models at runtime [38] (MART, cf.
Section 2.2.3) are able to represent system information during system execution. This
technique enables keeping alive development models at runtime and uses these kinds
of models to represent the executed software system. Therefore, a modeling language
should support the specification of adaptation activities together with the available
knowledge in the system.

R–10 Knowledge Management: Beside the availability of runtime information during
system execution, the semantic and representation of knowledge must be clear. Due
to collaborations between systems inside a SoS, data formats must be transformed to
link different systems and to achieve interoperability. For example, runtime models
can be dynamically manipulated on a much higher level of abstraction to achieve
interoperability, e. g., by automatically transforming them to different formats, forcing
runtime model manipulations to the running system, or enabling runtime analysis and
verification. This forces a common understanding of knowledge artifacts in the system
(similar to ontologies) and enables different participants to define what information

– 47 –

3. Modeling Language Requirements

types are shared. A modeling language should be aware of different knowledge artifacts,
must explicitly determine different knowledge types, and should offer a clear concept of
managing different information in the adaptive SoS.

R–11 Partial Knowledge: The inherent complex and distributed nature of adaptive SoS
leads to multiple local views in the systems and different versions of data over time [59,
86]. Therefore, the modeling language should consider partial knowledge and conflict
resolution mechanisms for different versions or even outdated data.

R–12 Knowledge Exchange: Beside the knowledge management (R–10), the modeling
language should support the specification of which, how much, and in which way
knowledge is exchanged. Therefore, when specifying a coordination protocol (R–08), it
has to be addressed which knowledge is shared or exchanged among distributed MAPE
activities. This includes characteristics of the knowledge such as whether it is locally
or globally accessible by MAPE activities or whether it is partitioned and replicated
in the system. Moreover, it should be made explicit how the exchanged knowledge is
processed by the activities and in which way it is relevant for the collaboration roles
(R–07), which might further affect local adaptation behavior. Additionally, the modeling
of knowledge exchange should include considerations about the two dimensions that
are completeness and time. The completeness dimension tackles the specification of
the necessary amount of data that has to be shared within the collaboration. Because
of the distributed nature of a SoS, a complete transfer of the local knowledge can be
very inefficient or may raise security issues. Therefore, the modeling should support
full and partial knowledge transfer including different local filters (views) or optional
knowledge exchange. Concerning the timing dimension, the modeling language should
be aware of the timeline of the knowledge. It might be helpful to exchange information
that is collected over a time period, of a specific time frame or knowledge that is not
older than a given timestamp. The explicit modeling of knowledge with a clear semantic
and its local as well as collaborative usage enables further impact analysis in the sense
that changes in the knowledge base by one participant may influence the behavior of an
interacting system over a corresponding collaboration.

Running example: The explicit representation of available knowledge at runtime (R–09)
is crucial for the adaptation logic and collaborations in the smart city. For example, the
complexity of a physical vehicle can be reduced by determining key points of interest such
as the current position, vehicle kind, or aimed target position and their representation
in appropriate models. If that information is kept alive during the lifetime of the overall
adaptive SoS, it can be used for online analysis such as the identification of traffic jams.
An analysis is only possible if, on the one hand, the smart city has a clear notion of the
semantic (R–10) of the runtime information. And on the other hand, if the smart city is
able to cope with a continuous flow of partial knowledge (R–11), which is provided in
different points in time from vehicles or other sensors. Furthermore, noise in sensor data,
concurrent access to knowledge, and contradicting or outdated information have to be
resolved on different levels in the adaptive SoS. The requirement of knowledge exchange
(R–12) is essential for the collaborations in the system. If for example two cars want
to successfully drive in a platoon, they have to coordinate each other by exchanging
messages and data.

– 48 –

3.2. Requirements

Communication Requirements
R–13 Communication: Besides specifying the roles and protocols of an interaction between

systems, the underlying communication mechanism has to be defined. Especially, if the
communication influences the coupling of the roles, when executing the protocol. Exam-
ples for communication paradigms are direct message exchange, either synchronously or
asynchronously, or indirect blackboard communication. The modeling language should
support different communication paradigms and hide implementation details for realizing
the communication infrastructure.

R–14 Synchronization: Additional to different communication mechanisms, the model-
ing language should provide concepts for synchronizing collaborative interactions at
dedicated points in time. Different synchronization methods are known from parallel
programming such as barriers, mutexes, futures, or semaphores. The modeling language
should provide a meaningful subset that can be used during collaboration. In general,
the use of synchronization mechanisms may lead to time-based deadlocks and thus, may
block the collaboration. The modeling language should enable an analysis of modeled
deadlock behavior.

Running example: Due to unreliable networks, a mobile client in the smart city should
communicate (R–13) asynchronously by directly exchanging messages to the server.
Other examples are ping pong messages or heartbeats within a platoon to indicate the
correctness or liveness of a collaborating system. Sometimes explicit synchronization
(R–14) between participants is necessary. Consider for example an existing platoon,
where a new car wants to join and therefore, may influence the behavior of the whole
platoon. In that case, it can be useful to distribute the information of a new incoming
car to all members in the platoon and wait until each member locally adapts to the new
situation.

Adaptation Requirements
R–15 Reconfiguration: There are different variants of adapting the behavior as already

introduced in the preliminaries in Section 2.1.1. Applying reconfiguration techniques
has the advantage that the possible configuration space is known in advance. Therefore,
applying a reconfiguration suits resource restricted systems such as embedded or cyber-
physical systems. Furthermore, it enables the changing of the system structure or
behavior under timing constraints as necessary for hard real-time systems. Thus, a
modeling language for adaptive SoS should support the specification of predefined
reconfigurations.

R–16* Adaptation: Adapting the system structure or behavior is another variant to re-
act of changing needs. Adaptation techniques are usually more flexible than system
reconfiguration and the configuration space must not be known in advance. Therefore,
a modeling language should provide concepts for adapting the specified SoS behavior.
The Eurema modeling language focuses on structural adaptation only as emphasized
in [175]. This restriction is not required in the context of this thesis. Thus, parameter
and structural adaptation as described in the preliminaries in Section 2.1.1 should be
considered.

– 49 –

3. Modeling Language Requirements

R–17* Meta-adaptation: Meta-adaptation is the ability to adapt the adaptation logic itself,
which is specified in the adaptation engine. The Eurema modeling language focuses on
the reflection and structural adaptation of feedback loops. This thesis extends this view
by the more general demand for meta-adaptation of all entities within the adaptation
engine of the adaptive SoS such as runtime models or contained systems.
Running example: Allowing all kinds of adaptations for cars within a smart city
might cause safety or governmental law violations. Therefore, predefined software
configurations (R–15) are thinkable. For example, a car may offer different driving
modes such as platooning, comfort, or sportive. All these modes can be engineered and
provided during the development of the car. During lifetime, the driver can choose his
preferred configuration and the vehicle changes the behavior accordingly. On the other
hand, dynamic adaptation mechanisms (R–16) are thinkable for noncritical applications
such as dynamic parking slot services or traffic jam warnings. The requirement of
meta-adaptation (R–17) arises by looking at the different adaptive layers inside the SoS.
Therefore, at the highest layer, the smart city may adapt the goals and reconfiguration
capabilities of the layer below, which comprises for example the behavior of the traffic
lights to adapt the overall traffic flow. The changed policy of controlling the traffic may
raise further adaptations at the layer below that tackles the vehicles on the road. For
example, a car may adapt its behavior and propose a mode change, e. g., from sportive
to platooning, because of a high traffic density.

Development Requirements
R–18* Offline and Online: Due to software evolution and aging [16, 77], there is a coexis-

tence of software adaptation activities that are performed offline or online. Performing
online adaptation is realized by the adaptation engine, which enables an appropriate
derivation of the behavior according to changing needs. However, it might happen that
the adaptation engine cannot cope with an upcoming need. In such cases, the software
must be externally adapted, e. g., by software maintenance activities, which is called
offline adaptation. Andersson et al. [16] show that the coexistence of offline and online
adaptation is required. As a consequence, a modeling language should support both
kinds of online and offline adaptations as well as their coexistence. This requirement is
taken from the Eurema modeling language and further motivated in [175].

R–19 Pattern: Since there is no dichotomy of centralized and decentralized control, there is a
range of different patterns determining the degree of decentralization [183]. For example,
systems within an adaptive SoS can be organized in a hierarchy, where dedicated
controllers are responsible to coordinate parts of the hierarchy below. In contrast, other
solutions can be completely decentralized by following the idea of swarm algorithms
or independent agents. Being able to specify the coordination among distributed
MAPE activities with all their facets is a promising way to model in detail various
control patterns [183]. Having a uniform modeling approach enables the specification,
comparison, and reuse of solutions to build a pattern catalog at different levels of
abstraction. A pattern catalog enables to choose appropriate partial solutions depending
on different selection criteria as for example robustness, ability to reach local and global
goals, scalability by means of the amount of data to be processed, and overhead of
the interaction/communication. The next step after a pattern catalog would be a
standardization of coordination elements such as roles, protocols, knowledge exchange,
and communication techniques.

– 50 –

3.2. Requirements

R–20 Different Domains: As motivated above, a SoS comprises several system types and
thus, tackles software and system engineering concepts from different domains. Specifying
the adaptive behavior and collaborations in the overall SoS raises the need of finding
modeling concepts that integrate different domains and enable the interaction between
various system types. A modeling language must enable the integration of domain
specific concepts together with the mentioned requirements of handling knowledge and
collaborations among systems at modeling level.
Running example: Because of the size of the smart city, several development processes
and maintenance activities are applied for different kinds of systems. Therefore, there is
a mixture of offline adaptation activities, such as software updates or the deployment of
new functionalities, and online adaptation, such as appearing collaborations, behavioral
changes due to changing requirements or hardware failures (R–18). Furthermore, the
development patterns (R–19), which are discussed in [183], can be applied in the
smart city example such as client-server communication or information sharing during
collaborations. Finally, there are obviously different domains (R–20) involved. For
example, there are cars, smart houses and intelligent traffic lights that are all engineered
and developed from several companies following different development processes and
concepts.

Analysis Requirements
R–21 Determining Causal Dependencies: Where the requirements R–01 to R–20 focus

on the desired capabilities of the modeling language, the following requirements comprise
the understanding and verification of the modeled SoS. The modeling of multiple feedback
loops leads to an interleaving of adaptation effects. Therefore, the modeling language
should support the understanding of the causal dependencies between adaptation
activities, multiple feedback loops, and system interactions. Thus, the modeling language
must provide clear concepts that describe causal dependencies between adaptation effects
that can be analyzed or verified afterwards on the modeled SoS to investigate the overall
emergent behavior.

R–22 Determining Knowledge Interdependencies: Beside the understanding of the
causality between adaptation effects, activities and feedback loops influence each other
over the manipulated and shared knowledge base. This requires a deep understanding
of the knowledge distribution in the adaptive SoS, the coupling of knowledge via
collaboration as well as the visibility and access to knowledge. Therefore, the modeling
language must offer knowledge management concepts that facilitates the identification
of used information in the modeled SoS as well as its contribution to the emergent
behavior.

R–23 Static Analysis: Developing adaptive behavior and collaborations between MAPE
activities requires verification, for instance, to ensure that an activity performing a
certain role fulfills the behavior as defined by the interaction. This can be considered as
consistency between the behavior of an activity and the behavior defined for a role in
the coordination. Thus, when implementing or even executing coordinating activities,
means to ensure that the roles and protocols are properly realized as required. The
modeling language should enable static analysis for the modeled adaptive behavior of
the SoS. Therefore, the modeling language concepts must have a clear semantic to
investigate the designed adaptation and collaboration effects.

– 51 –

3. Modeling Language Requirements

R–24 Runtime Analysis: Static analysis investigates and checks the modeled system
behavior at development time. As motivated for the emergence characteristic (C–3.1)
of an adaptive SoS, the combined, overall behavior of single systems and system
interactions is considered as nonlinear and thus, the emergent behavior is hard to predict
at development time. Therefore, a modeling language should enable the analysis of the
emergent behavior at runtime, which causes the need of runtime analysis capabilities
as well as the ability of checking system constraints during the lifetime of the SoS.
Additionally, runtime analysis implies realistic runtime introspection of the adaptive
SoS for retrieving desired information about the inner system state. Thus, the realizing
framework of the modeling language should support monitoring capabilities, which
further enables runtime analysis and the checking of runtime constraints.

R–25* Execution and Simulation: After modeling the adaptive SoS behavior, guidelines
for supporting the implementation should be provided. One approach could be to
use model-driven techniques such as code generation to create initial artifacts to start
implementation. Another approach could be the interpretation (direct execution) of the
developed models. This facilitates the analysis and reuse of existing models at runtime
without the generation of intermediate development artifacts, but requires a framework
that is able to directly execute the specified models. Furthermore, an execution of single
modeled systems within the SoS enables a simulation of the joint system interactions
by subsequently executing the modeled behavior over time, which leads to the overall
emergent adaptive SoS behavior. Therefore, the realization framework of the modeling
language should support the execution of models as well as their simulation, which
complements the analysis of the modeled SoS towards the verification and understanding
of the emergent behavior.
Running example: As derived in Section 3.1, an adaptive SoS is characterized by an
emergent behavior (C–3.1). Therefore, all kind of causal dependencies (R–21) between
the adaptive systems and the knowledge distribution (R–22) must be considered to predict
and to analyze the overall SoS behavior at development time (R–23). Furthermore, a
smart city must be able to introspect itself and its containing systems to reason about
the current state and possible adaptations in the future, which leads to the need of
runtime analysis capabilities (R–24). Finally, because the emergent behavior of the SoS
is too complex for complete state space verification, simulation helps understanding
the modeled system and interleaving adaptation effects, which requires a support for
executing the modeled system (R–25).

3.3. State of the Art

This section gives an overview about the state of the art in modeling adaptive SoS according
to the derived requirements above. Inspiring approaches are outlined that foster the idea of
designing a new modeling language. Furthermore, gaps and open challenges are mentioned.
Existing approaches for distributed self-adaptive systems just present specific solutions for
particular problems of such systems or they provide architectural frameworks supporting the
implementation. All of them do not explicitly specify how the distributed feedback loops are
coordinated. However, such specifications are essential for an engineering approach.

There exists a lot of work modeling single feedback loops in control engineering in the
embedded, automotive and robotic domain. For example, Kokar et al. [117] provide different

– 52 –

3.3. State of the Art

feedback loop designs for embedded systems as well as discuss pros and cons of each variant
based on the underlying control theory. Burns [54] comprehensively discusses the formal,
mathematical background designing a control loop by considering different real world problems
such as timing and uncertainty. The advantage of this formal background in control engineering
guarantees specific characteristics of the adaptive behavior such as stability or a fast reaction
time. However, adaptive behavior in complex systems often considers dynamic software
architectures [134], which cannot be realized by one static, predefined control loop and opens
new challenges in software engineering [183].

From the control engineering, feedback loops become a first class concept in the design of
software systems as for example in the context of the MDE. In the MDE general purpose
modeling languages are used to describe the structural and behavioral part of the software
system. From the system engineering perspective, the SysML [89] or Architecture Description
Languages offer powerful concepts for the specification of the system architecture, its sub-
components, and distribution aspects (R–05). For the software engineering perspective, the
UML [87] and SoaML [88] provide basic concepts for the modeling of collaborations (R–07)
and interaction behavior (R–08). Because of the generality of these modeling languages, they
do not consider specifics of adaptive SoS with explicit feedback loop modeling (R–01), the
representation of knowledge as runtime models (R–09), and the coupling of feedback loops
with collaborations (R–03). Hebig et al. [96] present an UML profile for the explicit modeling of
feedback loops in form of UML components, which introduces a semantical notion of feedback
loops into the general UML concepts. However, the internals of the feedback loop behavior
(R–01) are encapsulated and therefore hidden in the component specification. Furthermore,
the interaction between feedback loops is modeled via abstract component interfaces, whereas
the concrete protocol (R–08) is not modeled.

From the autonomic computing domain, Kephart et al. [110] introduce the MAPE feedback
loop, which consists of four, predefined adaptation activities. Therefore, the internals of the
feedback loop become visible (R–01), but are statically arranged. Brun et al. [49] take the idea
of the MAPE feedback loop approach and propose different designs by transferring typical
control engineering patterns to a software engineering level. Although there are different
variants of controller proposed, the overall feedback loop remains static according to the
design decision. Simultaneously, Salehie et al. [156] outline different variants of separating
or integrating the adaptation logic into the domain logic and propose a hierarchy of self-*
capabilities for adaptive software systems. Thereby, the role of the knowledge (R–09) within
the adaptation logic is not defined. Moreover, there is often one feedback loop designed for
realizing a single self-* capability. Therefore, the specification of multiple (R–03), interacting
(R–04), and possibly distributed (R–05) feedback loops are not considered.

Other approaches as for example Fleurey et al. [73] use domain specific modeling languages
for the specification of valid adaptation behavior. Afterwards, a given framework validates the
modeled configuration and generates an appropriate adaptation logic. Similar to a domain
specific modeling language, Gui et al. [92] provide a standardized component model, which
encapsulates the adaptation strategy. Thereby, components can be connected, which forms the
overall adaptation logic. A framework uses the standardized component model to generate an
appropriate adaptation behavior. From a system engineering perspective, Morrison et al. [139]
propose the ArchWare ADL for the offline specification of an evolving system architecture.
The ADL description is used to generate an adapted system implementation according to the
modeled evolution step. Furthermore, Morin et al. [138] generate configuration scripts on the
fly to change the system, but they have no explicit feedback loop description. Cetina et al. [57]

– 53 –

3. Modeling Language Requirements

present a smart home scenario, where a predefined single feedback loop uses a framework
to generate code during system operation, which adapts the behavior according to given
user requirements. The key aspect of these approaches is a predefined set of building blocks
(e. g., the component model or the domain specific modeling language concepts) to ease the
feedback loop realization by supporting code generation. However, the adaptive behavior is
generated, whereas the implementation details are hidden in the corresponding framework
and therefore not explicitly modeled (R–01). Furthermore, the models are used for validation
and generation purpose at development time and are not kept alive at runtime (R–09).

Multiple feedback loops arise, if different concerns or systems must be adapted, whereas
each feedback loop focuses on one specific self-* capability. In such case, existing approaches
propose one specific solution that tailors the underlying problem. For example, a completely
decentralized use case of a self-organizing multi-agent system is described by Klein et al. [114].
In this example, an audio streaming system must apply a sequence of different filter operations
on audio packets, which are performed by autonomous agents, before the packet can be
provided to the client. The goal of the audio streaming system is the minimization of packet
losses by maximizing availability and reliability of successfully processed audio packets. A
distributed self-adaptive scenario of a mobile learning application is described in [84], where
different tasks are distributed to different student groups. In contrast to the decentralized
scenario in [114], the described approach of Iglesia et al. [84] uses a centralized master-slave
coordination pattern between mobile clients and the server. However, there are much more
specific scenarios, where multiple feedback loops are defined and interact with other feedback
loops in a predefined, specific system solution (cf. the comprehensive description of scenarios
in own former work in [11]). Nevertheless, those specific system solutions do not focus on
providing modeling language concepts to explicitly describe the feedback loop (R–01) and
their interaction (R–03), although they pinpoint to a specific realization for the corresponding
problem.

Moreover, Weyns et al. [182] present a reference model called FORMS for the formal
specification of distributed feedback loops. Thereby the focus is on the validation of the
specified feedback loop behavior at development time to predict the overall emergent adaptation
behavior of the system as well as to support the implementation. However, the formal models
are not used at runtime (R–09) and the feedback loop interactions (R–03) are not modeled as
first class entities, but rather are hidden in the formalism. The formal approach of verifying
feedback loop interaction is further refined by Iglesia et al. [84] and Iftikhar et al. [103] towards
an offline and online verification of the modeled feedback loop interaction. In the context of
specific solutions for multiple feedback loop interactions, Alvares de Oliveira et al. [15] present a
specific synchronization protocol and show its applicability in a cloud computing environment.
Moreover, Malek et al. [131] present an approach that solves the redeployment problem of
feedback loops and Sykes et al. [164] show an application of a distributed self-assembly scenario.
However, all of these approaches focus on a concrete protocol implementation to solve the
underlying problem. The feedback loop interactions are not modeled as first class entities
(R–03), the delegation of tasks is not supported (R–06) and the role of runtime models is not
described (R–09).

A more precise focus on runtime models is given by Blair et al. [38], who introduce the general
concept in the context of self-adaptive systems. Challenges are outlined by Weyns et al. [181],
who emphasize the demand on an engineering approach that captures partial knowledge and
uncertainty within the adaptive system. Assmann et al. [19] propose a three layer reference
architecture to cope with runtime information from different system types such as embedded

– 54 –

3.3. State of the Art

and cyber-physical systems. However, the reference architecture is more a first sketch of
integrating adaptation behavior and runtime models on different layers. The semantic (R–10)
and partial runtime models (R–11) are not considered. Götz et al. [86] target the point of
partial available knowledge and illustrate the definition of views via a model query language,
but lack in a clear semantic and integration of the runtime model information into an overall
control architecture. Furthermore, Rajhans et al. [151] focus on the integration of multiple,
different, potentially partial domain models during the development of a CPS, but lack in an
integration concept of this information at runtime. In general, the mentioned approaches show
the potential of runtime models and their application for specific use cases. Unfortunately,
the integration of this information into an explicit feedback loop modeling (R–01) is missing.
Moreover, the distribution of knowledge (R–05) during feedback loop interaction is not
considered.

There are several layered architecture approaches together with an underlying framework
or middleware, which provide a clear separation of adaptation concerns. For example,
Baresi et al. [25] propose the SeSaMe middleware that consists of a component and management
layer. The middleware facilitates the modeling of collaboration aspects, but focuses on the
definition of black box components instead of feedback loops. The RAINBOW framework from
Garlan et al. [79] also realizes a two layer architecture, where a single control loop monitors
and changes the underlying system below. Similar to the SeSaMe middleware, Bures et al. [50]
propose the DEECo component model. These components can dynamically build so-called
ensembles, which are dynamic collaborations. The underlying runtime framework realizes an
appropriate scheduling and communication mechanism for data exchange. Kramer et al. [119]
propose a generic three layered architecture with a predefined task focus on each layer. On
the highest layer, long term goals are handled, whereas the middle layer realizes short term
adaptation concerns of the underlying software component architecture. This three layer
proposal is adopted by many other frameworks. For example, Edward et al. [70] propose a three
layer architecture that is further refined by Tajalli et al. [166] in the PLASMA architecture.
The highest layer generates plans for the adaptation logic at the middle layer, whereas the
middle layer adapts the application logic accordingly. However, the focus is on the adaptation
plan generation and internals of the feedback loop as well as their interaction are not modeled.
Moreover, the architecture is predefined and extensions or changes in the proposed approach
are not discussed. Also previous work [53, 100] proposes the Mechatronic UML approach that
extends the UML to specify and generate a hierarchical architecture. The approach addresses
distinct feedback loops for reconfiguration and planning purposes. However, the adaptation
logic is defined during development and cannot be changed during runtime nor is kept alive
as runtime models.

Finally, Weyns et al. [183] introduce a set of common patterns for distributed feedback loops
such as master-slave or regional planning. However, they do not address the distribution
(R–05) and modeling of knowledge (R–09) nor describe insides of the explicit feedback loop
structure (R–01). They end up with challenges of the explicit modeling of collaboration aspects
(R–03, R–07) as well as the specification of partial knowledge (R–11). With focus on offline
and online adaptation steps within the software engineering process, Andersson et al. [16]
comprehensively discuss the problem but do not present a working solution that integrates
both processes.

In summary, state of the art approaches provide clear solutions that aim at reducing the
development effort to specify the desired adaptation logic. Often, the adaptive behavior
is designed in a single feedback loop, whereas the adaptation effects are well understood

– 55 –

3. Modeling Language Requirements

with respect to the experience from the control engineering domain. For those approaches,
an additional framework usually provides a predefined structure of adaptation steps (e. g.,
MAPE), where concrete algorithms can be exchanged to realize the desired self-* capability
and an appropriate realization is generated for the target platform. Therefore, the adaptation
logic remains hidden in the used framework, which limits the support of explicit modeling
of individual feedback loops (R–01) and the handling of available knowledge in form of
runtime models (R–09). Furthermore, single feedback loops limit the overall application for
multiple adaptation concerns, but avoid arising synchronization problems and interactions
between multiple feedback loops. In general, there exists only preliminary work of modeling,
predicting and handling multiple feedback loops as well as their interaction at runtime. As
a consequence, existing approaches offer a predefined layered architecture with well known,
but fix components in it. If the individual specification of the adaptation logic is supported
(R–01), the approaches do not consider the integration of runtime information (R–09) into
the feedback loops or simplify the interaction by predefined interfaces (R–13). In contrast,
approaches that focus on runtime models often do not consider their partial usage and their
distribution among multiple feedback loops.

Own former work [11, 175] already identifies those gaps and proposes the Eurema modeling
language, which is the predecessor modeling language of this thesis. Eurema aims at the
explicit modeling of feedback loops (R–01) in a layered adaptive architecture. Thereby,
multiple feedback loops are considered and the available knowledge (R–09) is integrated into
the adaptation activities of the feedback loop. Therefore, Eurema is suitable for defining the
adaptation capabilities of a system and the hierarchical dependencies of those on the layered
adaptation engine. However, Eurema is developed with the focus on single self-adaptive
systems, but does not aim for the modeling of an adaptive SoS. As a consequence, Eurema
lacks in specifying concurrent, distributed feedback loops (R–05) and their interaction by
means of collaborations (R–07, R–08). Therefore, the use of partial knowledge (R–11) and
different communication mechanisms (R–13) between feedback loops as typical in an adaptive
SoS are not considered. Furthermore, Eurema does not discuss possible verification capabilities
of the explicitly described adaptation logic. Thus, state of the art approaches do not consider
all requirements for the modeling of an adaptive SoS architecture as derived in Section 3.2.
The experience of the Eurema modeling language and its limitations lead to the modeling
approach of this thesis. An overview about the new modeling language concepts is given in
the next chapter.

– 56 –

4. Overview
This chapter gives an overview of the Distributed Eurema with Collaborations (Deurema)
modeling language approach. Thereby, it considers the outlined goals of this thesis discussed
in Chapter 1 as well as the modeling language requirements from Chapter 3 and pinpoints
to the corresponding Deurema concepts. Furthermore, modeling an adaptive SoS with the
Deurema approach enables new possibilities with respect to the analysis, simulation and
realization of the modeled system solutions for different, application specific domains.

Figure 4.1 gives an overview of the Deurema concepts according to the goals of this thesis.
This chapter starts with the modeling concepts of the Deurema language. At first, Deurema
explicitly considers the adaptation activities realizing feedback loops as first class language
entities that describe the overall adaptation behavior of the system. Thereby, feedback loops
realize different self-* capabilities as for example self-configuring or self-healing as shown on
the left in the middle layer in Figure 4.1. The explicit modeled adaptation logic operates on
application specific behavior, which can be modeled in Deurema following a component-based
and rule-based development approach. Second, Deurema considers the available knowledge
in the adaptive system in form of runtime models (cf. MART approach introduced in the
preliminaries in Section 2.2.3). On the one hand, the runtime models are considered as first
class entities and thus, can be seamlessly integrated into the modeling concepts of specifying
the adaptation logic. Therefore, a fine-grain access can be modeled on available runtime models
by adaptation activities. On the other hand, Deurema supports a classification of runtime
models that defines the purpose of the model and gives information about the contained
content. Third, the support for multiple, possibly distributed feedback loops raises needs of
determining the influence of feedback loop interactions, which is considered by the Deurema
collaboration concept. In summary, the modeling with the Deurema language comprises the
adaptive behavior, the available knowledge and system collaborations.

The explicit modeling of the adaptation logic together with the available knowledge and
the feedback loop interactions is a major step of describing the overall adaptive, emerged SoS
behavior. On basis of the Deurema models, this thesis discusses two further research questions
targeting the analysis and simulation of the modeled systems as well as its realization in a
specific domain. First, static analysis techniques and runtime analysis can be applied, whereas
both techniques are used to retrieve metrics, (anti-)patterns used in the Deurema models, or
evaluate simulation runs as shown on the top in Figure 4.1. Static analysis is typically used
during the development time of the system, whereas runtime analysis can be applied during
the lifetime of the adaptive SoS. Answering the research question concerning the realization
of the modeled behavior must consider state of the art standards and development approaches,
which differ according to the application domain. This thesis discusses the realization of
Deurema models in detail by considering one de facto standard from the automotive domain,
but also pinpoints to other common frameworks and standards.

Beside the analysis, the overall emergent SoS behavior can be further investigated by
model as well as system simulations. Simulation runs can be applied on different levels to
verify that the modeled system behavior corresponds to the current goals of the adaptive
SoS. Thus, the simulation capabilities of the Deurema language are a crosscutting concern

– 57 –

4. Overview

 Sim
u

latio
n

Realization

self-
healing

self-
config

Adaptation MART

Analysis
42%

Rules

Modeling

 Energy
 Traffic

:SmartCar

:Platoon
:SmartCar

Collaboration

 Platoon

Figure 4.1: Overview

applied during modeling, analysis and realization of the adaptive SoS as show at the right
in Figure 4.1. For example, a model-based simulation may be applied very early during
the development of the adaptation logic, which requires a clear semantic of the Deurema
models that enables their execution. Even an early simulation of the models can pinpoint to
collaboration problems between different feedback loops or show that the overall adaptation
effect differs from the expectations. In the context of this thesis, a Deurema model interpreter is
presented that facilitates the execution of the specified adaptation logic. However, early model-
based simulation abstracts from device specific runtime phenomena as for example limited
computation power or available memory resources. During the realization, the simulation
runs can be refined to cope with domain specific problems such as time or uncertainty. After
a complete mapping of Deurema models to a concrete realization, domain specific verification
techniques can be used to ensure that the overall adaptive behavior still corresponds to the
modeled system solution. During the analysis, simulation supports the execution of different
static analysis metrics as well as the parallel execution of the adaptation logic together with
runtime analysis rules. Furthermore, logged simulation runs can be used again for analysis
purposes, which might lead to changes in the modeled adaptive SoS architecture improving
the overall system design. Thus, modeling, analysis and simulation can be successively and
periodically used during the development process as well as during the lifetime of the adaptive
SoS to verify the modeled behavior against given goals and constraints.

In the following, each perspective of modeling, analysis, simulation, and realization of
Deurema models is discussed in detail. Thereby, the modeling language requirements in
Chapter 3 lead to design decisions for the Deurema approach, which are outlined, too.

– 58 –

4.1. Deurema Modeling Language

SmartCar
(Application Logic)

SmartCar
(System Logic)

G
o

al
La

ye
r

A
d

a
p

ti
v

e
La

ye
r

So
ft

w
ar

e
La

ye
r

Self-Configuring
(Adaptation Logic)

Platoon
(Collaboration Logic)

Self-Configuring
(Adaptation Logic)

TrafficMonitor
(Analysis Logic)

SmartHome
(Domain Logic)

EnergyOptimization
(Adaptation Logic)

SmartCity

Sensors

Effectors

Sensors

Effectors

Sensors

Effectors

EnergyMonitor
(Analysis Logic)

Sensors

Effectors

Modeling

 Energy

 Traffic

Figure 4.2: Smart city running example: Deurema adaptive SoS modeling

4.1. Deurema Modeling Language

The Deurema language focuses on different aspects modeling the adaptive SoS. First, a SoS
comprises several, diverse, independent systems. According to the running example, Figure 4.2
sketches this diversity by showing a smart city system comprising one smart home and two
smart car systems. The dashed line in the figure denotes the system borders. In the example,
the smart home system contains further behavior. The domain specific behavior, denoted as
Domain Logic in the example, realizes the smart home functionality such as closing the windows
in the case of bad weather conditions, starting a surveillance service if the user is not home, or
providing a lighting service according to given user requirements. On top of the domain logic,
an energy optimization adaptive behavior, denoted as Adaptation Logic, improve the smart
home behavior with respect to the energy consumption. Again, the optimization is supervised
by an energy monitor, denoted as Analysis Logic, which determines the energy optimization
of the smart home over time and can be for example used by the smart city to improve the
overall power supply. The local behavior of the smart home is placed on different layers in the
SoS architecture. Therefore, the energy optimization logic can sense the underlying domain
specific behavior and may change (effect) it during the optimization. Additionally to the
smart home, the both smart cars in Figure 4.2 also realize individual system behavior such as
a self-configuring adaptation logic. Furthermore, they collaborate with each other, denoted

– 59 –

4. Overview

by the platoon Collaboration Logic modeled as ellipses in the figure, which enables a system
interaction crossing the boundaries of one system. As a consequence, all contained systems in
the smart city example and in particular the collaboration between system entities contribute
to the overall emergent adaptive SoS behavior, which is captured by Deurema.

Second, the Deurema approach covers the modeling of adaptation activities (the Adaptation
Logic in the example) in form of feedback loops. Those feedback loops operate on local behavior
as sketched in Figure 4.2, where the adaptation logic runs on top of domain, application, and
system specific logic. Thus, Deurema explicitly considers different variants of local behavior
modeling.

Third, the Deurema approach refines the notion of knowledge in the adaptive SoS using
runtime models that can be seamlessly integrated into the local and collaboration behavior.

Fourth, Deurema explicitly determines collaboration aspects between systems inside an
adaptive SoS. As motivated above, collaborations enable new functionalities that leaves
the border of local system behavior. In the example, cars can join into a platoon, e. g., for
autonomous driving, which contributes to the overall emergent SoS. Furthermore, the smart
city can monitor the platoon collaborations and may realize further traffic flow optimizing
goals, which cannot be reached by one individual car system alone. Another effect is that
the beforehand local adaptive behaviors also emerge over the collaborations, which can be
described by Deurema, too.

4.1.1. Modeling the Adaptation Logic
Figure 4.3 gives an overview of the Deurema aspects with respect to modeling the adaptation
logic of an adaptive SoS. Therefore, Deurema introduces adaptation activities as first class
entities (R–01) that form a feedback loop. Thus, the adaptation behavior of the adaptive
SoS is explicitly captured. As shown in the Self-Configuring feedback loop in the picture, the
intra-loop coordination of adaptation activities (R–02) is defined by the control flow similar
to UML activity diagrams.

In the example in Figure 4.3, the feedback loop consists of four, subsequently executed
adaptation activities, namely Update, CheckTrafficSituation, Optimize, and Effect. The aim of the
feedback loop is the enabling of self-configuration capabilities of a smart car depending on
the current traffic situation and position of the car (e. g., city, countryside). For example,
the smart car may switch in an eco-friendly city mode, if the driver of the car enters a city.
If multiple cars follow this eco-friendly driving style, the emergent behavior can lead to a
reduction of the overall pollution within the smart city. However, each single activity in the
feedback loop performs its action according a common understanding of the current situation
of the system, which is determined in a knowledge base.

Beside the concept of feedback loop modeling, Deurema considers the integration of modeled
adaptive behavior into different domains (R–20) by supporting component-based as well as
graph-based modeling approaches, which is shown at the bottom in Figure 4.3. Because an
adaptive SoS consists, among others, of embedded and cyber-physical systems, the component-
based development approach is the dominant development paradigm for robotic [47, 48]
and automotive [62, 105] systems in that domain. Additionally, own former work in [14]
comprehensively discusses a toolchain for state of the art embedded systems following the
component-based paradigm. Consequently, Deurema adopts this paradigm for the integration
of feedback loops with component-based behavior modeling. The example on the left in
Figure 4.3 shows an excerpt of a smart car application logic that is realized by three components
Navigation, SensorFusion, and Driving. Similar to feedback loop activities, components operate on

– 60 –

4.1. Deurema Modeling Language

Update

Optimize

Effect

CheckTrafficSituation
optimal

else

self-
healing

self-
config

AdaptationModeling

 Energy

 Traffic

Knowledge

Self-Configuring

R-01

R-02

SmartCar

SensorFusion

Navigation

Driving

TrafficMonitor

Rule1 Rule2 Rule3

Knowledge Knowledge

R-20

Self-Configuring
(Adaptation Logic)

TrafficMonitor
(Analysis Logic)

SmartCar
(Application Logic)

Figure 4.3: Modeling the adaptation logic in Deurema

a common knowledge base for realizing the desired functionality. The knowledge is accessed
and provided via ports, which is indicated by arrows in the figure.

The rule-based modeling support of Deurema is motivated by the fact that almost all models
in the MDE approach can be represented as graphs. Thereby, model types can be different as
for example structural architecture models in form of class or component diagrams as well as
behavioral models, which can be activity diagrams, petri nets, or automata. On an abstract
level, all of these models can be represented, manipulated, and stored as graphs. Thus, graph
transformation rules are a powerful concept for monitoring and changing the models. For
example, a graph transformation rule can identify a situation of interest in a model, e. g., an
architectural configuration, and change the found match in the model (graph) afterwards.
This change will lead to a derived model, which can be another architectural configuration of
the system. Graph transformation rules together with the basic concepts of matching and
applying the side effect on a graph structure are already introduced in the preliminaries in

– 61 –

4. Overview

Section 2.2.5 and are adopted in Deurema. Thus, Deurema exploits the underlying graph
structure of models and provides a first class concept of defining graph transformation rules,
which work on arbitrary domain models. The example on the bottom at the right in Figure 4.3
shows three graph transformation rules of a TrafficMonitor. A possible application of these
rules in the running example could be a set of declarative rules that look for specific traffic
situations (e. g., traffic jams). If an observed situation occurs, a corresponding adaptation
effect can be triggered. Graph transformation rules work on the same common knowledge
base as feedback loop activities and components, indicated by the arrows in the figure.

Supporting the three concepts of modeling the local behavior of systems within the adaptive
SoS by means of feedback loops, components or graph transformation rules opens a broad
range of application possibilities for the Deurema modeling language.

4.1.2. Knowledge as Runtime Models

As emphasized in the former section, the modeled local behavior and the adaptation logic
operates on a common knowledge base. As shown in Figure 4.4, the notion of knowledge
is further refined by storing information of interest in runtime models (R–09), whereas the
general MART concept is already introduced in Section 2.2.3. First, the Deurema modeling
language provides a runtime model categorization, which clarifies the purpose of a runtime
model and thus, provides insights into the contained runtime information. Second, Deurema
supports arbitrary metamodels from different domains that describe the concepts of a runtime
model. Altogether, the purpose, the metamodel, and the Deurema management of the runtime
model inside the adaptive SoS define the semantic of the runtime information as demanded
by the modeling language requirement R–10.

Deurema seamlessly integrates the runtime models (R–20) in all three possibilities of
modeling the local application and adaptation logic as discussed in the former section.
Furthermore, it supports the modeling of partial knowledge in arbitrary runtime model views
(R–11). This partial information can be enriched via system collaboration (R–03) as well as
monitoring the system context (context-awareness) or system inner structure (self-awareness).
Additionally, model operations (modeled as dashed arrows in Figure 4.4) explicitly define the
access, the amount, and the direction of runtime model usage, which further contributes to a
clear semantic (R–10) and partial knowledge usage (R–11).

The examples in Figure 4.4 describing the Self-Configuration feedback loop, the SmartCar
application logic, and the TrafficMonitor behavior as introduced in the former section show
how the runtime models (modeled as rectangles in concrete syntax) can be used across the
Deurema domain modeling concepts. For example, the Architecture runtime model contains
information about the inner structure of the adaptive SoS. This information is spread in
different views into the feedback loop, smart car, and traffic monitor, where it appears as
runtime model. Each system part uses the architectural model differently by defining local
model operations on the runtime model to retrieve or annotate information. The Deurema
execution environment is responsible for the maintenance of different runtime model views,
resolution of concurrent accesses, and guaranteeing modeled visibility restrictions between
systems insight the adaptive SoS.

– 62 –

4.1. Deurema Modeling Language

r

Modeling

 Energy

 Traffic

Self-Configuring

MART

Update

<<MonitoringModel>>

Monitoring Rules

r

<<ExecutionModel>>

Synchonization Rules

<<EvaluationModel>>

Goals
<<ChangeModel>>

Configuration Strategies

<<SystemModel>>

Architecture

Optimize

Effect

r
r

r

r r

r

r

w

a
a

CheckTrafficSituation

R-09
R-10

R-11

SmartCar

SensorFusion

Navigation

Driving

TrafficMonitor

<<SystemModel>>

Architecture

<<RequirementModel>>

Goals

r

wr

Rule1 Rule2 Rule3

<<AssumptionModel>>

Constraints

<<SystemModel>>

BehaviorMode

<<SystemModel>>

Architecture

r

r r ww

R-20

Self-Configuring
(Adaptation Logic)

TrafficMonitor
(Analysis Logic)

SmartCar
(Application Logic)

Figure 4.4: Deurema knowledge as runtime models

4.1.3. Modeling Collaborations

An important key aspect in Deurema is the modeling of system interactions (R–03) in form
of collaborations. Thus, the modeling language is designed to support those collaborations as
first class entities as visualized in Figure 4.5. Thereby, Deurema fosters separation of concerns
by explicitly separate collaboration related behavior from the local adaptation activities
in the system. A Deurema collaboration defines abstract roles (R–07), whereas each role
follows an interaction protocol (R–08). For the communication between collaborating roles,
Deurema provides different communication mechanisms (R–13), e. g., for invoking remote
services (R–06), transferring knowledge (R–12), or synchronizing the behavior (R–14) between

– 63 –

4. Overview

Modeling

 Energy

 Traffic

Leader

Follower

R-07

 PlatoonLeader Follower

Update

<<SystemModel>>

Convoy

r w

Le
ad

er
Fo

llo
w

er

Alive

Alive
R-08

R-07

R-06

R-11

R-03

R-14 R-13

SmartCar SmartCar

Self-Configuring

Platoon
(Collaboration Logic)

Self-Configuring

SmartCity

Sensors

Effectors

Sensors

Effectors

R-03

Collaboration

 Platoon

Figure 4.5: Deurema system interactions via collaborations

roles. Considering the running example, Figure 4.5 shows a platoon collaboration between
smart cars with the two roles Leader and Follower. Furthermore, the figure exemplarily depicts
by the two activity lanes that each role follows a specified protocol. Beside the sending of
synchronization messages between roles, the protocol integrates the Deurema runtime model
concept for representing the available knowledge and performs local adaptation activities. In
the example in Figure 4.5, a local Update activity manipulates a Convoy runtime model, which
is only visible in the context of the Leader role.

Defining the collaboration aspects separately from the local adaptation behavior supports
the distinct development and analysis of both. However, because collaborations are the major
reason of the emergent SoS behavior, Deurema provides additional concepts to integrate the
specified interactions into the local adaptive system behavior. A snapshot for an integration
example is shown at the bottom of Figure 4.5, where two smart cars with a self-configuring
feedback loop participate in the platoon collaboration. Following the well-defined collaboration
integration concepts of Deurema enables analysis (R–23, R–24) and simulation (R–25) of
interactive behavior together with local adaptation effects. As a consequence, the adaptive
behavior can be separately modeled and analyzed first and integrated into a collaboration

– 64 –

4.1. Deurema Modeling Language

context afterwards. Transferred to the running example, the behavior of each smart car can
be separately investigated before verifying the interplay of several smart cars within a platoon.

4.1.4. Modeling the Adaptive SoS Architecture

Bringing the Deurema modeling concepts together leads to the possibility of specifying local
adaptation behavior by considering an explicit modeling of feedback loops (R–01) together
with the intra-loop coordination (R–02). Furthermore, the notion of knowledge is refined
and can be used locally for different domains as well as in collaboration protocols. Deurema
integrates all these single specified parts towards a description of the adaptive SoS architecture
as depicted in Figure 4.6. Typically, an adaptive SoS architecture consists of multiple layers as
exemplarily visualized for the SmartCity in the figure. Therefore, Deurema considers different
layers, whereas each single modeling concept as described above can be reused assembling the
adaptive SoS architecture. Thus, the smart city example contains multiple instances of the
Self-Configuring feedback loop and SmartCar component architecture as described above.

Collaboration

self-
healing

self-
config

Adaptation MART

Modeling

 Energy

 Traffic

 Platoon

SmartCar SmartCar

G
o

al
La

ye
r

A
d

ap
ti

ve
La

ye
r

So
ft

w
ar

e
La

ye
r

Self-Configuring

Platoon
(Collaboration Logic)

Self-Configuring

TrafficMonitor

SmartHome

EnergyOptimization

SmartCity

Sensors

Effectors

Sensors

Effectors

Sensors

Effectors

EnergyMonitor

Sensors

Effectors

R-05

R-03

R-04

R-12

Figure 4.6: Deurema adaptive SoS architecture

Furthermore, the inter-loop coordination (R–03) can be described as shown between each
pair of a smart car together with its self-configuring feedback loop, whereas the former triggers
(R–04) the latter. Another possibility of describing inter-loop dependencies is the Deurema
collaboration concept. In the example, there are three participants for the Platoon collaboration
that are the beforehand discussed TrafficMonitor (modeled using the graph transformation
rule concept) and two instances of the Self-Configuring feedback loop. The three collaborating
system parts follow the specified collaboration protocol, which is the inter-loop coordination.

– 65 –

4. Overview

Thereby, systems may participate in multiple collaborations. In such cases, Deurema provides
clear modeling concepts of separating the local adaptation behavior and assigning system
interactions to a concrete role in one collaboration instance. As a consequence, although
systems may participate in multiple collaborations, each behavioral aspect of the system can
be recognized as local behavior or contribute to a concrete collaboration instance.

Additionally, the distribution of systems (R–05) is considered by placing several instances,
such as smart cars or feedback loops, on different layers in the overall SoS architecture. The
inter-loop coordination, together with the distribution and collaboration of system parts,
define the emergent behavior of the adaptive SoS. Due to an increasing complexity of the
complete SoS architecture, analysis and simulation support are required to verify that the
emergent functionality behaves according to given goals and expectations.

4.2. Deurema Analysis

Presenting the Deurema modeling language is one contribution of this thesis. Additionally,
this thesis discusses different possibilities of analyzing the adaptive SoS, which is modeled
with the Deurema approach, towards an understanding of the adaptive behavior and verifying
it against given goals. This analysis can be applied on different levels during the modeling
(development) as well as at runtime of the adaptive SoS. Thus, there are the two dimensions
of applying the analysis techniques, whereas this thesis discusses both and refers to the terms
static analysis (R–23) and runtime analysis (R–24) respectively. Beside the application of
the analysis techniques during the development or execution of the adaptive SoS, Deurema
enables the investigation of adaptive behavior on different levels of granularity as outlined in
Figure 4.7.

First, a fine-grain analysis of single adaptive system parts is supported, which can be a
single feedback loop as the Self-Configuring example in Figure 4.4, the interplay of components
as outlined for the SmartCar example in Figure 4.4, the effects of graph transformation rules
as discussed for the TrafficMonitor in Figure 4.4, or the interplay inside a collaboration as
shown for the Platoon example in Figure 4.5. Second, due to the emergence of those single
solutions via inter-loop coordination such as triggering (R–04) or collaboration (R–03), this
thesis presents analysis capabilities to investigate effect propagations of aggregated system
behavior. An example for such an effect propagation are distinct feedback loops that interact
with each other over a collaboration as shown in Figure 4.7 for the Platoon collaboration
between the two Self-Configuring feedback loops and the TrafficMonitor. During the collaboration,
knowledge is shared, which might influence the local adaptive behavior of the collaboration
participants. Understanding the knowledge distribution in the overall adaptive SoS as well as
its influence on local behavior is challenging (R–22), but supported by the Deurema analysis.
Another example is the interplay between feedback loops and component-based specification
of system parts as shown for each SmartCar, which runs a Self-Configuring feedback loop on top
and forms a typical pattern of layered control. Therefore, the Deurema analysis offers rules
to identify common architectural and interaction patterns (R–19) as well as to investigate the
causal trigger dependencies between systems (R–21). The analysis of the effect propagation is
not limited to pairs of systems, but rather can be transitively extended through the overall
adaptive SoS. A typical verification scenario could be the testing of the collaboration protocol
ensuring that the interactive behavior fits expectations. Afterwards, the collaboration can be
integrated into the local adaptation behavior of a feedback loop to investigate, if the interplay
between local activities and collaborative behavior still works as expected. Additionally, the

– 66 –

4.3. Deurema Simulation

LayeredAdaptation

SmartCar SmartCar

G
o

al
La

ye
r

A
da

p
ti

ve
La

ye
r

S
o

ft
w

a
re

La
ye

r

Self-Configuring

Platoon
(Collaboration Logic)

Self-Configuring

TrafficMonitor

SmartHome

EnergyOptimization

SmartCity

Sensors

Effectors

Sensors

Effectors

EnergyMonitor

Sensors

Effectors
R-19

R-17

Knowledge
Transfer

R-22

Causal
Dependency

R-21

Analysis
42%

Rules R-23

R-24

R-19

R-15
R-16

Figure 4.7: Deurema analysis

same analysis rules that are used during the development can be applied at runtime, e. g., as
monitoring rules, to observe the varying system state and report arising violations.

As indicated in Figure 4.7, Deurema explicitly captures reflective behavior (R–15, R–16)
and meta-adaptation (R–17), where the effects become visible over different adaptive SoS
layers that can be analyzed, too. From a system architecture perspective, patterns as well
as anti-patterns (R–19) can be detected in the modeled SoS architecture such as layered
adaptation or hierarchical control.

4.3. Deurema Simulation

Simulation (R–25) helps understanding and verifying the modeled as well as the realized
adaptation behavior of the SoS and can be additionally applied to the available Deurema
analysis approach. As shown in Figure 4.8, simulation of the adaptive SoS behavior is a
crosscutting concern that can be applied during modeling, analysis, and realization of the
Deurema models. Thereby, the execution and simulation of Deurema models is directly
supported, whereas the simulation capabilities of the realized system depend on the used
standards, technologies, and tools of the corresponding domain. Moreover, traces from the
simulation run can be used for analysis afterwards, which might lead to a change in the
modeled adaptive SoS architecture.

Thus, early simulation of Deurema models during the development supports the investigation
of the modeled collaboration and adaptation effects, whereas a simulation of a concrete
realization in the later development process may expose additional domain specific effects.
However, in the context of this thesis the execution semantic of Deurema model elements
is introduced, which is further realized by an interpreter. The Deurema interpreter directly

– 67 –

4. Overview

Realization

Analysis

Rules

Modeling
 Energy

 Traffic

:SmartCar

enabled active collaborating

Process Simulation Step

[time step]

Update Clocks

[else] Determine
Enabled Models

Pick Model
by Scheduler

Interprete Model
Element

R-25

Simulation

Figure 4.8: Simulating Deurema models

executes model elements and maintains well-defined execution states for each element such as
enabled, active, or collaborating as depicted on the right in Figure 4.8.

Furthermore, based on the defined execution semantic of the Deurema interpreter, a
simulation framework is presented that enables a virtual execution of the adaptive SoS
behavior neglecting hardware and domain specific realization details. Additionally, the
Deurema simulation framework handles the available knowledge in the system, resolves
access and inconsistency conflicts as well as supports different simulation strategies. Thereby,
the simulator introduces a timing concept, determines enabled models, supports different
scheduling strategies for concurrent behavior, and uses the Deurema interpreter for executing
single model elements as sketched in Figure 4.8.

4.4. Deurema Realization

Beside the modeling, analysis and simulation of the adaptive SoS behavior, the realization
of Deurema models in the corresponding domain is important. At first, this thesis discusses
how the component-based and rule-based domain specific extensions (R–20) in Deurema suit
state of the art standards such as AUTOSAR [62] for cyber-physical system or graph based
MDE approaches. Second, the realization of Deurema concepts is presented by showing an
exemplarily mapping to de facto standard AUTOSAR from the automotive domain. Figure 4.9
depicts this conceptual mapping. In the example, the component-based local adaptive behavior
of the smart car is mapped to an appropriate representation of a component architecture in
the AUTOSAR standard.

On the one hand, the realized AUTOSAR architecture can be used for domain specific
simulations (R–25) of the beforehand specified Deurema models taking target platform
phenomena into account. On the other hand, available domain specific software tools such as

– 68 –

4.4. Deurema Realization

SmartCar

<<Sensor>>

Distance

<<Sensor>>

Battery

<<Sensor>>

GPS

<<SWC>>

SensorFusion

<<Actuator>>

WheelController

<<Actuator>>

EngineController

<<SWC>>

Environment
Builder

<<SWC>>

Navigation

<<SWC>>

Driving

Realization
:SmartCar

:Platoon
:SmartCar

R-20

R-25

Figure 4.9: Realization of Deurema models

Matlab1 or SystemDesk2 help implementing the mapped AUTOSAR architecture, e. g., via
code generation for the target platform. Furthermore, this thesis discusses how collaborations,
feedback loops, and rule-based behavior can be realized in this domain.

In general, a concrete realization of the Deurema models introduces additional refinements
of the modeled behavior. For example, in a real physical system, virtual components must
be deployed to existing execution capabilities. The idealization of communication must be
realized by an appropriate communication mechanism/protocol using available networks such
as wireless networks or buses in a car. Additionally real-time constraints or limited memory
resources further restrict the available realization space, if a concrete hardware platform is
selected. Different middlewares or operating systems require application specific changes to
realize the modeled adaptive SoS. Beside the mapping from Deurema models to an AUTOSAR
conform architecture, other possible technologies and middlewares for a realization are outlined
in this thesis.

1http://www.mathworks.com
2SystemDesk is an AUTOSAR conform software tool from the dSPACE company http://www.dspace.com.

– 69 –

http://www.mathworks.com
http://www.dspace.com

4. Overview

In summary, the Deurema approach facilitates the modeling of the local behavior of systems
together with its adaptive capabilities as first class concept. The explicit specification of
system collaborations is supported to describe the overall emergent SoS behavior. On basis
of the Deurema models, this thesis discusses the investigation of the SoS architecture by
means of static and runtime analysis as well as model simulation. A conceptually mapping
of Deurema concepts to the AUTOSAR standard shows that the modeling concepts can be
realized in a concrete application domain. Finally, the modeling language concepts are applied
in case studies showing that the Deurema approach is powerful enough to cope with current
research scenarios. In the following, the Deurema approach is discussed in detail.

– 70 –

5. Deurema Modeling Language

This chapter introduces the Distributed Eurema with Collaborations (Deurema) modeling
language concepts that can be used to specify the behavior of a broad class of adaptive
SoS. Deurema is designed for the description of the adaptation logic in independent, possible
distributed systems. Furthermore, the focus is on modeling the collaboration aspects between
those systems by designing the interactions and their effects on the adaptive local system be-
havior. Therefore, the Deurema modeling language extends the concepts from the predecessor
Eurema approach, which is already introduced in the preliminaries in Section 2.3. According
to the derived requirements in Chapter 3 and the goals of this thesis, the outlined limitations
of the Eurema approach are considered in the Deurema modeling language.

At first, the core Deurema concepts are introduced in Section 5.1. Furthermore, Deurema
seamlessly integrates the use of runtime models that define the knowledge in the adaptive SoS,
which is described in Section 5.2. Beside the knowledge, Section 5.3 discusses the integration
of different domain modeling concepts into Deurema. Subsequently, the core, runtime model
and domain concepts are used to describe the architecture of an adaptive SoS in Section 5.4.
The comprehensively capabilities of collaboration specifications between independent systems
inside the SoS are introduced in Section 5.5. Due to the focus on adaptive behavior, the
modeling of reconfiguration, adaptation, and meta-adaptation in Deurema are described in
Section 5.6. Finally, this chapter closes with a discussion about design decisions and the
coverage of modeling language requirements in Section 5.7.

In the following, the Deurema modeling language concepts, the corresponding metamodel
elements and the concrete syntax are introduced. Therefore, the running example in Figure 4.2
from the overview in the last chapter is stepwise refined pinpointing to different Deurema
concepts. For each concept, this chapter depicts to the corresponding excerpt of the Deurema
metamodel as necessary to underline the line of argument. The complete Deurema metamodel
can be found in the Appendix A.

5.1. Deurema Core Concepts

A core concept of the Deurema approach is the modeling of a layered, adaptive SoS architecture
as sketched for the running example in Figure 5.1. Therefore, a system is considered as first
class entity in the Deurema approach. As depicted at the top in Figure 5.1, a system instance
can be modeled using the UML object notation with the corresponding «System» stereotype.
Thus, the both smart cities Potsdam and Berlin are modeled as two system instances. Beside a
system instance, the internal behavior of a system is described in a Deurema system template
as shown in the middle of Figure 5.1. A system template comprises the architectural, layered
structure of the corresponding system, whereas the internal behavioral logic as well as the
collaboration logic can be individually placed on the available layers. Thereby, a system
template description can have an arbitrary number of layers. Up to this point, Deurema
supports the modeling of system templates defining the system behavior and the usage of
this template specification by means of system instances, which refer to its corresponding

– 71 –

5. Deurema Modeling Language

Deurema Megamodel

contained in

SmartCar
(Application Logic)

<<
La

ye
r>

>

G
o

a
l

<<
La

ye
r>

>

A
da

p
ti

ve
<<

La
ye

r>
>

So
ft

w
ar

e

Self-Configuring
(Adaptation Logic)

Platoon
(Collaboration Logic)

Self-Configuring
(Adaptation Logic)

TrafficMonitor
(Analysis Logic)

SmartHome
(Domain Logic)

EnergyOptimization
(Adaptation Logic)

<<SystemTemplate>>

SmartCity

Sensors

Effectors

Sensors

Effectors

Sensors

Effectors

EnergyMonitor
(Analysis Logic)

Sensors

Effectors

<<System>>

berlin:SmartCity

<<System>>

potsdam:SmartCity

BerlinPotsdam

template
template

instance

<<System>>

audi:SmartCar
SmartCar

(System Logic)

Figure 5.1: Smart city running example: Deurema system modeling

template description. System templates can be instantiated multiple times, which allows the
reuse of defined system behavior. In the example, the template description of the smart city
is used twice for the potsdam:SmartCity and berlin:SmartCity system instance.

Due to an adaptive SoS consists of independent systems, Deurema supports the specification
of system hierarchies. Other system instances can be placed on the layered system architecture
within a system template specification. In the example, the audi:SmartCar system instance is
placed in the lowest layer in the smart city template description. This system instance refers
to another system template description, named SmartCar, which again defines a layered system
architecture together with the internal system logic. As a consequence, placing arbitrary
system instances inside a system template facilitates the specification of system hierarchies.
The hierarchical definition of systems and contained subsystems together with their behavior,
which can be located on different layers, specifies the overall adaptive SoS architecture.

Deurema follows the idea of the MDE using models as first class entities. Therefore, the
adaptive SoS architecture modeled as combination of system template and system instance
are considered as model entities. As motivated in the preliminaries in Section 2.2.4, a runtime
megamodel is able to maintain individual models together with their relationships to other
models. Deurema used such a runtime megamodel approach as model management technique
for all models created with the Deurema approach. Thus, the system template description
and its contained internal behavior specification are maintained by the Deurema megamodel
as shown at the bottom in Figure 5.1.

– 72 –

5.1. Deurema Core Concepts

0..* subsystems

Concrete Syntax - TemplateMetamodel

<<System>>

berlin:SmartCity

<<System>>

potsdam:SmartCity

Concrete Syntax - Model

<<abstract>>

DeuremaTemplate

identifier : UUID
name : String
description: String

<<abstract>>

DeuremaElement

Megamodel

1..*templates

<<abstract>>

DeuremaType

<<abstract>>

DeuremaModel

1..* types

System

1..*systems

SystemTemplate

level : int

Layer

1..* layers

<<
La

ye
r>

>

L-
1

<<
La

ye
r>

>

L-
0

<<SystemTemplate>>

SmartCity

1instances 0..* template

Figure 5.2: Deurema metamodel of core concepts

As a result of treating all Deurema entities as models, the DeuremaModel class at the top of
the metamodel in Figure 5.2 realizes this concept. Every Deurema element inherits directly
or indirectly from this abstract model class. Thus, each element can be treated as a model
at the highest level of abstraction. Furthermore, the root element of a Deurema model
specification is a megamodel that allows the reasoning about the model elements and their
relationships (cf. discussion about MDE and megamodel concepts in Section 2.2). Therefore,
the Megamodel class directly inherits from the abstract DeuremaModel in the metamodel in
Figure 5.2. Additionally, the megamodel is a container for all other Deurema elements and
thus, maintains the model elements as well as their relationships to other model elements.

As motivated in the example above, Deurema distinguishes between two further concepts,
namely types and templates. Types represent predefined static Deurema elements that can
be reused during modeling. Templates are blueprints similar to types, but allow more
flexibility through the use of parameter variables that are assigned with concrete values during
instantiation. Templates are used to support different variants of behavior descriptions in the
adaptive SoS, such as feedback loops or component-based architectures. Both, Deurema types
and templates must be instantiated, whereas the instances are handled as model artifacts within
the megamodel. Consequently, Deurema comprises the three core concepts of types, templates,
and instances. This is similar to the object-oriented programming approach. Types can be
compared with the static description of a class, whereas each class can be instantiated multiple

– 73 –

5. Deurema Modeling Language

times. Each instance follows the behavior description of the class and thus, behaves similar
to other instances with the same class. Deurema templates allow an additional flexibility by
introducing well-defined variation points that have to be resolved during instantiation. A
variation point is similar to the use of generics in the Java programming language and the
template mechanism in C++. During the execution, concrete Deurema model elements must
be assigned to each variation point, whereas this technique is called ”type erasure” in Java.
As a consequence, instances of the same template may show a different behavior depending
on the resolution of the variation points, although all template instances follow the same
blueprint of the static template specification part. Deurema types are represented by the
corresponding DeuremaType class, whereas templates are represented by the DeuremaTemplate
class in the metamodel in Figure 5.2. Furthermore, a system template defines the layered
system structure and can be instantiated, which leads to a system instance. The template-
instance relationship between system template and system instances is accordingly defined
in the Deurema metamodel in Figure 5.2. Additionally, the SystemTemplate class refers to an
arbitrary number of layers, which defines the layered system architecture. Each layer can
contain an arbitrary number of subsystems, which leads to hierarchies of systems and thus to
a SoS model.

In summary, the Deurema system template and megamodel are the two main concepts
of realizing a specification of the adaptive SoS. A system template defines the layered
architecture, which further contains the internal adaptive system behavior in form of feedback
loops and the system knowledge defined in appropriate runtime models. System templates
can be instantiated and the corresponding system instance can be again placed on a layer
in another system template. The megamodel maintains all Deurema model elements and
their relationships, which further enables the reasoning about the modeled SoS specification.
Consequently, the megamodel contains the modeled system template definition and system
instances as well, which is defined by the corresponding containment relations in the Deurema
metamodel.

Concrete Syntax

Figure 5.2 shows at the right the concrete syntax of a system, whereas the template notation
is depicted at the top and the instance (model) notation at the bottom of the figure. At
template level, a system has a name and is stereotyped with «SystemTemplate». It includes an
arbitrary number of layers that are modeled as «Layer» stereotyped, named lanes, respectively.
At model level, systems are modeled as rectangles that refer to their template and may have
an additional instance name similar to UML object diagrams.

For better recognition, the concrete syntax of Deurema templates and instances follows the
same design principles for the rest of this thesis. Templates have always a stereotype, which
includes the string ”Template”. Furthermore, model instances follow the notation of UML
object diagrams, which consists of an arbitrary name, followed by a colon and the Deurema
template or type correspondence. Additionally, instances are stereotyped according to the
Deurema metamodel element to which the instance belongs to.

The concrete syntax examples on the right in Figure 5.2 show a system template definition,
which is named SmartCity. Thereby, the template has two layers L-0 and L-1. On model
instance level, there are two system instances, which is indicated by the appropriate stereotype.
Furthermore, both instances refer to the same SmartCity template as shown above, where the
first instance is named berlin and the second one potsdam.

– 74 –

5.2. Deurema Runtime Models

System Template Example
After the introduction of the Deurema core concepts, Figure 5.3 shows the specification of
a smart city template, which corresponds to the running example of this thesis. The smart
city system template definition comprises two layers, two contained system instances and two
feedback loops. At the lowest layer, there are two smart car system instances named audi and
bmw, whereas the corresponding template descriptions are not modeled in detail. On top of the
car systems in layer L-1, there are two feedback loops instances defining the internal, adaptive
behavior of the smart city. The feedback loops reflect and affect the corresponding smart
car system at the layer below and introduce a self-configuring functionality, which allows the
switching of the car behavior between autonomous and manual driving. The internal behavior
specification of the feedback loop follows the description as motivated in the overview chapter
in Section 4.1.

A system template defines the layered architectural structure, which includes other systems
and the relationships between systems. However, the internals of behavioral parts as well
as the knowledge specification of the adaptive SoS are not modeled in system templates. In
the following sections, the internals of systems are discussed by looking first at the Deurema
runtime model concept, which refines the abstract notion of knowledge. Afterwards, the
specification of feedback loops is explained, which defines the adaptive capabilities of the
systems and refines the behavior modeling concept of the Deurema approach.

<<System>>

audi:SmartCar
<<System>>

bmw:SmartCar

<<
La

ye
r>

>

L-
1

<<
La

ye
r>

>

L-
0

<<FeedbackLoopModule>>

sc1:Self-Configuring
<<FeedbackLoopModule>>

sc2:Self-Configuring

reflect affect reflect affect

<<SystemTemplate>>

SmartCity

Figure 5.3: Deurema system template example

5.2. Deurema Runtime Models

As motivated in the preliminaries in Section 2.2.3, the Models@runtime (MART) approach
proposes the usage of models not only during the development of the system, but rather as
abstract system representations that are kept alive at runtime. Therefore, the same models
that describe structural and behavioral system aspects during the development can be reused
to describe the current system structure or system state at runtime. The advantages of this
approach are, among others, the reduction of complexity by focusing on key aspects of interest,
whereas models must not be reinvented, but rather can be reused. Furthermore, the same
model-based techniques from the MDE can be applied for runtime models as for development
models. Therefore, the feedback loops, which realize the adaptive behavior of the system,

– 75 –

5. Deurema Modeling Language

can directly operate on the abstract representation of the running system by reading and
manipulating the corresponding runtime models. Due to the causal connection, the changes
in the runtime model will lead to an appropriate change in the behavior of the underlying
physical system.

Inspired by the advantages of the MART approach, the Deurema modeling language
considers runtime models as first class entities. Thus, runtime models define the amount
of available knowledge within the system template specification as sketched in Figure 5.4.
Thereby, the Deurema approach supports the definition of local views for each behavioral entity
placed on the layered system template specification. Examples for such behavioral entities are
other system instances, feedback loops, or collaborations. As a consequence, each entity has
a local view on its available amount of information, which can be individually accessed and
manipulated. This local knowledge can be shared during the interaction of systems. Runtime
models and the local views on the global available information are maintained by the Deurema
megamodel.

Unfortunately, as discussed in Section 3.3, there is no common consensus in literature
about the different types of runtime models that define the purpose or intention of a runtime
model describing a specific part of the system. Because the Deurema language enables the
specification of system interaction via collaborations, available runtime information is shared
between systems. Therefore, the available knowledge spreads over time in the adaptive SoS.
Furthermore, due to the manipulation of the runtime models and the causal connection,
systems become enabled to influence each other via collaborations and the shared runtime
models. Thus, the notion of the runtime model purpose must be refined to provide clear
modeling concepts that allow the usage of different runtime model types, to define the intention
of a runtime model, and finally to allow the reasoning about collaboration effects via shared
knowledge during system interactions.

<<System>>

audi:SmartCar
SmartCar

(Application Logic)

<<
La

ye
r>

>

A
d

ap
ti

ve
<<

La
ye

r>
>

So
ft

w
ar

e

Self-Configuring
(Adaptation Logic)

Platoon

Self-Configuring
(Adaptation Logic)

<<SystemTemplate>>

SmartCity

Sensors

Effectors

Sensors

Effectors
Knowledge

Deurema Runtime Models

Figure 5.4: Smart city running example: Deurema runtime models

– 76 –

5.2. Deurema Runtime Models

5.2.1. Runtime Model Categorization

This section discusses the Deurema runtime model categorization, which is based on own
former work in [9], but allows a seamless integration of the runtime model approach into the
Deurema language. The categorization is developed with respect to the Deurema collaboration
concept and enables knowledge analysis such as its distribution within the modeled adaptive
SoS. In the following, each runtime model category is discussed in detail.

Reflection Models

Runtime Reflection Models describe concerns that are related to the running system in System
Models as well as system context in Context Models as shown in Figure 5.5. Therefore, they
reflect runtime phenomena on a higher level of abstraction.

Reflection Model

System Model Context Model

Local System
Model

Shared System
Model

Local Context
Model

Shared Context
Model

Figure 5.5: Runtime reflection model types

System Models
System Models are directly causal connected and provide reflected architectural and behavioral
views of the system for the key points of interest. The structural system parts are often
modeled in form of component or class diagrams as in [38, 79, 174], whereas behavioral
system aspects are often modeled as tasks [40], processes (e. g., business process diagrams) or
automata [103]. A fine-grain classification of System Models with respect to the visibility leads
to the Local System Models and Shared System Models categories. The difference between both
runtime model types is explained with the help of Figure 5.6.

Conceptually, there are two layers depicted. The physical layer on the bottom represents
the real world that consists in this example of two systems s1 and s2 (gray cars in the figure).
The software layer on top includes two distinct smart car software systems, where SC1 belongs
to the real system s1 and SC2 to s2. Furthermore, each smart car software system holds
different runtime models. According to the categorization, SC1 contains a local system model
of s1 and a shared system model of s2, where SC2 has only a local system model of s2. For
this example, it is not important if the shared model of s2 is a copy or reference in the software
system SC1 but rather the visibility of that model. It is a shared model, because the SC1
software system can access and manipulate the model of s2, although it is not part of the
original, physical system. A local system model becomes a shared system model for another
system if it is for example exchanged or accessed during system collaborations. Deurema
supports different mechanisms for exchanging runtime models via system interaction such as
direct message exchange.

Following the definition of a runtime model, model manipulations in the local runtime
models cause local system changes that can be recognized as direct causal connection. In
contrast, changes in shared system models affect runtime models in collaborating systems over
the indirect causal connection. In the example in Figure 5.6, a change from SC1 in the model

– 77 –

5. Deurema Modeling Language

System (s1,s2)

Context (c1,c2)

Legend

s1

s2c1
c2

Model of sx

Model of cx

sx

cx

s1 s2

So
ft

w
ar

e
 L

ay
e

r
P

h
ys

ic
al

 L
ay

e
r

SmartCar
(SC1)

s2

SmartCar
(SC2)

Environment

Figure 5.6: Runtime system models

of s2 will cause a change in the corresponding model of SC2 and finally, affect the physical
system s2 via the causal connection. The distinction of direct and indirect influence enables
further analysis and the reasoning about collaboration effects in the adaptive SoS.

Context Models
A definition for system context is given by Dey as ”any information that can be used to
characterize the situation of an entity” [67]. According to this definition, the adaptable
system is considered as the entity and the situation is described in runtime Context Models.
Additionally, system context and system environment are distinguished. The system context
can be captured by the system itself (e. g., via sensors), is a subset of the environment of the
system, and maintained in runtime Local Context Models. Furthermore, the system environment
is a superset of the system context that additionally contains all not detectable parts of the
systems’ surroundings. As a consequence of the context definition, Context Models and System
Models are conceptually disjoint.

Context information is important for different adaptive SoS such as smart homes [140],
mobile web services [95] or search and rescue scenarios [144]. Therefore, the representation of
context information varies from sensed 2D maps to large, abstract network graphs describing
the communication connection capabilities of the SoS. Often, the current situation is reflected
in context models so that the adaptive system is able to react appropriately. As an example,
a smart home may close the windows if it starts to rain. Therefore, sensors must be aware of
the current weather situation.

Shared Context Models capture additional information about the context of other systems
that can be collected via collaborations. The distinction between shared and local context
information follows the same line of argument as for system runtime models above and is
depicted in Figure 5.7. The contexts c1 and c2 (gray parts in the figure) are sensed and
represented in the corresponding software systems SC1 and SC2 respectively. Furthermore,
SC1 contains additional context information from the system s2 that is represented in the
shared c2 runtime model.

While the distinction in local and shared runtime models follows the visibility characteristic
of information within systems, the difference between system and context is defined by
the system border. Another consequence of the separation between system and context is
the direction of the causal connection. For system runtime models, the causal connection
is bidirectional that means the physical system situation is represented into the model or

– 78 –

5.2. Deurema Runtime Models

System (s1,s2)

Context (c1,c2)

Legend

s1

s2c1
c2

Model of sx

Model of cx

sx

cx

So
ft

w
ar

e
 L

ay
e

r
P

h
ys

ic
al

 L
ay

e
r

SmartCar
(SC1)

SmartCar
(SC2)

c1 c2 c2

Environment

Figure 5.7: Runtime context models

enforces corresponding changes in the model and vice versa. Context runtime models have a
unidirectional mapping from physical context information that is captured by sensors to the
corresponding model representation, but not into the other direction. Consequently, systems
cannot directly influence their context by manipulating the runtime models. Of course system
types such as embedded systems or CPS can have physical effectors that influence the context.
For example a heater can emit thermal radiations that increase the overall temperature
in the context of the heater. However, the control over the heating behavior as well as
the representation of the heating capabilities (effectors) are captured in the corresponding
system runtime models, whereas the context runtime models represent the sensed temperature
(situation).

Adaptation Models

Figure 5.8 depicts the category of runtime Adaptation Models that describe the expected
and possible solution space of the system. Thereby, Evaluation Models determine the overall
system specification, which includes the modeling of functional and non-functional properties.
Furthermore, Change Models describe variants of the adaptable software system.

Adaptation Model

Evaluation Model Change Model

Requirement
Model

Assumption
Model

Variability
Model

Modification
Model

Figure 5.8: Runtime adaptation model types

Figure 5.9 shows the difference between evaluation and change models. Conceptually, there
is a possible solution space for the complete system that fulfills all requirements, goals, and
needs. A violation of requirements leads to a leaving of the system from the possible to the
invalid solution space. Furthermore, within the valid possibilities of realizing a system, the
evaluation models describe the specification of the system, which directly targets the current
system solution (white cloud in Figure 5.9). Whereas, change models enable an evolving of

– 79 –

5. Deurema Modeling Language

Specified by

expected
system
solution

possible system
solution space

invalid solution
space

Evaluation
Model

Change
Model

Figure 5.9: Change and evaluation model

the current system solution that can be described as moving it in the inner valid solution
space (gray cloud in Figure 5.9).

Evaluation Models
As defined in [188, p. 27], the system specification consists of requirements and assumptions
about the context. On the one hand, requirements are often declaratively modeled and define
the amount of functionality and capabilities a system must satisfy to fulfill customer needs.
On the other hand, assumptions are also called domain knowledge and describe demands on
the system context to guarantee proper execution conditions and correct system functionality.
Therefore, the runtime model categorization captures the system specification in Requirement
Models and Assumption Models accordingly.

The need of reflecting requirements and handling them as first class entities is described
in [33]. Furthermore, some requirements, as for example goal models, can be operationalized,
which enables online validation and verification of the system. Examples for Evaluation Models
are the KAOS goal model used in [122], Quality of Service (QoS) constraints as used in [56],
the Object Constraint Language (OCL) in [176] that describes architectural constraints on
models, and the Linear Temporal Logic (LTL) in [85] for checking consistency of system
adaptation processes. Beside concrete system goals, requirement runtime models may contain
utility functions that optimize important criteria of the system such as throughput or energy
consumption. Optimizing the system behavior according to given utility functions raises the
need for system adaptation.

An analogy for assumption models is the assertion concept of object-oriented programming
languages such as Java or C++. Such assertions define assumptions about the expected
execution context or system state during the lifetime of a software program. Similar, an
assumption runtime model defines such constraints, which describe the expected situation of
the system or context.

Requirement models are the main trigger for an adaptive system to change its behavior
during execution. They must be considered over the whole lifetime of the system and the
adaptation logic should react to changes in the requirement model properly. Changes in
requirements can have different reasons as for example changing user needs, environmental
conditions or the aging of the hardware/software system itself. Following the proposed
categorization, Evaluation Models are the source respectively driving force for changes in the
system, but the target respectively needs of an adaptation are annotated directly in the
corresponding system runtime model.

– 80 –

5.2. Deurema Runtime Models

Change Models
Beside the expected solution space of the system in the Evaluation Models, Change Models describe
possible solutions, where the system might adapt to. Figure 5.10 shows the difference for
the two categories of change models. Variability Models explicitly model the possible solution
space in form of selected, meaningful configurations, which is a subset of all possible system
solutions, similar to software product lines. During the adaptation process, one configuration
can be chosen that will cause predefined effects on the system (e. g., exchange of a component
or a mode switch). Different system configurations are often optimized concerning given,
well-selected criteria. For example, considering the throughput of a server and the energy
consumption of it as two important, but conflicting criteria. It might be useful of modeling
two distinct system configurations, whereas each configuration optimizes the system behavior
according to one criterion. During runtime, the best fitting configuration can be selected
according to the current goals.

In contrast, Modification Models implicitly model the possible solution space. Thus they define
a superset of all possible solutions, by specifying all permitted modifications of the Reflection
Models. Normally, such modifications are described as rules comprising trigger conditions and
operations. They can be combined to an arbitrary sequence realizing complex system changes.
Considering the example above, it might be inefficient or not possible to specify all meaningful
variants of combined goals saving energy and optimizing the throughput of a server. If the
utility functions together with a predefined set of possible system modifications are given, the
system can monitor both metrics at runtime and modify the behavior step by step via the
available modifications towards an optimized combined behavior.

system
solutions5

Specified by

system
solution

Modification
Model

Variability
Model

s1

system
solutions2

system
solutions3

system
solutions4

m1

m2

possible system
solution space

invalid solution
space

Figure 5.10: Variability and modification model

The conceptually example in Figure 5.10 depicts three possible system solutions s1, s2,
and s3 defined by configurations in the variability model. Furthermore, the system solution
s4 can evolve from s3 by applying the m1 modification and s5 from s4 by m2. All possible
modifications are specified in the corresponding runtime modification model type. Because
runtime models can be represented as graphs, change models are often realized by graph
transformation rules that operate on the corresponding system runtime models.

In general, McKinley et al. distinguish static, configurable adaptation, which is ”parameter
adaptation [that] modifies program variables” [134] and dynamic adaptation, which is ”com-
positional adaptation [that] exchanges algorithmic or structural system components” [134].
Both types can be realized by variability and modification models, where examples from the
literature for each combination are subsumed in Table 5.1.

– 81 –

5. Deurema Modeling Language

Table 5.1: Change model examples for parameter and dynamic adaptation

Parameter Adaptation Dynamic Adaptation

Variability Model (1) Embedded Systems [117] (2) Smart Homes [57, 138]
Modification Model (3) Micro-Grid [76] (4) Graph Transformation [100, 174]

For combination (1), variability models for parameter adaptation are often used for em-
bedded systems as outlined by Kokar et al. [117]. This combination of a limited configuration
space together with predefined parameters is very suitable for embedded systems. Resource
restrictions as limited CPU or energy power can cause problems for dynamically deploying
components as done by dynamic adaptation activities. Furthermore, the timing aspect be-
comes important, whereas the overall adaptation must still guarantee safety requirements.
For example, a reconfiguration in a car must always guarantee the correct functionality of the
airbag in the case of an accident.

Concerning combination (2), Cetina et al. [57] use variability models in the context of smart
homes for reconfiguring a predefined set of smart devices in a house according to different user
scenarios. For example, if the user is at home, the security alarm is disabled but the lights
react on moving activities of the user. If the user leaves the house, the security component is
enabled and the movement sensor functionality is reconfigured to detect possible intruders.
This example uses a variability runtime model, which includes different configurations, whereas
the application of one configuration triggers the dynamic (un)loading of software components.
A similar example is given by Morin et al. [138], who use feature models to dynamically derive
the system architecture.

Often, modification models are used for adapting the system from one configuration to
another, whereas the adaptation process includes multiple modifications rather than an all-
in-one deployment of the whole configuration. As a consequence, modification models allow
a fine-grain manipulation of the system during adaptation, whereas the explicit modeling
of all configuration possibilities is not appropriate (e. g., because of the total number of all
configurations) or the change from one configuration to another is not feasible in one step.
In combination (3), an example of using modification models for parameter adaptation is
presented by Frey et al. [76], who reduce the power consumption of smart lamps and heaters
within a house. The power consumption is modeled as parameters (e. g., for lamps full or
reduced – 100 watt or 30 watt), which are changed between different phases during one
simulation of a smart electrical micro-grid scenario.

Finally, the use of modification models for dynamic adaptation in combination (4) are
common for scenarios, where adaptation triggers together with adaptation actions are used
to change the overall architecture of the system. For example, Hirsch et al. [100] use graph
transformation rules for varying the system architecture for coordination purposes during
collaboration in mechatronic systems. Furthermore, Vogel et al. [174] use triple graph grammar
rules for the runtime deployment of components in an adaptive web shop example.

In summary, Change Models describe the solution space of possible system adaptations. Due
to the causal connection, applying the Change Models on System Models will enforce the desired
adaptation in the underlying physical system.

– 82 –

5.2. Deurema Runtime Models

Causal Connection Models

As last category, Causal Connection Models establish the beforehand mentioned causal connection
of runtime models to the underlying physical system (cf. Figure 5.11). Monitoring Models
retrieve information from the running system and update the information in the corresponding
Reflection Model. Additionally, Execution Models propagate changes from the Reflection Model
back to the running system. Therefore, Monitoring Models describe the mapping of system-level
observations to the abstraction level of the Reflection Models and Execution Models translate
runtime model adaptations to system adaptations. Usually, causal connection models depend
on implementation specifics in the adaptable software and can be realized by MDE techniques
such as graph transformation or bidirectional triple graph grammar rules as done in [175].
In the context of embedded systems, hardware sensors and effectors might be available that
realize bridging the gap between real system observations and their software representation.
However, in most cases additional, application specific filter or adapter must be realized to
reach the envisioned level of abstraction from low level runtime phenomena to high level
runtime model representations.

Causal Connection Model

Monitoring
Model

Execution
Model

Figure 5.11: Runtime causal connection model types

5.2.2. Runtime Model Integration

The presented taxonomy for runtime models leads to a refined notion for the knowledge in
the MAPE-K feedback loop approach, which is introduced in the context of self-adaptive
systems in Section 2.1. Deurema follows the MAPE approach and uses the presented runtime
model categorization above to integrate the knowledge into the feedback loops of the adaptive
SoS behavior. Figure 5.12 shows the typical usage of runtime models in an idealized view of
MAPE activities within one feedback loop. First, the monitor activity uses Monitoring Models
for establishing the causal connection to the adaptable software part. Afterwards, observations
of interest that can be sensed are written to the abstract system and context runtime model
representations, which are located in the Reflection Models. Therefore, this reflected information
is the basis for all analysis and planning activities of the adaptation engine. Furthermore, the
abstract representation of the running adaptable software part in the reflection models allows
a fully decoupled analysis and planning of adaptation activities, although the real system
does not stop its operation. The analysis, whether an adaptation of the system is necessary
or not, is supported by requirements and assumptions of the system that are available in
Evaluation Models. Planning activities perform the adaptation directly on the reflected system
runtime model by considering appropriate strategies and configurations that are stored in
Change Models. Finally, the planned adaptation changes are synchronized with the adaptable
software underneath by applying given execution strategies contained in the Execution Model.

Deurema extends the idealized, simple view of Figure 5.12 with respect to multiple feedback
loops that can contain an arbitrary number of different adaptation activities. Furthermore,
the adaptation activities can access an arbitrary number of runtime models. Depending on

– 83 –

5. Deurema Modeling Language

Adaptation Engine

Adaptable Software

Sensors Effectors

 Monitor

 Analyze Plan

 Execute
Knowledge

Adaptation Engine

Adaptable Software

Sensors Effectors

 Monitor

 Analyze Plan

 Execute

Causal Connection Model

Reflection Model
ContextSystem

Monitoring Model Execution Model

Adaptation Model
Evaluation Model Change Model

Figure 5.12: MAPE feedback loop with runtime models

the architectural structure of the adaptation engine, it is possible to specify hierarchical and
collaborating feedback loops. In such cases, different runtime model types help identifying
typical control architectures such as layered, hierarchical, or distributed. For example, Causal
Connection Models can be used to decouple the adaptable software from the adaptation engine
by simultaneously maintaining the causal connection between both. The same principle of
sensing information and synchronizing adaptation changes can be applied between hierarchical
feedback loops that are located on different layers within the adaptation engine. Thus, a
feedback loop on a higher layer can reflect ongoing adaptation activities of a lower layer,
which further enables meta-adaptation as introduced by Hillman et al. [99] and discussed in
the preliminaries in Section 2.1.1.

Salehie et al. [156] present a hierarchy of self-* properties, where self-awareness and context-
awareness are considered as primitive properties in an adaptive system. They are the basis
for higher level adaptive capabilities such as self-healing or self-optimizing. Runtime model
types together with an analysis of their usage enable a precise definition of the modeled
adaptive system behavior. For example, a distributed system of mobile devices, as presented
by Han et al. [95], has information about its context. If this information is kept alive at
runtime in the corresponding context reflection models and if adaptation activities access
these runtime models, the overall system can be considered as context-aware. The same line
of argument holds for the other primitive properties, as for example self-awareness (cf. [70])
that arises by using a system runtime model or requirement-awareness (cf. [33]) that is caused
by the use of an evaluation runtime model.

However, assigning available knowledge to the corresponding runtime model category
depends on the application domain and the captured information. Therefore, the developer
of the adaptation engine must choose one or more appropriate categories for each specified
runtime model. For example, due to a specific realization or design decisions during the
development, one runtime model may contain information about the inner system state and
its context. In such cases, the runtime model belongs to both categories System Model as
well as Context Model and represents a combination of both. Furthermore, if runtime models

– 84 –

5.2. Deurema Runtime Models

are automatically derived from development models, inference techniques may be applied to
retrieve the corresponding runtime model category, which is not in the focus of this thesis.

In summary, the runtime model categories divide the available knowledge of the adaptation
engine in well-defined parts. Moreover, each category targets another purpose of available
system information. As a consequence, the adaptation engine includes a set of distinct, loosely
coupled runtime model types that are accessed by and arranged around different feedback
loop activities. Finally, the categorization enables the identification of different dependencies
between runtime models and feedback loop activities that are used to define analysis rules as
well as retrieving characteristics of the overall adaptive system.

5.2.3. Runtime Model Example

For visualizing the overall interplay of different runtime model types, Figure 5.13 shows an
exemplary view from the self-configuring feedback loop of a smart car from the running
example in the overview in Section 4.1.1. On the bottom, the physical situation is depicted,
which shows the smart car in a normal traffic situation within the smart city. For this example,
the driver of the car decides to switch from a manual to an autonomous driving mode, which
can be activated by pushing a button in the user interface of the car. The layer on top
of the physical situation description consists of two parts that are the software component
architecture of the smart car encapsulated in a corresponding software layer and the self-
configuring feedback loop, which is placed within the layer on top. The component architecture
of the smart car contains the domain logic to realize the manual or autonomous driving,
where the internals of the components are not important for this example. Furthermore, the
feedback loop on top reflects and affects the behavior of the smart car and consists of four
adaptation activities designed according to the MAPE reference architecture from [110].

Before the adaptation logic realizes the switch from manual to autonomous driving, the
system already executes a collision prevention assistance1 functionality, which senses the
context of the car and brakes in the case of detected obstacles. The collision prevention
logic is conceptually depicted by the SensorFusion and Navigation component, where the gray
background denotes the current state of the execution. Thus, the smart car currently performs
the checks if an obstacle is in front of the car by evaluating the sensor data in the SensorFusion
component.

For this example, the switch from the driver from manual to autonomous driving triggers
the execution of the feedback loop in the adaptation engine at the top in Figure 5.13. First
the Update activity performs a (1) read operation on the monitoring model. The read update
rules allow the retrieving of the current system state of the smart car, thus establish the causal
connection, and represent the system state as automaton. Therefore, the update activity
applies the monitoring rules and (2) writes the retrieved information into the reflected runtime
representation in the system model. Thereby, the complex component architecture of the
smart car is transformed to a more abstract state representation in form of an automaton.
Such abstractions of reflected system phenomena are typically for the runtime model approach,
which enables the handling of complexity and focus on key points of interest. Sensing the
context of the smart car and annotating the information in the corresponding context runtime
model can be performed in the same way, which is omitted for clarity in the figure.

1Collision prevention assistance systems already exist in modern cars. More information can be found at
http://media.daimler.com/dcmedia.

– 85 –

http://media.daimler.com/dcmedia

5. Deurema Modeling Language

Context

Environment

ObstacleSystem

<<
La

ye
r>

>

A
d

ap
ti

ve
<<

La
ye

r>
>

So
ft

w
ar

e

Causal Connection Model

Monitoring Model Execution Model
update
component to
automaton rules

effect
automaton to
component rules

Variability Model

Driving

Autonom ManualObstacle
Detection

Safety

Lane
Detection

Requirement Model

(1) r

Reflection Model

System Model Context Model

check

[obstacleFound] brake

autonom
[else]

...

...

++

(2) w

(3) r

(3) r

(4) a

(5) r

(5) r

(6) a

(7) r

(7) r

Update

Optimize

Effect

CheckTrafficSituation

Self-Configuring

SmartCar

SensorFusion

Navigation

Driving

++

++

ModeSwitchSensors Effectors

Figure 5.13: Sketch of a self-configuring smart car with runtime models

– 86 –

5.2. Deurema Runtime Models

After all information is up-to-date, the analysis of the reflection model can be performed,
which is done by the CheckTrafficSituation activity. The analyze activity first (3) reads the
system model together with the current requirements for the system. In the example, the
requirements are specified in form of a goal model, where the depicted excerpt includes a
required lane and obstacle detection as safety feature for the autonomous driving. The analysis
detects that the current system model must be adapted to perform according the given goals
and the desired mode switch from the driver, which is (4) annotated directly in the reflection
model. Consequently, the planning activity Optimize (5) reads the need for an adaptation
from the reflection model together with a set of possible system configurations modeled in a
variability runtime model. The gray part in the variability model in Figure 5.13 denotes the
preferred current configuration, which is the autonomous driving feature. The result of the
adaptation plan is (6) annotated into the system model, which leads, in this example, to a
new state in the automaton representation named autonom (marked green with a ++).

The last step is the synchronization of the adaptation plan to the smart car and thus, to
the running physical system. Therefore, the Effect activity (7) reads the planned changes
together with rules that allow a transformation from the automaton in the system model to
an executable component architecture for the underlying smart car software system. As an
effect of the synchronization (causal connection), a new component Driving (green and marked
with ++) is deployed in the smart car. Thus, the adaptive car, shown in the physical layer, is
now able to drive autonomously, which is the expected functionality that was triggered by the
driver.

This theoretical single run of an adaptation loop illustrates the use of runtime models and
the effect of the causal connection. On the one hand, runtime models are an abstraction
of runtime phenomena for key points of interest, which enables a decoupled analysis and
planning of the necessary adaptation steps. On the other hand, all retrieved information
and changes must be synchronized with the underlying system in dedicated points in time to
enforce the desired adaptation behavior.

5.2.4. Runtime Model Metamodel
After having a common understanding of the different runtime model purposes and their usage
by adaptation activities, the Deurema metamodel for runtime models is described. Runtime
models are considered as explicit entities in Deurema specifying the complete available
knowledge of the system. Therefore, runtime models are modeled as Deurema types that are
contained in the megamodel as depicted in Figure 5.14. Furthermore, each runtime model
has at least one purpose that follows the categorization as comprehensively discussed above.
In Deurema, a runtime model type represents the global available knowledge in the system.
Therefore, each runtime model can have an arbitrary number of views spread throughout
the system. Views can be considered as individual instances of the runtime model, which
usually contains only parts of the complete available knowledge. Furthermore, views belong
to a specific part of the system behavior defining the available local amount of information on
which the system functionality can operate on. This concept enables maintaining individual
views in different system parts on the global available knowledge in the overall SoS. Therefore,
Deurema supports the modeling of visibility restriction and partial knowledge with two
implications. First, operations and manipulations of the runtime models are enforced over
the corresponding views and cannot be applied directly into the global runtime model type.
Second, runtime models are directly contained in the megamodel and views are contained
in the corresponding system parts that are responsible for the maintenance of the contained

– 87 –

5. Deurema Modeling Language

Metamodel Concrete Syntax

RuntimeModel
View

RuntimeModel

1

instances 0..*

type
SystemModel
ContextModel
MonitoringModel
ExecutionModel
RequirementModel
AssumptionModel
VariabilityModel
ModificationModel

<<enumeration>>

RuntimeModel
Purpose

1..*

purpose

<<abstract>>

DeuremaModel

<<abstract>>

DeuremaType
Megamodel

1..*

types

<<Purpose>>

RTMViewName

<<ChangeModel>>

Configurations

<<SystemModel>>

Architecture

<<ContextModel>>

Environment

Figure 5.14: Deurema runtime model

views. Pinpointing the responsibilities and the amount of knowledge using runtime model
views allows further analysis of knowledge distribution throughout the overall SoS. In the
example of the former section, the feedback loop operates on such a local runtime model
view, which is restricted to one smart car. If multiple smart cars want to share its local
information with other smart cars, they must collaborate with each other exchanging the
information of interest. Deurema does not restrict the content of a runtime model and thus,
supports arbitrary domains as long as the runtime model content is defined by a corresponding
metamodel. The metamodels for the runtime model content are typically application-specific
and therefore not discussed in detail. In general, Deurema allows arbitrary metamodels that
facilitates the use of the modeling language for a broad range of self-adaptive systems.

Concrete Syntax
The concrete syntax of a runtime model view is a rectangle that includes the purpose as
stereotype and a name as shown at the right in Figure 5.14. In the example, a runtime model
view named Architecture, which is defined as system model, is shown. Runtime model views can
be contained in system parts that specify the local system behavior such as module templates
(cf. Section 5.3) or collaboration interactions (cf. Section 5.5.3). The distinction between
runtime model and view is important for the analysis, execution, and simulation of Deurema
models. However, for the modeling of knowledge usage in module templates and interactions
there is no difference so that the term runtime model is equally used with its corresponding
views for the rest of this thesis unless the distinction is explicitly necessary.

5.2.5. Runtime Model Summary

Figure 5.15 summarizes the dependencies between the runtime model categorization as well
as the use of runtime models and corresponding views in Deurema. First, the runtime model

– 88 –

5.3. Deurema Module Templates

<<derive>>

Runtime Model Categorization

RuntimeModel
View1

RuntimeModel
RuntimeModel

View2

<<derive>>

RuntimeModel
Metamodel

<<purpose>>

<<define>>

RuntimeModel
Viewx

<<derive>>

D
o

m
ai

n
D

e
u

re
m

a
C

at
e

go
ri

za
ti

o
n

provided by
the domain

known by
Deurema

maintained by
Deurema

accessed by the
adaptation logic

provided by
Deurema

contains
domain

knowledge

System
Model

Context
Model

Evaluation
Model

Change
Model

Causal Connection Model

defines
concepts

modeled in
Deurema

Figure 5.15: Deurema runtime model summary

in the middle layer in Figure 5.15 contains the domain knowledge with respect to the key
points of interest. Arbitrary views can be derived from the runtime model content, which
is directly modeled within the Deurema language. Furthermore, the adaptation logic, which
is also modeled in Deurema, performs its functionality on the derived views only. Thus,
runtime models, views, and the derivation of the views are directly supported and maintained
by Deurema. Second, as shown at the top in Figure 5.15, the domain specific content of
the runtime model is defined by a corresponding runtime model metamodel. Because the
metamodel is domain specific, it must be provided by the corresponding domain, but is known
by the Deurema modeling language. Third, the runtime model categorization provides the
purpose of the runtime model that has to be specified in Deurema for each runtime model.
The purpose gives insights into the contained content on a higher layer of abstraction, which
enables reasoning about the runtime models and their used views. The runtime model purpose
is orthogonal to the concept definition of the metamodel and must be appropriately set from
the system developer according to the definitions in the categorization. Fourth and finally,
the Deurema megamodel maintains the runtime models and their derived views. Beside the
handling of runtime models that represent the available knowledge in the adaptive SoS, the
modeling of the system behavior is an important core concept, which is comprehensively
discussed in the following.

5.3. Deurema Module Templates

Up to this point, the former Section 5.1 introduces the Deurema concepts allowing the
specification of a layered system architecture, whereas the corresponding system template
description and system instances are maintained in the Deurema megamodel. Furthermore,
Section 5.2 highlights the core concept of knowledge representation within an adaptive SoS

– 89 –

5. Deurema Modeling Language

by using the MART approach. Thereby, all runtime models and corresponding derived views
are maintained by the Deurema megamodel, too. Beside the layered system modeling and
the specification of the knowledge, the modeling of the internal system behavior is important.
The Deurema modeling language specifies aspects of the adaptive system behavior in module
templates. A module template encapsulate a self-contained behavioral aspect of the system,
e. g., a feedback loop, which operates on the local available knowledge base represented by
the local runtime model view definition. Deurema supports different variants of modeling
the local, internal behavior of the system by offering different module template types. For
using the behavioral template specification within the layered system architecture, module
templates must be instantiated and the template instances, named modules, can be placed on
the layers of the system template specification.

Figure 5.16 shows a sketch of the smart city running example system template specification.
The different variants of module instances are highlighted in gray in the figure, whereas each
type is comprehensively described in the following. Thereby, the highlighted modules in
Figure 5.16 are stepwise modeled using the Deurema approach.

SmartCar
(Application Logic)

<<
La

ye
r>

>

G
o

a
l

<<
La

ye
r>

>

A
d

a
p

ti
v

e
<<

La
ye

r>
>

S
o

ft
w

a
re

Self-Configuring
(Adaptation Logic)

Platoon
(Collaboration Logic)

Self-Configuring
(Adaptation Logic)

TrafficMonitor
(Analysis Logic)

SmartHome
(Domain Logic)

EnergyOptimization
(Adaptation Logic)

<<SystemTemplate>>

SmartCity

Sensors

Effectors

Sensors

Effectors

Sensors

Effectors

EnergyMonitor
(Analysis Logic)

Sensors

Effectors

<<System>>

audi:SmartCar

Figure 5.16: Smart city running example: Deurema modules

As depicted in the metamodel in Figure 5.17, module templates directly inherit from the
DeuremaTemplate class. Thus, templates as well as their internal behavior specifications are
contained in the megamodel. On the one hand, module templates can be considered as
blueprints that describe a part of an adaptation aspect. On the other hand, they are designed
to follow specific modeling approaches from different domains. Deurema supports four module
template types that are software, feedback loop, behavior, and application module templates.

Software modules are considered as black boxes that support the specification of legacy
adaptation behavior or parts of the adaptation engine, where the internals are unknown.
However, software modules can be useful in early phases of the specification of the adaption
logic in Deurema. Because they hide internals, they can be used to model the architectural
structure of the adaptation engine and the trigger dependencies between modules without
specifying all collaboration details and the concrete adaptation steps. Furthermore, even
without those details, an analysis of the system architecture and module dependencies is
possible. Additionally, simulation runs may help understanding how the interplay and the

– 90 –

5.3. Deurema Module Templates

Metamodel

<<abstract>>

DeuremaTemplate

<<abstract>>

ModuleTemplate

BehaviorModule
Template

FeedbackLoop
ModuleTemplate

Application
ModuleTemplate

SoftwareModule
Template

Module
1 instances

0..*template

Megamodel
1..*

templates <<abstract>>

DeuremaModel

Layer

0..* modules

Figure 5.17: Deurema module templates

architectural design of the adaptation engine work and if those are able to fulfill expected
requirements.

Feedback loop module templates capture adaptation activities, the intra-loop coordination,
and the usage of runtime models. This module type is originally introduced by the Eurema
modeling language as discussed in the former Section 2.3. In Deurema, feedback loop modules
are extended by inter-loop coordination aspects, which enable a separation of concerns between
local adaptation behavior and global collaboration activities.

Application module templates are designed with respect to the component-based develop-
ment approach. Components in software engineering are used to foster separation of concerns
by encapsulating resources and functionalities in well-defined parts of the systems. Therefore,
components support a modular and cohesive development of a software system, which follows
well established design principles. Furthermore, components can be assembled via well-defined
interfaces to realize higher level functionalities. Especially with the focus on this thesis on
adaptive SoS, which are further emerged from all kind of embedded and cyber-physical sys-
tems, a component-based specification of the adaptation logic helps integrating the Deurema
modeling language in such domains. Examples for a dominant software development following
component-based approaches are the robotic domain [47, 48] and the automotive industry
with the AUTOSAR standard [62, 105].

Finally, behavior module templates are designed with the focus on the declarative description
of the adaptation logic in form of graph transformation rules following the modeling of
combinations of trigger-action conditions. The behavior module concept in Deurema is
motivated by the fact that almost all models in software and systems engineering can be
represented as graphs. Different domains use all kind of different model types to describe
the structure, behavior, interface, deployment, requirements or context of a system. For
example, timed and hybrid automata, petri nets, or state machines are well suited to describe
timing, concurrency, and physical aspect of embedded systems as well as cyber-physical
systems [126]. Furthermore, the UML defines various model types covering a broad range
for modeling software system aspects such as activity, sequence, class, and object diagrams.
However, almost all models created by these different modeling techniques and diagrams from

– 91 –

5. Deurema Modeling Language

various domains can be represented in form of a graph structure. Therefore, working with
these models and analyzing them could be done by using graph manipulation and reasoning
techniques. Furthermore, Deurema keeps those models alive and represents them as runtime
models defining the available knowledge in the system. With this motivation in mind, behavior
modules provide the powerful concept of graph transformation rules as introduced in the
preliminaries in Section 2.2.5 describing the adaptation logic and enabling the integration of a
large range of model types from various domains.

In summary, all module template types are designed with the focus on a specific development
approach or techniques that allow the integration of existing modeling approaches into
the Deurema modeling language. On the one hand, Deurema can be used to specify the
adaptation logic in such systems without learning completely new concepts and applying
already known modeling concepts. On the other hand, integrating those different concepts
into one modeling language that is still analyzable and can be used for simulation is very
challenging. Furthermore, Deurema allows the usage of all different template types in the
overall modeled SoS, seamlessly integrates the adaptation knowledge in form of runtime
models throughout the different templates, and supports the interaction as well as triggering
between different template types.

Module templates are deployed by means of module instances on a system layer in a
corresponding system template, which denotes the availability of the encapsulated functionality
and defines the internal behavior of the system. Furthermore, placed module instances can
be executed, which enables a simulation of the system behavior. The corresponding module
instance refers to its template description, whereas the model executor follows the modeled
behavior in the blueprint specification. Consequently, there can be several module instances
in the system that refer to the same template, but may be different concerning their assigned
variables and execution state. Thus, modules and their corresponding template definitions
follow the same design principle as discussed for system templates and system instances in
Section 5.1. First, templates may contain variables that have to be resolved at deployment.
Therefore, two module instances can have a different configuration of template variables at
runtime. Second, module instances are considered as independent entities in Deurema that
pass through different states during the lifetime of the adaptive SoS. This is similar to object
instances, which are defined by a common class in an object-oriented programming language,
but can have different variable assignments and thus, different internal states. Consequently,
module instances contain individual runtime model information in their local view, which
leads to different internal states, although the general adaptation logic is defined in the
corresponding module template.

In the following, the variable concept for module templates, their responsibility for runtime
model views, each template type, and the triggering of modules are discussed in detail.

5.3.1. Template Variables and Runtime Model Views
As mentioned before, templates are different to Deurema types with respect to the use of
variables. This is reflected in the metamodel in Figure 5.18, whereas module templates contain
an arbitrary number or variables. Furthermore, each variable has a type, which is specified
by a reference to an abstract class VariableType in the metamodel. Each module template
offers different variable types by refining the VariableType class and therefore, provides a set of
individual variable types that fit to the design approach of the template type. For example, a
feedback loop module template contains adaptation activities that operate on runtime models
following the MAPE design approach. An appropriate variable type for this template type

– 92 –

5.3. Deurema Module Templates

Metamodel

<<abstract>>

DeuremaTemplate

<<abstract>>

ModuleTemplate
RuntimeModel

View

0..*

runtimeModels

<<abstract>>

DeuremaModel

Variable

<<abstract>>

VariableType

1

instances
0..*

type

<<abstract>>

DeuremaType

0..*

variables

Figure 5.18: Variables and runtime model views in module templates

is an activity variable type, which is a placeholder for different adaptation strategies. At
deployment of the module template, which means that a module instance is created and
placed on the system template definition, the variable can be replaced by one variant of
a concrete adaptation step. The Deurema variable concept is the basis for reconfiguration
capabilities of a module, because the well-defined configuration points (variables) can be
assigned with different concrete values at runtime. In general, the variable concept allows the
distinction between predefined reconfiguration and arbitrary adaptation steps as described
later in Section 5.6.

Beside variables, module templates maintain individual runtime model views as indicated
by the runtimeModels containment reference in the metamodel in Figure 5.18. Views are defined
by applying model queries on the corresponding global available runtime model information.
Therefore, Deurema allows the individual specification of those parts from the global available
knowledge that are key point of interest for each module template. Furthermore, global
available knowledge, which is maintained by the megamodel (cf. Figure 5.14), is decoupled and
becomes local knowledge in the corresponding module template. Each module is responsible for
maintaining the view, distributing information to local adaptation activities and synchronizing
the access on the local view as individually discussed for each template type in the following.

5.3.2. Feedback Loop Module Template
The first discussed module template type determines the modeling of the adaptation logic
within the system as shown for the smart city example in Figure 5.19. Feedback loop
module templates are originally introduced by the Eurema modeling language for modeling
the adaptation activities of one feedback loop within the adaptation engine. The Deurema
modeling language follows the external adaptation approach and considers the proposed four
different adaptation activities forming the MAPE feedback loop of the reference architecture
from Kephart et al. [110] as introduced in the preliminaries in Section 2.1.1. Therefore, the
highlighted adaptation activities in the sketch in Figure 5.19 show a possible realization of
such a feedback loop. In Deurema, the modeling of a feedback loop comprises individual
adaptation activities, the intra-loop coordination of those activities, the specification of local
available knowledge in form of runtime models, and the manipulation of runtime models by

– 93 –

5. Deurema Modeling Language

template

ar

<<FeedbackLoopModuleTemplate>>

Self-Configuring

<<Monitor>>

Update

<<MonitoringModel>>

Monitoring Rules

r

<<ExecutionModel>>

Synchonization Rules

<<EvaluationModel>>

Goals
<<ChangeModel>>

Configuration Strategies

<<SystemModel>>

Architecture

<<Variable>>

Optimize

<<Execute>>

Effect

r

r

r r

r

r

w

a

<<Analyze>>

CheckTrafficSituation

Monitor Done

SmartCar
(Application Logic)

<<
La

ye
r>

>

A
da

p
ti

ve
<<

La
ye

r>
>

So
ft

w
ar

e

Self-Configuring
(Adaptation Logic)

<<SystemTemplate>>

SmartCity

Sensors

Effectors

<<FeedbackLoopModule>>

sc1:Self-Configuring
instance

Figure 5.19: Smart city running example: Deurema feedback loop template

adaptation activities via model operations. In the following, these concepts are introduced
and the corresponding excerpt of the Deurema metamodel is explained.

As shown in the metamodel in Figure 5.20, the Deurema modeling language adopts the
possible operation types for modeling the feedback loop behavior from Eurema that are initial,
decision, final, destruction, and activity node. Furthermore, operations are directly contained
in the feedback loop module template. An initial node is the starting point for the feedback
loop. Decision nodes branch the control flow by evaluating their guard conditions. Activities
define the adaptation steps, which form the adaptation capabilities of the feedback loop.
Final nodes complete the execution of a feedback loop, whereas destruction nodes destroy
the availability of the feedback loop functionality. Normally, feedback loops are periodically
executed starting at an initial node, performing the activities, and ending at a final node.
If the last node of the feedback loop is a destruction node, the feedback loop is removed
from the modeled adaptive SoS behavior, which can be used to model one-shot adaptations.

– 94 –

5.3. Deurema Module Templates

Metamodel Concrete Syntax - Template

<<abstract>>

ModuleTemplate

FeedbackLoop
ModuleTemplate

<<abstract>>

VariableType

FeedbackLoop
Variable

<<abstract>>

Operation

1..* o
pe

ra
ti

o
n

s

0..1
next

InitialNode

FinalNode DecisionNode

Activity

ActivityVariable

<<abstract>>

DeuremaModel
<<FeedbackLoopModuleTemplate>>

Self-Configuring

<<FeedbackLoopModule>>

sc:Self-Configuring

Concrete Syntax - Model

<<ActivityPurpose>>

ActivityName

Control flow

<<Variable>>

FBLVariable

<<Variable>>

ActivityVariable

InitialNode

DestructionNode

DecisionNode

FinalNode

DestructionNode

1
next

guard : String

Condition

2..* conditions

Figure 5.20: Deurema Feedback Loop Diagram (FLD)

As emphasized in [175], one-shot adaptation loops are useful to apply updates (patches) to
the adaptive system behavior, which are usually developed offline and applied to the SoS
afterwards.

One difference to the Eurema modeling language is the use of complex activities that
are now replaced by the Deurema variable concept. Eurema uses complex activities to
aggregate multiple adaptation activities into one complex activity, which enables a decoupled
development of different aspects of the feedback loop. However, the internals of the complex
activity must be deployed at development time in Eurema, whereas the aggregated behavior
becomes visible in the feedback loop. Complex activities are replaced by the more powerful
Deurema variable concept because of the following reasons. First, variables are placeholder in
the feedback loop, which allows the same decoupled development of different variants of the
feedback loop behavior as the complex activity concept in Eurema. Second, variables must
be assigned during the instantiation of the corresponding module template, which resolves
the placeholder with a concrete part of an adaptation behavior. Third, a complex activity
is very specific for the use in feedback loop templates, whereas the variable concept can be
used across other template types in Deurema. Fourth, variables are also used during system
reconfiguration, where the adaptation behavior can be replaced during the lifetime of the
overall SoS, which is supported as first class concept in Deurema. In summary, the Deurema
variable concept can be equally used across all Deurema template types as well as it enables
a generic handling of the reconfiguration possibilities in the modeled adaptive behavior.

As depicted in the metamodel in Figure 5.20, Deurema distinguishes between feedback loop
variables and activity variables. The former allow the replacement of the variable by different
feedback loop configurations, whereas the latter restrict the reconfiguration to single activities.

– 95 –

5. Deurema Modeling Language

Concrete Syntax
The concrete syntax of feedback loop module templates is modeled in Feedback Loop Diagrams
(FLD), whereas the concrete syntax of the elements is depicted on the right in Figure 5.20.
For better recognition, the different node types are similar to the UML notation. Additionally,
nodes are labeled with a name, which is used to identify correct entry and exit points of a
feedback loop. For example, a feedback loop may have two initial nodes starting with different
adaptation activities afterwards. If the feedback loop is triggered, the name of the initial node
must be specified, which corresponds to desired starting point of the feedback loop. This is
similar to destruction and final nodes, where the name denotes the specific end point of the
feedback loop behavior.

Activities in a feedback loop are depicted as hexagon block arrows. The control flow is
modeled as arrow, which is defined by the next reference in the metamodel. Furthermore,
decision nodes may have multiple branches, which are realized by the contained conditions.
Variables are labeled with an additionally ellipse in the upper right corner of the hexagon
block arrow, which is uniformly used for all variable types for the rest of this thesis. Feedback
loop variables have an additional double border indicating the possible replacement by
multiple activities. The instantiation of the feedback loop module template follows the
Deurema instance notation as explained in Section 5.1 and has the additional stereotype
«FeedbackLoopModule».

Modeling Adaptive Behavior in Feedback Loop Templates
In feedback loops templates, activities are the entities that realize the adaptive behavior
and manipulate runtime models. Conceptually, the concrete adaptation behavior of a single
activity depends on the problem that has to be solved and thus, is an application specific piece
of functionality in the corresponding domain. Therefore, Deurema supports different variants
of integrating this application specific behavior into the modeling of the overall feedback loop,
namely as black box, gray box, or white box.

In general, Deurema considers every element as abstract model entity as outlined in Sec-
tion 5.1. Furthermore, every element that is related to a domain specific piece of functionality,
is also considered as a model, which is enriched by a behavior description visible (white box)
or invisible (black box) in Deurema. Thus, Deurema considers those elements as behavior
models, which is defined in a corresponding abstract BehaviorModel class in the metamodel in
Figure 5.21.

In Deurema, each activity has a corresponding type. On the one hand, the activity type
defines the purpose of the activity that follows the MAPE approach from [110] as introduced
in the preliminaries in Section 2.1.1. Therefore, the purpose is defined by an enumeration in
the metamodel. On the other hand, the activity type refers to its behavior description, which
is realized by the inheritance with the BehaviorModel class. Thereby, the activity type is also
considered as Deurema type element, which can be instantiated by an arbitrary number of
activity instances. The advantage of separating activity instances and types is the possible
reuse of the same piece of adaptation behavior (defined in the activity type), which must be
specified once and may appear in form of an activity in arbitrary feedback loops afterwards.
Thus each activity knows its type, which is indicated by the type-instance reference in the
metamodel in Figure 5.21.

As mentioned above, the concrete behavior specification of an activity type is domain specific
and thus, leaves the boundaries of the Deurema modeling language. However, Deurema uses
a trigger-action specification mechanism to support different variants of including the domain
behavior into Deurema models. Both, the trigger and the action are defined as attributes of

– 96 –

5.3. Deurema Module Templates

<<Analyze>>

CheckTrafficSituation

Metamodel

trigger : String
action : String
executionTime : int
urgent : boolean
committed : boolean

<<abstract>>

BehaviorModel

Activity

ActivityType

1

instances0..*

type

Monitor
Analyze
Plan
Execute

<<enumeration>>

ActivityPurpose

1..*purpose

<<abstract>>

DeuremaType

<<abstract>>

DeuremaModel
<<abstract>>

Operation

++autonomousDriving
:Annotation

++

@Deurema
 if (trigger())
 action();

BlackBox

boolean trigger
{

 return isModeSwitchDetected();
}

void action
{
 addAutonomous
 DrivingAnnotation()
}

Black-Gray-White Box Example

sc:SmartCar

mode = autonom

current:Mode

mode = manual

last:Mode

sc:SmartCar

mode = autonom

current:Mode

mode = manual

last:Mode

GrayBox
void action
{
 addAutonomous
 DrivingAnnotation()
}

WhiteBox

Figure 5.21: Feedback loop activities as behavioral models

the BehaviorModel class in the metamodel. The action refers to the concrete implementation of
the behavior model that can be invoked by the Deurema interpreter. The activity type inherits
the attributes from the BehaviorModel class with the consequence that Deurema is enabled to
execute the specified adaptation effect. The optional domain trigger enhances the information
about the activity type by specifying a trigger condition, which defines when the activity is
allowed to perform its action. There are three possibilities if the feedback loop execution
reaches a certain activity. First, there is no trigger condition specified, which indicates that no
further restrictions are modeled for the activity. Therefore, the activity action is invoked by
the interpreter, which leads to the implemented adaptation effect. Second, a trigger condition
is modeled and the trigger condition is fulfilled, which has the same execution effect as in
the first case. Third, a modeled trigger condition is not fulfilled, where as a consequence, the
execution of the specified adaptation action is skipped. The last case ensures that adaptation
effects are only performed within the feedback loop execution, if they are necessary.

There are two further variants how Deurema handles the specified trigger and action of a
behavior model. Either the implementation internals are known by Deurema or they appear
as black box by referencing a domain specific (unknown) implementation. The meaningful
combinations are depicted in Table 5.2. In the following, the three combinations are explained
in the context of feedback loops with a concrete activity example, which is depicted on the right
in Figure 5.21. The example shows the CheckTrafficSituation activity from the self-configuring
feedback loop of the smart car. The purpose of this activity is defined as analysis step
denoted by the stereotype «Analyze». This activity decides if a mode switch from manual to
autonomous driving must be performed as already comprehensively discussed in the runtime
model example in Section 5.2.3. However, the following concepts of specifying domain specific

– 97 –

5. Deurema Modeling Language

Table 5.2: Trigger and action combination for behavior models

Black Box Gray Box White Box

Trigger 8 4 4

Action 8 8 4

4: known by Deurema; 8: unknown by Deurema

behavior hold for all Deurema elements that inherit from the behavior model class and are
not specific for activity types.

The first combination in Table 5.2 is a black box activity, where the trigger and the actions
refer to an internal, unknown implementation. Thereby, the specification of the trigger is
optional as discussed above. Conceptually, a black box activity can be implemented as shown
in the upper right in Figure 5.21. The pseudocode denotes that these details are not known
by the Deurema modeling language. Therefore, there can be an arbitrary trigger and action
implementation, whereas the former checks whether the activity actions is performed or not.
Deurema will execute the black box domain trigger implementation first and in the positive
case the black box action implementation afterwards. In the pseudocode example, the trigger
is implemented as a function that checks for a detected mode switch. Furthermore, an action
function adds a corresponding annotation in the runtime model that denotes the need of an
adaptation for subsequent feedback loop activities (cf. also Figure 5.19).

The second combination shows a gray box activity, whereas the trigger condition is known
by Deurema and the action refers still to an unknown implementation. In this case, ”known by
Deurema” means that the trigger condition is modeled as graph pattern. In general, Deurema
directly supports the specification of behavior in form of graph transformation rules, which
further enables the reasoning about the modeled behavior. The concept of modeling behavior
with graph transformation rules is already introduced in Section 2.2.5. In the case of a known
trigger condition, a declarative graph pattern must be specified that has no side effects (the
LHS must be equal to the RHS of the graph transformation rule). In the example on the
right in Figure 5.21, the trigger condition comprises a graph pattern with three objects. The
pattern describes a SmartCar that has information about its last and current mode, whereas
the last mode was the manual driving task and the current mode describes the need of an
autonomous driving behavior. Thus, the pattern detects a mode switch from manual to
autonomous driving. Deurema can directly execute this graph pattern, which is the searching
for an appropriate match in the available local knowledge base. If a match is found, the black
box action is invoked by the Deurema interpreter, which leads to the same side effect as in
the first combination described above. In contrast to the black box trigger (the pseudocode
above in the figure), the trigger condition modeled as a pattern is visible and maintainable
in the context of the Deurema modeling language. Thus, the black box activity turns into a
gray box activity due to the additional insides, whereas the trigger condition is known and
can be efficiently handled by the Deurema interpreter, but the effect in form of the action
remains as application specific black box implementation.

The third combination in Table 5.2 denotes a white box activity, whereas the trigger
condition as well as the action are known by Deurema and specified as graph transformation
rule. After searching for a match by executing the LHS of the graph transformation rule,

– 98 –

5.3. Deurema Module Templates

the action is performed by applying the side effect of the RHS of the rule. The example in
Figure 5.21 shows a graph transformation rule, where an Annotation object is created that
denotes the need of an adaptation to a new driving mode of the smart car.

In summary, Deurema considers feedback loop activities as behavior models that follow
the black-gray-white box concept depending on the visibility of the domain trigger condition
and performed adaptation action. Whereas black box behavior can encapsulate an arbitrary
domain functionality, white box behavior is specified in form of graph transformation rules.
In general, all behavior models can be executed by the Deurema interpreter and thus, can be
integrated into a simulation of the overall adaptive SoS behavior. Furthermore, for white box
behavior models (e. g., activities) the domain specific internals are known and can be efficiently
handled by Deurema. With respect to the execution and simulation, behavior models have
timing properties that are an execution time, urgent, or committed property shown in the
metamodel in Figure 5.21. The Deurema simulation framework supports different strategies.
In early development phases, simulation may ignore the execution time of a behavior model
(zero execution time semantic), where the overall effects of the feedback loops are investigated
to ensure that the modeled control algorithm works as expected. Later, the execution time
can be measured, e. g., for black box behavior models, or even predicted for white box models,
if further details of the execution platform are known.

Runtime Models in Feedback Loop Templates
The last missing part of defining the adaptive behavior in feedback loops in Deurema is the
integration of runtime models in the feedback loop templates defining the local available amount
of knowledge on which the adaptation activities can operate on. As shown in Figure 5.22, each
activity defines model operations that link to a corresponding runtime model view, which is
contained in the same template definition as the activity itself. A model operation is specified
by a type and arbitrary knowledge queries represented by the ModelOperationQuery class in the
metamodel. The model operation type defines the kind and therefore the direction of runtime
model access, whereas Deurema supports read, write, annotate, create, and destroy. Reading
a runtime model retrieves data, which has no side effect on the knowledge base. Therefore, the
data flow of a reading model operation is from the runtime model view to the activity, which
is depicted by a dashed arrow in concrete syntax in the Self-Configuring feedback loop template
in the middle of Figure 5.22. All other model operations manipulate the runtime model, which
leads to a modification in the available knowledge base. Consequently, modifying a runtime
model implies a data flow from the activity to the corresponding view as shown for the writing
operation in the concrete syntax example in the figure. Without loss of generality, all read
model operations are applied before activity execution (step (1) in the figure). The retrieved
knowledge can be freely used and changed by the activity during its execution (step (2) in the
figure).

The Deurema model query concept is inspired by graph based query languages such as
SPARQL [63] or EMF-IncQuery [171]. In general, such query languages define the desired
amount of information declaratively, whereas the query can be effectively applied on the
underlying graph database [186]. Because runtime models are considered as labeled graphs,
model operation queries can be used to define the information of interest. Therefore, queries
are considered as Deurema behavior models and thus, as executable elements that retrieve
the concrete data from the runtime model view as needed by the activity. In general, the
amount of accessed knowledge is defined by those executable queries in Deurema, whereas the
direction is specified by the corresponding model operation type. Because a model query is a
behavior model, it follows the same black-gray-white box idea as explained for activities above.

– 99 –

5. Deurema Modeling Language

Metamodel Concrete Syntax - Template

<<FeedbackLoopModuleTemplate>>

Self-Configuring

<<Monitor>>

(2) Update

Activity

ModelOperation

0..* modelOperations

RuntimeModel
View

1

modelOperations
0..*

view

<<MonitoringModel>>

Rules

r

<<SystemModel>>

Architecture

 (1) r (2)w

Read
Write
Annotate
Create
Destroy

<<enumeration>>

ModelOperation
Type

1type

ModelOperation
Query

1..* queries

trigger : String
action : String
executionTime : int
urgent : boolean
committed : boolean

<<abstract>>

BehaviorModel

@Deurema
(1) performReadQueries();
(2) if (trigger(models))
 action(models);

BlackBox

Model[] retrieve
{
 //apply domain query
 return models;
}

Model[] filter (Model[] models)
{
 //apply domain filter
 return models;
}

Black-Gray-White Box Example

all:Mode

all:Mode

GrayBox

WhiteBox

@Deurema
void performQuery()
{
 Models[] models = retrieve();
 return fi lter(models);
}

Model[] filter (Model[] models)
{
 //apply domain filter
 return models;
}

Example

Figure 5.22: Deurema FLD runtime models

The trigger and action attributes from the BehaviorModel class define the implementation of a
model operation query, which is further named as retrieval step (trigger attribute) and an
additional filter step (action attribute). The retrieval step is the application of the query on
the runtime model, which returns the specified amount of information. The optional filter
step can be used to prepare the data for its execution by the activity, which might include
transformation of data formats or a preprocessing that cleans the data. Therefore, the retrieval
of data has no side effects on the knowledge base, whereas the filter action may change the
runtime model data that can be noticed as additional side effect.

Straight forward, a black box query is characterized by an unknown, domain specific retrieval
and filtering of data as shown on the right in the example in Figure 5.22. For a gray box query,
the retrieval is performed by the Deurema modeling language, whereas the corresponding
query is defined by a declarative graph pattern (graph transformation rule). In the example,
the pattern consists of a single Mode object, which denotes that all nodes with the type Mode
are retrieved from the knowledge base. The retrieval of information corresponds to finding
all matches according to the LHS of the graph transformation rule (query). If this query
belongs to the step (1) in the example in the middle of Figure 5.22, the query is performed on
the Architecture runtime model with the effect that all Mode objects (matches) are retrieved.
In contrast to a white box query, a gray box query has an additional, domain specific filter
action. The filter is performed on the retrieved matches and may have side effects that are not
known for Deurema. A white box query has no additional filter operation and thus, the query
consists of declarative graph pattern with no side effects as shown in the figure. Each gray
and white box query consists of exactly one graph pattern. Therefore, multiple model queries
can be combined to describe the overall model operation, which is performed by Deurema on
the corresponding runtime model.

Because feedback loop activities and model queries inside the model operations are considered
as Deurema behavior models, there are several possible combinations of specifying black-
gray-white box behavior. Table 5.3 shows the two dimensions with respect to the reasoning
about the domain functionality defined by adaptation activities and the access to the domain
knowledge defined by model operation queries. In general, the more information is known by

– 100 –

5.3. Deurema Module Templates

Table 5.3: Domain knowledge and domain functionality dimensions
Reasoning about Domain Functionality−−−−−−−−−−−−−−−−−−−−−−−−→

Behavior Model

Black Box Gray Box White Box

Black Box

8 trigger
8 action
8 retrieve
8 filter

4 trigger
8 action
8 retrieve
8 filter

4 trigger
4 action
8 retrieve
8 filter

unknown amount
of knowledge
access

Gray Box

8 trigger
8 action
4 retrieve
8 filter

4 trigger
8 action
4 retrieve
8 filter

4 trigger
4 action
4 retrieve
8 filter

known knowledge
access but
unknown filter
action

R
ea

so
ni

ng
ab

ou
t

D
om

ai
n

K
no

w
le

dg
e

←
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−

M
od

el
O

pe
ra

tio
n

Q
ue

ry

White Box

8 trigger
8 action
4 retrieve
4 filter

4 trigger
8 action
4 retrieve
4 filter

4 trigger
4 action
4 retrieve
4 filter

known amount of
knowledge access

unknown
domain
trigger and
action

known
domain
trigger

known
domain
trigger and
action

4: known by Deurema; 8: unknown by Deurema

Deurema the merrier are the analysis capabilities to reason about the adaptation effects of
the modeled feedback loops. For a better understanding, the handling of two extreme cases
are described. In the first case, the availability of no domain specific behavior information
by using black box queries and activities is discussed. In contrast, for the second case, all
information is modeled in Deurema using white box queries and activities. Both cases are
described by considering the step (1) performing the read model operation on the Architecture
runtime model and executing the Update monitoring activity afterwards as shown in the middle
of Figure 5.22.

For the complete black box case, all model queries for the read model operation are executed
first. Thereby, the Deurema interpreter subsequently invokes the black box retrieval and filter
operation for each query, where the results are collected. Afterwards, the black box trigger
from the adaptation activity is invoked on the aggregated, retrieved models. The trigger
decides whether the adaptation action is invoked or not. In the positive case, the retrieved
models are transferred to the domain specific adaptation action. Because the specification
of the domain trigger is optional, the retrieved models are directly hand over to the domain
action in the case that no trigger is modeled. The black box implementation of the activity
uses the runtime model information during its execution and performs arbitrary modifications
on them, which are tracked by Deurema. Because the internals of the data retrieval as
well as the adaptation effect are unknown, Deurema can neither predict the amount of used

– 101 –

5. Deurema Modeling Language

knowledge nor reason about the manipulations done by the activity during the specification
(development) of the adaptation logic. However, Deurema can monitor the knowledge access
and manipulation by executing the black box queries and the activity, which enables the
reasoning about the modeled feedback loop behavior during simulation.

For the complete contrary case, where all internals are modeled within the Deurema
modeling language by means of graph transformation rules, the general execution order
remains the same, but executing the query as well as the activity do not leave the border of
the Deurema modeling language. Therefore, the execution of the model operation queries for
step (1) is realized by searching for an appropriate match of the modeled graph pattern in the
corresponding runtime model. According to the example, all Mode objects are retrieved from
the Architecture runtime model. The matches are collected for each query, whereas a white
box query has no additional side effect (filter operation). Afterwards, the LHS of the activity,
which is also modeled as graph transformation rule, is executed. If a match on the retrieved
runtime models is found, the adaptation effect is performed by the application of the RHS
of the corresponding graph transformation rule. According to the example in Figure 5.21,
an Annotation object is created on the beforehand found match. Consequently, the complete
behavior is known by Deurema at development time, which facilitates static analysis of the
modeled adaptation behavior without performing a simulation. Of course, the adaptation
effects can be monitored during simulation in the same way as for the black box case above.

For all other combinations in Table 5.3, the general execution order of queries and activities
stays the same. The available information and therefore the static analysis capabilities of
Deurema depend on the chosen black-gray-white box combination.

Feedback Loop Template Example
After all Deurema concepts for modeling a feedback loop are introduced, Figure 5.23 shows
the template definition of the Self-Configuring feedback loop from the smart city example at
the beginning of this section. The feedback loop runs on top of a smart car as sketched in
Figure 5.19. The feedback loop template contains three activities and one activity variable that
are arranged in the causal order Update, CheckTrafficSituation, Optimize, and Effect. Furthermore,
each activity has a purpose modeled as stereotype. According to the modeled template, the
monitoring activity Update performs a read on the Monitoring Rules as well as Architecture runtime
model and updates the current architecture of the underlying smart car system afterwards.
Subsequently, the traffic situation is checked by the corresponding CheckTrafficSituation activity,
which reads the current goals and may trigger a need for an adaptation, e. g., by changing
the driving mode as outlined in Section 5.2.3. The Optimize variable defines a placeholder for
different strategies of adapting the architecture, whereas the Effect activity synchronizes the
planned adaptations with the underlying smart car system.

Feedback loop module templates can be instantiated (deployed) in an arbitrary layer of a
system template definition. For example, the Self-Configuring feedback loop is used twice as sc1

and sc2 module instance in the SmartCity system template in Figure 5.3. Both module instances
follow the same template definition as explained above and thus, show similar behavior during
execution of the activities. A variation point is the Optimize variable, which can be resolved
differently during the deployment of the modules.

In summary, the Deurema modeling language determines adaptation activities and their
coordination that describe the adaptive behavior of the feedback loop. Furthermore, feedback
loops comprise the available knowledge in form of runtime models that are accessed by model
operation. Variables are used to define placeholder for different variants of one adaptation
activity. Finally, feedback loop templates must be instantiated to corresponding feedback loop

– 102 –

5.3. Deurema Module Templates

ar

<<FeedbackLoopModuleTemplate>>

Self-Configuring

<<Monitor>>

Update

<<MonitoringModel>>

Monitoring Rules

r

<<ExecutionModel>>

Synchonization Rules

<<EvaluationModel>>

Goals
<<ChangeModel>>

Configuration Strategies

<<SystemModel>>

Architecture

<<Variable>>

Optimize

<<Execute>>

Effect

r

r

r r

r

r

w

a

<<Analyze>>

CheckTrafficSituation

Monitor Done

Figure 5.23: Deurema Self-Configuring feedback loop template

modules, which can be reused in the adaptive SoS architecture. Therefore, feedback loops
are a core concept for specifying adaptation effects in the system. In the following, three
additional concepts are introduced to define adaptive behavior within the SoS as well as to
integrate different domain specific extensions into Deurema that are namely, Software Module
Templates, Application Module Templates and Behavior Module Templates.

5.3.3. Software Module Template

Feedback loops define adaptive capabilities of the SoS that changing the overall system
behavior according to given requirements. Thereby, the system structure, state, or behavior is
represented as runtime models in the local knowledge base of the feedback loop. This section
discusses an additional Deurema concept of defining domain specific behavior on module level
and integrating it into the system template definition. Figure 5.24 sketches the refinement
of the domain specific functionality of a smart home. The domain functionality appears as
software module instance in the smart city system template definition. Furthermore, the
module instance refers to a corresponding software module template description, which defines
the behavior as trigger-action condition pinpointing to the domain specific implementation.

Software modules are the Deurema concept to integrate adaptive black box behavior as
for example legacy software parts into the adaptive SoS specification. The former section
already outlines, how black box behavior can be integrated into the Deurema language by
means of black box adaptation activities within a feedback loop. Therefore, the software
module template class in the Deurema metamodel inherits from the behavior model class as
shown in Figure 5.25. Similar to black box activities, a software module template is defined
by an optional domain trigger and a corresponding action that points to the implementation
of the domain functionality. Furthermore, the trigger can be modeled as declarative pattern
that defines a situation in the domain, which further restricts the execution of the black box
behavior only for those cases, where Deurema finds an appropriate match in the knowledge
base of the adaptive SoS.

– 103 –

5. Deurema Modeling Language

<<
La

ye
r>

>

A
d

ap
ti

ve
<<

La
ye

r>
>

S
o

ft
w

a
re

SmartHome
(Domain Logic)

<<SystemTemplate>>

SmartCity

Sensors

Effectors

<<FeedbackLoopModule>>

eon:EnergyOptimization

<<SoftwareModule>>

h1:SmartHome

template

instance

<<SoftwareModuleTemplate>>

SmartHome

<<Trigger>> <<Action>>

lighting()userAtHome()

Figure 5.24: Smart city running example: Deurema software module template

Metamodel

<<abstract>>

DeuremaTemplate

<<abstract>>

ModuleTemplate

SoftwareModule
Template

trigger : String
action : String
executionTime : int
urgent : boolean
committed : boolean

<<abstract>>

BehaviorModel

<<SoftwareModuleTemplate>>

Wheel

<<Trigger>> <<Action>>

tractionControl()

<<SoftwareModule>>

frontRight:Wheel

Concrete Syntax - Template

Concrete Syntax - Model

<<SoftwareModule>>

h1:SmartHome

Figure 5.25: Deurema Software Module Diagram (SMD)

In contrast to the activity concept above, software module templates must refer to a black
box implementation in the domain, which is not known in detail by Deurema. Thus, a
white box specification for software module templates is not allowed, which would obviously
contradict the intention of this concept. As a consequence, on the one hand, Deurema
considers black box behavior on module level, which can be reused in several instances in
the layered system architecture. On the other hand, the black box becomes a gray box, if
an additional trigger condition is modeled as graph pattern similar to gray box activities as
discussed above. However, the adaptation effect remains application specific in form of a

– 104 –

5.3. Deurema Module Templates

black box action, which can be invoked by the Deurema interpreter. Therefore, the Deurema
execution environment decides at which point in time the software module is executed and
can monitor, but not predict, the corresponding behavioral effects.

Concrete Syntax
Software module templates are modeled in Software Module Diagrams (SMD) as shown at
the right in Figure 5.25. They follow the Deurema naming scheme and thus, are labeled with
their name and the stereotype «SoftwareModuleTemplate». The optional trigger condition is
modeled on the left, where the name of the corresponding action is specified on the right in
the template definition. Furthermore, software module instances are modeled as rectangles in
object notation that refers to the corresponding template type.

Software Module Template Example
Figure 5.26 shows a black box software module template on the left and the same module
template with an additional trigger condition as gray box on the right. According to the
running example of the thesis, the black box behavior of a wheel in the smart car is modeled,
whereas the internals of the adaptation logic are not known. Both software module templates
perform a tractionControl() action if they are executed by the Deurema interpreter. Furthermore,
the template on the left has no trigger condition specified, with the consequence that no
additional check for its applicability is performed.

Black Box

<<SoftwareModuleTemplate>>

Wheel

<<Trigger>> <<Action>>

tractionControl()

Gray Box

<<SoftwareModuleTemplate>>

Wheel

<<Trigger>> <<Action>>

tractionControl()

errorCode = wheelspin

status:State

w:Wheel

<<SoftwareModule>>

frontRight:Wheel

<<SoftwareModule>>

frontLeft:Wheel

<<SoftwareModule>>

rearRight:Wheel

<<SoftwareModule>>

rearLeft:Wheel

Software Module Deployment Example

<<
La

ye
r>

>

L-
0

<<SystemTemplate>>

SmartCar

Figure 5.26: Deurema SMD example

– 105 –

5. Deurema Modeling Language

In contrast, the software module template on the right specifies additional domain infor-
mation by defining a trigger condition, which is in this example a pattern consisting of a
Wheel and its corresponding State. Only if a wheelspin is detected, the traction control is
necessary and therefore, invoked afterwards. Consequently, the software module template
performs the modeled action only if the corresponding trigger situation occurs. In Deurema,
the trigger can also be specified as black box implementation, which is not shown in the figure,
but comprehensively discussed for adaptation activities within feedback loops in the former
section.

At the bottom, Figure 5.26 shows an exemplary instantiation of the software module
template at the top of the figure. According to each physical wheel in the smart car system, a
Wheel software module is deployed at the layer L-0, where each module independently performs
the traction control functionality. Thus the modeled template functionality is reused four
times for defining the smart car architecture.

In summary, Deurema software module templates can be used to integrate domain specific
black box behavior into the system template definition. Due to the concrete implementation is
hidden, Deurema has only limited possibilities of analyzing the behavioral effects of software
modules during the development. However, software modules can be executed and the effects
can be observed during a simulation.

5.3.4. Application Module Template
Beside the integration of black box behavior modules, Deurema supports the explicit modeling
of the system behavior. One possibility is the specification of application module templates
considering the software component development paradigm, which is typical for embedded,
robotic, and cyber-physical systems. Figure 5.27 sketches the refinement of the autonomous
driving behavior of a smart car. Following the Deurema template-instance paradigm, the
module template defines the internal behavior of the smart car application logic, which is
for this module template type a component-based modeling approach. Furthermore, the
template can be deployed in the smart city system template description as module instance
refining the behavior of the overall system. Similar to the Deurema feedback loop modeling,
application module templates contains a local knowledge base defined by runtime models.
Thus, application module templates comprises the two concepts of component-based behavior
modeling and the integration of knowledge by means of runtime models.

As shown in the metamodel in Figure 5.28, an application module template contains
an arbitrary number of components, where each component has a type according to its
purpose. Inspired by the AUTOSAR standard [62] and typical component types in embedded
systems [14, 126], Deurema supports three component types, namely Sensor, Actuator, and
SoftwareComponent (SWC). The component types are defined in the Deurema metamodel
accordingly.

Sensor components are the encapsulated software representation of hardware sensors that
are able to monitor the context or state of the system. Consequently, sensors capture runtime
information, may prepare sensed data for further usage, e. g., convert analog values to a
predefined range of digital values or clean data from sensor noise, and finally provide it in
the corresponding runtime models. Software components usually process the provided data
from the sensors and realize the analysis and planning of the adaptation logic. Furthermore,
they may calculate control values that are read by the actuator components. In contrast to
sensor components, an actuator component encapsulates hardware parts of the system that
are able to physically influence the system or its context. Therefore, actuator components may

– 106 –

5.3. Deurema Module Templates

<<Sensor>>

Distance
w

<<ApplicationModuleTemplate>>

AutonomousDriving

<<MonitoringModel>>

Sensing

infrared

laserScan

<<SWC>>

Driving

r

w

<<Actuator>>

WheelController

lane

brake

<<ContextModel>>

RoadSituation
<<SystemModel>>

BehaviorMode
<<ExecutionModel>>

Effecting

r
wheel

Control
r

a
r

r

template

SmartCar
(Application Logic)

<<
La

ye
r>

>

A
d

ap
ti

v
e

<<
La

ye
r>

>

So
ft

w
ar

e

<<SystemTemplate>>

SmartCity

Sensors

Effectors

<<FeedbackLoopModule>>

sc1:Self-Configuring

instance

<<ApplicationModule>>

ad:AutonomousDriving

Figure 5.27: Smart city running example: Deurema application module template

type

1

Metamodel

<<abstract>>

ModuleTemplate

Concrete Syntax - Template

<<ApplicationModuleTemplate>>

AutonomousDriving

<<ApplicationModule>>

ad:AutonomousDriving

Concrete Syntax - Model

Application
ModuleTemplate

priority : int
period : int
trigger : String

Task

0..* tasks

Component0..*
components

Sensor
Actuator
SWC

<<enumeration>>

ComponentType

Component
Variable

Composition
Variable

<<abstract>>

VariableType

<<Sensor>>

CompName

<<SWC>>

CompName

<<Actuator>>

CompName

<<Variable>>

VarName

<<Sensor>>

Instance
<<Variable>>

CompositionName

T1

{2,10s}
T1

{2}

10s

<<abstract>>

DeuremaModel

Runnable

0..* runnables

Figure 5.28: Deurema Application Component Diagram (ACD)

– 107 –

5. Deurema Modeling Language

translate runtime model information to control commands for the physical execution platform,
e. g., convert digital control commands to analogue values or derive a concrete sequence of
execution commands for the underlying hardware.

With respect to the component architecture of an application module template, Deurema
supports two types of variables. A component variable is placeholder for a single component,
which allows the exchange of the complete component during system reconfiguration. Fur-
thermore, a composition variable is a placeholder that enables its replacement by multiple
components. Therefore, meaningful parts of the component architecture can be aggregated to
a composition variable, which allows the dynamic replacement of the complete part of the
system architecture.

Where components represent the structural architecture of an application module template,
tasks are the basic behavioral units for scheduling. Tasks are characterized by the two
properties priority and time, whereas the former defines the importance of the task and the
latter the minimal waiting time between two applications of the same task. The task with
the highest priority is executed first in Deurema, which can be used to group tasks according
to their importance. Consequently, the execution order of tasks with the same priority is
undefined. Additionally, the application of a task can be further restricted by an optional
trigger condition. A domain specific trigger can be used to ensure that the task is only
executed in a specific situation. The trigger can refer to a domain specific implementation,
whereas the internals are unknown by Deurema, or to declarative graph pattern, which is
known and maintained by Deurema. In the latter case, Deurema searches for a match of the
modeled graph pattern, which enables the execution of the task. Thus, the handling of a
trigger condition follows the same semantic as discussed for behavior models such as activities
in feedback loops.

Finally, the functionality of a component is modeled in atomic behavioral units called
Runnables.2 For the execution of the adaptive behavior, the runnables, which are located in a
component, must be assigned to a task. In the following, the concrete syntax as well as the
modeling of adaptive behavior in application module templates is explained in detail.

Concrete Syntax
As shown on the right in Figure 5.28, application module templates are specified in Application
Component Diagrams (ACD). Components are modeled as rectangles with an UML component
symbol in the upper right corner. Furthermore, components have a name and are stereotyped
with the corresponding component type that can be «Sensor», «SWC», or «Actuator». Following
the Deurema notation guidelines, component variables have an additional ellipse symbol in
the upper left corner and have the stereotype «Variable», whereas composition variables have
a double border. Finally, tasks are the behavioral scheduling unit of application module
templates and are modeled as rectangular notes. Tasks have a name and the two properties
priority as well as period are modeled in curly brackets under the name. The period can be
optionally modeled using a clock symbol in the lower right corner of the task. The concrete
syntax of an application module follows the same design principles as for feedback loop
modules, which is a rectangle in object notation that has the stereotype «ApplicationModule».

Modeling Adaptive Behavior in Application Component Templates
Components are containers that aggregate adaptation behavior and define the architectural
static structure in Deurema ACD. A runnable represents a piece of functionality that realizes
a domain specific adaptation behavior. Runnables are contained in components as shown

2The name Runnable is inspired by the AUTOSAR standard [62].

– 108 –

5.3. Deurema Module Templates

1

in
st

an
ce

s

0..*

type

Metamodel

<<abstract>>

VariableType
RunnableVariable

Concrete Syntax - Template

<<ApplicationModuleTemplate>>

AutonomousDriving

RunnableSet
Variable

priority : int
period : int
trigger : String

Task

Component

0..*
runnables

Runnable

Port

0..*

p
or

ts

re
q

u
es

ts

0..*

RunnableType

 Task1 {2}

 lane
 brake

 wheelControl

10s

trigger : String
action : String
executionTime : int
urgent : boolean
committed : boolean

<<abstract>>

BehaviorModel

ru
n

na
b

le
s

0..*

<<ordered>>

<<SWC>>

Driving

<<Actuator>>

WheelController

lane

brake

<<Variable>>
wheelControl

Figure 5.29: Deurema ACD runnables and ports

in the Deurema metamodel in Figure 5.29. Runnables are defined by a corresponding type,
which encapsulates the behavior definition of the runnable. Therefore, Deurema considers
runnable types as behavior models, which implies the same black-gray-white box semantic for
runnables as discussed for feedback loop activities in Section 5.3.2.

Up to this point, components define the static architecture and runnables the behavior in
an application module template. The execution sequence of runnables is specified by a task.
Thus, runnables must be mapped to tasks, whereas the mapping order defines the execution
sequence. Each runnable can be assigned to an arbitrary number of tasks and can be mapped
multiple times. On the one hand, the separation of a runnable and its type definition allows
the reuse of the same piece of functionality in different application module templates or within
the template in different components. On the other hand, because each runnable can be
mapped multiple times to a task for its execution, the same piece of functionality can be
easily reused without changing the component architecture or the runnable type. Runnables
can provide or request runtime models from ports, which are managed by the component.
Ports are used for sharing runtime models with other components.

Note, because runnables are the basic unit of scheduling, Deurema does not support the
direct execution of components. Components are container that group a set of available
functionalities on an architectural level. Thus, the direct execution of black box (legacy)
components is not supported, but can be alternatively modeled. A similar construct of a
black box component in Deurema is a component that contains a single black box runnable,
which must be further assigned to a task for an appropriate execution.

For reconfiguration purpose, a runnable variable is a placeholder for a single runnable,
whereas the runnable set variable is a placeholder for multiple runnables. Therefore, the
former is appropriate to exchange single function, whereas the latter can be used to replace a

– 109 –

5. Deurema Modeling Language

whole function group. Both variable types are defined at the bottom in the metamodel in
Figure 5.29.

At the right side of Figure 5.29, runnables within a component, the port concept, and
assignment of runnables to tasks is depicted in concrete syntax. Runnables are modeled as
rectangles labeled with a name that are contained in the corresponding parent component.
In the example, the runnables lane and brake are located in the software component Driving
and thus, define the available functionality of the driving component. Furthermore, the
runnable variable wheelControl, which is denoted with an additional ellipsis and corresponding
stereotype, is contained in the actuator component WheelController. A runnable set variable
can be distinguished from a normal runnable variable by a double border. For ports, the
ball socket notation from the UML is used, where a socket denotes the need and a ball the
provision of runtime model data. The available runnables in the components can be assigned
to tasks, which is exemplarily depicted on the right in Figure 5.29. The task Task1 with a
priority of two and a period of ten seconds has a reference to all three runnables and will
execute them as ordered sequence lane runnable, brake runnable, and finally the wheelControl
variable. As for feedback loop templates, variables must be resolved during the deployment of
the corresponding application module template.

Runtime Models in Application Component Templates
Because runnables are considered as independent, atomic execution units realizing the adap-
tation behavior in ACD, they can read/write runtime models from/to ports with specified
model operations. Figure 5.30 depicts the Deurema metamodel and concrete syntax with
respect to the handling of runtime models in an ACD. At first, components contain ports that
enable the use of runtime models at the architectural level. Second, ports directly reference
a runtime model view, which can be seen as interface for this port. Deurema uses runtime
models directly to describe the outgoing and incoming knowledge of a component instead of
specifying an extra interface description. As for feedback loops, the runtime model view is
contained in the application module template and defines the local available knowledge.

Therefore, components can connect each other over ports that reference the same runtime
model view, which further enables a sharing of runtime model information between these
components. In concrete syntax, the runtime model is directly assigned to the port with a
dashed line as shown on the right in Figure 5.30. Because components and corresponding
ports define the availability of a runtime model, the concrete access to the information is
modeled via model operations performed by a runnable. Thereby, Deurema uses exactly
the same way of specifying the retrieved amount of data via model queries as explained for
activities in feedback loops.

Additionally, the model operation type, e. g., read or write, performed by the runnable on a
given port of the component, defines the type of the corresponding port. A modifying model
operation, e. g., write or annotate, is related to a provision of information, which leads to a
provided port modeled as ball in concrete syntax. In contrast, the reading of data without
manipulation is modeled as socket (requested) port. As for feedback loop module templates,
the model operation itself is represented as dashed arrow, which is labeled with the type and
following the data flow from the runnables to the corresponding port or vice versa.

In the example, the lane runnable reads the context model RoadSituation, whereas the brake
runnable annotates information to the BehaviorMode system runtime model. There is no
assumption about the execution order of the read and modifying model operation, unless the
corresponding runnables are assigned to a task. Furthermore, once a runtime model is read
by a runnable, the knowledge is locally available in the context of the component. Thus, a

– 110 –

5.3. Deurema Module Templates

Metamodel Concrete Syntax - Template

<<ApplicationModuleTemplate>>

AutonomousDriving

Runnable

Port

ModelOperation

RuntimeModel
View

0..*

modelOperations

1

view

1

modelOperations
0..*

view

Component

0..*runnables

0..*ports

ModelOperation
Query 1..*

queries

<<SWC>>

Driving

<<Actuator>>

WheelController

lane

brake

<<ContextModel>>

RoadSituation

<<SystemModel>>

BehaviorMode

r

a

r
<<Variable>>
wheelControl

Figure 5.30: Deurema ACD runtime models

component aggregates a set of functionalities in form of runnables, defines the ports for the
possible exchange of information, and maintains the availability of read information for all
runnables within the boundaries of the component.

Conceptually, there are three combinations that arise using different model operations in
two different components, which share one runtime model over one port. Figure 5.31 shows
on the left all combinations together with the overall data flow between the components. For
all three combinations, two software components C1 with the runnables R1, R2 and C2 with
R3, R4 are shown. For simplicity, the runtime model for each port is only shown for the third
combination, which is an architectural system model, but is assumed for all combinations. For
case (1), the decisive model operations for the component C1 is the writing of data by runnable
R2, which turns the port into a provided one. The runnable R3 in the second component
performs a read operation on the runtime model, which indicates a requested port. Therefore,
there is a data flow from component C1 to C2 in the first example.

The difference to the (2) case is the missing writing operation of R2, which is now a reading
of the runtime model. Thus the beforehand provided port turns into a data requesting port.
This example shows the difference to traditional component port interfaces, where always one
component offers data, which can be consumed by other components. In Deurema, there is
no dedicated interface description and the runtime model is directly connected to the port.
Because the runtime model views are maintained be the parent template, read-only access on
available local knowledge base can be described in Deurema. Therefore, the data flow for the
second case is from the runtime model to the components C1 and C2.

In contrast, the third combination (3) describes a situation, where both components provide
data indicated by the write model operation of R2 and R3. Consequently, the overall data
flow is from both components to the linked runtime model.

In summary, the Deurema application component port concept is not limited to pairs of
data provider and requester. The model operations performed by the runnables define the
port type. Furthermore, the port interface is equal to the linked runtime model. The amount
of data, which is read and written, is defined by the model queries that belong to each model
operation as shown in the metamodel in Figure 5.30.

– 111 –

5. Deurema Modeling Language

<<SWC>>

C1

<<SWC>>

C2

R1

R2

R3

w
r

@(1a)
globalVar C1_Architecture;
globalVar C2_Architecture;
void T1()
{
 R1(in Architecture); //-> refresh C1_Architecture global variable
 R2(C1_Architecture, out Architecture);
 R3(in Architecture); //-> refresh C2_Architecture global variable
 R4(C2_Architecture);
}

r

Data Flow Between Ports

<<SWC>>

C1

<<SWC>>

C2

R1

R2

r
r

<<SWC>>

C1

<<SWC>>

C2

R1

R2 w

r

r

w

(1)

(2)

(3)

T1

R1

R2

R3

R4

(a)

T1

R1

R3

T2

R2

R4

(b)

(c)

R4

R3

R4

R3

R4

<<SystemModel>>

Architecture

T1

R2

R1

T2

R3

R4

@(1b)
void T1()
{
 localVar C1_Architecture;
 R2(C1_Architecture, out Architecture);
 R1(in Architecture);
}

void T2()
{
 localVar C2_Architecture;
 R3(in Architecture);
 R4(C2_Architecture);
}

@(1c)
globalVar C1_Architecture;
globalVar C2_Architecture;
void T1()
{
 R1(in Architecture);
 R3(in Architecture);
}

void T2()
{
 R2(C1_Architecture, out Architecture);
 R4(C2_Architecture);
}

Task Assignment Implementation

data flow

data flow

data flow

Figure 5.31: Deurema ACD port and task combinations

Due to the locality principle of read runtime model data within one component, different
possibilities of realizing the access to the runtime models must be considered by assigning
runnables to tasks. Figure 5.31 depicts in the middle column three different task assignments
for the runnables in C1 and C2 on the left. Variant (a) defines a single task T1, where all
runnables from R1 to R4 are subsequently assigned. The second alternative (b) defines two
different tasks, where each task contains only runnables from the same component. Finally,
the last configuration (c) defines two tasks, where the runnables from the two components are
mixed.

With respect to the execution semantic of different runnable assignments, the pseudocode
in the right column in Figure 5.31 shows a possible implementation for each combination
of the port combination (1) with the three variants (a), (b), and (c). The key aspect of
the pseudocode is that the different task assignment and the order of the runnables lead to
completely different behavior concerning the executed functionality as well as visibility of
runtime model data. On the one hand, Deurema restricts the available knowledge to the
explicit modeled access via ports by the specified model operations. On the other hand,
knowledge is visible for all runnables in the boundaries of the same component, if it is retrieved
once. Thus, the pseudocode in the figure uses global and local variables as well as in and out
keywords in parameters to visualize the visibility of data and their access. Therefore, variables
are internally used by Deurema to capture the last retrieved snapshot of the accessed runtime
model. The in and out keywords represent a direct access to the runtime model over a port.
Furthermore, in the pseudocode, tasks are implemented as methods, runnables are depicted
as functions, the parameter defines the available knowledge, and the execution order of the
function within the parent method is equal to the order of runnables in the task assignment.

– 112 –

5.3. Deurema Module Templates

Consequently, the realization of variant (1a) in the upper right in Figure 5.31 shows one
method T1(). This method contains four functions according to the runnable assignment of the
task. As shown on the left, the runnable R1 reads the architecture model, which is mapped to
an incoming parameter of the corresponding function. Afterwards, the architecture runtime
model information is available for all runnables in the component C1. Thus, the global variable
C1 Architecture, representing the content of all read data from the Architecture runtime model
performed by runnables within component C1, is updated after the runnable R1 performs a
read model operation. Furthermore, R2 is executed after R1 as defined by the task mapping.
The runnable R2 gets the updated architectural model information as parameter, which can be
further used by the internal runnable behavior. The realization for the runnables R3 and R4

is straight forward with the same line of argument as above. For this variant, the pseudocode
uses global variables to cache the retrieved knowledge from the architectural model. This is
necessary, because runnables from different components are mapped to one and the same task.
Furthermore, each variable restricts the access to the available knowledge according to the
modeled containment of runnables in components.

The variant (1b) uses two tasks for the runnable assignment, whereas each task executes
only runnables from one component. In this special case, the access to knowledge can be
differently realized by using local variables in the corresponding methods. Therefore, there
are two methods for the two tasks on the right in Figure 5.31. The variables can be restricted
to the context of the method, because all runnables in the method (task) are from the same
component. The realization of the function parameter for each runnable follows the same
principle as explained above. One special characteristic of this realization has to be noted.
The runnable R2 accesses the local variable before the runnable R1 updates the information
afterwards. The order is defined in the task mapping and therefore a correct realization. As a
consequence, R2 always reads the content of the variable from the last execution of the task.
Therefore, the data is at least as old as one period of the task and the local variable, which
contains the runtime model information, is updated by executing R1 afterwards.

The last variant (1c) groups the runnables by their access to different tasks ignoring their
belonging to components. Therefore, the access is realized by global variables as already
explained for variant (1a). The difference is that the execution order of the two tasks dictates
the age of the data. The execution order depends on task properties as for example the period
and priority as well as on the used scheduling algorithm.

In summary, the modeling of different components with runnables and their assignment to
tasks dictates the realization of possible execution of the runnables. The Deurema interpreter
ensures the correct access to runtime information as exemplarily visualized by the pseudocode
in Figure 5.31. Furthermore, the causal order of updating and reading data is defined by the
order of the assigned runnables respectively by the execution order of tasks. Additionally,
because runnables can be executed in different tasks, race conditions and data inconsistencies
are also handled by the Deurema execution environment. Tasks with the same priority can
be differently scheduled during a simulation, which leads to different adaptation effects of the
modeled behavior. Therefore, Deurema supports different simulation variants concerning the
scheduling and timing behavior of tasks as well as runnables. Because runnables are considered
as behavior models, they can be handled in the same way as feedback loop activities during a
simulation.

Application Component Template Example
After explaining the concepts of Deurema ACD, Figure 5.32 shows an example of an application
module template realizing an autonomous driving functionality within a smart car as motivated

– 113 –

5. Deurema Modeling Language

<<Sensor>>

Distance
w

<<ApplicationModuleTemplate>>

AutonomousDriving

<<MonitoringModel>>

Sensing

infrared

laserScan

<<SWC>>

Driving

r

w

<<Actuator>>

WheelController

lane

brake

<<ContextModel>>

RoadSituation
<<SystemModel>>

BehaviorMode
<<ExecutionModel>>

Effecting

r
wheel

Control
r

a
r

r

SensorTask {2,10s}
 infrared

 laserScan

SystemTask {1,10s}
 lane
 brake

 wheelControl

@priority 2
@period 10000 //ms
void SensorTask()
{
 infrared(in Sensing, out RoadSituation);
 laserScan(in Sensing, out RoadSituation);
}

@priority 1
@period 10000 //ms
void SystemTask()
{
 lane(in RoadSituation);
 brake(Driving_RoadSituation, out BehaviorMode);
 wheelControl(in BehaviorMode, in Effecting);
}

Component Example with Runtime Models

Task Assignment

Implementation

Figure 5.32: ACD example

at the beginning of this section. First, there are three components depicted. A sensor
component named Distance contains two runnables that realize a distance measurement using
an infrared and laser scanner respectively. Therefore, both runnables read the monitoring
model Sensing that contains information about how to access the physical sensors of the smart
car. The measured information about the detected distances and eventually found obstacles
such as other cars is written to the RoadSituation context model over the corresponding port.
The software component Driving contains two runnables, where the lane runnable reads the
current road situation and the brake runnables considers if an emergency brake is necessary.
The desired behavior is annotated to a system runtime model named BehaviorMode. The
actuator component, which has control over the wheels of the smart car, reads the advised
behavior together with an execution model that has information about how to access the
physical brakes of the car.

Modeling the architecture of an application module is the first step. Second, all modeled
runnables in the architecture are assigned to tasks defining the execution order. Thereby, one
sensor task contains the two runnables from the Distance component and has a priority of
two with a period of ten seconds. The other task contains the remaining runnables, whereas
the software component runnables are executed before the actuator runnable. Due to the
higher priority, the SensorTask is always executed before the SystemTask. Finally, one possible

– 114 –

5.3. Deurema Module Templates

realization of the task mapping is shown in form of pseudocode at the bottom of Figure 5.32
that follows the same principles as discussed before.

5.3.5. Behavior Module Template
Behavior module templates are designed to describe the adaptation system behavior in form
of graph transformation rules by modeling trigger-action conditions. As motivated at the
beginning of this chapter, this allows an integration of various model types such as automata,
architectural models, or behavioral diagrams from different domains by considering all of these
model types as graph structures. Furthermore, Deurema already considers the knowledge
representation in form of runtime models as graphs. The abstract graph representation enables
the application of the powerful concept of graph transformation rules, which is further suitable
for analysis and verification. Additionally, graph transformation rules have a nonambiguous
semantic that defines the manipulation of the underlying model. The use of single graph
transformation rules for specifying the white box behavior of an activity in feedback loops
or a model operation query is already discussed in Section 5.3.2. However, behavior module
templates introduce the use of graph transformation rules as first class concept, whereas the
rules interact with the available runtime models to perform the adaptation of the system.

Figure 5.33 sketches the use of two trigger-action rules, which investigate an architecture
system model for traffic jam detection (R1) and the start of an intelligent traffic system (R2).
In general, rules within a behavior module template supervise the available local knowledge
according to their trigger condition. If the situation (trigger) is found in the runtime models,
the specified action of the rule is performed. Rules are considered as independent. The
execution of rule actions over time defines the behavior of the corresponding module template.

<<
La

ye
r>

>

G
o

al TrafficMonitor
(Analysis Logic)

<<SystemTemplate>>

SmartCity

<<BehaviorModule>>

tm:TrafficMonitor

template

instance

<<BehaviorModuleTemplate>>

TrafficMonitor

<<SystemModel>>

Architecture
w

r
Traffic Jam
Detection

(R1)

Start Intelligent
Traffic System

(R2)

a

r

Figure 5.33: Smart city running example: Deurema behavior module template

As for feedback loop and application module templates, behavior module templates must
be instantiated and placed on a layer in the system template. Due to the declarative character
of trigger-action rules, they are usually used to supervise system requirements as goals or

– 115 –

5. Deurema Modeling Language

constraints. Furthermore, rules can be used for analyzing the underlying knowledge base. In
this case, the action of a rule can be used to inform the developer (at development time) or
the system (at runtime) about a possible violation of requirements or found system situation.

The Deurema metamodel defines that behavior module templates contain an arbitrary
number of graph transformation rules as depicted on the left in Figure 5.34. Thereby, the
concrete graph transformation rule is defined by the rule type, which can have an arbitrary
number of rule instances. As for activities, the type-instance separation introduces a clear
type level that defines the available functionality (graph transformation rules) once, which
can be reused in and across behavior module templates. Furthermore, Deurema supports
the modeling of graph patterns over arbitrary domain models, whereas the concepts of the
domain models are defined by a metamodel.

Rule types are considered as behavior models and thus, can be executed by the Deurema
interpreter. Consequently, each rule execution follows the black-gray-white box paradigm
as explained for activities in Section 5.3.2. Thus, the LHS of the graph transformation rule
type defines the trigger condition and the RHS corresponds to the action, whereas both
attributes are define in the BehaviorModel class in the Deurema metamodel. A behavior model
can be determined as white box, if the trigger condition and action are modeled in Deurema.
Transferred to a graph transformation rule, the LHS and RHS are explicitly specified. A
difference to feedback loops is that the causal order is not explicitly defined between rules
and thus, rules are considered as independent to other rules within the template definition.
Instead of a control flow concept, rule instances refer to a set of additional properties, which
further restrict the overall applicability of a rule. As shown in the metamodel in Figure 5.34,
rule properties are a priority, a local and global application count, a period, and a probability
together with the number of available trials of applying the rule. Therefore, the behavior in
form of a graph transformation rule is defined in the rule type, whereas the rule instance refines
that behavior by additional properties. The assignment of properties may differ between two
rule instances that refer to the same type, which allows on the one hand, a reuse of behavior
and on the other hand, a fine-grain adjustment of the adaptation logic to the current needs in
the behavior module template.

Beside rules, a behavior module template can contain variables as shown at the bottom in
the metamodel in Figure 5.34. A rule variable is a placeholder to exchange a single rule denoted
by the corresponding RuleVariable class in the metamodel. Furthermore, a RuleSetVariable allows
its replacement by multiple rules during system reconfiguration. As for feedback loop module
templates, variables must be assigned to concrete values during the instantiation of the
behavior module template.

Concrete Syntax

Behavior module templates are modeled in Behavior Rule Diagrams (BRD), where the concrete
syntax for a TrafficMonitor example is shown at the right in Figure 5.34. The BRD contains
the behavior module template that has a name and the stereotype «BehaviorModuleTemplate».
In the example, the template specifies a TrafficMonitor behavior module. Furthermore, rules
are modeled as rectangular notes that emphasized the declarative character of the graph
transformation pattern. Rule properties, which are discussed below, are specified in curly
brackets below the rule. Finally, variables contain an additional ellipse symbol in the upper
left corner of the note denoting the placeholder characteristic, where the rule set variable has
an additional double border.

– 116 –

5.3. Deurema Module Templates

1

instances

0..*

type
0..*

rules

Metamodel

<<abstract>>

ModuleTemplate

BehaviorModule
Template

RuleType
<<abstract>>

VariableType

RuleVariable

Concrete Syntax - Template

<<BehaviorModuleTemplate>>

TrafficMonitor

RuleSetVariable
<<abstract>>

DeuremaType

<<abstract>>

DeuremaModel

<<BehaviorModule>>

tm1:TrafficMonitor

Concrete Syntax - Model

<<BehaviorModule>>

tm2:TrafficMonitor

{<properties>}

R1
RuleSet

Var

Rule
Var

trigger : String
action : String
executionTime : int
urgent : boolean
committed : boolean

<<abstract>>

BehaviorModel

priority : int
localApplication : int
globalApplication : int
period : int
probability : int
trial : int

Rule

Figure 5.34: Deurema Behavior Rule Diagram (BRD)

Module instances of behavior module templates are modeled as rectangles with the stereotype
«BehaviorModule», where the naming scheme follows the object diagram notation. In the example
in Figure 5.34, there are two behavior modules tm1 and tm2 that refer to the same TrafficMonitor
template.

Behavior Rule Properties
Graph transformation rules are a powerful concept of BRD that consist of a LHS and a RHS.
Because the LHS of the graph transformation pattern specifies the overall applicability of the
rules, the Deurema rule properties further restrict the application of a rule after a match is
found. All rule properties are defined in the Rule and BehaviorModel class in the metamodel of
Figure 5.34.

First, rules have a priority, whereas a higher prioritized rule is always executed before
a rule with a lower priority. Priorities allow a grouping of rules. The execution order is
nondeterministic between rules with the same priority. Furthermore, Deurema assumes no
specific scheduling policy (e. g., round robin), which guarantees a successive execution of rules.
Consequently, the same rule can be executed over and over again, although there are other
rules with the same priority, as long as a match for the LHS is found. However, the scheduling
of rules belongs to their execution. The Deurema interpreter enables the support of different
strategies, which includes a scheduling policy that fits to the domain problem.

Second, the application count of a rule can be locally and globally restricted by the
localApplication respectively globalApplication property. The maximum local application count
defines how often each rule can be executed within one execution of the parent behavior
module. Therefore, the local application count is reset if the corresponding behavior module
becomes inactive. In contrast, the global application count of a rule defines how often the
rule can be executed throughout the whole lifetime of the execution of the adaptive SoS.
Consequently, the global count is not reset during execution. Local application counts can be

– 117 –

5. Deurema Modeling Language

used to restrict the adaptation effects of rules to a desired amount of times that enables the
execution of other enabled rules within the module. Whereas, global application counts may
be useful for modeling one-shot or n-shot rules restringing adaptation effects over the whole
system. Thus, the application count of a rule restricts the occurrence of adaptation effects,
which can be fine-grained modeled for each rule.

Third, according to the need of modeling timing properties, each rule has a period that
specifies the minimal amount of time a rule has to wait until its next possible execution.
Furthermore, rules can have an execution time property that defines the amount of time
a rule needs to perform its action as defined by the RHS. Additionally, inspired by timed
automata [23, 34], Deurema supports urgent and committed rules. Urgent rules are higher
prioritized as non-urgent rules. With respect to timing, during the execution of urgent rules,
no time elapses in the system. Therefore, urgent rules have a zero execution time. The
definition for committed rules is even stricter as for urgent rules. During the enabling and
execution of a committed rule, no delay in the complete system is allowed. Thus, an execution
of a committed rule elapses no time in the system and between two enabled committed rules,
no other non-committed or urgent rule can be executed. Therefore, an interleaving with other
actions can only be happen in the system if those actions have the committed property, too.
Timing properties are important for the simulation of the adaptive SoS behavior, whereas
Deurema supports different strategies. The urgent and committed property can be useful in
early development stages neglecting realistic execution time, whereas a simulation gives insides
into the overall interaction between modules showing that designed adaptation logic performs
as expected. Of course, a zero execution time semantic is an abstraction from the real world,
which implies that real execution times should be considered later in the development. As
an effect, even if early simulations show that the overall adaptation logic corresponds to the
goals, timing effects may raise further interaction problems or timing deadlocks that have to
be resolved to guarantee proper execution.

The fourth and last property for rules is related to the probabilistic occurrence of system
effects. Therefore, rules can have different application probabilities that are modeled in the
probability and trial attributes of the Rule class. The former defines the likelihood between zero
and one hundred, whereas the latter indicates the total number of trials before the rule is
disabled. If the LHS for the rule is found, Deurema rolls a dice, which corresponds to the
modeled likelihood. If the dice denotes an activation, the rule is executed. Otherwise, the
trial count is increased and Deurema roles the dice again, until the maximum number of trials
is reached. The trial count is reset after the parent module becomes inactive and enabled
again. If an additional period is specified, the time between two consecutive trials is at least
the defined period. Probabilities can be used to model rare adaptation effects or to introduce
errors in the adaptive system. Especially for the latter case, application count limits can be
used to limit the overall number of introduced errors in the system.

Figure 5.35 shows examples for different property combinations3 of behavior rules. The rules
R1 and R2 show the same property configuration that is a priority of one, an unlimited number
of local and global applications (* multiplicity), a period of ten time units, a probability of
one hundred percent with an unlimited number of trials, and finally an execution time of one
time unit. All of these properties, except of the period, are the default configuration and can
be omitted. The period can be directly modeled under the clock symbol as done for the rule
R2. In the rule R3, the priority is increased to five and the maximal global applications are

3The timing properties executionTime, urgent, and committed are inherited from the BehaviorModel class.
All other properties are defined in the Rule class in the metamodel in Figure 5.34.

– 118 –

5.3. Deurema Module Templates

priority : int
localApplication : int
globalApplication : int
period : int
probability : int
trial : int
executionTime : int
urgent : boolean
committed : boolean

Rule Properties
<<BehaviorModuleTemplate>>

TrafficMonitor

{5; *; 2;
10; 100; *; 1}

{1; *; *;
10; 100; *; u}

{1; *; *;
10; 50; 2; 1}

{1; *; *;

 10; 100; *; 1}

R1 R3R2

10

R4 R5

Figure 5.35: Behavior rule property combinations

restricted to two. Therefore, R3 will be executed before R1 and R2 (if enabled by the LHS),
but at least two times during the lifetime of the system. The rule R4 shows the modeling
of a probabilistic rule, whereas in this example, the execution probability is reduced to fifty
percent by a maximum of two trials. The execution environment has to wait ten time units
between both trials, which is defined by the period property. If the rule R4 is the only rule in
the template and because of the given probability and trails, a simulation should statistically
execute R4 once for each execution of the parent TrafficMonitor module. The rule R5 is an
example for an urgent rule, whereas a committed rule is modeled with a c instead of the u.
Because of the definition of timing properties, there can be only one timing attribute modeled.
Therefore, modeling an execution time, urgent, or committed property excludes the others
from the specification.

In summary, the general application of a rule is defined by the LHS (the trigger), which
is specified in the corresponding rule type. Additionally, the execution semantic depends
on the modeled rule properties such as priority, application count, occurrence, or period.
The adaptation effect (the rule action) is modeled by the RHS of the corresponding graph
transformation rule. Furthermore, modeled timing properties are important for the simulation
of the overall adaptive SoS behavior and must be adjusted according to the preferred simulation
strategy (e. g., zero execution time or realistic timing).

Runtime Models in Behavior Module Templates
Due to the behavior module template is one of the four supported template types in Deurema,
it follows the same concepts of integrating runtime models as explained for feedback loops.
Behavior rules can access and manipulate runtime models, where the corresponding excerpt
of the Deurema metamodel is depicted on the left in Figure 5.36. Each rule defines model
operations that link to a corresponding runtime model view, which is contained in the same
template definition as the rule itself. Thus, the runtime model views specify the local available
amount of information of the behavior module template. Furthermore, model operations are
specified by a type and knowledge queries. As in feedback loop module templates, each model
query follows the black-gray-white box concept. Queries are applied on the runtime model to
retrieve the desired information, which is used by the behavior rule afterwards. Therefore,
the modeled trigger condition of the rule is performed on the retrieved data subset, which is
defined by the model operation queries.

On the right in Figure 5.36, the concrete syntax for runtime model access via model
operations is depicted. Runtime models are specified as rectangles and rules as notes as

– 119 –

5. Deurema Modeling Language

Metamodel Concrete Syntax - Template

<<BehaviorModuleTemplate>>

TrafficMonitor
Rule

ModelOperation

RuntimeModel
View

ModelOperation
Query

1..*
queries

1

model
Operations

0..*

view

<<SystemModel>>

Architecture

<<EvaluationModel>>

Goals

r

wr

0..*
model

Operations

R1

Read
Write
Annotate
Create
Destroy

<<enumeration>>

ModelOperation
Type

1
type

Figure 5.36: BRD rules and runtime models

already discussed before. Furthermore, model operations are modeled as dashed arrows labeled
with the type. The direction of the arrow follows the data flow from source to target. For
example, the read operation on top of the rule R1 is performed from the runtime model named
Goals (source) to the rule R1 (target).

As special characteristic, from all white box behavior models and in particular for behavior
rules, the model operation type can be automatically derived by Deurema. Therefore, the
characteristics of the modeled graph transformation imply the corresponding operation type as
follows. The combined notation for a graph transformation rule introduced in the preliminaries
in Section 2.2 is used.

All five supported runtime model operation types, which can be used by a behavior rule, are
enumerated in Figure 5.37. (1) The characteristic for a read model operation is that no side
effects are recognized on the corresponding runtime model. This characteristic transferred to
a graph transformation rule implies that the LHS and RHS are equal. Thus, the retrieved
knowledge is used for searching the given pattern and finding a match for the LHS, whereas the
RHS defines no modifications on the match. Because reading a runtime model corresponds to
the existence of the LHS of the rule, it is included to all other runtime model operations except
for create. Note, model operations are further defined by model queries, which specify the
amount of data that is retrieved from and written to a runtime model view as discussed before
(cf. Section 5.3.2). Model queries can be defined as declarative graph patterns without any
side effects in Deurema. By applying the model queries, the retrieved models are aggregated
and afterwards, the behavior rule is applied on the retrieved knowledge base.

(2) The most general model operation is a write modification. Writing a runtime model
includes a read, an optional create and a delete of runtime model elements. The essential
characteristic for deriving the model operation from the graph transformation rule is a missing
element in the RHS of the pattern, which is equivalent to a deletion of an element. Beside
a deleted element, the modification of an attribute is also considered as writing operation,

– 120 –

5.3. Deurema Module Templates

<<Purpose>>

Model d

(5) Rule--
--

--

<<Rule>>

Delete

o1:Type

o2:Type

o3:Type

--
--

<<Purpose>>

Model c

(4) Rule

++

++ ++

<<Rule>>

Create

o1:Type

o2:Type

o3:Type

++

++

<<Rule>>

Read

o1:Type

o2:Type

o3:Type <<Purpose>>

Model
r

(1) Rule
<<Purpose>>

Model w

(2) Rule

++

<<Rule>>

Write

o1:Type

o2:Type

o3:Type

--

o4:Type

++
--

<<Purpose>>

Model a

(3) Rule

++

<<Rule>>

Annotate

o1:Type

o2:Type

o3:Type

o4:Type

++

Figure 5.37: Derived runtime model operation types

because the old value of the attribute is replaced by a new one. Additional created elements
in the RHS are optional for this model operation.

(3) Annotating a runtime model denotes the appending of information without modifying
the existing knowledge in the system. Therefore, the RHS of the graph transformation rule
is only allowed to have new elements. The removal of existing elements in the pattern is
forbidden, because this would refer to a write model operation.

(4) The create model operation type is a special case for annotating it, were the LHS of the
corresponding graph pattern is empty. Thus, all elements are created by applying the RHS of
the rule.

(5) The delete model operation type is the contrary model operation to a create. Therefore,
the RHS of the graph transformation rule must be empty, whereas the LHS denotes the
amount of deleted information. Note, the delete model operation type denotes that all model
elements, which are retrieved by the corresponding model queries, are deleted. This does not
mean that the complete runtime model view is deleted, because this depends on the specific
read queries that are applied before to retrieve the desired information.

In summary, the module operation type can be automatically derived from the corresponding
rule pattern. Additionally, violations of the modeled pattern in the graph transformation
rule and the specified model operation type in Deurema can be recognized and reported to
the developer. The search for a match is done on the data that is retrieved by specified
model queries. The existing of a LHS in the graph transformation rule corresponds to a
read operation, whereas the difference in the RHS determines the type of the corresponding
modifying model operation. Because for the lack of information in black box and gray box
behavior models (rules), the model operation type cannot be derived during development.
Deurema may monitor the modeled adaptation behavior, its access characteristics as well as
the adaptation effect during simulation and suggest an appropriate runtime model type or
report violations. However, the monitored characteristics and the corresponding suggestion
by Deurema may differ from the real implementation for black box and gray box behavior.

Behavior Module Template Example
For closing the behavior module template concepts, Figure 5.38 refines the running example
from the beginning by depicting two behavior rules R1 and R2 in the TrafficMonitor behavior
module template. At the top, the figure shows the specification of the two rules inside the
behavior module template. On the bottom, the figure visualizes the derived model operation
types for the two rules. For this example, the expected execution order of the adaptation
effects is first R1 directly followed by R2.

– 121 –

5. Deurema Modeling Language

<<Rule>>

Traffic Jam Detection (R1)

sc:SmartCity

tj1:TrafficJam

++its:ActivateITS
++

sc:SmartCity --its:ActivateITS
--

++system:ITS

++

<<Rule>>

Start Intelligent Traffic System (R2)

Behavior Module Template Example

Derived Model Operation

tj2:TrafficJam tj3:TrafficJam

<<BehaviorModuleTemplate>>

TrafficMonitor

<<SystemModel>>

Architecture
w

r R2<<SystemModel>>

Architecture
a

r R1

Figure 5.38: BRD rule example

The rule R1 has the typical structure of an analysis rule, which searches for specific system
situations and annotates it for further treatment. Therefore, the rule searches for a situation in
the smart city, where at least three traffic jams occur. Thus, the LHS of R1 defines a pattern of
four elements, where a SmartCity object has a reference to three TrafficJam objects. Furthermore,
R1 denotes the found situation with the need for an adaptation, which is encoded in the
its:ActivateITS object. In the example, the adaptation need is the activation of an intelligent
traffic system for handling the traffic jams, as for example described in [71]. The types of
the references in the pattern can be nonambiguous determined and thus, are omitted in this
example. Of course, the type of the reference between objects must be specified in a graph
transformation rule pattern modeled in Deurema as introduced in Section 2.2.5.

However, in the case of a found traffic situation described by R1, the rule R2 becomes enabled.
The adaptation step in this example is the removal of the adaptation need annotation (the
its:ActivateITS object) and the creation of a corresponding intelligent traffic system (system:ITS
object). The effect on the physical system after applying both rules is the starting of a
software system that handles the traffic jam by an intelligent routing of the underlying traffic
in the smart city, e. g., by changing the maximum speed limits on highways to adjust the
overall traffic flow.

This example shows how the application of graph transformation rules and the corresponding
manipulation of the runtime models realize the adaptation of a Deurema behavior module.
In general, the declarative nature of graph patterns facilitates the specification of special
situations as trigger condition in the adaptive SoS together with an appropriate reaction. That

– 122 –

5.4. Deurema Adaptive System Architecture

corresponds, but is not limited, to the specification of watchdogs and monitoring modules
that observe the adaptive SoS as well as report unwanted or special situations, which further
support the verification of assumptions about the overall modeled SoS behavior.

5.4. Deurema Adaptive System Architecture

After discussing the Deurema core concepts, the use of runtime models and the different module
templates, Deurema specifies the layered architecture of the system in Layer Diagrams (LD).
The LD contains module and system instances, whereas the internals of a module or system
are defined by the corresponding module template respectively system template. Beside the
deployed instances, a LD comprises trigger dependencies between modules that can be used
for inter-loop coordination of the adaptive behavior.

Figure 5.39 shows a sketch of the smart city system template, which contains different
module and system instances. As discussed in the former sections, there is a module template
description for each module instance following a specific modeling approach such as feedback
loop or component-based modeling. This section refines the Deurema concepts related to
the inter-loop coordination between modules by means of module trigger dependencies as
highlighted in gray in the figure.

<<
La

ye
r>

>

G
o

a
l

<<
La

ye
r>

>

A
d

a
p

ti
v

e
<<

La
ye

r>
>

S
o

ft
w

a
re

Platoon
(Collaboration Logic)

<<SystemTemplate>>

SmartCity

Sensors

Effectors

Sensors

Effectors

Sensors

Effectors

Sensors
Effectors

<<System>>

audi:SmartCar

<<BehaviorModule>>

tm:TrafficMonitor

<<FeedbackLoopModule>>

sc1:Self-Configuring

<<ApplicationModule>>

ad:AutonomousDriving

<<FeedbackLoopModule>>

eon:EnergyOptimization

<<SoftwareModule>>

h1:SmartHome

<<FeedbackLoopModule>>

sc2:Self-Configuring

<<BehaviorModule>>

em:EnergyMonitor

Figure 5.39: Smart city running example: Deurema module trigger dependencies

Due to the adaptive behavior is specified in module templates, modules, which are template
instances, are the basic runtime entities in Deurema. In general, modules are considered
as independent from other modules, with the exception of two cases. First, a module can
explicitly trigger another module that defines a causal inter-loop dependency between both,
where the triggering module emits an event to the triggered module. Second, modules can
synchronize their behavior or exchange knowledge via collaborations, which are more complex
than the use of triggers and can comprise several interactions between modules.

The excerpt of the Deurema metamodel related to the module trigger concept is depicted
in Figure 5.40. Deurema distinguishes between two trigger types that are TimedTrigger and
EventTrigger. A module can have maximal one timed trigger, but may emit an arbitrary number
of different event triggers. Time triggers have a period that defines the minimum waiting
time between two consecutively runs of a module, which refers to that time trigger. Event

– 123 –

5. Deurema Modeling Language

1

triggeredBy0..*

receiver

instances
1

0..*

type

Metamodel

<<abstract>>

ModuleTemplate
1 instances

0..*template

triggerCondition:String

Module

<<abstract>>

TriggerType

Trigger

EventTrigger

period : int

TimedTrigger

0..1

m
od

u
le

s 0..*

timedTrigger

0..*
emitted
Trigger

Concrete Syntax

<<abstract>>

VariableType
TimerVariable EventVariable

Concrete Syntax - Example

<period>

TimedTrigger

<name>:<event>;<start>
Trigger

<<Variable>>
EventVariable

<<Variable>>

TimerVariable

<<SoftwareModule>>

frontRight:Wheel

<<FeedbackLoopModule>>

asrFront:ASR

<<SoftwareModule>>

frontLeft:Wheel

10ms 10ms

ws1:Wheelspin;
Monitor

<<SoftwareModule>>

motor:Motor

100ms

Figure 5.40: Deurema module trigger

triggers are contained by the emitting module, refer to a type that enables the specification of
different kinds of event triggers, and have exactly one receiving module.

For execution purpose, each module must have at least one timed or event trigger in
Deurema. Furthermore, a module is enabled for execution, if for condition (1) the elapsed
time between the last run and the current time is greater or equal the period of the referenced
time trigger. Condition (2) defines that at least one incoming event trigger was fired at
least once. Consequently, there are the following implications of this execution semantic
definition. First, if no time trigger is specified, the condition (1) is fulfilled. Second, if no event
trigger is specified, the condition (2) is fulfilled. Third, if an event is thrown multiple times
between two consecutive runs of a module, all incoming events are collected and processed
by the next activation of the module. Fourth, the execution order of two enabled modules
is nondeterministic. This is for example possible, if two modules reference the same time
trigger. Fifth, time and event trigger can be combined with the effect that condition (1) and
(2) must be fulfilled. Sixth and finally, for more than one incoming event trigger, the trigger
condition, specified in the Module class in the metamodel in Figure 5.40, is evaluated. This
trigger condition is a logic expression over the incoming event trigger that must be evaluated
to true, additionally to the condition (2).

Instead of the concrete modeling of time and event trigger, Deurema supports the specifica-
tion of trigger variables for both types respectively. Thereby, timer variables can be replaced
by different timed trigger types that allow the modeling of a range of possible periods for one
module. Furthermore, event variables allow the configuration of several event trigger types
with the effect that a triggered module can be activated by different events. However, similar
to the variable concept in module templates, the modeled configuration space is resolved
during the deployment of the system template, where each variable must be assigned to a
concrete value from the modeled configuration space. Therefore, timer and event variables do
not occur at runtime in the concrete instance situation of the system.

– 124 –

5.4. Deurema Adaptive System Architecture

Concrete Syntax
The concrete syntax of triggers is depicted on the right in Figure 5.40. An event trigger is
modeled as dashed arrow that follows the naming scheme <name>:<event>;<start>. The
<name> refers to the name of the event trigger instance, whereas the <event> part refers to
the event trigger type. The <start> parameter is optional and refers to the initial node of
a triggered feedback loop module. The parameter can be omitted, if only one initial node
exists. Obviously, this parameter is not necessary for triggering software, application and
behavior modules, because all three module templates do not have an initial node concept (cf.
corresponding module template sections above).

A timed trigger is denoted with a clock symbol, where the period is annotated below. Both,
timed and event trigger variables can be recognized by the stereotype «Variable».

An example is depicted at the bottom on the right in Figure 5.40, where the two front
wheels of the smart car trigger a traction control feedback loop (ASR). Therefore, the two
software modules of type Wheel emit a Wheelspin event to the feedback loop module of type
ASR named asrFront. Both event triggers reference the Monitor initial node of the feedback loop
module as starting point for its local adaptation behavior. Because there are more than one
incoming event trigger for the ASR feedback loop module, the beforehand mentioned trigger
condition is evaluated every time a Wheelspin event is emitted. Examples for such a trigger
condition can be: (ws1 and ws2) as well as (ws1 or ws2), whereas the latter is more useful in
this example. Thus, every time one of the event triggers is emitted by one of the wheels, the
traction control feedback loop is triggered and ready for its execution.

Furthermore, because Deurema allows the usage of time trigger without any event trigger,
modules can be annotated by a clock symbol that specifies the period of a corresponding time
trigger. In the example, both wheels have a timing trigger with a period of ten milliseconds.
Additionally, the Motor software module has a timing trigger with a period of one hundred
milliseconds. Consequently, the traction control feedback loop is enabled, if one update events
from one of the wheels frontRight or frontLeft occur, which might happen not earlier as every
ten milliseconds. The motor software module can be executed independently from all other
modules, but maximally with a frequency of every one hundred milliseconds.

Adaptive Layered Architecture Example
An example for an adaptive layered system architecture of a smart city and smart car is
shown in Figure 5.41. Accordingly, the example comprises two system templates, where the
smart car is modeled on the top and the smart city system template on the bottom of the
figure. The example is used to demonstrate the discussed Deurema triggering concept above
and to visualize the interplay of different module types and system instances on multiple
architectural levels.

The smart car has three layers, where on the lowest layer four software modules are deployed
that encapsulate the domain logic for controlling the wheels of the car. Each wheel software
module has a period of ten milliseconds, runs independently from the other wheel modules
and triggers via a Wheelspin event a corresponding traction control feedback loop (ASR) at a
higher layer. There are two traction control feedback loops, whereas each loop is responsible
for a wheel pair (front and rear). The adaptation logic of the ASR module is defined by a
feedback loop template and thus, the internal specification comprises different adaptation
activities that operate on runtime models as discussed in Section 5.3.2. Furthermore, the
traction control feedback loop has no timing trigger and an event trigger condition in the form
(ws1 or ws2). Thus, the feedback loop is enabled, if the first Wheelspin event from one of the
wheels occurs. Each of the both traction control feedback loops on layer L-1 are supervised

– 125 –

5. Deurema Modeling Language

<<FeedbackLoopModule>>

eon:EnergyOptimization

60s

<<
La

ye
r>

>

L-
2

<<
La

ye
r>

>

L-
1

<<SystemTemplate>>

SmartCar

<<
La

ye
r>

>

L-
0

<<FeedbackLoopModule>>

asrFront:ASR
<<FeedbackLoopModule>>

asrRear:ASR

<<FeedbackLoopModule>>

asr:ASR

ot1:OptimizeTraction

<<System>>

audi:SmartCar

<<FeedbackLoopModule>>

sc1:Self-Configuring

reflect affect

<<BehaviorModule>>

esp:ESP

200ms

<<ApplicationModule>>

alc:ALC

1s

<<SoftwareModule>>

rearLeft:Wheel

10ms

<<SoftwareModule>>

rearRight:Wheel

10ms

<<SoftwareModule>>

frontLeft:Wheel

10ms

<<SoftwareModule>>

frontRight:Wheel

10ms

<<
La

ye
r>

>

L-
2

<<
La

ye
r>

>

L-
1

<<
La

ye
r>

>

L-
0

<<System>>

bmw:SmartCar

<<FeedbackLoopModule>>

sc2:Self-Configuring

affect

reflect affect

<<SystemTemplate>>

SmartCity

<<BehaviorModule>>

em:EnergyMonitor

10m

<<SoftwareModule>>

h2:SmartHome

30s

<<SoftwareModule>>

h1:SmartHome

30s

<<BehaviorModule>>

tm:TrafficMonitor

5m

30s 30s

Figure 5.41: Deurema Layer Diagram (LD) example

by another traction control loop on layer L-2. Both, the asrFront and asrRear feedback loop
module emit an OptimizeTraction event to the supervising control loop on the highest layer.
Therefore, the traction of the smart car is finally optimized by the asr module instance in
layer L-2, which corresponds to a hierarchical control scheme.

Additionally to the traction control, an ESP and ALC module are deployed at the highest
layer of the smart car. The ESP module instance is a behavior module, which consists of
graph transformation rules as discussed in Section 5.3.5. It has a period of two hundred
milliseconds and runs independently from the traction control feedback loops. In contrast, the
adaptive light control module (ALC module instance) follows the component-based development
paradigm as discussed in Section 5.3.4. It has a timing trigger with a period of one second
and runs independently from the other modules in the smart car architecture. Thus, the
ESP and ALC module realize an additional adaptive behavior that does not interfere with

– 126 –

5.5. Deurema Collaboration

the hierarchical traction control of the smart car. In summary, the three architectural layers
together with the deployed modules define the smart car system template.

The smart car system template is deployed twice in the smart city system at the lowest
layer on the bottom in Figure 5.41. As shown, the smart city system in the example consists
of two smart car system instances named audi and bmw. The smart cars are placed on the
same layer as two additional smart homes, which are specified as software modules. The smart
homes trigger an energy optimization feedback loop one layer above via a Status event. On
the same layer L-1, two Self-Configuring feedback loop module instances supervise the each of
the smart car systems the layer below. Thus, the feedback loops watch the current traffic
situation and optimize the behavior of the smart cars accordingly. As an emergent effect,
the overall traffic flow of the smart city is optimized, which is monitored by a TrafficMonitor
module on the highest layer L-2. Beside the traffic situation, an energy monitor supervises the
overall energy prosumption in the smart city. Both monitors at the highest layer are behavior
modules and have a timing trigger with a period of ten respectively five minutes.

As depicted in the example, there is no trigger from the adaptive car systems to the
self-configuring feedback loops. In Deurema, systems in an adaptive SoS are considered as
independent and therefore are not allowed to trigger other systems or modules. For interactions
between systems, the Deurema collaboration or reflection concept can be used. Furthermore,
collaborations between modules and reflection of modules are also supported in Deurema. In
general, collaborations are a powerful concept for the explicit specification of system as well
as module interactions inside the adaptive SoS as introduced in the next section. Afterwards,
the Deurema reflection capabilities are discussed.

5.5. Deurema Collaboration

After the discussion of refining system behavior by means of modules and corresponding
template descriptions, this section focuses on the Deurema collaboration aspect as emphasized
in Figure 5.42. As a consequence from the definition of the terms related to collaborations
among systems in the preliminaries in Section 2.4, there are different needs for modeling
and analyzing collaborations. At first, collaborations in an adaptive SoS should be explicitly
defined. This comprises the ”management of individuals, their activities and resources” [160].
Thereby, this thesis focuses on systems as individuals, adaptation activities, and runtime
models as available resources. Furthermore, because ”correlation wants to happen” [147], it
imposes coordination and emergent behavior [160] in an adaptive SoS. Concerning the goals
in Chapter 1, this thesis aims at the systematic modeling of interactions among multiple
feedback loops with runtime models in adaptive SoS to achieve a coordinated self-adaptation.

As sketched in Figure 5.42, this section explains the Deurema collaboration concept by means
of the platoon running example. In the figure, there are two smart cars, which are supervised
by a self-configuring feedback loop each. The feedback loop decides about a behavioral mode
switch of the underlying smart car functionality changing between manual and autonomous
driving. Furthermore, an autonomous driving is only possible within a platoon. Thus, both
smart cars must collaborate with each other to realize a higher functionality. Beside the both
cars, there is another participant in the collaboration, who supervises the cars within the
platoon with respect to the overall traffic flow optimization of the smart city.

– 127 –

5. Deurema Modeling Language

<<
La

ye
r>

>

L-
1

<<
La

ye
r>

>

L-
0

Platoon
(Collaboration Logic)

<<System>>

audi:SmartCar

<<FeedbackLoopModule>>

sc1:Self-Configuring
<<FeedbackLoopModule>>

sc2:Self-Configuring

reflect affect reflect affect30s 30s

<<System>>

bmw:SmartCar

<<FeedbackLoopModule>>

to:TrafficOptimization

30s

<<SystemTemplate>>

SmartCity

Figure 5.42: Smart city running example: Deurema collaborations

The Deurema modeling language concepts for collaborations are introduced as follows:
Figure 5.43 gives an overview of the collaboration modeling dimensions that go along with
the structure of this section.

Collaboration Specification

Collaboration
Interfaces

Collaboration
Role Mapping

Structure
Specification

Choreography
Specification

Knowledge
Specification

Deployment
Specification

Figure 5.43: Deurema collaboration modeling dimensions

First, the collaboration structure defines, which collaboration capabilities are available in the
adaptive SoS. Furthermore, it defines the possible participants of the joint interaction. Second,
collaboration resources must be defined that are considered as available knowledge (runtime
models) in the SoS. Third, the collaboration choreography solves the need of specifying the
interactions, communication mechanisms and causal order of the joint cooperation. Therefore,
the choreography considers the beforehand defined participants in the collaboration structure
and available knowledge. Fourth, collaboration interfaces define the possible participation and
intention of collaborative system behavior targeting the analysis of coherence and congruence
of joint interactions. Fifth, the collaboration behavior is integrated into the local adaptive
behavior to avoid or to identify contention. Sixth and finally, specified collaborations are
deployed in the overall adaptive SoS that can be seen as application of the defined collaboration
capabilities to concrete instances within the running SoS.

Each of the six modeling dimensions partially depends on each other. For example, the
causal order of the communication between collaborating participants as modeled in the
choreography specification can only be defined after the possible participants are identified as
done in the structure specification. However, the collaboration modeling concepts must not
be applied in a sequential way. The discussion of using the Deurema modeling concepts in
different software development processes is not in the scope of this thesis. In the following,
each concept is introduced in detail by means of the proposed order in Figure 5.43.

– 128 –

5.5. Deurema Collaboration

5.5.1. Collaboration Structure

In Deurema, available collaboration types are modeled independently from the local adaptation
logic. The collaboration structure specification defines the collaboration types, the role types
that participate in the collaboration, and how many instances of each role may participate in
a collaboration instance. In the context of an adaptive SoS, a role is an abstract entity that
must be realized by respectively integrated into the local adaptation behavior, e. g., defined
by a feedback loop template. As a consequence, roles separate the collaboration behavior
from the local behavior defined by the module templates.

On the left, Figure 5.44 depicts the Deurema metamodel for the collaboration structure
specification. Deurema follows the same type instance paradigm for the collaboration structure
as explained for systems and modules in Section 5.1. Therefore, the CollaborationType class
defines the static structure of the collaboration on type level, whereas the Collaboration class
represents the possible collaboration instances at runtime. The same line of argument holds
for the RoleType and Role class in the metamodel. Furthermore, role types define a lower and
upper bound (multiplicity) for the maximal occurrence of a role instance for each collaboration
instance.

Collaboration
Type

lowerBound : int
upperBound : int

RoleType

1..*roles

1 instances
0..*type

Role

1..*roles

1 instances

0..*type

Metamodel Concrete Syntax - Type

<<Collaboration>>

CollabName

<<Role>>

RoleName

<<CollaborationStructure>>

StructureName

<<Collaboration>>

name: Type

<<Role>>

name:Type

Concrete Syntax - Instance

<<abstract>>

DeuremaType

<<abstract>>

DeuremaModel

<multiplicity>

Collaboration

Figure 5.44: Deurema collaboration structure

Concrete Syntax
The concrete syntax for collaborations and their roles is depicted on the right in Figure 5.44.
On type level, collaborations are modeled as named ellipses with the stereotype «Collaboration».
Role types are modeled as rectangles and labeled with the «Role» stereotype accordingly. The
multiplicity of a role is directly annotated at the edge to each role type. Collaboration and

– 129 –

5. Deurema Modeling Language

role instances follow the Deurema instance notation. Therefore, both refer to their type, have
an additional name and are labeled with the corresponding stereotype.

Collaboration Structure Example
Following the smart city example of this thesis, collaborations between adaptive vehicles are
thinkable. If for example the traffic density increases or the driver wants to switch from a
manual to an autonomous driving mode, the smart cars are able to communicate with each
other and build platoons. Figure 5.45 depicts the structure of a Platoon collaboration type
with its three roles Leader, Follower, and Observer. Deurema distinguishes between single roles
(1), multi-roles (1..*), optional roles (0..1), and optional multi-roles (0..*). The leader role is
an example for a single role, with the effect that each platoon collaboration must have exactly
one participant that performs this role. Furthermore, a platoon can have multiple, but at least
one, followers. Optional roles are not necessary to realize the collaboration but may support
it in most cases. The observer role in the platoon is optional, but has additional knowledge
and functionality to increase safety during the collaboration by optimizing the overall traffic
flow in the smart city. For example, the leader is responsible for calculating the driving
path and managing incoming or leaving platoon members. The observer collects additional
information about the platoon surroundings or communicates with traffic controlling entities
along the road to increase the available knowledge and support the leader by its planning
activities. Thus, the observer is not indispensable for the core functionality of a platoon but
may optimize the overall joint behavior. In contrast, an additional role in a collaboration
may increase the communication or computation effort, which cannot be realized by all
participating collaboration members and must be omitted in that case. If a mandatory role is
not available, the collaboration cannot be realized.

The runtime situation on the right in Figure 5.45 shows one platoon instance named p

with the required leader l1, an observer o, and three followers f1, f2, and f3. Because all
mandatory roles are instantiated and in the range of the defined multiplicities, the platoon
collaboration instance is valid. Beside the collaboration structure, the available knowledge
plays an important role, which is discussed in the following section.

Type Instance

<<Collaboration>>

Platoon

<<Role>>

Leader

<<Role>>

Follower

<<Role>>

Observer 0..1

1

1..*

<<Collaboration>>

p: Platoon

<<Role>>

l1:Leader

<<Role>>

f1:Follower

<<Role>>

o:Observer

<<Role>>

f3:Follower

<<CollaborationStructure>>

PlatoonStructure

<<Role>>

f2:Follower

Figure 5.45: Collaboration structure example

– 130 –

5.5. Deurema Collaboration

5.5.2. Collaboration Knowledge

Defining the structure of a collaboration is a first step to identify all possible participants
that interact with, and therefore influence, each other. Another important aspect is the
sharing of knowledge to get the required information from other participants that is used to
perform as expected within the role behavior of the corresponding collaboration as well as to
improve the available information for the local adaptation behavior. However, exchanging
knowledge can be broken down to the exchange of runtime models, which are modeled as first
class entities in the collaboration knowledge specification. Thus, the knowledge specification
explicitly determines the runtime model types and the amount of data that is involved in the
collaboration defined by the local view. Deurema distinguishes three cases of runtime model
treatment in a collaboration (cf. example in Figure 5.46). First, runtime models declared
as incoming must be provided before the collaboration interaction starts. Thus, incoming
runtime model information becomes visible in the local context of the collaboration. Because
collaborating activities are integrated into local adaptation behavior, the local behavior must
provide those runtime models, which are annotated as incoming, to the collaboration. Second,
internal models are used in the collaboration context only and are not provided to the outside.
Therefore, internal collaboration runtime models are not visible in the local adaptation context.
Third, outgoing runtime models are provided by the collaboration and contain runtime model
data, which is collected during the interaction of participants. Thus, the runtime models
can be locally used after the collaboration and may contain updated information, which is
retrieved during the interaction. The knowledge specification can be used for the design
of the collaboration choreography, because it defines the available runtime models for the
collaboration. Furthermore, the collaboration role interfaces and the collaboration mapping,
which is the integration of the interaction into the local adaptation behavior, must conform
to the knowledge specification.

incoming internal outgoing

<<CollaborationKnowledge>>

Platoon

<<MonitoringModel>>

Monitoring Rules
<<SystemModel>>

Convoy
<<SystemModel>>

Route
<<ContextModel>>

Environment

Figure 5.46: Collaboration knowledge specification

The example in Figure 5.46 defines four different runtime models for the platoon collab-
oration. The Monitoring Rules are declared as incoming and thus, must be provided for the
collaboration. The rules are used by the follower role to retrieve the current environmental
context as defined later in the concrete interaction specification of this role. The internal run-
time models Convoy and Environment are used within the collaboration context only. The convoy
model represents the current platoon and comprises the number of participants, position in
the platoon, and status of the platoon member. The environment runtime model represents
the retrieved context of the platoon, which may comprise several independent views from the
platoon participants. Finally, the Route model contains the planned path of the platoon, which
is optimized according the current convoy status and available environmental information.
The route becomes visible in the local adaptation behavior and is provided/updated after each

– 131 –

5. Deurema Modeling Language

performed collaboration interaction. Thus, the route runtime model becomes visible in the
module, which performs the corresponding role as defined by the collaboration integration.

Note, the knowledge specification may evolve during the specification of the collaboration
choreography. On the one hand, it is possible to derive the knowledge specification from
the collaboration behavior by looking at all specified interactions. On the other hand, if the
knowledge specification is modeled first, it can help the design of the behavior by restricting
the interactions on basis of the available knowledge.

5.5.3. Collaboration Choreography

The choreography specification embodies the concrete interaction behavior by means of an
interaction protocol. Therefore, the collaboration type, which is defined in the collaboration
structure, refers to a set of interactions. In Deurema, interactions are specified by a type
definition and interaction template for each role type in the collaboration as depicted in
the metamodel in Figure 5.47. The interaction type can be seen as a protocol, whereas the
interaction template defines the concrete steps of the protocol for each role. At runtime,
interaction templates are instantiated and refer to their playing role. Thus, each usage of
the protocol (interaction type) is modeled as interaction instance. The interaction template
contains an arbitrary number of protocol steps, whereas the order is defined by the control
flow. Furthermore, collaboration interactions are triggered by their realizing module or
system. In the following the concrete syntax and an example for an interaction type are
explained. Afterwards, the detailed concepts of defining the concrete interaction protocol
steps in Deurema are introduced.

1

instances 0..*

template

Metamodel Concrete Syntax - Type

<<CollaborationChoreography>>

CollaborationName

Concrete Syntax - Instance

<<abstract>>

InteractionTrigger

Collaboration
Type

lowerBound : int
upperBound : int

RoleType

1..*rolesInteraction
Type

1..*

interactions

Interaction
Template

1..*templates

Interaction Role
1

role

1

1interaction

trigger

1
role

1

instances 0..*

type

<<abstract>>

DeuremaType

FeedbackLoop
ModuleTemplate

<<abstract>>

DeuremaModel

c

<<Interaction>>

InteractionName

c

<<Interaction>>

Role : Interaction

<<abstract>>

Collaborative
Element

0..*

interactions

Concrete Syntax - Template

<<
R

ol
e>

>

R
o

le
Ty

p
e

<<
R

ol
e>

>

R
o

le
Ty

p
e

<<InteractionTemplate>>

InteractionName

Figure 5.47: Deurema collaboration choreography

– 132 –

5.5. Deurema Collaboration

Concrete Syntax for Interactions
Because an interaction protocol comprises a set of activities (steps), it is modeled similar to
activity variables, which is a labeled hexagon block arrow as shown on the right in Figure 5.47.
Additionally, on type level, an interaction has the stereotype «Interaction», a name and an
ellipse icon in the upper right corner of the block arrow, which is labeled with a c denoting the
correspondence to a collaboration. The template definition of an interaction has a horizontal
lane for each role type, where the interaction behavior is specified. Finally, interaction
instances follow the Deurema instance notation.

Example Interaction Types
Figure 5.48 shows the interaction types (protocols) for the beforehand specified platoon
collaboration. There are two interaction types HeartBeat and ShareEnvironment. The former
protocol realizes a periodical notification of platoon members indicating proper following. The
latter protocol defines the sharing of environmental information within the platoon, which
helps the leader of planning the path of the convoy. An exemplary instantiation of the both
interaction types is shown on the right in Figure 5.48.

Type Instance

<<CollaborationChoreography>>

Platoon

c

<<Interaction>>

HeartBeat

c

<<Interaction>>

ShareEnvironment

c

<<Interaction>>

hb:HeartBeat

c

<<Interaction>>

se:ShareEnvironment

Figure 5.48: Choreography interaction example

Modeling Interaction Behavior
The detailed protocol steps are specified in interaction templates. Deurema extends the
functionality of feedback loop templates as depicted in the metamodel in Figure 5.49. The
InteractionTemplate class inherits from the FeedbackLoopModulteTemplate class, which facilitates
the reuse of all Deurema concepts for defining feedback loops. Therefore, an interaction
template can consist of adaptation activities, initial, final, and decision nodes, which allows
the specification of the interaction behavior for each role. This comprises the modeling of the
causal order defined by the control flow, and the usage of runtime models as discussed for
feedback loops in Section 5.3.2.

For interaction templates, Deurema supports an additional message concept that allows the
synchronization of interaction behavior between participants. Messages inherit directly from
the Operation class and thus, can be seamlessly integrated into the template definition of the
interaction. Deurema supports three different message types, whereas each type has a special
purpose concerning interacting behavior. First, normal messages can be used for triggering
and synchronization purposes of interacting activities between different roles. Second, model
messages contain runtime model information and thus, are used for the exchange of knowledge.
Third, services are visible, provided functionalities that can be invoked from other roles
within the collaboration. Therefore, roles can offer or use services to delegate tasks among
the collaboration. Due to services may realize a complex piece of functionality, they are
considered as executable behavior models, whereas the realization follows the black-gray-white
box semantic as comprehensively discussed for activities in Section 5.3.2.

– 133 –

5. Deurema Modeling Language

Metamodel Concrete Syntax

Interaction
Template

FeedbackLoop
ModuleTemplate

synchronous : boolean
cooperative : boolean
reactive : boolean

<<abstract>>

AbstractMessage
1..*

senders

1..*

receivers

ModelMessageMessage Service

<<abstract>>

Operation

1..* operations

trigger : String
action : String
executionTime : int
urgent : boolean
committed : boolean

<<abstract>>

BehaviorModel
ModelOperation

0..*

modelOperations

RuntimeModel
View

1

modelOperations0..*

view

<<Message>>

MessageName

<<Service>>

ServiceName

<<ModelMessage>>

MMName

<<Message>>

MessageName

<<Service>>

ServiceName

<<ModelMessage>>

MMName

period : int

TimedTrigger

0..1
messages

0..*
timedTrigger

<period>

TimedTrigger

Figure 5.49: Deurema interaction templates

According to the Deurema metamodel, each message can have multiple senders and receivers,
whereas additional attribute properties define different semantics of the synchronization
respectively invocation behavior as discussed below. The sender and the receiver of a message
must be located in separated lanes (roles) in the interaction template definition. Furthermore,
messages can have a timed trigger that defines the maximal waiting time for the synchronization
with other roles, which avoids waiting deadlocks in case of a missing coordination activity.

As shown at the right in Figure 5.49, messages are modeled as UML signals, where the
sending and accepting of a message is indicated by the outgoing respectively incoming corner
of the hexagon block. The message type is annotated as stereotype. Because there can be
different messages during an interaction, the correspondence of a sent and received message is
identified over the same name. The optional timed trigger is denoted by an additional clock
symbol, where the waiting period is labeled under the symbol. In the following, an example
for each message type is described. Afterwards, the semantic of the message properties are
discussed in detail.

– 134 –

5.5. Deurema Collaboration

Interaction Template Example – Message
Figure 5.50 shows the template definition of the HeartBeat interaction as defined in the
choreography specification in Figure 5.48. There are two lanes that specify the behavior of
the follower and leader role of the platoon collaboration.4 Each role behaves independently
from the other roles with the exception of a message exchange. In the example, the follower
role sends an Alive message directly after starting the interaction. The leader is able to receive
the Alive message at the beginning of its interaction. Furthermore, if the leader receives the
message within a period of thirty seconds, it finishes the interaction. Otherwise, the leader
performs an additional update activity on the Convoy system runtime model annotating the
missing follower. The follower role directly finishes its interaction behavior after sending the
message.

Note, the correspondence between sender and receiver is denoted over the message name.
Furthermore, the message is denoted in template notation, where two different messages must
have a different name. Conceptually, each role, which corresponds to a lane in the interaction
template definition, can be instantiated multiple times. According to the example, the follower
role can be played by more than one smart car within one platoon collaboration. Thus, each
follower instance sends an Alive message, which is received by the leader role. If the leader
waits for the alive messages from all followers before it continues its execution or if each
alive message from each follower is processed individually, depends on the message properties,
which are discussed below.

Done

Start

Done

<<Monitor>>

Update

<<SystemModel>>

Convoy

r w

<<
R

ol
e>

>

Le
ad

e
r

<<
R

ol
e>

>

Fo
ll

o
w

e
r

<<Message>>

Alive

<<Message>>

Alive

30s

Start

<<InteractionTemplate>>

HeartBeat

Done

Figure 5.50: Interaction template example using a message

Interaction Template Example – Service
The usage of an Alive service instead of exchanging synchronization messages is shown in
Figure 5.51 and looks very similar to the message example before. The interaction template
has the same two lanes for the different roles. Furthermore, the execution order and timing
constraints are the same. The difference is the execution semantic of a service. In contrast to a
lightweight exchange of a synchronization message, which is fully controlled by Deurema, the
leader provides an alive functionality that is invoked by the follower role. Services leave the
boundaries of Deurema to application specific functionalities similar to adaptation activities.

4In this example, the optional observer role is omitted. Normally, an interaction template must specify the
collaborative behavior of all role types.

– 135 –

5. Deurema Modeling Language

Done

<<InteractionTemplate>>

HeartBeatService

<<
R

ol
e>

>

Le
ad

e
r

<<
R

ol
e>

>

Fo
llo

w
e

r

<<Service>>

Alive
Start

Start

Done

<<Monitor>>

Update

<<SystemModel>>

Convoy

r w

<<Service>>

Alive

30s
Done

Figure 5.51: Interaction template example using a service

Therefore, the service is considered as Deurema behavior model following the black-gray-white
box semantic. As a consequence of using a service, the computational load is deferred to the
leader role. Moreover, the invocation of the service may cause changes in the state or runtime
models of the leader. Similar to adaptation activities in feedback loops, if the service is defined
as black box, the Deurema modeling language cannot predict the execution effects of the
domain specific implementation, which is triggered by each service invocation. In contrast, if
the internal details of the service are known (white box specification), Deurema can reason
about the execution effects on the available runtime models of the service at development
time.

The service and message examples show that the interaction points between roles can be
modeled in different ways. It depends on the collaboration developer to choose the appropriate
concept that fits best to the problem that has to be solved. Transferred to the example above,
the possibilities of realizing a heartbeat protocol are first, using a lightweight synchronization
message or second, a more complex service, which defines an additional application specific
piece of functionality.

Interaction Template Example – ModelMessage
If roles want to share runtime model information during an interaction, they can use model
messages as exemplarily depicted in Figure 5.52. First, the follower role performs an internal
activity that scans the environment. Therefore, the ScanEnvironment activity reads a Monitoring
Rules runtime model, which enables the access to physical sensors of the smart car. The
retrieved information is written to the local Environment context model, which is shared via the
EnvInfo model message afterwards. The leader waits up to thirty seconds for this information
and finishes execution if the message does not arrive in that time frame. Otherwise, the
leader performs an analyze activity, which checks the current route of the platoon, and
optimizes it afterwards. Finally, the leader sends the optimized route to the observer role via
the ProvideRoute model message. As defined in the Deurema metamodel and shown in the
example, a model message must have at least one model operation to a runtime model for
reading/writing the sent/received information from/to the local context of the corresponding
role. Thereby, the handling of runtime models, the support of model operation types as well

– 136 –

5.5. Deurema Collaboration

Done

Done

<<Monitor>>

ScanEnvironment

<<MonitoringModel>>

Monitoring Rules

r

<<InteractionTemplate>>

ShareEnvironment

<<
R

ol
e>

>

Le
ad

e
r

<<
R

ol
e>

>

Fo
llo

w
er

<<
R

ol
e>

>

O
b

se
rv

e
r

<<ModelMessage>>

EnvInfo

<<ModelMessage>>

EnvInfo
Start

<<ContextModel>>

Environment

w
r

Start

<<Analyze>>

CheckRoute
<<Plan>>

OptimizeRoute
<<ModelMessage>>

ProvideRoute

<<ContextModel>>

Environment

w r

<<SystemModel>>

Route

30s

<<ModelMessage>>

ProvideRoute
Start

rrr a a

Done

<<SystemModel>>

Routew

Done

Figure 5.52: Interaction template example using a model message

as the model query concept are exactly the same as comprehensively discussed for feedback
loop templates in Section 5.3.2.

In summary, all three examples show how activities, different message types and runtime
models can be used to describe the interaction behavior for each role of the corresponding
collaboration interaction protocol. Varying message, service, or model message properties lead
to different synchronization semantics. In the following, each message property is discussed in
detail.

Message Properties
As depicted in the AbstractMessage class in the metamodel in Figure 5.49, messages, services, and
model messages are considered as abstract messages, which have three additional properties,
namely synchronous, cooperative, and reactive. The first property refines the waiting behavior
of a message sender, whereas the cooperative and reactive property refine the behavior of multiple
sender respectively receiver. Therefore, the last two properties are useful to define the semantic
for 1:m or n:m message exchange. For the discussion concerning the message properties, the
terms abstract message, message, model message, and service are used synonymously, because
it works for all three message types exactly in the same way.

At first, a message can be synchronous or asynchronous. A sender of a synchronous message
waits until the message is received by another role. In contrast, the sender of an asynchronous
message directly continuous its own execution without waiting for any confirmation. The
Deurema execution framework ensures the buffering and consistency of the message until it is
received by an appropriate role. The receiver of a message always waits until the corresponding
sender emits the message, except an additional time trigger is specified as discussed in the
examples above. Therefore, synchronous messages represent dedicated synchronization points
within an interaction template specification. Combinations of asynchronous messages can be

– 137 –

5. Deurema Modeling Language

used to delay the synchronization and executing additional local activities in between two
asynchronous synchronization points as shown in the example in Figure 5.53.

<<InteractionTemplate>>

DelayedSyncronization

<<
R

ol
e>

>

R
1

<<
R

ol
e>

>

R
2

<<Message>>

M1Start

<<Activity>>

LocalActivity
<<Message>>

M2

<<Message>>

M1Start

<<Activity>>

LocalActivity
<<Message>>

M2

Done

Done

Figure 5.53: Delayed synchronization example

If the messages M1 and M2 in the example are synchronously sent, both local activities in
each role can only be started after the message M1 was sent and received. Furthermore, both
roles synchronize their behavior again by exchanging the message M2. In contrast, if both
messages are asynchronously sent, the role R1 can emit the message M1 and directly continue
with the execution of its local activity afterwards. But, R1 has to wait for the reception of M2.
The role R2 has the inverse behavior. First, it waits for the message M1, but can continue
with the local activity and the sending of M2 without waiting of any interaction of the role R1

after the message M1 is received. Therefore, the combination of two asynchronous messages
is similar to a delayed synchronization of role R1, because it can continue local execution
after triggering the role R2 via M1 and later synchronize its interaction with the other role by
waiting for the reception of M2.

The reactive and cooperative property of a message defines the behavior of multiple sender
respectively receiver and can be used orthogonal to the synchronous property. Consider the
example in Figure 5.54, where four roles are depicted. There are two senders S1 and S2 of one
message named Alive as well as two receivers R1 and R2 of the same message. Note, the same
situation can appear if a role is instantiated multiple times as defined in the collaboration
deployment specification, e. g., the follower role appears multiple times in the platoon example.
For Deurema, there is no difference whether there are multiple senders/receivers in the template
definition or instance situation, which send/receive the same message. All combinations are
handled by the Deurema modeling language according to the following semantic.

The reactive property points to the execution semantic of the two senders and describes,
whether all senders must emit the alive message so that the receiver can continue its execution
or if at least one sender is enough. In the first case, each receiver must wait until all senders
emit an alive message at least once (all semantic) before it can continue its execution. In the
second case, it is enough if at least one sender (e. g., S1) emits the message (first semantic),
whereas the receiver can process the message and continue execution. Thus, the message is
considered as reactive, if one sender is enough for message triggering. Therefore, a combination
of a not reactive, synchronous message implies that the sender S1, S2 emit the message and
must wait until it is received by R1 and/or R2.

In contrast to the reactive property, the cooperative property focuses on the receiver side.
The message is cooperatively used, if all receivers must receive (handle) the beforehand
emitted message (and semantic). Straight forward, the message is not cooperatively, if one
receiver is enough for message processing (or semantic). Therefore, a not reactive, cooperative,

– 138 –

5.5. Deurema Collaboration

Done

<<InteractionTemplate>>

MessageProperties

<<
R

ol
e>

>

S 1

<<
R

ol
e>

>

S 2

<<
R

ol
e>

>

R
1

<<Message>>

Alive
Start

<<
R

ol
e>

>

R
2

Done

<<Message>>

Alive
Start

Done

<<Message>>

Alive
Start

Done

<<Message>>

Alive
Start

Reactive Cooperative
(Sender) (Receiver)

(1) first (true) or (false)
(2) first (true) and (true)
(3) all (false) or (false)
(4) all (false) and (true)

Figure 5.54: Message property example with reactive and cooperative combinations

synchronous message implies that both senders S1, S2 emit the message and must wait until
both receivers R1, R2 process the message. Thus, this combination has the semantic of a
synchronization point over the Alive message within the interaction.

The table on the right in Figure 5.54 shows the four possible combinations for the reactive
and cooperative property. According to the explanation above, the corresponding semantic
combinations are enumerated in the table, where the corresponding boolean values of the
two properties are in brackets arranged behind. The combination (1) is similar to a XOR
semantic, where one sender and one receiver are enough to exchange the message. Thus, the
first sender/receiver pair can continue its execution after exchanging a synchronous message.
In the asynchronous case, the sender can directly continue and the first appearing receiver
will get the sent message. Note, if either senders or receivers send respectively receive the
Alive message at exactly the same point in time, both are allowed to continue local execution.
In the combination (2), all receivers must handle the Alive message, which can be sent by
S1 or S2. Straightforward, combination (3) requires the availability of both senders and at
least one receiver. Finally, combination (4) can be considered as global synchronization point
over all four roles, if the message is synchronously sent. Consequently, one difference between
case (1) and (4) is that in the first combination two Alive messages can be handled during
one execution round of the interaction, whereas in the fourth case maximal one message is
exchanged.

The concrete handling of the message exchange depends on the timed execution order of the
interaction role instance. For example, one sender and one receiver are enough for processing
the message in the combination (1). However, due to the independent, concurrent execution
of the roles, both senders/receivers may emit/process the alive message at exactly the same
point in time, which is supported by the Deurema execution environment. Obviously, there
is a difference in the overall runtime behavior if one receiver processes the message or both
receivers get the message during the collaboration, which depends on the concrete timing
situation during execution. A comprehensive overview of different execution orders considering
timing aspects and the resulting effect of message handling is shown in the Appendix B.

– 139 –

5. Deurema Modeling Language

5.5.4. Collaboration Role Interfaces

From the specification of the collaboration structure, knowledge and choreography, corre-
sponding role interfaces can be automatically derived. Thereby, the visible interactions and
their causal order are identified from the choreography specification for each role. Following
the approaches of Neumann et al. [8] and Salah et al. [155], the interface description abstracts
from local interaction activities that are not visible or could be hidden to the outside of the
collaboration. The interface description comprises: First, the causal order of interactions
defined by the control flow of the choreography specification, e. g., the message x is send
before message y. Second, the shared runtime models as well as the model operations that
are necessary for the interaction, e. g., reading a runtime model before sending it via a model
message. Third, timing constraints that restrict the waiting time of an interaction, e. g., if a
role waits at maximum x seconds for a message.

As an example, Figure 5.55 shows the three role interfaces for the Leader, Follower, and
Observer for the ShareEnvironment interaction of the Platoon collaboration. Compared with the
Figure 5.52, the interface hides local role activities such as checking and optimizing the route
within the Leader role. Furthermore, from the internal use of runtime models is abstracted as
for example the reading of the Monitoring Rules by the ScanEnvironment activity performed by
the Follower role at the beginning of the corresponding interaction.

Done

Done

Done

<<InteractionInterface>>

ShareEnvironment

<<
R

ol
eI

nt
er

fa
ce

>>

Le
ad

er
<<

R
ol

eI
nt

er
fa

ce
>>

Fo
llo

w
e

r
<<

R
ol

eI
nt

er
fa

ce
>>

O
bs

er
ve

r

<<ModelMessage>>

EnvInfo

<<ModelMessage>>

EnvInfo
Start

<<ContextModel>>

Environment

r

Start

<<ModelMessage>>

ProvideRoute

<<ContextModel>>

Environment

w

<<SystemModel>>

Route

30s

<<ModelMessage>>

ProvideRoute
Start

r

Done

<<SystemModel>>

Routew

Figure 5.55: Interaction role interface

– 140 –

5.5. Deurema Collaboration

Thus, the interface of a role comprises the manipulation and exchange of runtime models, the
causal order of visible interactions, and the invocation of services for the complete collaboration
choreography. Automatically derived role interfaces can be used for analyzing the visible
interaction behavior of the collaboration. If role interfaces are manually specified, they can be
used for the modeling of the refined collaboration choreography. Thereby, the refinement of
the interface can introduce local collaboration activities and knowledge handling, but must
follow the overall defined interplay between roles. Because interfaces can be automatically
derived from the choreography, the other way around allows the checking whether a refinement
of a choreography specification still conforms to the beforehand manually created interface
description or not.

5.5.5. Collaboration Role Mapping

After the separated development of the collaboration logic, the collaboration role mapping
describes how collaboration interactions are integrated into the local adaptive behavior, e. g.,
feedback loop templates. Depending on the module template type, feedback loop operations,
runnables, or rules are the corresponding behavior elements, which can trigger a collaboration
interaction. Thus, interactions are woven into the module templates and appear as additional
behavior. In application and behavior module templates, interactions are executed after the
triggering runnable or rule. In feedback loop module templates, interactions are integrated into
the control flow of the local operations, which is in fact before and after existing operations.

Figure 5.56 shows the Self-Configuring feedback loop template as introduced in Section 5.3.2
that integrates the additional interactions ShareEnvironment and HeartBeat from the platoon
collaboration. In the example, the heart beat is performed directly after the local Update
activity. Furthermore, the sharing of environmental information (ShareEnvironment interaction)
is directly done after the heart beat (HeartBeat) interaction finishes. Both interactions perform
model operations on local runtime model views. The model operation type conforms to the
collaboration knowledge specification as outlined in Section 5.5.2. Therefore, the Monitoring
Rules are read for the ShareEnvironemnt interaction and the Route runtime model is provided
afterwards.

a

c

<<Interaction>>

Leader:HeartBeat

c

<<Interaction>>

Leader:ShareEnvironment

<<Monitor>>

Update

<<MonitoringModel>>

Monitoring Rules

r

Monitor

<<ExecutionModel>>

Synchonization Rules

<<EvaluationModel>>

Goals
<<ChangeModel>>

Configuration Strategies

<<SystemModel>>

Architecture

<<Plan>>

Optimize

<<Execute>>

Effect

Executed

r

r

r

r

r

r

r

w

a

a

<<Analyze>>

CheckTrafficSituation

r

<<SystemModel>>

Route

r

<<FeedbackLoopModuleTemplate>>

Self-Configuring

Figure 5.56: Collaboration role integration

– 141 –

5. Deurema Modeling Language

Due to the interactions can be played in different roles, there can be individual module
templates realizing each role. Thus, each role and interaction can be placed differently in
separated templates. In the example, the template integrates the interactions for the Leader
role, which is indicated by the role name for each interaction. Consequently, the leader role
performs the HeartBeat and ShareEnvironment interaction directly after the monitoring step. The
observer and follower role as specified by the collaboration structure definition in Section 5.5.1
is not integrated into the feedback loop module template shown in Figure 5.56.

This example shows the integration of interactions into FLD, the use of interactions in
BRD and ACD follows the same integration concept. Furthermore, the access to local runtime
model views must conform to the collaboration knowledge specification, where the local
information becomes visible in the corresponding collaboration interactions.

Interaction Trigger
Due to interactions are integrated into the local adaptation behavior, the elements in the
Deurema module templates can trigger the defined interactions at runtime. There are three
module templates in Deurema that contain elements describing the adaptive behavior, namely
feedback loop, behavior, and application module templates. As a consequence, operations
(e. g., activities), rules, and runnables can trigger an interaction between collaborating modules
as depicted in the metamodel in Figure 5.57. The triggering is realized by the inheritance of
an abstract InteractionTrigger class, which has a reference to all interactions that have to be
triggered.

In summary, the local behavior together with the integrated collaboration interaction realizes
the adaptive behavior capabilities of the corresponding module template. The templates are
blueprints that can be deployed (instantiated) in the layered architecture of a system template,
which leads to the overall behavior specification of the adaptive SoS. The use of collaboration
instances is described in the following.

Metamodel

<<abstract>>

InteractionTrigger
Interaction

<<abstract>>

Operation
Rule Runnable

1interaction

1..* trigger

Figure 5.57: Deurema interaction trigger

5.5.6. Collaboration Deployment

The collaboration deployment defines the architectural instance situation of the system
together with collaboration instances and role assignments. Therefore, Deurema extends the
LD introduced in Section 5.4 by allowing module, system, and collaboration instances.

– 142 –

5.5. Deurema Collaboration

Collaboration Player

Collaboration roles must be realized by modules and integrated into the local adaptation
behavior. Therefore, Deurema refers to an abstract player entity that behaves according
to this role. The abstract entity is defined by the CollaborativeElement class in the Deurema
metamodel in Figure 5.58. Each player can realize an arbitrary number of roles, whereas
each role is assigned exactly to one player. Modules are the basic concept of executing the
adaptation logic in Deurema. Therefore, modules are a candidate for playing roles within a
collaboration. Furthermore, because Deurema considers adaptive SoS, systems can realize
(play) a role. As discussed in Section 5.1, systems may contain other systems and modules.
Due to this fact, Deurema supports the delegation of roles by systems to other subsystems or
modules in the hierarchy.

Furthermore, Deurema supports the triggering of collaborations on different levels that
are before, after, or within (internal) a module execution, which is defined by the RoleTrigger
enumeration in the metamodel. The triggering of interactions before and after module
execution enables black box modules, e. g., software modules as introduced in Section 5.3.3,
to participate in collaborations. Of course other module types can also use the before or after
trigger, if for example the integration of collaborative behavior is not wanted or disturbs the
local adaptive behavior. Considering the platoon example above, if a feedback loop, which
plays the leader role, uses the After role trigger, the local feedback loop behavior is executed
first and afterwards the interactions as defined in the collaboration choreography specification.
Straight forwards, for the Before role trigger, the collaboration behavior is executed first
and afterwards the local feedback loop behavior. The internal role trigger is used, if the
interactions are integrated into the module template as described in the former section for
the feedback loop, which integrates the interactions of the platoon collaboration performing
the leader role.

1 role

<<abstract>>

Collaborative
Element

Metamodel

SystemModule

Role RoleDelegation

<<abstract>>

Delegation

0..*

d
ele

gatio
ns

1

delegate

Before
After
Internal

<<enumeration>>

RoleTrigger

1

trigger

1

p
layed

R
oles

0..*

player

Figure 5.58: Deurema collaborative elements

– 143 –

5. Deurema Modeling Language

Collaboration Deployment Example
Following the running example of this thesis, the LD in Figure 5.59 shows a refined system
template specification of a smart city consisting of two smart cars in a platoon as introduced
in the beginning of the collaboration section. Each smart car comprises a layered system
architecture as comprehensively described in Section 5.4. Therefore, a smart car is shown at
system instance at the lowest layer of the smart city in Figure 5.59. Both cars are supervised
by an individual Self-Configuring feedback loop that integrates the collaboration interactions as
depicted for the leader role in Figure 5.56.

Furthermore, the example shows one instance of the platoon collaboration with one instance
of each role type. The mapping of role instances and their names are directly annotated at
the corresponding module. Therefore, the feedback loop module sc1 plays the Leader role
of the platoon, whereas the feedback loop module sc2 realizes the follower behavior. The
optional observer is deployed in the TrafficOptimization feedback loop module. Depending on the
integration of observer behavior, the traffic optimization feedback loop can use an appropriate
role trigger that defines the playing of the observer role before, after or within the module
execution. The LD shows the instances of the modules from an architectural perspective.
Internals are modeled in the corresponding SMD, BRD, ACD, FLD, and collaboration
interaction templates respectively.

l:Leader

<<FeedbackLoopModule>>

sc1:Self-Configuring

<<System>>

bmw:SmartCar

<<Collaboration>>

p:Platoon

<<FeedbackLoopModule>>

sc2:Self-Configuring

<<System>>

audi:SmartCar

<<FeedbackLoopModule>>

to:TrafficOptimization

f:Follower
 o:Observer

<<
La

ye
r>

>

L-
1

<<
La

ye
r>

>

 L
-0

<<SystemTemplate>>

SmartCity

30s

reflect affect reflect affect
30s 30s

Figure 5.59: Collaboration deployment

System Role Delegation Example
Deurema considers systems as collaborative entities playing roles in a collaboration. Due to
systems cannot be executed directly but rather consist of other systems and modules, they
must delegate the playing role to modules or inner systems. Figure 5.60 depicts a small
example, where two smart cities named potsdam and berlin interact with each other over a
Traffic collaboration. For example, the cities may share the current traffic situation to predict
the overall future traffic flow knowing possible incoming and outgoing vehicles. However, the
collaboration instance defines that the smart city potsdam plays the Server role and the other
smart city berlin acts as client. Both systems delegate their role to an internal TrafficMonitor
behavior module. Consequently, the internal modules realize the specified roles of the parent
system.

– 144 –

5.6. Deurema Reflection, Reconfiguration and Adaptation

<<delegate>>

<<BehaviorModule>>

tm1:TrafficMonitor

<<
La

ye
r>

>

L-
2

<<System>>

potsdam:SmartCity

5m

s:Server

c:Client

<<Collaboration>>

t: Traffic

<<delegate>>

<<BehaviorModule>>

tm2:TrafficMonitor

<<
La

yer>>

L-2

<<System>>

berlin:SmartCity

5m

Figure 5.60: Collaboration role delegation

In general, the correct scheduling and triggering of the specified modules in systems together
with their collaboration interactions is done by the Deurema execution environment. The
Deurema collaboration concept can be used to define specific interaction protocols between
modules and systems, which enable the exchange of knowledge, the invocation of remote
services, or the synchronization of independent behavior in dedicated synchronization points.
Normally, collaborations between systems and modules appear at the same layer in the
corresponding system template, where the collaboration players are on the same level of
abstraction. Furthermore, for retrieving information and influencing modules on different
layers in the system template, the Deurema reflection mechanism can be used as discussed in
the following. Additionally, the reflection mechanism is the key concept of further enabling
the reconfiguration, adaptation, and meta-adaptation capabilities of Deurema.

5.6. Deurema Reflection, Reconfiguration and Adaptation
Up to this point, the modeling of the adaptive SoS architecture by means of system templates
and the specification of system behavior using modules is discussed. Furthermore, interaction
between systems and modules using the Deurema collaboration concept is outlined in the former
section. As a consequence, almost all elements contained in the smart city running example
sketched in Figure 5.61 can be modeled with the Deurema approach. Beside collaborations,
which are used to model interactions on the same level of abstraction, systems and modules
must reason about the underlying behavior of the system to realize envisioned self-* capabilities
and thus, the adaptive behavior within the SoS. Therefore, this section introduces the Deurema
reflection concept, which enables the reasoning about underlying modules and systems within
the adaptive SoS architecture. Furthermore, system reflection enables the reconfiguration
and adaptation of the underlying system behavior, which is also directly supported by the
Deurema approach. As a consequence, module and system instances, which are placed on
the layered system template, become enable to reflect runtime information from module
and system instances at lower layers. On basis of this reflected information, those modules
and systems are able to adapt the underlying behavior accordingly as highlighted in gray in
Figure 5.61. As motivated in Chapter 3, there is a need that the adaptation engine itself must
be adapted over time to cope with uncertain situations in highly dynamic system environments.
Deurema supports a build in reflection mechanism to enable the reasoning about elements
in the adaptation engine itself. This reflection mechanism further enables the application of
system and module reconfiguration, adaptation, and the change of the adaptation logic on
different layers in the adaptation engine, which is known as meta-adaptation as introduced in
the preliminaries Section 2.1.1. In general, reflecting parts of the system template specification

– 145 –

5. Deurema Modeling Language

l:Leader

<<FeedbackLoopModule>>

sc1:Self-Configuring

<<System>>

bmw:SmartCar

<<Collaboration>>

p:Platoon

<<FeedbackLoopModule>>

sc2:Self-Configuring

<<System>>

audi:SmartCar

<<FeedbackLoopModule>>

to:TrafficOptimization

f:Follower
 o:Observer

<<
La

ye
r>

>

L-
1

<<
La

ye
r>

>

 L
-0

<<SystemTemplate>>

SmartCity

30s

reflect affect reflect affect
30s 30s

Figure 5.61: Smart city running example: Deurema reflection and adaptation

is enabled by the Deurema megamodel approach. Following the main idea from the MDE as
motivated in Section 5.1, all Deurema elements are considered as model entities. Thus, the
Deurema specification itself is contained and maintained by the megamodel. As a consequence,
Deurema model information of interest can be retrieved (reflected) from the megamodel and
represented as runtime models. Due to runtime models are available in the module template
specification, the local adaptation behavior, e. g., feedback loop activities, can operate on the
reflected information (the Deurema models) and reason about it.

The realization of the Deurema reflection concept is depicted in the metamodel in Figure 5.62.
All Deurema elements that can appear on the layered system template specification can be
reflected, which are modules, (sub)systems, and collaborations. The possibility of reflecting
those elements is enabled in the metamodel by the inheritance from the abstract ReflectiveElement
class. Furthermore, those reflective elements can perform module operations, which are
specialized model operations. Module operations can be directly applied on other reflective
elements. Therefore, the type of a module operation, defined by the corresponding enumeration
in the metamodel, can be Reflect respectively Affect. The former denotes a module operation
that retrieves (reflects) information from a reflective element, which will be locally accessible in
a runtime model. The latter describes the other direction, where a manipulation of a runtime
model leads to a change in the beforehand reflected element. Similar to model operations,
module operations consist of model queries, which are used to specify the concrete parts that
have to be reflected/affected. Model queries can be directly applied on the reflective element.
Model queries are used in the same way as discussed for runtime models in module templates,
cf. the description of feedback loops in Section 5.3.2.

Beside the reflection of information via module operations, the ViewDelegation class points
to the runtime model view that holds the reflected information in the local module template.
Therefore, the reflected information becomes visible as runtime model and can be used in the
same way as any other runtime knowledge. Thus, the defined module operations together
with the view delegation establish the causal connection, which is maintained by the Deurema
execution environment. In the following, three examples are given to illustrate the use of
reflecting and affecting module operations for each reflective element in the metamodel.

– 146 –

5.6. Deurema Reflection, Reconfiguration and Adaptation

1

model
Operations

0..*

view

Metamodel

<<abstract>>

ReflectiveElement
ModuleOperation

0..*
module

Operations

ViewDelegation
0..*

view
Delegation

<<abstract>>

Delegation

1
delegate

System Module

Collaboration

ModelOperation

Reflect
Affect

<<enumeration>>

ModelOperation
Type1

type

RuntimeModel
View

ModelOperation
Query

1..*

queries

1
target

Figure 5.62: Deurema reflection metamodel

Module Reflection Example
Figure 5.63 depicts an example, where the Self-Configuring feedback loop module reflects and
affects the smart car system. On the left side, the module and system instance as well as
the corresponding module operations are depicted in concrete syntax. For illustrating the
delegation of the reflected information, an excerpt of the Self-Configuring feedback loop module
is modeled in the template notation on the right.5 As shown, the reflect module operation
is delegated to the Architecture runtime model. Deurema ensures that every performed read
model operation on the runtime model retrieves up-to-date, reflected knowledge from the
architecture of the smart car system. The amount of available reflected data is specified by
the defined model queries that belong to the module operation as shown in the metamodel in
Figure 5.62. Furthermore, the amount of read data of the Update activity is defined by the
model queries that correspond to the read model operation. Due to the causal connection,
each modification of the Architecture runtime model, as done by the Optimize activity in the
example, will cause corresponding changes in the smart car system. In this case, the runtime
model modification is delegated to the corresponding affect module operation of the feedback
loop module.

System Reflection Example
Similar to modules, Deurema systems can reflect and affect other reflective elements as well,
which is shown in Figure 5.64. Additionally, systems do not perform adaptation activities
directly, but rather encapsulate other modules and subsystems. Therefore, a system that
reflects/affects another element must delegate the reflected/affected information to/from
its contained modules or subsystems. Again, subsystems delegate the information to their
contained children until a module takes the runtime information and delegates it to a runtime
model view as discussed above for the example in Figure 5.63.

In the system reflection example in Figure 5.64, a smart car system reflects/affects an
application module named Sensing. The reflected knowledge is delegated to an inner feedback

5For a comprehensive description of the complete self-configuring feedback loop see Section 5.3.2.

– 147 –

5. Deurema Modeling Language

<<System>>

bmw:SmartCar

reflect

<<
La

ye
r>

>

L-
1

<<
La

ye
r>

>

 L
-0

<<SystemTemplate>>

Module Reflection Example

<<Monitor>>

Update
<<Plan>>

Optimizer a

<<FeedbackLoopModuleTemplate>>

Self-Configuring

<<SystemModel>>

Architecture

<<System>>

audi:SmartCar

<<FeedbackLoopModule>>

sc:Self-Configuring

30s

reflect

affect

affect

Figure 5.63: Module reflection example

loop module ABS and application component module AutonomousDriving. Thus, the reflected
knowledge is duplicated or at least becomes visible multiple times in the car system, which is
directly supported by Deurema. Furthermore, the ABS feedback loop module uses the reflected
information as read-only, which is indicated by the missing affect delegation. In contrast, the
AutonomousDriving application module reflects as well as affects the Sensing application module
underneath.

<<
La

ye
r>

>

L-
1

<<
La

ye
r>

>

 L
-0

<<SystemTemplate>>

System Reflection Example

<<ApplicationModule>>

s:Sensing

reflect

<<
La

ye
r>

>

L-
1

<<FeedbackLoopModule>>

abs:ABS
<<ApplicationModule>>

ad:AutonomousDriving

<<SystemTemplate>>

SmartCar

affect

<<delegate>> <<delegate>> <<delegate>>

Figure 5.64: System reflection example

Collaboration Reflection example
The last example in Figure 5.65 considers a collaboration as reflective element. There are
three pairs of a smart car together with their self-configuring feedback loop. Furthermore,
two feedback loops interact with each other in the Platoon collaboration, whereas one feedback
loop performs the leader role and the other feedback loop realizes the follower behavior. For

– 148 –

5.6. Deurema Reflection, Reconfiguration and Adaptation

illustrating the reflection mechanism, an excerpt of the leader role lane is depicted in the
interaction template notation directly in the platoon collaboration.

In this example, the figure describes a scenario, where a third smart car wants to join
the existing platoon. In this case, it is possible for the leader role to directly reflect needed
status information from the smart car system instance. The reflected information is delegated
to the Convoy runtime model in the collaboration interaction. Remembering the knowledge
specification of the platoon collaboration as explained in Section 5.5.2, the convoy runtime
model is only used in the context of the collaboration interactions and does not become visible
in the local context of the realizing feedback loop (sc1 in this example). Therefore, the reflected
information can be only used within the leader role during interaction. Straight forward,
changing the reflected runtime information leads over the Deurema delegation concept to an
appropriate change in the underlying smart car system. As a consequence, the reflect-affect
mechanism can be used to integrate new members into the collaboration, which is in this
example another smart car. Therefore, the affect operation must deploy the corresponding
platoon interactions, which are appropriate to the played role, into the smart car system
instance. Afterwards, the smart car can join the existing platoon as another follower.

<<Collaboration>>

p: Platoon

<<InteractionTemplate>>

ReflectionDelegate

<<Monitor>>

Update

<<SystemModel>>

Convoy

r a

<<
R

ol
e>

>
 L

e
ad

e
r

<<delegate>> <<delegate>>

l:Leader

<<FeedbackLoopModule>>

sc1:Self-Configuring

<<System>>

audi:SmartCar

<<FeedbackLoopModule>>

sc2:Self-Configuring

<<System>>

bmw:SmartCar

f:Follower

<<
La

ye
r>

>

L-
1

<<
La

ye
r>

>

 L
-0

<<SystemTemplate>>

Collaboration Reflection Example

<<System>>

vw:SmartCar

reflect affect reflect affect
30s 30s

<<FeedbackLoopModule>>

sc3:Self-Configuring

30s
reflect affect

Figure 5.65: Collaboration reflection example

– 149 –

5. Deurema Modeling Language

In summary, the reflection and affection of modules, systems, and collaborations are directly
supported in Deurema. Reflected information becomes visible in form of runtime models
in the local context of the reflecting entity, which enables a seamless integration. Thus,
reflected information can be handled in the same way as normal runtime models across all
supported template types as well as collaboration interactions in Deurema. In the following,
the Deurema reconfiguration and adaptation capabilities are discussed.

5.6.1. Runtime Reconfiguration
As discussed in the preliminaries in Section 2.1.1, there are conceptually two ways for a SAS to
change its behavior at runtime, which are reconfiguration and adaptation. Deurema supports
both approaches, whereas for the reconfiguration approach the possible configuration space
of the system must be specified upfront. This can be done in a variability runtime model
as shown in the metamodel in Figure 5.66, which belongs to the corresponding adaptation
runtime model categorization as discussed in Section 5.2.1. Furthermore, a variability model
contains an arbitrary number of configuration types. Each configuration type refers to a
variable type and corresponding possible parameters (assignments) for the variable, which
span the possible configuration space. The variable types are predefined by the Deurema
modeling language as already discussed for the different module templates in the former
sections. Examples for variables types are activity variables, runnables variables or behavior
rule variables. Each variable type can have multiple variable instances, which are contained
by the corresponding module templates.

Metamodel

RuntimeModel

<<abstract>>

DeuremaType

Variability
Model

ConfigurationType
0..*

configurations

Variable

1

instances 0..*

type<<abstract>>

VariableType

1 variable

identifier : UUID
name : String
description: String

<<abstract>>

DeuremaElement

1..*parameters

Configuration

1

instances 0..*

type

1
parameter

1variable

Module

0..*

assignments

<<abstract>>

DeuremaModel

Figure 5.66: Deurema variability model

For example, an activity variable instance can be used within the specification of the
feedback loop as discussed for the Self-Configuring feedback loop example in Figure 5.23, where
an activity variable named Optimize defines a placeholder for different optimization strategies

– 150 –

5.6. Deurema Reflection, Reconfiguration and Adaptation

(cf. Section 5.3.2). Additionally to the variables, modules contain configuration instances,
which is the concrete deployment of variables with a parameter defined in the configuration
space. Thus, a variable is defined by its type and is further assigned/resolved at runtime via
a configuration from the Deurema variability model.

Figure 5.67 shows an example in the context of the smart car using all four possible variable
types for an AutonomousDriving application module template. Although the example is for an
application module template, the reconfiguration concepts work in the same way for behavior
and feedback loop module templates. In the example, the AutonomousDriving application
module template contains three sensor components, namely GPS, Distance, and Battery. The
GPS sensor is able to retrieve the current position of the smart car, whereas the battery sensor
can measure the power level of the battery. For the sake of simplicity, runnables that are not
necessary to explain the reconfiguration concept are omitted in components, as for example
in the case for the GPS and battery sensor. The distance component contains a runnable set
variable, which enables the exchange of a set of runnables and is highlighted in gray in the
figure. The task of this component is the detection of obstacles in the context around the car.
Furthermore, all three sensor components read the monitoring model named Sensing, which
enables the access to the physical sensors. Additionally, they update the Environment context
model by annotating sensed information.

The SensorFusion software component uses the raw context information, transforms it and
creates an environmental map representation. The software component contains a runnable
variable to exchange the algorithm in different configurations. Furthermore, the example
contains a component variable and a composition variable that use the map representation
to optimize the behavior of the car. The former encapsulates different behavior strategies in
one component and the latter allows the exchange of a complete subsystem that consists of
several components. Finally, an actuator component reads the envisioned behavior and sends
commands to physical wheels of the smart car.

<<ApplicationModuleTemplate>>

AutonomousDriving

<<Sensor>>

Distance

<<Sensor>>

Battery

<<Sensor>>

GPS

<<SWC>>

SensorFusion <<Variable>>

Behavior
Component

<<Sensor>>

Instance

<<Variable>>

Behavior
Composition

<<MonitoringModel>>

Sensing
<<ContextModel>>

Environment

<<ContextModel>>

EnvironmentalMap
<<ExecutionModel>>

Effecting

<<Variable>>
fusion

<<Variable>>
sensors

<<Actuator>>

WheelController

<<SystemModel>>

BehaviorMode

Figure 5.67: Reconfiguration example with gray highlighted variables

– 151 –

5. Deurema Modeling Language

On basis of the application component template, Figure 5.68 shows the possible reconfigura-
tion space of the modeled variables. The variable type, as defined by the Deurema metamodel,
is depicted on the left. The concrete variable instance is shown in the middle and the possible
configuration parameters (variable assignments) are depicted on the right in Figure 5.68.

The runnable variable, named fusion, allows three different runnable implementations
realizing a fast, basic, and advanced fusion algorithm of the raw environment sensor data. The
sensors set variable defines two different variants of an infrared and laser scanner runnable,
which can be applied indoor or outdoor. In this example, there are two runnables each in
the set definition and thus the number of runnables is equal for both sets. In the general
case, this is no requirement for a set variable and Deurema supports unbalanced number of
configurations, which enables a flexible modeling of the configuration space.

The component variable can be used to exchange a complete component. The configurations
in the example show two variants, whereas the first can be used for adding autonomous
driving functionalities in the car and the second realizes the charging of the battery cells at a
power supply station. Therefore, the Driving component contains two runnables realizing a
lane assistance and an adaptive brake (e. g., ABS or ESP), which requires the environmental
map representation as well as the current route of the car. A necessary change in the behavior
is annotated in the BehaviorMode system runtime model. In contrast, the second configuration
defines a Charge software component that needs information about the battery level and
provides information about the loading status of the battery cells.

Finally, the composition variable supports a configuration for car diagnosis, which can
be used during car maintenance, and a configuration for normal operation, where the car
calculates a route on the basis of the provided map. In the case for normal operation, the
composition variable is resolved by two software components. In general, the number of
components for a composition variable is not limited, which is useful for decomposing the
application module template in reusable parts.

Variable

indoorInfrared

indoorLaserScan

fastFusion basicFusion

outdoorInfrared

outdoorLaserScan

<<SWC>>

Charge
<<SWC>>

Driving

lane

brake

cell1

cell2

<<SWC>>

Environment
Builder

<<SWC>>

Navigation
<<SWC>>

Diagnosis

<<Variable>>
fusion

<<Variable>>
sensors

VariableType

RunnableVariable

RunnableSet
Variable

Component
Variable

Composition
Variable

Configurations

<<Variable>>

Behavior
Component

<<Sensor>>

Instance

<<Variable>>

Behavior
Composition

<<ContextModel>>

EnvironmentalMap

<<SystemModel>>

BehaviorMode

<<ContextModel>>

EnvironmentalMap
<<SystemModel>>

Route
<<ContextModel>>

Environment
<<SystemModel>>

DiagnosticResult

<<ContextModel>>

Environment
<<SystemModel>>

Route

<<SystemModel>>

BehaviorMode

advFusion

Figure 5.68: Reconfiguration space

– 152 –

5.6. Deurema Reflection, Reconfiguration and Adaptation

After specifying the application template with the variables and the reconfiguration model,
the modeler must specify the deployment of variable assignments for each module instance.
Thereby, one configuration must be chosen to resolve all variables in the template definition.
Figure 5.69 depicts one exemplary configuration (highlighted in gray) of the application module
template example in Figure 5.67. The software component SensorFusion uses the advanced
fusion functionality. The distance sensor is configured to use the infrared and laser scanner
runnable for outdoor sensing. Furthermore, the behavior component variable is assigned to
use the Driving software component, which introduces the additional runtime model Route
into the template. Finally, the composition variable is resolved by the Environment Builder and
Navigation software component and their corresponding runtime model usage. Consequently,
changing the assignment of variables leads to other template configurations. Deurema supports
the changing of the variable deployment at development-time and at runtime. In general,
the configuration types define the available (predefined) configuration space together with
its variable types. Variable instances can be used in the module template specification as
placeholder for different template variants. Finally at module deployment, configuration
instances assign concrete values to defined variables, whereas the available parameters are
given by the configuration type in the variability model.

<<SWC>>

Driving

lane

brake

<<SWC>>

Environment
Builder

<<SWC>>

Navigation

<<SystemModel>>

Route

<<ApplicationModuleTemplate>>

AutonomousDriving

<<Sensor>>

Distance

<<Sensor>>

Battery

<<Sensor>>

GPS

<<SWC>>

SensorFusion

<<MonitoringModel>>

Sensing
<<ContextModel>>

Environment

<<ContextModel>>

EnvironmentalMap
<<ExecutionModel>>

Effecting

<<Actuator>>

WheelController

<<SystemModel>>

BehaviorMode

outdoorInfrared

outdoorLaserScan

advFusion

Figure 5.69: Resolved variable configuration highlighted in gray

5.6.2. Runtime Adaptation

Beside the reconfiguration capabilities as described in the former section, Deurema supports
the dynamic adaptation of specified behavior. The dynamic adaptation capabilities are enabled
by the Deurema reflection concept defined by the metamodel in Figure 5.62. Therefore, a
feedback loop can directly manipulate an existing reflexible Deurema element, which can
be for example a deployed module and its corresponding template definition. Thereby, the
feedback loop must specify a corresponding reflect module operation, which specifies the
concrete part that is reflected and makes this part visible as runtime model in the local
feedback loop behavior. Afterwards, the feedback loop can manipulate the runtime model,
which has a corresponding effect on the underlying, reflexible element.

– 153 –

5. Deurema Modeling Language

++

<<SWC>>

Driving

lane

brake

<<SWC>>

Environment
Builder

<<SWC>>

Navigation

<<SystemModel>>

Route

<<ApplicationModuleTemplate>>

AutonomousDriving

<<Sensor>>

Distance

<<Sensor>>

Battery

<<Sensor>>

GPS

<<SWC>>

SensorFusion

<<MonitoringModel>>

Sensing
<<ContextModel>>

Environment

<<ContextModel>>

EnvironmentalMap
<<ExecutionModel>>

Effecting

<<Actuator>>

WheelController

<<SystemModel>>

BehaviorMode

outdoorInfrared

outdoorLaserScan

advFusion

<<Actuator>>

Communication
Uplink

++
++

Figure 5.70: Deurema adaptation

An example for an applied adaptation effect in the AutonomousDriving application module
template is shown in Figure 5.70. Additionally to the configuration explained in the previous
section, an actuator component named CommunicationUplink is created, which is denoted by
the ++ sign in the figure. The actuator reads the Route runtime model and provides it over a
wireless communication channel to the outside, e. g., to a public station that collects data
about the current position and route of cars. However, because the actuator component is
not defined in a configuration, it is added via an adaptation activity performed by another
Deurema module, e. g., the self-configuring feedback loop on top of the smart car. Furthermore,
because changes enforced by an adaptation cannot be foreseen in the general case, the analysis
of the adaptation effects is difficult. Consequently, the Deurema modeling language gives no
guarantees for the correctness of arbitrary adaptation changes. If the adaptation operations
are known, e. g., in form of graph transformation rules kept alive as runtime models, the
adaptation effects are analyzable and Deurema can reason about possible adaptation effects.
However, the Deurema execution environment enables the application of adaptation activities
changing arbitrary Deurema elements and handles arising race conditions of changes in the
underlying models. If the adaptation operation leads to a valid Deurema model, the change
will be considered during the execution.

Using system reconfiguration or adaptation depends on different factors. The specified
reconfiguration space and therefore, the effects of applying given configurations can be analyzed
before the real reconfiguration happens at runtime. Furthermore, the application or change of
a configuration is directly supported by Deurema, which ensures a correct deployment even
if bigger changes have to be applied. For example, the exchange of several components as
enabled by a composition variable implies the deployment of several Deurema elements such
as runnables, a task mapping, ports, and corresponding runtime model views. For realizing
the same effect using system adaptation, the developer has to ensure that the adaptation
operations are applied in the correct order and create valid Deurema models. Furthermore,
the developer must ensure that the adaptation process is not interrupted by other modules,
which might cause inconsistencies. However, due to the predefined configuration space,
reconfiguration may not be applicable for the need of dynamic decisions at runtime or if the

– 154 –

5.6. Deurema Reflection, Reconfiguration and Adaptation

reconfiguration space is impractically large. In this case, system adaptation is more flexible.
Moreover, known white box adaptation rules can be analyzed as well. Finally, the adaptation
mechanism suits well, if new adaption strategies are derived at runtime and cannot be planned
during the development of the adaptive system.

5.6.3. Meta-Adaptation

Meta-adaptation is a powerful concept that enables a runtime evolving of the adaptive behavior
inside the adaptation engine itself. Applying the Deurema reflection mechanism on higher
layers in the system template definition leads to a realization of the meta-adaptation concept.
Thereby, the reflection mechanism is combined with the Deurema adaptation capabilities,
whereas the basic principles are already introduced at the beginning of this section. Deurema
modules, systems and collaborations are the three reflective elements defined in the metamodel.
In the following, a meta-adaptation example for each of those element types is given.

Module Meta-Adaptation Example
A meta-adaptation example for a Deurema module is depicted in Figure 5.71. At the lowest
layer L-0, two smart car instances are deployed that are optimized by the self-configuring
feedback loop at the layer L-1 above. Up to this point, each pair of a smart car together
with its feedback loop follow the Deurema reflection mechanism as explained at the beginning
of this section. Therefore, the Self-Configuring feedback loop is aware of the internals of the
underlying smart car, which is represented in the local runtime models. On basis of this
information, the feedback loop can adapt the behavior of the smart car system underneath.

<<System>>

bmw:SmartCar

reflect

<<
La

ye
r>

>

L-
1

<<
La

ye
r>

>

 L
-0

<<delegate>>

<<BehaviorModuleTemplate>>

TrafficMonitor

<<SystemModel>>

Traffic

<<System>>

audi:SmartCar

reflect affect

<<delegate>>

affect

a

r
R1

<<
La

ye
r>

>

L-
2

<<FeedbackLoopModule>>

sc2:Self-Configuring

30s

<<FeedbackLoopModule>>

sc1:Self-Configuring

30s

<<SystemTemplate>>

Module Meta-Adaptation Example

Figure 5.71: Module meta-adaptation example

– 155 –

5. Deurema Modeling Language

Meta-adaptation is realized by the TrafficMonitor behavior module at the highest layer L-2 in
this example in Figure 5.71. The behavior module reflects both feedback loops and thus, parts
of the adaptation engine itself. The reflected information becomes visible in the Traffic runtime
model and can be accessed as well as manipulated accordingly. For example, the modeled
declarative rules in the behavior module template can monitor the Traffic system model to
find violations or analyzing the current traffic situation in the smart city. Each change in the
runtime model representation is delegated to the affect module operation, which synchronizes
the underlying feedback loops. Thus, the behavior module can adapt the feedback loops,
e. g., by exchanging an activity or the goals of the feedback loops, to optimize the overall
treatment of a smart car. As emphasized by the example, the difference between adaptation
and meta-adaptation depends on the layer in the system template. Conceptually, the same
reflection mechanism, the representation as runtime model, and the delegation of effects are
used in Deurema.

System Meta-Adaptation Example
Beside modules, meta-adaptation is also possible for systems within the adaptive SoS as
shown in Figure 5.72. The example considers a smart car, which is parked in a garage of a
smart home and plugged in a power supply station to load the battery. In this case, the smart
home must reason about the behavior as well as adaptation capabilities of the smart car.

<<
La

ye
r>

>

L-
1

<<
La

ye
r>

>

 L
-0 <<ApplicationModule>>

s:Sensing

reflect

<<
La

ye
r>

>

S
e

rv
ic

e

<<ApplicationModule>>

sec:SecurityService
<<ApplicationModule>>

sm:SmartMeter

<<SystemTemplate>>

SmartHome

affect

<<delegate>> <<delegate>> <<delegate>>

<<System>>

audi:SmartCar

<<
La

ye
r>

>

L-
2

reflect affect

<<SystemTemplate>>

System Meta-Adaptation Example

Figure 5.72: System meta-adaptation example

As shown in Figure 5.68, the smart car can reconfigure its behavior towards the charging
of its batteries. If the smart home wants to change the general charging function according
to the specifics of the power supply station, it must first reflect the car system to retrieve
the desired information. In this case, the smart home can for example look at the variability
model of the AutonomousDriving module to reason about the reconfiguration possibilities of the

– 156 –

5.6. Deurema Reflection, Reconfiguration and Adaptation

smart car. In a next step, this information is transferred to an internal security service and a
smart meter application within the smart home system. The security component uses the
information as read-only and thus, is aware of the fact that a car is currently parked in the
garage. In contrast, if the smart meter application decides that the charging capabilities of
the car can be optimized, it can directly manipulate the corresponding runtime model, where
the causal connection ensures the synchronization with the smart car instance below.

Collaboration Meta-Adaptation Example
The third and last meta-adaptation example in Figure 5.73 shows the use of reflected infor-
mation in a collaboration. Therefore, the platoon collaboration example as described above
is extended by a third layer. At this layer, a TrafficData collaboration instance is deployed
together with two TrafficMonitor behavior module instances that play a Server respectively Client
role. For illustration purpose, an excerpt of an interaction part of the server role is depicted
inside the collaboration.

<<Collaboration>>

td: TrafficData

<<InteractionTemplate>>

ReflectionDelegate

<<Plan>>

Optimize

<<SystemModel>>

PlatoonCollaboration

r a

<<
R

ol
e>

>
 S

e
rv

e
r

<<delegate>> <<delegate>>

l:Leader

<<FeedbackLoopModule>>

sc1:Self-Configuring

<<System>>

audi:SmartCar

<<FeedbackLoopModule>>

sc2:Self-Configuring

<<System>>

bmw:SmartCar

f:Follower

<<
La

ye
r>

>

L-
1

<<
La

ye
r>

>

 L
-0

<<
La

ye
r>

>

L-
2

<<BehaviorModule>>

tm1:TrafficMonitor

5m

<<BehaviorModule>>

tm2:TrafficMonitor

5m

s:Server

c:Client
 <<delegate>>

<<Collaboration>>

p: Platoon

<<SystemTemplate>>

Collaboration Meta-Adaptation Example

reflect affect reflect affect
30s 30s

Figure 5.73: Collaboration meta-adaptation example

– 157 –

5. Deurema Modeling Language

The reflection and affection in the collaboration example follow the same rules as explained
for the system and module meta-adaptation example. Thus, the reflected Self-Configuring
feedback loop module and Platoon collaboration are delegated to a runtime model view in
the TrafficData collaboration. More precisely, collaboration interactions contain activities that
further manipulate runtime model views. Therefore, the reflected knowledge is delegated to
those collaboration interactions. In the example, there are two reflect module operations
that are delegated to a combined view in the PlatoonCollaboration runtime model. In general,
Deurema supports arbitrary combinations of reflect module operation and the delegation of
this information to one or multiple runtime model views. Furthermore, the Optimize activity
in the example affects only parts of the reflected knowledge, which is the underlying Platoon
collaboration.

Reconfiguration and Adaptation Discussion
In summary, Deurema supports reconfiguration of the adaptive behavior that is defined by
different variable types in the template definitions. Furthermore, variables can be configured
by choosing a variant as defined in a variability model. Beside reconfiguration, Deurema
facilitates system adaptation and meta-adaptation by providing reflecting and affecting
module operations. The reflected knowledge becomes visible in the local template respectively
collaboration interaction definition due to the delegation concept, whereas Deurema maintains
the causal connection. Deurema considers reflection/affection relationships between elements
as first class entities that enables further analysis of adaptation effects. Furthermore, the
collaboration and reflection mechanism are two powerful concepts to enrich the knowledge
about other modules or subsystems. On the one hand, collaborations should be used between
modules at one and the same layer in the system, which indicates an interaction on an equal
level of abstraction. On the other hand, the reflection mechanism is designed to enrich the
local knowledge about modules, systems, and collaborations of the layer below, which can
be manipulated afterwards. However, Deurema does not restrict the developer to use both
concepts in exactly this way. Therefore, collaboration can be used between modules on
arbitrary layers. Furthermore, the reflect/affect mechanism between two reflective elements on
one and the same layer will work in the same way as outlined above. Using the collaboration,
reconfiguration, and adaptation concepts of Deurema leads to different design decisions by
modeling the adaptation engine, which may result in bad system architecture design.

5.7. Deurema Modeling Language Discussion
This section summarizes the concepts of the Deurema modeling language. At first, a com-
prehensive smart car and smart city example subsume the introduced concepts above to a
multi-layered adaptive system. Thereby, the dependencies between modules, (sub)systems,
and collaboration are explicitly modeled. Afterwards, important design decisions are discussed
that influence the concepts of the Deurema modeling language approach. Beside already
determined design decisions, possible extensions of the modeling language are outlined by
pinpointing to the appropriate concepts. This section closes with a discussion about the
coverage of modeling language requirements by Deurema as derived in Chapter 3.

5.7.1. Summary of Deurema concepts

The overall adaptive behavior of the smart car running example consists of three layers as
depicted in Figure 5.74. The lowest layer L-0 represents the control software for the physical

– 158 –

5.7. Deurema Modeling Language Discussion

w
c:

W
h

ee
l

C
o

nt
ro

lle
r

m
c:

M
ot

o
r

C
o

nt
ro

lle
r

<<
So

ft
w

a
re

M
o

du
le

>>

fr
o

nt
Ri

gh
t:

W
h

ee
l

<<
A

p
p

lic
a

ti
o

nM
od

ul
e>

>

al
c:

A
LC

<<
So

ft
w

a
re

M
o

du
le

>>

m
ot

or
:M

ot
o

r

<<
Fe

ed
b

ac
kL

o
op

M
o

d
ul

e
>>

as
rF

ro
nt

:A
SR

<<
So

ft
w

a
re

M
o

du
le

>>

fr
o

nt
Le

ft
:W

h
ee

l
<<

So
ft

w
a

re
M

o
du

le
>>

re
ar

R
ig

h
t:

W
h

ee
l

<<
So

ft
w

a
re

M
o

du
le

>>

re
ar

Le
ft

:W
h

ee
l

<<
Fe

ed
b

ac
kL

o
op

M
o

d
ul

e
>>

ab
s:

A
B

S

1
0

0m
s

1
s

1
0m

s
1

0m
s

1
0m

s
1

0
m

s

<<
A

p
p

lic
a

ti
o

nM
od

ul
e>

>

ad
:A

u
to

n
om

o
us

D
ri

vi
n

g

<<
B

eh
av

io
rM

o
du

le
>>

es
p

:E
SP

<<
Fe

ed
b

ac
kL

o
op

M
o

d
ul

e
>>

as
rR

ea
r:

A
SR

<<
Fe

ed
b

ac
kL

o
op

M
o

d
ul

e>
>

as
r:

A
SR

re

fl
ec

t

 a
ff

ec
t

re
fl

ec
t

re
fl

ec
t

re
fl

ec
t

re

fl
ec

t

<<
C

ol
la

b
o

ra
ti

o
n

>>

s:
 S

ta
b

ili
ty

re
fl

ec
t

a
ff

ec
t

<<
C

ol
la

b
o

ra
ti

o
n

>>

bb
: B

la
ck

B
oa

rd

b
c:

B
o

ar
d

Co
n

tr
o

lle
r

c 1

:C
o

nt
ri

bu
te

r

c 2
:C

o
nt

ri
bu

te
r

c 3
:C

o
nt

ri
bu

te
r

c 4
:C

o
nt

ri
bu

te
r

1
0

0m
s

2
0

0m
s

2
0

0m
s

<<Layer>>

L-1
<<Layer>>

L-0
<<Layer>>

L-2

<<
Sy

st
em

T
em

p
la

te
>>

Sm
ar

tC
ar

re
fl

ec
t

te
m

pl
at

e

in
st

a
nc

e
<<

Sy
st

em
>>

au
di

:S
m

ar
tC

ar

<<
Sy

st
em

>>

bm
w

:S
m

ar
tC

ar

Fi
gu

re
5.

74
:

Sm
ar

t
ca

r
ru

nn
in

g
ex

am
pl

e
m

od
el

ed
in

D
eu

re
m

a

– 159 –

5. Deurema Modeling Language

parts of the smart car as black box software modules, which are the four wheels and the
motor. Each wheel has a time trigger with a period of ten milliseconds, whereas the contained
control software of each wheel runs independently from the other wheels. The black box
software module representing the motor control has a period of one hundred milliseconds.
Therefore, the physical parts of the smart car are controlled very fast as typical for embedded
and cyber-physical systems.

At the middle layer in the smart car system, the traction control functionality ASR and ABS
are realized by means of feedback loop modules supervising the four wheels. Furthermore, an
autonomous driving functionality is encapsulated in an appropriate application component
module. With respect to the traction control, there are two feedback loops controlling the
front wheels and rear wheels independently from each other. Thereby, the feedback loops
are triggered by a Wheelspin event, which points to the Monitor initial node of the feedback
loops. In this example, one trigger event from a wheel is enough to enable the feedback loop
on top (or semantic for the module trigger condition). In contrast, the ABS feedback loop
module is not triggered by an event. It directly uses the Deurema reflection mechanism to
retrieve the desired information from each wheel. Because each module must have at least one
trigger in Deurema, the ABS feedback loop has a timing trigger with a period of one hundred
milliseconds. Thus, the ABS module can reflect information from the wheels and perform its
internal feedback loop behavior not faster than every one hundred milliseconds. With focus
on the autonomous driving functionality, the corresponding application module reflects all
software modules on the layer L-0 and has an additional time trigger with a period of two
hundred milliseconds. Therefore, there are three feedback loop modules in the middle layer
of the smart car, which follow the modeling approach of using adaptation activities for the
specification of the adaptive internal behavior. Furthermore, there is one application module
that uses the component-based development paradigm for its behavior specification.

The third layer of the smart car contains the higher functionalities of the adaptation
behavior. On the left, a central ASR feedback loop is triggered by the two traction control
loops at the middle layer. Therefore, the four wheels and the three traction control feedback
loops, where the corresponding modules are distributed over all three layers, realize a typical
hierarchical control pattern. Thereby, the control functionality is clearly separated into distinct
parts (front wheels and rear wheels) and controlled by one central instance at the end of the
hierarchy. Furthermore, the control loop on the higher layer performs only if necessary, which
is indicated by a trigger event from the modules on the lower layer.

Another important aspect of the third layer is the use of the Deurema collaboration
concept. The Stability collaboration enables an interaction between both main traction control
functionalities within the smart car that are the ASR and ESP module. The former is responsible
for the wheels, whereas the latter supervises the motor of the smart car. Therefore, the
collaboration between both enables a joint interaction, whereas both modules may improve
their local control functionality.

The BlackBoard collaboration realizes the corresponding design pattern, where a central point
of knowledge is iteratively updated by different entities. Thereby, the autonomous driving
module is the control entity of the blackboard, because it needs the collected information
to optimize the driving of the smart car. Indicated by the role type, all other participants
of this collaboration contribute information, which are for example the high level traction
control module (ASR), the ABS module, and an adaptive light control module (ALC). The
different specifications of both collaborations show the broad applicability of joint interaction
in Deurema. Thereby, the Stability collaboration enables the interaction between modules on

– 160 –

5.7. Deurema Modeling Language Discussion

one and the same level, whereas the BlackBoard collaboration involves multiple participants
that are located on different architectural layers in the smart car system template. Both
variants are supported by Deurema.

With focus on the reflection mechanism, the normal use case is that a module on a higher
layer reflects/affects the module on the layer below as modeled for the combination of the
Motor and AutonomousDriving module. However, Deurema does not restrict the reflection to the
normal use case as indicated by the reflection of the Motor module at layer L-0 by the ESP
module at layer L-2. In general, modeling such a reflection dependency over multiple layers is
a design flaw, because it is a violation of the specified layered system architecture. However,
in some cases those conscious violations are necessary for a fast reaction in embedded systems,
where higher functionalities must directly interact with low level, physical components. Thus,
those cases are supported by Deurema, too.

Beside the patterns and the used Deurema concepts in the smart car architecture, there
are interesting key aspects in the layered architecture of the smart city system template as
depicted in Figure 5.75. At first, the beforehand modeled smart car system template can be
reused and integrated into the adaptive behavior of the smart city. In the example, there are
two deployed smart car instances audi and bmw at the lowest layer L-0 in the smart city system
template. The possibility of deploying (instantiating) systems within a system hierarchically
is a core concept in Deurema towards the specification of the overall adaptive SoS behavior.
Of course, beside system templates, module templates can be deployed multiple times and
thus, reused in the layered architecture specification.

The basic concepts for module triggering and reflection within the smart city follow the
same line of argument as for the smart car system and thus are not discussed in detail again.
However, there is a combination of both concepts, which first appears in the smart city system
template between the LocalTrafficMonitoringSystem software module at the lowest layer and the
Self-Healing feedback loop module at the middle layer. At first, the software module on the
lower layer triggers the feedback loop module above via the Repair event. Afterwards, the
self-healing feedback loop reflects the triggering module to enhance the local knowledge and
retrieve the situation that leads to the repair event (e. g., to detect the failure of the module
below). This combination has the advantage that the higher feedback loop must not run
periodically, which may consume unnecessary computational resources, but rather is triggered
in the case of a failure. Furthermore, the feedback loop can directly reflect the information of
interest at this point in time, where the failure occurs, which enables an appropriate affecting
of the erroneous module below.

Another special modeled combination is the use of the Deurema reflection mechanism
between modules on one and the same layer instead of between different layers of the adaptive
architecture. The layer L-2 contains such a combination, where the TrafficMonitor behavior
module reflects the TrafficOptimization feedback loop module. As shown in the example,
the feedback loop module realizes the observer role of the platoon collaboration instance.
Therefore it has additional information about the current platoon. Instead of sharing this
information with the TrafficMonitor over another collaboration, the behavior module directly
retrieves the desired information by reflecting the feedback loop and the contained runtime
models. Although, this scenario is supported by Deurema, it is a clear design flaw and
should be replaced by an appropriate collaboration. The advantage of a collaboration is that
the TrafficOptimization exactly knows and controls, which local knowledge is shared over the
corresponding interaction. In the reflection case, from the perspective of the reflected module,

– 161 –

5. Deurema Modeling Language

<<
System

>>

p
o

tsd
a

m
:Sm

artCity

P
o

tsd
am

insta
nce

B
erlin

<<
System

>>

berlin
:Sm

artC
ity

<<
System

>>

audi:Sm
artCar

<<
System

>>

bm
w

:Sm
artCar

s
1 :Statu

s

<<Layer>>

L-2
<<Layer>>

L-1
<<Layer>>

L-0

l:Lead
er

<<
C

ollab
o

ratio
n

>>

p
: P

latoo
n

f:Follo
w

e
r

o
:O

bserver

<<
C

ollab
o

ratio
n

>>

o
: O

rg
an

izatio
n

m
:M

aste
r

s
1 :Slave

s
2 :Slave

<<
Feedb

ackLo
op

M
o

d
ule

>>

sh
1 :Self-H

ealing
<<

Feedb
ackLo

op
M

o
d

ule
>>

sh
2 :Self-H

e
alin

g

reflect
a

ffect

reflect
a

ffect
r

1 :R
e

p
air

r
2 :R

e
p

air
reflect

reflect
a

ffect
a

ffect

reflect

<<
System

T
em

p
la

te>>

Sm
artCity

<<
Softw

a
reM

o
du

le>>

h
1 :Sm

artH
om

e

3
0

s

<<
Softw

a
reM

o
du

le>>

h
2 :Sm

artH
om

e

3
0

s

<<
Softw

a
reM

o
du

le>>

tm
s

1 :LocalTraffic
M

o
n

ito
rin

gSystem
3

0s

<<
Softw

a
reM

o
du

le>>

tm
s

2 :Lo
calTraffic

M
on

itorin
gSystem

3
0

s

<<
Feedb

ackLo
op

M
o

d
ule

>>

sc
1 :Self-C

onfigu
rin

g

3
0

s

<<
Feedb

ackLo
op

M
o

d
ule

>>

sc
2 :Self-C

onfigu
rin

g

3
0s

<<
B

eh
aviorM

o
du

le>>

tm
:TrafficM

on
itor

5
m

<<
Feedb

ackLo
op

M
o

d
ule

>>

to
:TrafficO

ptim
ization

3
0

s

<<
Feedb

ackLo
op

M
o

d
ule

>>

eon
:EnergyO

p
tim

ization

6
0s

<<
B

eh
aviorM

o
du

le>>

em
:EnergyM

o
nito

r

1
0

m

D

D

Figure
5.75:

Sm
art

city
running

exam
ple

m
odeled

in
D

eurem
a

– 162 –

5.7. Deurema Modeling Language Discussion

it does not even know that information is retrieved by another module, which might cause
further security violations by reading sensitive data.

Finally, the last typical design principle that can be observed in both template definitions
of the examples in Figure 5.74 and Figure 5.75 pinpoints to the timing of modules. Typically,
fast and reactive adaptation behavior is specified at the lower layers in the system architecture
to cope with local problems that must be quickly solved. In contrast, higher layers are often
used to place long term optimization or strategical orientations of the adaptive behavior,
which runs less often. Reasons for longer periods of such strategic modules are the complexity
of deriving long term adaptation strategies, which may take a long time of planning, or that
the underlying adaptation effects need some time before a benefit of the overall behavior can
be monitored.

In summary, the smart car and smart city example show a seamless integration of different
module types, which directly corresponds to different development approaches of specifying
adaptive behavior, into the layered, adaptive architecture of the system template. Furthermore,
system templates can be deployed, which enables hierarchies of systems towards a specification
of the overall, emergent adaptive SoS behavior. Thereby, interactions between modules and
systems are considered as first class concept in form of collaboration. Finally, the triggering
and reflection mechanisms explicitly determine the dependencies between modules and system
instances in Deurema.

5.7.2. Design Decisions
The modeling language design decisions are motivated by the characteristics of adaptive SoS
and the derived requirements in Chapter 3. First of all, the explicit modeling of the adaptive
behavior in a SoS (R–01) is a major aim of this thesis. Following the MDE paradigm, Deurema
applies the generic megamodel concept. A megamodel refers to a model that contains other
models and relationships between these models [37, 97]. Therefore, Deurema considers models
as first class entities, whereas the Deurema megamodel maintains all model elements and the
relationships between those. On the architectural level, modules encapsulate the adaptive
behavior and can be deployed in the layered architecture of a system. Beside modules, a
system may contain other systems, which allows the hierarchical definition of the overall SoS
architecture. Thereby, Deurema strictly follows the MDE approach and considers modules
and systems as models contained in a megamodel. Furthermore, the relationships between
modules and systems, such as triggering or reflection, are explicitly modeled and maintained
in the megamodel, too. Thus, the megamodel concept is the basis for reasoning about the
specified Deurema models.

On module level, there are two dimensions for the specification of the adaptation behavior
that are the concrete adaptation steps and the available knowledge, where the adaptation
logic can be applied on. Concerning the adaptation steps, Deurema provides adaptation
activities that form a feedback loop following the MAPE blueprint from Kephart et al. [110].
This feedback loop concept clearly targets the explicit modeling of the adaptation logic
in self-adaptive systems, which is specified in Deurema Feedback Loop Diagrams (FLD).
Furthermore, a SoS consists of several system types (C–1.1) from different domains, such as
SAS, embedded systems, or CPS. Beside the feedback loop mechanism, Deurema provides
two additional concepts for describing and integrating the adaptation aspects from these
different system types (R–20). First, Application Component Diagrams (ACD) follow the
component-based development approach as widely adopted in the embedded, robotic and
automotive domain. Second, Behavior Rule Diagrams (BRD) offer the powerful concept of

– 163 –

5. Deurema Modeling Language

using graph transformation rules for the declarative definition of the adaptation effects by
means of trigger-action conditions, which perfectly corresponds to the ”everything is a model”
design decision above and the graph representation of models. Therefore, the developer can
choose an appropriate modeling concept that is encapsulated in a corresponding module
template type, which facilitates the integration of different domains by defining the adaptive
SoS behavior. On the one hand, each module template clearly separates the different domain
concepts on module level. Therefore, the concepts cannot be mixed up by the concrete
modeling of the adaptation steps. On the other hand, arbitrary module instances from the
three different Deurema modeling concepts can be deployed on the layered system architecture,
which allows a reuse of the template definition and a mixture of domain specific concepts
at the architectural system level. However, Deurema supports exactly the three concepts of
feedback loop, component-based and graph transformation rule modeling for a wide adoption
of the modeling language in the domain specific systems and problems within the overall SoS.
Additional concepts, which are not captured by these three approaches, must be modeled in
Software Module Diagrams (SMD) and thus, integrated into Deurema as black box behavior.
If other development paradigms should be integrated into Deurema, such as the agent-based
development approach, a new module template type must be defined. Afterwards, such
module instances can be integrated and mixed in the system architecture as done for the
other template types in Deurema.

Concerning the knowledge specification in module templates, Deurema is designed to use
runtime models (R–09) as introduced by [32, 38]. Each module template integrates runtime
information in the same way in form of a partial local view that refers to a runtime model.
Adaptation activities can access and manipulate runtime model views. Furthermore, each
runtime model has a purpose, which must follow the presented categorization. The contained
information in the runtime model is domain specific and defined by a metamodel. The purpose
and the metamodel of each runtime model contribute to the semantic (R–10) of the runtime
model, which enables its manipulation by well-defined Deurema model operations. Thereby,
the Deurema megamodel maintains the runtime model and the relationships that define the
corresponding views in the module templates.

An adaptive SoS consists of independent systems (C–4), which join or leave the overall SoS
at beforehand unknown points in time (C–1). Due to these characteristics, systems are always
considered as independent in Deurema. As a consequence, a system cannot directly trigger or
influence another system entity. The design of the Deurema modeling language considers two
possibilities of defining the inter-system/module dependencies. First, the Deurema reflection
mechanism (R–16, R–17) is designed to retrieve information from systems/modules contained
in a lower layer and manipulate (affect) the inner structure of those as needed by the current
goals of the SoS. Second, Deurema considers system and module collaboration as first class
entities (R–07, R–08), whereas the interaction concept is designed for systems/modules
that are placed on the same architectural layer. For systems, the Deurema role and view
delegation concept transfer the corresponding responsibilities and runtime information to
modules contained in the inner system architecture.

As design decision, the modeling of the collaboration related behavior is separated from the
modeling of the local adaptation behavior in module templates to foster separation of concerns
(R–07) and enable the parallel development of the adaptive SoS. Later, the collaboration
specific behavior must be integrated into the local module template definition in form of
interactions that hide details of the concrete role protocol behavior. The advantage of this

– 164 –

5.7. Deurema Modeling Language Discussion

approach is that there is no break in the abstraction level, whereas Deurema can clearly
distinguish between local adaptation activities and collaboration interactions.

Finally, Deurema uses a variable concept for the specification of possible reconfiguration
points within the module template (R–15). Thereby, different variable types are defined
by the modeling language that corresponds to the specifics of the development paradigm
in the supported module templates. Furthermore, a variability runtime model determines
the possible configuration space of the adaptive SoS, whereas the concrete configuration is
assigned during module instantiation and can be changed during the lifetime of the system.
However, the predefined variable types focus on the existing Deurema module templates and
can be generically applied for system reconfiguration. On the one hand, if additional variation
points are necessary, e. g., by introducing another module template, the existing variable types
must be extended accordingly. On the other hand, the Deurema reconfiguration mechanism
must not be changed because it operates on the abstract variable concept and not on module
template specific extensions.

5.7.3. Coverage of Requirements
As outlined above, the modeling language requirements are derived from the adaptive SoS
characteristics in Chapter 3. This section compares the Deurema modeling concepts with
the derived model language requirements as follows. The adaptation logic is explicitly
determined (R–01) in Deurema Feedback Loop Diagram (FLD), Application Component
Diagram (ACD), and Behavior Rule Diagram (BRD). Thereby, the intra-loop coordination
(R–02) of adaptation activities within a feedback loop can be modeled. Multiple feedback
loops (R–03) are considered by the Deurema module concept. Furthermore, modules are
independent (R–05) or can be triggered (R–04), whereas Deurema supports modeling concepts
from different domains (R–20). The delegation of tasks (R–06) is supported by the Deurema
collaboration concepts, which further separates the interaction behavior (R–08) by means
of an abstract role concept (R–07). The knowledge inside the adaptive SoS is captured by
runtime models (R–09), whereas a corresponding purpose (R–10) defines the intention of the
contained information. Furthermore, Deurema explicitly supports partial knowledge (R–11)
realized by the runtime model view concept. Additionally, runtime models can be exchanged
(R–12) during system collaboration, whereas Deurema supports different interaction messages
(R–13) and synchronization mechanisms (R–14). With focus on the adaptive capabilities,
Deurema supports system reconfiguration (R–15) as first class concept. Furthermore, the
introduced reflection mechanism facilitates the adaptation (R–16) and meta-adaptation (R–17)
of systems as well as modules.

In summary, Deurema covers all of the requirements except of the missing discussion about
the coexistence of offline and online adaptation (R–18). With respect to the goals and the
focus of this thesis, the coexistence of adaptation activities is not discussed in detail. However,
a comprehensive discussion can be found for the predecessor Eurema modeling language
in [175], whereas the general concepts are adopted by Deurema. Nevertheless, Deurema covers
all major system characteristics, which are reflected by the derived requirements, by offering
modeling concepts for the open, dynamic and collaborative nature of the adaptive SoS.

After the introduction of the modeling language concepts in this chapter, the Deurema
analysis capabilities on basis of a modeled SoS architecture are investigated in the next
chapter.

– 165 –

6. Analysis

This chapter discusses the analysis capabilities of an adaptive SoS modeled with the Deurema
approach. As sketched in Figure 6.1, the basic idea is the investigation of a Deurema model
by means of static analysis rules during the development of the adaptive SoS. Thereby, the
analysis supports the investigation of all Deurema entities as introduced in the last chapter.
In the example sketch in Figure 6.1, the smart city system template is analyzed. Furthermore,
the system template description comprises all contained subsystems, module instances together
with their template description, collaboration instances together with the underlying templates
related to the collaboration as for example the structure and choreography specification, and
the relationships between systems, modules, and collaborations. Thus, all parts of the adaptive
SoS can be individually analyzed during the development by applying static rules on the
Deurema models. In general, the Deurema analysis helps the system developer to understand
the modeled SoS architecture by pinpointing to different metrics in the corresponding system
or module template. This enables the detection of system properties such as *-awareness or
self-* characteristics of the adaptation logic. Furthermore, typical design patterns such as
feedback loops, which are designed according to the MAPE approach, are retrieved from the
modeled templates. In this context, the analysis of the availability of knowledge by means
of local views in the module templates gives insides into the knowledge distribution in the
system template and thus, of the overall SoS. Finally, looking at collaborations, distributed
feedback loops, the knowledge propagation, and the influence between subsystems becomes
visible by applying the Deurema analysis.

<<
La

ye
r>

>

G
o

a
l

<<
La

ye
r>

>

A
d

a
p

ti
v

e
<<

La
ye

r>
>

So
ft

w
ar

e

<<SystemTemplate>>

SmartCity

<<System>>

audi:SmartCar

<<FeedbackLoopModule>>

to:TrafficOptimization

<<FeedbackLoopModule>>

sc1:Self-Configuring

<<ApplicationModule>>

ad:AutonomousDriving

<<FeedbackLoopModule>>

sc2:Self-Configuring

reflect affect reflect affect30s 30s

30s

l:Leader

<<Collaboration>>

p:Platoon

f:Follower

o:Observer

Analysis

Rules

Figure 6.1: Smart city running example: Deurema analysis

After the introduction of the Deurema analysis concept, basic metrics concerning the analysis
of the causality, knowledge, and adaptation purpose are discussed in Section 6.1. On basis of
the fine-grain analysis rules and the corresponding basic metrics, advanced analysis rules are

– 167 –

6. Analysis

introduced in Section 6.2, which enables the reasoning about complex system dependencies.
At the highest level of abstraction, architectural patterns and design flaws in the modeled
adaptive SoS are discussed in Section 6.3. Finally, this chapter closes with a discussion about
the implementation of the analysis concepts and used underlying technology in Section 6.4.

In the following, the Deurema analysis concept is introduced as depicted in the overview in
Figure 6.2. In the context of this thesis, an adaptive SoS architecture modeled with Deurema
is analyzed by means of declarative analysis rules. Therefore, this thesis focuses on a static
analysis technique, where the corresponding analysis rules are evaluated on the specified
Deurema models. Furthermore, analysis rules are defined by graph patterns that can be
directly executed, which is enabled due to the formal definition of the modeling language
concepts by the Deurema metamodel. Each analysis rule defines a key point of interest, as for
example a structural design pattern within the layered architecture of the SoS. In general,
this key point of interest (analysis rule) is a view on the complete Deurema model describing
the analysis aspect. The Deurema execution environment applies the analysis rules, which
corresponds to search for a match of the LHS of the defined graph pattern in the Deurema
model (cf. introduction of graph pattern matching in the preliminaries in Section 2.2.5). Thus,
the defined analysis aspect is searched in the modeled SoS. A positive match of the analysis
rule is directly annotated in the Deurema model. Therefore, each match of an analysis rule
is called annotation for the rest of this thesis. Furthermore, the described analysis aspect
belongs to an annotation type. As a consequence, annotation types define the overall available
analysis aspects, whereas the corresponding annotation (instance) marks the occurrence of
the analysis aspect in the Deurema model and thus, directly pinpoints to the occurrence of
the key point of interest in the adaptive SoS architecture.

1 instances

0..*type

another key point
of interest

(view2)
R3

R4

key point
of interest

(view1)
R1

R2

...

Annotation
Type

Annotation

Deurema
Metamodel

Adaptive SoS modeled by Deurema

<<TemplateType>>

Module1

<<TemplateType>>

Module2La
ye

r 1
La

ye
r 0

basedOn

basedOn

belongsTo

belongsTo

annotatedIn

viewOn

viewOn

0..*
refersTo

0..*
refersTo

Figure 6.2: Deurema analysis overview

Of course, multiple analysis rules can correspond to one annotation type, if for example
one and the same analysis aspect is represented by different variants of a graph pattern. For
example, a design pattern can have different variants in the concrete realization and thus,
must be represented by different analysis rules, where all rules belong to the same design

– 168 –

6.1. Basic Metrics

pattern (analysis aspect). Finally, low level analysis aspects can be combined to more complex
aspects, whereas the latter depends on the occurrence of the former. Therefore, the complex
annotation types refer to the low level annotation types as depicted by the refersTo reference
in the AnnotationType class in Figure 6.2. As a consequence, the Deurema analysis directly
supports the retrieval of hierarchical assembled analysis rules.

It has to be noted that the following discussed analysis patterns of this section are simplified
for explanation purpose. The concrete realization and concrete syntax of the analysis rules is
more complex by using the corresponding software tool as discussed in Section 6.4. However,
the complete hierarchy of annotation types together with the concrete realized analysis rules
can be found in the Appendix C.

6.1. Basic Metrics
Starting with the basic analysis rules, Deurema considers three different aspects. At first, the
analysis of causal dependencies is determined, e. g., one feedback loop triggers another one.
Second, Deurema provides rules to investigate the knowledge distribution in the adaptive SoS.
Third, the adaptation purpose of Deurema elements can be analyzed, for example if a feedback
loop realizes a full MAPE cycle or follows other adaptation patterns. In the following, the
analysis rules for each of the three basic aspects are discussed. These basic metrics can be
used to derive more complex dependencies as well as architectural patterns or design flaws
afterwards.

6.1.1. Causality

In the context of this thesis, a Deurema element (e. g., an adaptation activity) can be seen
as cause for the effect of another element, if the former is (partly) responsible for triggering
the effect of the latter. Thus, a causal dependency between both Deurema elements arises.
Investigating causal dependencies in the adaptive SoS is important for understanding the order
of adaptation effects. If for example the emerged adaptation effect contradicts the expected
modeled behavior, a causal dependency analysis may pinpoint to the root element, whereas the
adaptive behavior deviates from the expected specification. The analysis of the causality at the
level of a module template comprises the intra-loop coordination of feedback loop modules, the
causal order of runnables in application component modules, as well as causal dependencies
between graph transformation rules in behavior modules. Furthermore, on system level, causal
dependencies between modules and collaborations are investigated by looking at the Deurema
inter-loop coordination mechanisms. In the following, causal dependency analysis rules are
introduced starting at fine-grain, simple rules in single module template types and increase
the abstraction level towards a causal dependency analysis between Deurema modules and
systems.

Feedback Loop Diagram
Deurema feedback loop diagrams define the intra-loop coordination between adaptation
operations by means of the control flow as shown in the metamodel in Figure 5.20. On basis
of the control flow, two kinds of causal dependencies can be defined that are a direct casual
dependency between two successive operations and an indirect causal dependency looking at
the transitive closure of direct causal dependencies. Additionally to the transitive closure,
paths of adaptation activities, which corresponds to the causal execution sequence of the
feedback loop, can be denoted.

– 169 –

6. Analysis

+

end

<<Purpose>>

Activity1

<<Purpose>>

Activity2

cd1:CD

start

cd2:CD cd3:CD
start

end start
end

cld2:CLD

level : 3

cld1:CLDstart

end

dependency

start

end

dependency

nextClosureDependency
(CLD)

Operation Operation
nextCausalDependency

(CD)

Annotation Types for Causal Dependencies

Causal Dependency Example

DecisionNode Operation
nextConstraintCausal

Dependency (CCD)

level : 2

dependency

dependency dependency

Causal
Dependency

Causal
Dependency

Figure 6.3: Causal dependencies in a FLD

At the top in Figure 6.3, the pattern for the simple causal dependency between two
operations in a feedback loop is shown, where the first operation refers to the subsequent
operation via the next reference defined in the Deurema metamodel. As discussed above, each
time the pattern is found in the Deurema model, the inferred knowledge is marked with a
CausalDependency annotation. For the rest of this thesis, the concrete syntax for an annotation
type is a rounded rectangle with dashed border as shown in the upper left in Figure 6.3.
Furthermore, annotation instances follow the UML object annotation, which refers to the
corresponding annotation type. The result of an application of the simple causal dependency
pattern on a Deurema example model is shown at the bottom in Figure 6.3. There are three
inferred direct causal dependencies cd1, cd2, and cd3 in the example.

A specialized type of a direct causal dependency between two operations is the Constraint-
CausalDependency, where the first operation is a decision node followed by an arbitrary operation
of the feedback loop. Decision nodes branch the control flow in several paths depending on
the specified branch condition, which leads to multiple possible adaptation paths inside one
feedback loop.

The direct causal dependencies are the basis to compute the transitive closure of the overall
causality between feedback loop operations. Thereby, the size of the closure depends on the

– 170 –

6.1. Basic Metrics

amount of operations that follow a given starting point operation. Furthermore, a causal
ClosureDependency is defined by at least two subsequent simple causal dependencies. The
defined closure dependency pattern in Figure 6.3 is an example for a complex annotation type,
because it aggregates pairs of the beforehand defined causal dependency annotation type.
Therefore, the occurrence of a closure dependency depends on the existence of normal causal
dependencies in the feedback loop. Thus, the defined closure dependency pattern leads to the
retrieval of all partial closures for all operations in the feedback loop. The example in the
figure shows all causal closure dependencies for the initial node of the modeled feedback loop.
For the sake of visibility, closure dependencies for all other operations in the feedback loop
example are omitted, but are of course retrieved during the analysis by the defined pattern.
However, the initial node is the starting point for two closure dependencies cld1 and cld2.
The size of the causal closure is annotated by the level attribute in the inferred dependency
annotation. Consequently, cld1 denotes the partial closure beginning from the starting node
to the Activity2 operation in the feedback loop. It references the corresponding direct causal
dependency annotations, where the amount of direct causal dependencies corresponds to the
size of the causal closure (value of the level attribute in the annotation). Straight forward,
the cld2 annotation in the example denotes the complete transitive causal closure beginning
at the initial node and ending at the final node of the feedback loop, which comprises three
direct causal dependencies.

nextnext

*

end

start end

OperationPath

<<Purpose>>

Activity1

<<Purpose>>

Activity2

<<Purpose>>

Activity3

<<Purpose>>

Activity4

InitialNode FinalNode

p1:Path

p2:Destruction
Path

start

nextnext

*

Operation
Destruction

Path
InitialNode

Destruction
Node

level : 4

Annotation Types for Path Dependencies

Path Dependency Example

Figure 6.4: Causal dependency paths in FLD

– 171 –

6. Analysis

Where the direct and closure causal dependencies are basic, but imprecise metrics, a path
annotation denotes one possible trace of executing a feedback loop beginning at an initial node
and ending in a final node. Therefore, each path annotation refers to one modeled adaptation
behavior of the modeled feedback loop, which can be used to detect unintended adaptation
effects (paths). The simplified pattern of a Path dependency together with an example are
shown in Figure 6.4. The pattern defines that each path must start with an initial node, can
have arbitrary number of subsequently executed operations, and ends with a final node.

A special path is the DestructionPath, where the end operation is a destruction node. An
executed feedback loop, which reaches a destruction node, is destroyed afterwards and thus, can
be used to model one-shot adaptation behavior as comprehensively discussed in Section 5.3.2.
However, due to the possibility of modeling different adaptation branches within one feedback
loop using decision nodes, the retrieving of possible paths as well as one-shot adaptation
behavior helps identifying and understanding the overall adaptation capabilities of the FLD.
The example in Figure 6.4 comprises two paths. The first path refers to the initial node, the
subsequently executed activities Activity1 and Activity2 as well as a final node, which indicates
the end of the feedback loop. The second path denotes to an occurrence of the destruction
path pattern, which comprises the activities Activity3 and Activity4 as well as a corresponding
destruction node at the end of the feedback loop.

Application Component Diagram
Determine the causal dependencies within an ACD is trivial. Because runnables are the basic
entities of adaptation behavior in an ACD and they are mapped to executable tasks, the order
of assigned runnables within the boundary of a task dictates the causal execution order of
the ACD (cf. Section 5.3.4). Thereby, finding direct and closure causal dependencies follows
the same line of argument as explained above for FLD. Furthermore, because of the missing
possibility of branching the behavior, a path dependency in ACD is much more trivial as in
feedback loops and can be denoted between the first and last runnable in one and the same
task.

Behavior Rule Diagram
In general, there is no explicit concept in Deurema to describe a control flow between graph
transformation rules in BRD. Nevertheless, a static analysis highlights causal dependencies
between those declarative rules by investigating the LHS and RHS. As depicted in Figure 6.5,
a direct causal dependency between two rules R1 and R2 can be determined, if the RHS of R1

is equal to the LHS of R2. Thus, whenever the adaptation effect of the first rule is applied, the
second rule will subsequently find a match according to its defined graph pattern. There is
another causal influencing possibility of the two rules R1 and R2, if the application of the RHS
of R1 creates/deletes a node/edge, where the type of that node/edge is part of the LHS of
R2. Thus the adaptation effect of R1 is suspicious to influence the match of R2. Whether the
application of the RHS of R1 has an effect on the match of R2 or not, can only be determined
at runtime of the adaptive SoS, because it depends on the concrete found matches of both
rules. Therefore, the real runtime effects of this dependency type are uncertain at development
time and are named WeakCausalDependency. Following the same line of argument as for FLD
and ACD, the transitive closure can be analyzed for both, weak and normal direct causal
dependencies, between graph transformation rules inside the BRD as sketched at the bottom
in Figure 6.5. Because there is no explicit starting and end point in BRD, an explicit path
between rules cannot be determined.

– 172 –

6.1. Basic Metrics

CausalDependency

R1

(RHS)
R2

(LHS)

Annotation Types for Rule Dependencies

Weak
CausalDependency

R1

(RHS)
R2

(LHS)

Type

+

ClosureDependency

R2

(RHS)
R3

(LHS)

R1

(RHS)
R2

(LHS)

+

Weak
ClosureDependency

R2

(RHS)
R3

(LHS)
R1

(RHS)
R2

(LHS)

Type Type

Figure 6.5: Causal dependencies in BRD

Module Triggering
Leaving the context of a single module template and investigating the triggering between
modules leads to the (Layered)TriggerDependency as shown in Figure 6.6. If a module triggers
another module, the former module is the cause for the adaptation effect of the latter module.
Thus, from a causality perspective, all adaptation activities of the triggering module will
happen before the triggered module is executed. Conceptually, the analysis rules distinguish
two different trigger dependencies. On the one hand, the triggering between two modules can
happen on the same layer, which is determined in the TriggerDependency annotation type. On
the other hand, the LayeredTriggerDependency considers modules, where the triggering crosses
the boundaries of one layer within the system template definition as shown for the Module1

and Module2 at the bottom in Figure 6.6. Of course, trigger dependencies can be transitively
analyzed to investigate the causal closure of module triggering.

Collaboration Role Trigger
Finally, the interplay of modules and collaborations is determined concerning the causality
analysis. As explained in Section 5.5.6 and shown in the Deurema metamodel in Figure 5.58,
modules are the Deurema model elements that realize collaborations by playing the specified
roles defined in the collaboration deployment. Furthermore, a role trigger defines the possible
execution of the collaboration activities that can be before, after, or within (internal) the
execution of the corresponding player module. The first two role triggers define that the
collaboration activities do not interfere with local adaptation behavior of the module. Thus,

– 173 –

6. Analysis

Annotation Types for Trigger Dependencies

LayeredTrigger
Dependency

Trigger
Dependency

<<TemplateType>>

Module1

<<TemplateType>>

Module2

t1:trigger

<<TemplateType>>

Module1

<<TemplateType>>

Module2

t1:trigger

La
ye

r 2
La

ye
r 1

Figure 6.6: Module trigger dependency

the collaboration interactions are directly executed before/after the adaptive behavior of the
module takes effect. In contrast, the internal role trigger specifies that the collaboration related
behavior is integrated into the local adaptation behavior of the module as comprehensively
discussed in Section 5.5.5.

Due to the possible combinations of role trigger between modules, there can be several
causal collaboration trigger dependencies derived as summarized in Figure 6.7. The example
in the figure consists of one collaboration together with two modules realizing a corresponding
role from the collaboration. Although the example considers only two modules, the following
dependencies can be easily extended for more modules following the same line of argument.
In combination (1), both collaboration role trigger denote the execution of the collaboration
after module execution, which is captured in the deferred collaboration trigger dependency.
According to the example, both modules M1 and M2 are independent and can run in parallel.
After both modules finish their local activities, the collaboration effects can happen afterwards.
In contrast, for combination (2) the collaboration happens in advance and the local effects of
the modules successively happen, if both role trigger are defined as Before. Straight forwards,
for combination (3), if one role trigger specifies the execution of the collaboration before and
the other role trigger after the local module execution, there is a causal sequence consisting of
the first module M1, all collaboration activities afterwards and finally, the effects of module
M2. Thus, the collaboration behavior happens in between the local adaptation activities.

The next three dependency combinations (4)–(6) consider the triggering of collaborations
with an internal role trigger. Therefore, the collaboration behavior is woven into the local
module behavior, which is denoted with the term M2 + CM2 (for module M2) in Figure 6.7.
The collaboration trigger dependency for combination (4) is called deferred interleaving, if the
collaboration specific part of one module (in the example M1) is executed after the module
itself, indicated by the term M1 → CM1 . The other module, together with its collaborating
activities, is independent and thus, in parallel to M1 → CM1 . Furthermore, the dependency
combination (5) differs in the sense that the role trigger for M1 is defined as Before. Therefore,
the collaboration specific behavior is executed before the module M1 (CM1 →M1). Finally, the
weakest trigger dependency combination (6) is called interleaving, because the collaboration

– 174 –

6.1. Basic Metrics

RM1

<<TemplateType>>

Module1 (M1)

Collaboration
(C)

<<TemplateType>>

Module2 (M2)RM2

DeferredCollaboration
TriggerDependency

InAdvanceCollaboration
TriggerDependency

InBeetweenCollaboration
TriggerDependency

M1

M2

 C

M1

M2

 C

M1 M2 C

Annotation Types for Collaboration Triggers

InterleavingCollaboration
TriggerDependency

DeferredInterleaving
CollaborationTriggerDependency

InAdvanceInterleaving
CollaborationTriggerDependency

(1)

(2)

(3)

(4)

(5)

(6)

Collaboration Role Trigger Role Trigger Inferred
Trigger Dependency M1 M2 Causality

(1) Deferred After After (M1 ‖M2)→ C

(2) InAdvance Before Before C → (M1 ‖M2)
(3) InBetween After Before M1 → C →M2
(4) DeferredInterleaving After Internal (M1 → CM1) ‖ (M2 + CM2)
(5) InAdvanceInterleaving Before Internal (CM1 →M1) ‖ (M2 + CM2)
(6) Interleaving Internal Internal (M1 + CM1) ‖ (M2 + CM2)

Figure 6.7: Collaboration trigger dependencies
(M1 ‖M2 : M1 is causally in parallel with M2; M1 →M2 : M1 is causally before M2;

CM1 : The collaboration role part realized by M1, whereas C = (CM1 + CM2).)

behavior is woven into both modules and thus, the internals of the dependency are not known,
without looking into the specific collaboration mapping in the corresponding module template.

Looking at the collaboration interaction specification, each interaction can be analyzed
with respect to the causality as explained for feedback loops. Conceptually, interactions are
feedback loop templates (cf. metamodel in Figure 5.47), which extends the available pool of
feedback loop operations by the Deurema message concept as shown in the metamodel in
Figure 5.49. Therefore, the considerations about the causal dependencies and their transitive
closure are applicable for interactions as explained above for feedback loop templates.

Furthermore, the communication between roles, which comprises the exchange of a synchro-
nization message, a model message, as well as the invocation of a service, imply a causal order
between the sender and the receiver of the communication within a collaboration interaction.
This causality of exchanging messages and service invocation can be analyzed and leads
to a direction of the communication flow as shown in Figure 6.8. An interaction has an
unidirectional communication, if a dedicated role sends one or more messages to other roles
without receiving a message. This kind of communication is considered as unidirectional
interaction message dependency as shown at the top in Figure 6.8. Unidirectional message

– 175 –

6. Analysis

UniDirectional
InteractionMessage

Dependency

Annotation Types for Interaction Message Flow

c

Interaction

c

Interaction

Collaboration

Interaction

R
o

le
1

R
o

le
2

Sender

Receiver

Interaction

R
o

le
1

R
o

le
2

Sender

Receiver

Receiver2

Sender2

Collaboration

BiDirectional
InteractionMessage

Dependency

UniDirectional
Collaboration

BiDirectional
Collaboration

Figure 6.8: Interaction message dependency

communication is often used to trigger or inform other participants of the collaboration as
done in the HeartBeat interaction of the platoon example, which is explained in Section 5.5.3.

Additionally, if one and the same role in all interactions of the corresponding collaboration
uses only unidirectional message communications, the whole collaboration is considered
as unidirectional. An unidirectional collaboration is a very strong dependency because it
implies that only one dedicated role distributes information to all other participants in the
collaboration. Thus, the role realizing module of the collaboration can be considered as source
of knowledge in the adaptive SoS.

The more common case is a bidirectional communication within one interaction, which is
shown at the bottom in Figure 6.8. The interaction is considered as bidirectional, if there
is an unidirectional communication and at least one additional message flow, where another
role is the sender. Straight forwards, if at least one interaction in the collaboration specifies
a bidirectional message exchange, the whole collaboration is considered as bidirectional.
An example of a bidirectional interaction is the ShareEnvironment interaction discussed in
Section 5.5.3.

Note, the absence of any message exchange within an interaction or role, which means
that a certain role exchanges any information to another role, is a typical anti-pattern that
pinpoints to a very likely design error of the collaboration. Furthermore, the described message
exchange dependencies combined with the causal dependencies of feedback loop operations
lead to an extended causal closure, which leaves the border of a module and spreads over the
collaboration to other participating modules. However, this extended causal closure follows
the same argumentation as described above, but has to consider all kinds of module templates,
because each collaborating module may have another template type.

– 176 –

6.1. Basic Metrics

6.1.2. Knowledge

Focusing on the occurrence of runtime models as local available knowledge in module templates,
the Deurema analysis retrieves the corresponding runtime model purposes and reasons about
basic characteristics of the module template that contains this knowledge. The analysis of the
availability of different runtime model types enables insights into the knowledge distribution
throughout the adaptive SoS. As first step, the occurrence of a specific runtime model
purpose within the module template, which implies that a corresponding module instance
at least knows about the availability of the corresponding information, is enough to derive
the hereafter called *-representative characteristics. An overview about the *-representative
module characteristics is given in Figure 6.9. Thereby, the available runtime model purposes
are defined in the Deurema metamodel in Figure 5.14, which corresponds to the presented
runtime model categorization of this thesis (cf. Section 5.2). For example, if a module
template contains at least one runtime model with the purpose SystemModel, it is denoted
as self-representative, which implies a possible access to that runtime information. All other
*-representative annotation types are enumerated in Figure 6.9. Of course, each instance
of the module template, which is a Deurema module, follows the template description and
therefore, will have the same characteristics.

Effector
Representative

Sensor
Representative

<<SystemModel>>

RuntimeModel
Self

Representative

Context
Representative

Requirements
Representative

Change
Representative

<<ContextModel>>

RuntimeModel

<<EvaluationModel>>

RuntimeModel

<<ChangeModel>>

RuntimeModel

<<MonitoringModel>>

RuntimeModel

<<ExecutionModel>>

RuntimeModel

<<RequirementModel>>

RuntimeModel
<<AssumptionModel>>

RuntimeModel

<<VariabilityModel>>

RuntimeModel
<<ModificationModel>>

RuntimeModel

Reflective

Changeable

Causal
Connected

Annotation Types for Runtime Model Purpose (*-Representative)

Figure 6.9: Analysis of the knowledge purpose

Beside the fine-grain *-representative characteristics, module templates are denoted as
reflective, changeable, and/or causal connected, if combinations of runtime model purposes
in the template description occur. For example, the runtime model purposes SystemModel
and ContextModel belong to the higher category of so-called reflection models. Therefore, if
runtime models with these both purposes occur in the module template, it gets the reflective
characteristic as shown on the left in Figure 6.9. The same lines of arguments hold for
adaptation and causal connection runtime models. Thus, appropriate analysis rules are
available for each characteristic with the focus of a module template respectively module.
Because Deurema uniformly integrates runtime models in the same way for all supported

– 177 –

6. Analysis

template types (e. g., FLD, ACD), the analysis works for all Deurema templates as well as
interactions within collaborations.

With respect to the runtime model purpose, it is possible to reason about system character-
istics by transferring the found module template properties to the system, which contains the
module instance. As further analysis, it is possible to identify parts of the system, for example
by looking at each architectural layer, which focuses on specific runtime model information.
For example, parts of the system may focus on context information, whereas other parts keep
track on the given requirements. Afterwards, the interplay between those modules within
one system can be interesting, which shows the exchange of this information and thus, gives
insides to the data flow of the system related to the usage of runtime model information.

Beside the purpose of a runtime model, there are analysis rules that detect reflected
information with respect to the Deurema reflection mechanism as introduced in Section 5.6.
In Deurema, reflected information becomes locally available in a runtime model in the
corresponding module template, where the defined adaptation logic can access and manipulate
the information. Due to the causal connection, changes in the runtime model are synchronized
with the underlying reflected system or module.

Figure 6.10 depicts the determined knowledge dependencies with respect to the Deurema
reflection mechanism. Thereby, the analysis considers the direction and distinguishes between
the reflection and affection of modules respectively systems. Therefore, a reflective knowledge
dependency between two modules occurs if one module reflects another module as shown
in the example between Module1 and Module2 in the figure. Due to the Deurema reflection
concept, there must always be a corresponding runtime model in Module2, which contains the
reflected information. Straight forward, an affecting knowledge dependency refers to the affect
concept in Deurema. Of course, beside modules, systems can be reflected/affected.

Annotation Types for Reflective Knowledge Dependencies

LayeredReflective
KnowledgeDependency

ReflectiveKnowledge
Dependency

<<TemplateType>>

Module1

<<TemplateType>>

Module2

reflect

<<TemplateType>>

Module1

<<TemplateType>>

Module2

reflect

La
ye

r 2
La

ye
r 1LayeredAffecting

KnowledgeDependency

AffectingKnowledge
Dependency

<<TemplateType>>

Module1

<<TemplateType>>

Module2affect

affect

Figure 6.10: Analysis of reflective knowledge dependencies

– 178 –

6.1. Basic Metrics

An additional constraint is the usage of the reflection mechanism between modules and
systems in different layers, which is determined by appropriate annotation types in Figure 6.10.
This kind of using the reflection mechanism is preferred, but not required, in Deurema. Thus,
both kinds are retrieved by corresponding analysis rules.

6.1.3. Adaptation Purpose

Beside the causality and the occurrence of runtime model purposes, investigating the purpose
of the adaptation activities is the third basic information that can be retrieved from the
Deurema module templates. For feedback loop activities, the Deurema metamodel supports
the Monitor, Analyze, Plan, and Execute activity type as discussed in Section 5.3.2. Therefore, the
activities and their types can contribute to different variants of a complete MAPE feedback
loop, where meaningful examples are depicted in Figure 6.11.

The first example corresponds to a full MAPE cycle, which directly follows the proposed
reference architecture from [110]. The second example shows a degenerated feedback loop that
focuses on the retrieval of information, which is named Collector. A collecting feedback loop
is characterized by a monitoring activity and an optional execute activity, where the analysis
and planning step is omitted. Although the focus of a collector is the sensing of information,
an execution step is reasonable to adjust the underlying hardware, e. g., configuring of sensors,
for the next information retrieval round.

Straight forward, the feedback loop is called Analyzer, if the focus is on the analysis of
sensed data. Such analyzing feedback loops are often used, if the analysis is very complex or
computational intensive. In such cases, other loops, e. g., collectors, may contribute knowledge
from different sources, which are aggregated and analyzed in one complex step. The optional
monitoring and executing step of the analyzer are important for aggregating the information
from other loops, e. g., over collaborations, and thus can be used to prepare the available
data for analysis. Furthermore, analyzer can be used to monitor key points of interest during
the lifetime of the adaptive SoS and report violations to the current goals. For example,
watchdogs are a typical implementation of analyzer feedback loops.

Collector
<<M>>

Activity

Analyzer

Planner

<<E>>

Activity

<<M>>

Activity
<<A>>

Activity
<<E>>

Activity

<<P>>

Activity
<<A>>

Activity

MAPE
<<M>>

Activity
<<A>>

Activity
<<P>>

Activity
<<E>>

Activity

Annotation Types for Adapation Purposes

Figure 6.11: Adaptation purpose in FLD

– 179 –

6. Analysis

Furthermore, a pure Planner feedback loop can be used for deriving long term adaptation
plans, which are sometimes combined with analysis activities. Planner loops are useful, if they
run independently from the short term adaptation loops to decouple necessary fast reaction
of the SoS from strategical derivations of the behavior towards long term goals. They usually
do not have monitoring or executing activities to prevent interleaving of other, more reactive,
feedback loops. However, if monitoring and executing capabilities are necessary, it is covered
by the full MAPE feedback loop as discussed above. Additionally, the occurrence of a single
executing activity, without the retrieval, analysis, or planning of information, may indicate a
design error of the feedback loop.

Concerning the adaptation purpose, the same line of argument can be transferred to ACD
by looking at the component types inside the module template. As discussed in Section 5.3.4,
Deurema supports the component types Sensor, Actuator, and software component (SWC). The
occurrence of all three types corresponds to the sense-compute-act paradigm of developing
embedded control loops. Therefore, this case is considered by the sensor-software-actuator
(SWA) annotation in Figure 6.12.

Furthermore, the Deurema analysis rules consider two more cases, which split the complete
paradigm above in the compute and sense-effect part. Consequently, software intensive parts
can be independently detected from components that realize the physical interaction with the
underlying system. Because the compute part focuses on the detection of software components,
it can be compared with the analyzer respectively planner combination as discussed above for
feedback loops. Furthermore, the sense-effect part focuses on the sensors and effectors within
an ACD, which is similar to the collector in FLD.

Compute

SenseEffect

SWA
<<Sensor>>

Component
<<Actuator>>

Component
<<SWC>>

Component

<<Sensor>>

Component

<<SWC>>

Component

<<Actuator>>

Component

Annotation Types for Component Types

Figure 6.12: Adaptation purpose in BRD

The rule concept in BRD is a declarative description of the adaptation logic, which does
not support specifying the adaptation purpose as first class entity. The declarative character
of rules can be used to define trigger-action conditions, which detect the occurrence of specific
situations in the adaptive SoS and describe an appropriate adaptation step. Consequently,
each rule has a specific purpose related to the defined situation, which can potentially occur
at any point in time in the SoS. Thus, the specification of a predefined adaptation purpose,
which is related to a concrete adaptation step as for example in a MAPE feedback loop,
is not suitable for rules in a BRD. However, if the rule adaptation purpose is important,
characteristic access patterns can be determined for retrieving the intended adaptation purpose.
For example, if a rule reads and writes a monitoring runtime model, it can be denoted as
monitoring rule. Distinguishing analysis and planning rules is much more complex, because

– 180 –

6.2. Complex Metrics

the access to different runtime model types is not restricted. As a consequence, the rule
purpose is often domain or problem specific and thus, must be investigated with respect to
this domain or problem.

In summary, investigating the causal dependencies, occurrence of knowledge, and adaptation
purpose in specified Deurema models are independent, basic metrics towards an understanding
of the modeled adaptation logic of the SoS. These three basic metrics can be combined to
determine more complex adaptation structures, the impact of knowledge as well as the
distribution of runtime model information through the system as discussed in the following.

6.2. Complex Metrics

This section introduce meaningful examples for complex analysis metrics for each possible
combination of causality, knowledge, and adaptation purpose. Combining the three basic
metrics to more powerful analysis rules enables the investigation of complex dependencies
between systems, modules, and collaborations within the adaptive SoS.

6.2.1. Combining Causality and Adaptation Purpose

Whereas the analysis of the occurrence of specific adaptation activities does not determine
the causal order of their execution, a combined analysis can detect typical forms of feedback
loops in FLD as well as meaningful task definitions in ACD.

At first, following the reference architecture from Kephart et al. [110], a typical pattern
is a MAPE feedback loop, where each adaptation activity occurs once and is subsequently
executed. As a next step, this pattern can be extended by allowing an arbitrary occurrence
of each adaptation purpose, where the execution order of the adaptation purposes is still
protected. For example, the feedback loop may have two monitoring steps instead of one, but
after the last monitoring activity follows the analysis step as expected by the MAPE pattern.
In contrast, each violation of the standard pattern, e. g., AMEP can be reported, which gives
hints to the developer of possible design messes.

Furthermore, domain or problem specific patterns for the typical design of the feedback
loop can be provided and investigated. For example, if an analyze activity decides that no
adaptation steps are necessary for the current situation, the execution of the feedback loop
can be stopped without executing the plan and execute activity as shown in Figure 6.13.
Thus, the analysis activity in this design pattern decides on the early cancellation of the
feedback loop. On the one hand, the planning and execution step are potentially omitted,
which reduces the computational overhead of the adaptation logic in the optimal case. On the
other hand, long term planning activities are skipped as long as the analysis does not detect
violations of the current goals. Therefore, the use of this design pattern introduces advantages
as well as known issues, which can be collected in a pattern catalog. The applicability of
this pattern depends on the specific problem that has to be solved. However, those patterns
support the developer by modeling the adaptive SoS capabilities and pinpoint to possible
violations.

In the context of an ACD, the detection of causality-adaptation-purpose patterns is more
complex. Due to the architectural specification of the adaptation logic following the component-
based approach, the detection of the design patterns cannot be specified by looking at the
component structure alone. In an ACD, the runnable is the behavioral entity, where the
execution order depends on the corresponding task mapping. As a consequence, the analysis of

– 181 –

6. Analysis

<<Analyze>>

CheckTrafficSituation

[optimal]

[else]

<<FeedbackLoopModuleTemplate>>

Self-Configuring

<<Monitor>>

Update
<<Execute>>

Effect

<<Plan>>

Optimize

Figure 6.13: Exit on analyze pattern

design patterns considers, if the mapping of runnables corresponds to the sense-compute-effect
paradigm as discussed above. For example, if runnables from different sensor components are
mapped to a single task, where no other runnables from other component types are mapped,
a sensing task pattern is detected. This argumentation can be transferred to computational
tasks (only runnables from SWC components) as well as effecting tasks (only runnables from
Actuator components). Furthermore, each of the sensing/computing/effecting related behavior
can be split on several tasks, which is analyzed and detected, too. Another pattern is the
detection of component-centric behavior, where runnables from one component are mapped to
a single task. In this case, the execution of the behavior goes hand in hand with the structured
encapsulation defined by the component architecture.

Annotation Types for Combining Interaction Message Types and Message Flow

c

Interaction

c

Interaction

Collaboration

CollaborationTriggered
Interaction

Knowledged
Interaction

Triggered
Collaboration

Service
Collaboration

Service
Interaction

BiTriggered
Interaction

BiKnowledged
Interaction

BiService
Interaction

Knowledged
Collaboration

BiTriggered
Collaboration

BiService
Collaboration

BiKnowledged
Collaboration

c

Interaction

c

Interaction

c

Interaction

c

Interaction

Collaboration

Collaboration

Collaboration

Collaboration

T

K

S

T

K

S

T

K

S

T

K

S

Figure 6.14: Combining interaction message types and message flow

– 182 –

6.2. Complex Metrics

Focusing on collaborations, the communication direction can be combined with the analysis
of the message type. The Deurema metamodel defines three different message types (cf.
Section 5.5.3) that are normal messages for synchronization and triggering, model messages,
and services. Furthermore, the analysis rules investigate the communication flow in defined
system interactions as discussed above and distinguish between unidirectional and bidirectional
communication. The combinations of these two aspects together with the corresponding
annotation types are depicted in Figure 6.14. For example, an unidirectional communication
between two roles using a model message is marked in the Deurema model with a Knowl-
edgedInteraction annotation. Furthermore, if all interactions within the complete collaboration
specification are restricted to unidirectional communication using only model messages, the
analysis denotes this aspect with a corresponding KnowledgedCollaboration annotation. The
same line of argument holds for trigger messages and services.

6.2.2. Combining Knowledge and Adaptation Purpose

Combining the available runtime model purposes in a module template together with the
adaptation purposes leads to typical access patterns, which are subsumed in Table 6.1. The
Deurema analysis distinguishes a read and modifying access to a runtime model, whereas
the latter subsumes writing, creating, deleting, and annotating runtime models. A modi-
fying access is denoted with a square, whereas a read-only access is depicted with a circle.
Another dimension is the commonness of a runtime model access by a specific adaptation
activity. Therefore, the table distinguishes between an advised access, where an activity
should read/modify a runtime model, and an optional (uncommon) access, where an activity
can read/modify a runtime model. The second dimension is encoded by the color, whereas
an advised access is denoted by a green, filled rectangle (n) respectively circle (l) and the
optional access is depicted by an orange, non-filled rectangle (o) respectively circle (m). The
case that an adaptation activity should not access a specific runtime model type is denoted
by a red cross (8).

Table 6.1: Access patterns for combining knowledge and adaptation purposes

Runtime Model Purpose

System Context Evaluation Change Monitoring Execution

Monitor n n m m l 8

Analyze o l l m 8 8

Plan o l m l 8 8

A
da

pt
at

io
n

Pu
rp

os
e

Execute l m 8 8 8 l

Sensor n n m m l 8

SWC o l m m 8 8

C
om

po
ne

nt
T

yp
e

Actuator l m 8 8 8 l

The adaptation activity/component type n: should modify; o: can modify;
l: should read; m: can read; 8: should not access the runtime model type

– 183 –

6. Analysis

The first observation from Table 6.1 is that the monitor activity in a FLD as well as the
sensor component in an ACD are the both entities, which keep the runtime models concerning
the system and context representation up-to-date. Therefore, both entities are responsible
for maintaining the causal connection from the underlying system to their runtime model
representation, which is represented by the same access patterns in the table. Furthermore, the
execute activity respectively the actuator component forces changes from the system runtime
model back to the real system, which is indicated by an advised read on the corresponding
system as well as execution runtime model. Finally, following the purpose of the analyze and
plan activity leads to the access patterns on the corresponding evaluation and change runtime
models. In ACD, the planning and analysis of adaptation activities is consolidated in the
software component type. Thus, a software component combines the access patterns from
both activity types.

For performing the Deurema analysis, the access patterns and their anti-patterns are encoded
in rules that detect the corresponding violations. However, the depicted access patterns in
Table 6.1 are a proposal based on the presented runtime model category and the discussed
purpose of an adaptation activity respectively component in the context of this thesis. Such
access patterns support the developer of specifying appropriate model operations for feedback
loop activities and runnables by following the defined modeling guidelines. Furthermore,
violations are detected that indicate a possible design flow of the template specification,
which contributes to the improvement of the overall quality of the modeled adaptive SoS.
However, the access patterns in Table 6.1 can vary depending on the domain or concrete
problem. Therefore, the existing Deurema analysis rules must be adapted, if other guidelines
or violations of runtime model accesses have to be detected.

6.2.3. Combining Knowledge and Causality
The last possible combination of the discussed basic metrics is the investigation of the causality
together with the use of runtime models. Investigating this combination leads to an analysis
of the knowledge distribution within a module as well as between modules by considering
collaborations. Figure 6.15 gives an overview of the analysis rules together with an example
situation by means of adaptation activities and runtime models as used in a FLD. Of course,
the presented analysis rules are additionally applied on ACD and BRD on basis of the causality
and knowledge *-representative property as discussed for FLD.

The first analysis rule in Figure 6.15 refines the *-representative property of a module, if
an additional read model operation on the corresponding runtime model can be found. The
*-representative property denotes the availability of information, where the additional read
access denotes the real usage of that information. As a consequence, the *-representative
property turns into a *-awareness characteristic following the same naming scheme as discussed
for Figure 6.9. For example, a self-representative feedback loop module becomes self-aware,
if at least one adaptation activity performs a read operation on a system runtime model.
Straight forward, the same feedback loop is denoted as context-aware, if at least one read
operation on a context runtime model is found. The line of argument holds for the other
runtime model purposes accordingly. Thus, the analysis rules of this thesis correspond to
the proposed *-awareness properties introduced in [166] and comprehensively discussed in
Section 2.1.1.

Furthermore, the Deurema analysis detects a knowledge modification, if the knowledge
awareness property is fulfilled and an additional modification on the beforehand read runtime
model is performed by an adaptation activity. If the reading and modifying model operations

– 184 –

6.2. Complex Metrics

<<Purpose>>

RuntimeModel
Knowledge

Aware
<<Purpose>>

Activityr

Knowledge
Modification

<<Purpose>>

RuntimeModel
<<Purpose>>

Activity
r

m

Knowledge
Derivation

<<Purpose>>

RuntimeModel
<<Purpose>>

Activity
<<Purpose>>

RuntimeModel

Knowledge
Transition

<<Purpose>>

RuntimeModel
<<Purpose>>

Activity

Knowledge
Propagation

<<Purpose>>

Activity

m

r

<<Purpose>>

Activity
<<Purpose>>

Activity
<<Purpose>>

RuntimeModel
<<Purpose>>

RuntimeModel

m

r

Knowledge
Source

<<Purpose>>

Activity
<<Purpose>>

RuntimeModel
<<Purpose>>

Activity
m

m

Knowledge
Sink

<<Purpose>>

Activity
<<Purpose>>

Activity
<<Purpose>>

RuntimeModel r

r

r m

m

Causal
Dependency

*-Representative
Read

Access

Modify
Access

Knowledge
Aware

Knowledge
Modification

Knowledge
Aware

Knowledge
Modification

Knowledge
Transition

Knowledge
Modification

2..*

2..*

Knowledge
Aware

Annotation Types for Combining Knowledge Access and Causality

Knowledge
Aware

Knowledge
Modification

Figure 6.15: Analysis rules for combining knowledge and causality

are subsequently performed on different runtime models, the modification in the runtime
model is determined as derived on basis of the read information and the performed adaptation
step. Therefore, a knowledge derivation is detected in the Deurema model, which is marked
with the KnowledgeDerivation annotation shown in Figure 6.15.

Additionally, a knowledge transition occurs between two causal dependent adaptation steps,
where the former modifies the runtime model and the latter reads the updated information.
The propagation of knowledge is investigated by looking at the transitive closure of each found
knowledge transition. Thus, a knowledge transition is extended by another causal dependency,
which denotes an additional adaptation step.

The last two analysis rules in Figure 6.15 investigate the start and end points of knowledge
distribution, which is denoted as knowledge source respectively knowledge sink. A knowledge
source is characterized by at least two distinct read operations from different adaptation
activities. In contrast, a knowledge sink needs at least two modifying model operations. In
summary, investigating the source, propagation and sink of knowledge completes the picture
of knowledge distribution in the corresponding module template. A concrete example for such
a knowledge distribution is illustrated between two software components in Figure 5.31 by
the discussion of the Deurema ACD in Section 5.3.4.

Leaving the context of a module template, the knowledge propagation rule can be ex-
tended with respect to collaborations, which enables the distribution of knowledge across
the boundaries of a single module. Reading a runtime model in combination with sending
the read information via a model message pinpoints to the overall shared knowledge in the
adaptive SoS. As a consequence, Deurema can distinguish between runtime information that
is locally used within the context of a module and those runtime models that become visible
for other modules due to their sharing in the interaction. This might imply further influence
possibilities between modules. If for example a local system model is shared via a model
message from a module M1 to another module M2, the receiving module M2 gets direct access
to the runtime model. Due to the causal connection of the runtime model to the underlying
reflected system, the module M2 can indirectly influence the controlled system of M1. Thus,
the local system model becomes a shared system model, which is explicitly supported by
the runtime model categorization as discussed in Section 5.2. Furthermore, the direct (local)

– 185 –

6. Analysis

and indirect (shared) influence between modules become visible for the Deurema analysis by
looking at the used communication mechanisms and the runtime model purpose. The analysis
rules of knowledge propagation between modules are extended to the boundaries of a system.
Thus, the distribution aspects become visible for the complete adaptive SoS architecture.

6.2.4. Complex Analysis Rule Combination

Beside the pairwise combination of the analysis metrics concerning the causality, knowledge
and adaptation purpose, further complex analysis rules considering all three metrics are
thinkable. As outlined above, the Deurema analysis supports the reuse of found annotations
and their aggregation to meaningful patterns. For example, the detection of a collecting
feedback loop (cf. Collector annotation in Figure 6.11) can be combined with knowledge usage.
An additional found annotation that denotes the context-aware property for the same feedback
loop leads to an overall combined context-aware collector. Another meaningful combination
is a requirements-aware planner, because the planning of further adaptation steps of the
system behavior should always consider the current goals and constraints. Thus, the Deurema
analysis can be used to verify the modeled SoS according to development assumptions or
design guidelines, where the absence or violations pinpoint to the corresponding parts in
the Deurema models. Following this line of argument, it depends on the domain and the
concrete problem, which further combinations support the analysis of the overall adaptive
SoS. The existing implementation of the Deurema analysis enables the specification of new
rules. On the one hand, rules can reuse existing annotation types to aggregate them to new
analysis aspects. On the other hand, complete new analysis patterns and their corresponding
annotation types can be defined that are useful in the concrete context of the problem domain.
In the following, complex architectural patterns as well as design flaws, where a subset can be
detected in the running example of this thesis, are discussed.

6.3. Architectural Patterns and Design Smells

The Deurema language distinguishes between hierarchical control and layered adaptation,
which is determined by using different Deurema intra-loop coordination concepts. Therefore,
both patterns can be detected by corresponding analysis rules. Figure 6.16 shows on the
left an example for a hierarchical control architecture, where modules on the lower layer
trigger the execution of a module at a higher layer. This pattern occurs in the smart car
running example in Figure 5.74 as discussed in Section 5.7. In general, hierarchies allow the
decomposition of adaptation concerns in different abstraction levels. Usually, the adaptation
logic on the lower layers enables a fast reaction of changing situations, whereas the focus
is often specialized to one, locally restricted adaptation concern. Furthermore, if necessary,
the local adaptation logic hands over the responsibility of finding an appropriate adaptation
strategy by triggering a module at a higher layer. Possible reasons for such a transfer of
responsibilities are for example, if the module cannot handle the current situation locally or if
an overall optimization of the system behavior becomes important, which exits the focus of
the restricted local view. The advantage of this pattern is the fast reaction on lower layers
and because of the decomposition of adaptation concerns, the reduced complexity of the low
level adaptation logic. In long hierarchies, a disadvantage is the possible deferring of decision
making by traversing the hierarchy upwards and propagating the desired behavior into the
local modules afterwards. This might cause long timing delays before an adaptation effect of

– 186 –

6.3. Architectural Patterns and Design Smells

Annotation Types for Hierarchical and Layered Control

<<TemplateType>>

Module1

<<TemplateType>>

Module3

La
ye

r 2
La

ye
r 1

Hierarchical Control

<<TemplateType>>

Module2

<<TemplateType>>

Module1

<<TemplateType>>

Module3

La
ye

r 2
La

ye
r 1

Layered Adaptation

<<TemplateType>>

Module2

Figure 6.16: Analysis of hierarchical and layered control

the system can be recognized. Thus, this architectural pattern is appropriate for long term
adaptation in modules at the highest layer and fast but more simple adaptation decisions on
the bottom. However, the hierarchy is designed upfront, whereas the developer cares about a
proper decomposition of adaptation concerns. Furthermore, the modules on the lower layer
have a notion of responsibilities in the realized hierarchy and know their supervisor at the
higher layer.

In contrast, the layered adaptation pattern does not use an explicit triggering but rather
the Deurema reflection mechanism as shown on the right in Figure 6.16. In the example,
the module at the highest layer reflects both modules on the layer below. Similar to the
hierarchical control pattern, the modules at the lowest layer can be designed for adapting
to local situations, which allows a decomposition of adaptation concerns and shows similar
advantages as discussed above. The difference is that the low level modules are not designed
to interact with the modules on the higher layer. In some cases, the lower layer modules even
do know nothing about the adaptation logic at the higher layers. Therefore, the adaptation
logic at the top can perform its functionality completely independently from the modules at
the bottom. On the one hand, this could be useful to decouple long term adaptation planning
from short term adaptation that requires a fast reaction. On the other hand, because there
is no dedicated triggering (interface) of the adaptation loop on top, it must ensure that the
affecting of the underlying adaptive behavior does not lead to inconsistencies in the overall
adaptation effects. However, in Deurema, the concepts of hierarchical control by triggering
modules and layered adaptation by using the Deurema reflection mechanism can be combined.

Beside patterns, the Deurema analysis detects design flaws in the modeled system. For
example, Figure 6.17 shows a trigger dependency between two modules, where the module at
the lowest layer triggers a module that is located two layers above. The intention of a layered
architecture is that modules placed on a specific layer reason about and influence modules on
one layer below as well as may additionally trigger modules one layer above. Thus, the layers
in a system define a structural separation of the available adaptation logic. The triggering
between the modules in Figure 6.17, which is a causal dependency as discussed above, ignores
the modeled layered architecture of the system. As a consequence, the trigger dependency
in this example structurally bypasses the adaptation logic in Module3 placed at Layer1. In
general, design flaws are no modeling errors and thus, can occur during the development by

– 187 –

6. Analysis

Annotation Type for Layered Trigger Design Flaw

<<TemplateType>>

Module1

<<TemplateType>>

Module2

t1:trigger

La
ye

r 2
La

ye
r 1

La
ye

r 0
LayeredTrigger

Dependency
DesignFlaw

<<TemplateType>>

Module3

Figure 6.17: Layered trigger design flaw

modeling the adaptive SoS with the Deurema approach. However, design flaws are error prone,
where the resulting adaptation effect of the SoS may differ from the modeled expectations
or can cause further inconsistencies with other modules. Therefore, modeling guidelines and
patterns help to improve the overall modeled architecture, which leads to more robust system
designs or at least to a better understanding of the modeled adaptation functionality. As a
consequence, the design flaw in Figure 6.17 is detected by the Deurema analysis by means of
a found annotation in the Deurema model. If the developer checks the analysis result, he can
improve the modeled SoS solution by removing such design flaws afterwards. However, design
flaws are no modeling errors. Therefore, the developer may decide to ignore the found design
flaw annotations and interprets those as warnings, which is also supported by Deurema.

Another example for a design flaw is the indirect coupling of adaptation activities within a
feedback loop over the available knowledge, which may contradict the modeled causal order
of the adaptation effects. Figure 6.18 shows an example for such a causality knowledge design
flaw. There are two distinct paths of the adaptation behavior within the feedback loop,
where the first path comprises the activities Activity1 as well as Activity2 and the second path
consists of Activity3 and Activity4. According to the causality discussion between activities
above, there is a causal dependency between the activities in each path. Furthermore, there
is no causal dependency between the activities located in different paths. However, there
is a potential additional coupling between Activity1 and Activity3 over the runtime model,
where the former activity modifies the common knowledge base and the latter activity reads
the modified information. Therefore, the potential influence between these two adaptation
activities over the runtime model may contradict the specified control flow of the feedback
loop of the distinct paths. Whether this indirect coupling between Activity1 and Activity3

introduces undesired adaptation effects or not depends on the concrete situation at runtime
and intention of the stored data in the runtime model. For example, the feedback loop is
usually executed periodically. Thereby, the Activity1 may collect data over time in the runtime
model, which is later analyzed by Activity3. In this case, the indirect coupling is explicitly
desired behavior and the detected design flaw can be interpreted as warning and thus, ignored.
However, the Deurema analysis can pinpoint to such design flaws, whereas the model developer
must decide whether the modeled solution conforms to original intentions or not. Especially,

– 188 –

6.3. Architectural Patterns and Design Smells

<<Purpose>>

RuntimeModel

r

<<Purpose>>

Activity1

<<Purpose>>

Activity2

<<Purpose>>

Activity3

<<Purpose>>

Activity4

m

Knowledge
Causality

DesignFlaw

Causality Knowledge Design Flaw

Figure 6.18: Analysis of causality knowledge design flaw

in feedback loops comprising different paths, several runtime models, and multiple adaptation
activities, a static analysis helps keeping track of the overall modeled adaptive functionality.

A much more hidden indirect coupling of adaptation effects is shown in the architectural
design flaw in Figure 6.19. Two independent behavior modules, which are further contained
on different architectural layers in the system, comprise an adaptation rule, where the RHS
of R1 is causally connected to the LHS of R2 (cf. discussion about causality in BRD in
Section 6.1.1). Because there is no obvious trigger dependency between these two modules,
this coupling cannot be detected by looking at the Deurema LD alone, where the internals of
the module instances are hidden.1 Furthermore, the corresponding module templates can be
independently specified from different developers. In this example, the causal dependencies
between the rules leave the border of the parent module and even further, violate the layered
architecture of the system. The Deurema analysis detects such hidden dependencies and
therefore, helps the developer improving the overall modeled SoS architecture.

In summary, the Deurema analysis detects such violations in the modeled system and
hidden dependencies become visible for further investigation. Thereby, the concrete design
patterns and modeling guidelines depend on the underlying problem domain, where individual
analysis rules can be added to the existing Deurema verification framework. Deurema already
provides analysis rules for the three basic metrics causality, knowledge, and adaptation purpose.
Furthermore, meaningful combinations of these metrics are discussed as well as high level
architectural patterns and design flaws are exemplary introduced. All analysis rules are
statically applied on the modeled adaptive SoS during the development, where detected design
flaws pinpoint to possible problems.

1For the sake of this example, the internals of the module instances are indicated in Figure 6.19. However,
modeling the system architecture in Deurema does not pinpoint to the internals of the corresponding
module template as discussed in Section 5.4.

– 189 –

6. Analysis

Annotation Type for Causality Trigger Design Flaw

La
ye

r 2
La

ye
r 1

CausalDependency

R1

(RHS)

<<BehaviorModuleTemplate>>

Module1

R2

(LHS)

<<BehaviorModuleTemplate>>

Module2

Causality
Triggering

DesignFlaw

Figure 6.19: Analysis of architectural design flaws

6.4. Discussion

In summary, the Deurema analysis framework facilitates the static analysis of the adaptive
SoS by applying specified analysis rules directly on the Deurema models. This thesis proposes
several basic metrics concerning the causality, knowledge, and adaptation effects, which are
realized by corresponding analysis rules. Furthermore, the basic metrics are combined to
investigate the distribution of knowledge within the system, to predict the emerged interaction
effects of the local adaptation logic, up to the detection of architectural patterns within the
layered systems. However, all presented aspects in this chapter are meaningful proposals that
can be extended to the specific underlying problem. Thus, this thesis does not claim that the
presented analysis metrics are complete nor that all important aspects of a specific domain
are covered. Nevertheless, it presents examples how basic metrics are detected and afterwards
combined to reason about complex situations throughout the modeled SoS. The extension of
the static analysis is very easy by defining new analysis rules or creating new combinations of
existing metrics that target the corresponding key points of interest.

This thesis uses the deductive inference engine from Beyhl et al. [35] for implementing
the Deurema analysis framework. The inference engine is an implementation of a model
management approach as introduced in the preliminaries in Section 2.2.4. It considers the
Deurema models as graphs, which are formally defined by the Deurema metamodel. The
inference engine provides a graphical editor to specify the analysis rules as well as to use existing

– 190 –

6.4. Discussion

rules and combine them to complex rules. Furthermore, it is able to execute the analysis rules
on the underlying Deurema model detecting corresponding matches in the modeled system.
These matches are directly marked in the Deurema model in form of annotations as motivated
at the beginning of this chapter. Thereby, the inference engine maintains the annotations as
well as enables their combination to infer higher level patterns as comprehensively discussed
above. All implemented analysis rules of this thesis together with an overview about all
realized metrics can be found in the Appendix C. All of these rules are implemented in the
language of the inference engine, which enables a direct execution of the analysis rules. Details
of the maintenance of found annotations as well as the language semantic of the inference
engine are comprehensively discussed in [35]. The following chapter describes the Deurema
simulation framework for executing modeled adaptive SoS architectures, which is another
possibility of investigating the emergent SoS behavior on basis of defined Deurema models.

– 191 –

7. Simulation
Model-based simulation helps understanding the interplay of system interactions as well as
the modeled adaptation effects in the overall SoS. This chapter introduces the Deurema
simulation capabilities introducing an execution framework for Deurema models. As sketched
in Figure 7.1, the starting point for a model-based simulation is a system template description
modeled with the Deurema approach. The system template may comprise several module
instances, subsystems, and collaborations. Therefore, the developer decides which parts of the
adaptive SoS should by simulated by placing the corresponding module instances in the system
template specification. As a consequence, there are different possibilities for a Deurema model
simulation by varying the number of modules and collaborations in the system template. For
example, the Deurema simulation framework is able to execute a singe module instance, e. g.,
a feedback loop, which enables the investigation of a single adaptive self-* behavior capability.
Of course, the simulation can be extended by multiple feedback loops investigating if the
independent adaptation logic works as expected. Later, collaborations can be integrated that
coordinate the independent adaptation effects or other subsystem instances can be deployed,
which facilitates the simulation of the emergent adaptive SoS behavior. Therefore, beside
the analysis of the modeled system as comprehensively discussed in the former chapter, the
Deurema simulation framework aims at the investigation of the modeled SoS towards an
understanding of the emergent behavior. If the simulation shows unwanted co-adaptation
effects, contention due to system interactions, or violations of requirements, the developer can
change the underlying Deurema model and start the simulation again.

There are different responsibilities for the execution and simulation of the adaptive SoS
architecture modeled with Deurema. As sketched in the running example in Figure 7.1,
the system architecture as defined by the system template with all included instances and
their corresponding template descriptions is the starting point for a simulation. During the
simulation, the initial architecture may change due to adaptation effects or new collaborations
between systems. According to the running example, if the simulation executes the traffic
flow of the smart city over time, new smart cars enter or leave the city. Furthermore, platoon
collaborations may appear or disappear according to the needs of the driver and the available
smart cars, which can build such a platoon interaction. However, during a simulation, the
Deurema interpreter realizes the execution of a single Deurema element, e. g., an adaptation
activity within a feedback loop. Each element in a Deurema model follows a predefined state
model during its execution. For example, if the Deurema interpreter executes an adaptation
activity, it marks the corresponding activity as well as the parent feedback loop as active
indicating their execution. Therefore, executing different Deurema elements over time, e. g., by
following the defined control flow of the feedback loop, changes the states of the corresponding
feedback loop module. Module and system instances are considered as independent except
for defined collaborations. Thus, executing the independent instances leads to several state
changes over time within the overall SoS. The interplay between Deurema elements, which are
possibly in different states, are handled by the Deurema simulator. During the execution, the
interpreter marks corresponding state information directly in the Deurema model, which can
be recognized by an inference engine. The same inference engine as outlined in the previous

– 193 –

7. Simulation

<<
La

ye
r>

>

G
o

al
<<

La
ye

r>
>

A
d

ap
ti

ve
<<

La
ye

r>
>

So
ft

w
a

re
<<SystemTemplate>>

SmartCity

<<System>>

audi:SmartCar

<<FeedbackLoopModule>>

to:TrafficOptimization

<<FeedbackLoopModule>>

sc1:Self-Configuring

<<ApplicationModule>>

ad:AutonomousDriving

<<FeedbackLoopModule>>

sc2:Self-Configuring

reflect affect reflect affect30s 30s

30s

l:Leader

<<Collaboration>>

p:Platoon

f:Follower

o:Observer

 S
im

u
la

tio
n

Figure 7.1: Smart city running example: Deurema simulation

chapter is used to reason about the Deurema model and the annotated state information.
Furthermore, the inference engine detects state changes during the simulation. Simulation
rules help retrieving the state of Deurema model elements, e. g., an active adaptation activity,
which is afterwards used by the simulator to pick the next element for execution. The simulator
hands over the picked element to the interpreter, which executes the element. The execution
causes the modeled adaptation effect in the SoS and changes the state of the corresponding
element, which is again detected by the inference engine. Thus, the inference engine uses the
simulation rules to capture the overall states of each modeled element in the adaptive SoS.
The Deurema simulator provides different scheduling strategies to pick the next element for
execution. Finally, the interpreter realizes the modeled adaptation effect by executing the
beforehand picked element. The three parts consisting of the Deurema interpreter, simulator
and used inference engine are denoted as Deurema execution environment for the rest of this
thesis.

In the following, the Deurema execution state model is introduced in Section 7.1, which
is the basis for the simulation of Deurema elements. Afterwards, the execution semantic of
each Deurema model element realized by the Deurema interpreter is discussed in Section 7.2.
Subsequently, the Deurema simulator together with different simulation strategies is outlined
in Section 7.3. This chapter discusses an exemplary simulation run in Section 7.4 showing the
interplay between the Deurema interpreter, inference engine, and simulator. Afterwards, the
idea of combining the Deurema analysis and model simulation towards a runtime analysis are
highlighted in Section 7.5. The Deurema simulation capabilities are summarized in Section 7.6.
All implemented simulation rules, which are used by the inference engine to maintain the
states for each Deurema model element, are enumerated in the Appendix D. The simulation
rules are created in the syntax of the inference engine tool.

– 194 –

7.1. Execution State Models

7.1. Execution State Models

Deurema distinguishes between an execution state model for module and interaction instances
as well as Deurema elements, which are contained in module templates. Modules and
interactions are container that aggregate and encapsulate multiple adaptation effects, e. g., a
feedback loop, which is defined by a corresponding template description. In contrast, Deurema
module elements (e. g., behavior models) are contained in modules or interactions and specify
a concrete adaptation effect, e. g., an activity within the feedback loop.

7.1.1. Modules and Interactions

The state model for modules and interactions is depicted in Figure 7.2. Modules are the
basic entity for execution in an adaptive system that define the adaptive capabilities and
are deployed on a certain layer in the architecture of the corresponding system template
(cf. Section 5.3). Furthermore, interactions belong to a system collaboration, which is also
deployed in the adaptive, layered system architecture (cf. Section 5.5). Both, modules and
interactions follow the same execution state model, whereas in the following each state in
Figure 7.2 is explained in the context of a module, but is applicable for interactions as well.
Differences between both are explicitly highlighted in the state discussion below.

interact
[trigger == Internal]

finish
[trigger == Internal]

waiting preenabled

enabled

active

postactive

collaborating

deployed

undeployed

register

build

d
eregiste

r

enable

ready

execute

postExecute

disabled
finish

wait

in
teract [trigger ==

 B
efore]

fin
ish [trigger ==

 B
efore]

interact[trigger == After]

finish [trigger == After]

Figure 7.2: Deurema state model for modules and interactions

– 195 –

7. Simulation

State: undeployed
A module is considered as undeployed if it is not placed on a system layer in the overall
adaptive SoS architecture defined by the system template. Therefore, there is no module
instance in the Deurema model and thus, the module is not considered for execution or
simulation.

State: deployed
An undeployed module can be registered in the Deurema execution environment by instantiat-
ing a module template and thus, creating a corresponding module instance, which is placed on
a layer in the system architecture. A successfully registered module changes into the deployed
state afterwards.

State: waiting
After the deployment, a module is preprocessed by the Deurema execution environment.
Thereby, the execution environment checks the specified Deurema model and refuses syntacti-
cally incorrect models, e. g., a missing action specification for software modules as discussed
in Section 5.3.3. If the module is syntactically correct, it becomes visible for the inference
engine and waits for further execution, which is denoted by the waiting state. Beside the
deployment, a module in the waiting state can be deregistered, which removes the module
from the execution environment. As a consequence, the inference engine and the simulator do
not further consider the corresponding module for execution.

It has to be noted that Deurema supports the deployment of a complete system architecture,
which is a system instance that is placed on a system template. The corresponding subsystem
may comprise several layers, multiple module instances, and further collaborations. This
corresponds to the openness characteristic of the adaptive SoS (cf. Section 3.1), where
complete systems may join or leave the overall SoS during its lifetime. The Deurema execution
environment unfolds the system architecture as well as contained subsystems and deploys all
module and collaboration instances accordingly. Therefore, Deurema can dynamically handle
a varying number of system and module instances during the simulation of the adaptive SoS.

Figure 7.3 shows one simulation rule in the concrete syntax of the inference engine for
detecting deployed modules and interactions (denoted as AbstractModule class in the rule).
The specified rule pattern searches for a deployed instance and its corresponding template
description. Thereby, the inference engine retrieves the deployed abstract module annotation
(the dashed rectangle in Figure 7.3) beforehand by means of other simulation rules during
the registration process for modules as outlined above. For each deployed instance and its
template description, the inference engine creates a corresponding waiting annotation directly
in the Deurema model denoting the availability of the adaptation logic for further processing.

State: preenabled
A module changes its state from waiting to preenabled, if all specified triggers are fulfilled (cf.
Deurema module triggering concept in Section 5.4). The triggering of a module comprises the
modeled event triggers, the time trigger, and the module trigger conditions. In contrast to a
module, an interaction becomes preenabled, if the corresponding player module changes to
the collaborating state (see description below).

State: enabled
If the module is preenabled and it does not participate in a collaboration, it becomes immedi-
ately enabled. Interactions cannot participate with other interactions, thus the collaborating
state on the right in Figure 7.2 is omitted for interaction instances. Therefore, interactions

– 196 –

7.1. Execution State Models

����������������

�����������������������

��

������������������������������

�������������������������

��������������������������������

��������������������������������������

�������������������

���������������������

�������������������

���������������������

Figure 7.3: Simulation rule for detecting waiting modules

become directly enabled, if they are preenabled before. Enabled modules and interactions are
ready for execution and thus, can be picked by the Deurema simulation environment.

State: active
The active state denotes the execution of the module. Therefore, the Deurema simulator
picked the enabled module beforehand and hands it over to the Deurema interpreter. The
interpreter marks the module instance as active, which can be further detected by the inference
engine. Furthermore, the interpreter retrieves the template description of the module instance
and all contained elements become visible for the simulation environment, e. g., the operations
of a feedback loop module or the concrete interaction behavior of a role. The visibility of the
concrete adaptation effects are denoted by the waiting state as discussed below for module
elements (cf. Figure 7.5). The module stays active as long as an included adaptive behavior
is possibly enabled. For example, once a feedback loop module is active, it stays active as
long as the execution of the adaptation activities reaches a final or destruction node of the
feedback loop.

With respect to interactions in a collaboration, the active state implies that there is another
module in the collaborating state, which plays this active interaction as specified in the role
mapping of the module.

State: postactive
A module becomes postactive after no internal adaptation behavior is possibly enabled, e. g.,
because the feedback loop reaches a final node. In this state, the module can collaborate
again with other modules by playing the modeled role or become disabled.

State: disabled
The disabled state denotes the complete execution of the module. The simulation environment
cleans up all marked annotations and the module waits for its next triggering by changing in
the waiting state again.

– 197 –

7. Simulation

State: collaborating
This state can be reached from the preenabled, active, and postactive state of a module.
According to the interaction trigger discussion in Section 5.5.6, a Deurema module can
play the deployed role at different points in time, which is modeled by a role trigger. The
Deurema metamodel defines three possible role trigger that are Before, Internal, and After. The
Before trigger denotes the execution of the interaction behavior before the local, internal
adaptation behavior of the module is executed. Therefore, a successfully triggered module,
which is denoted by the preenabled state, change its state to collaborating, if the corresponding
role trigger is defined as Before. Of course, a corresponding module interaction must be
defined for that module. The states for modules and interactions are independently handled
in the Deurema execution environment. Thus, there are two state transitions denoting a
collaboration. First, the player module changes from the preenabled to the collaborating state.
Second, the corresponding interaction changes from the enabled to the active state.

Furthermore, the Internal role trigger denotes the execution of a modeled interaction within
the execution of the player module. In this case, the interaction is woven into the local
adaptation behavior as discussed in Section 5.5.5. Therefore, the module must be in the active
state and change for each interaction in the collaborating state accordingly.

Straight forward, the After role trigger denotes the execution of the collaboration behavior
after the local behavior of the module is executed. This is represented by the postactive state
as discussed above and explicitly considered in the execution state model in Figure 7.5. The
coupling of the two states of the module and the corresponding interaction is reflected in the
example simulation rule in Figure 7.4.

������������������������

��

��

�������������������������������� ��������������������������������������

��

����������������������������������

���������������������������������� ���������������������������������� ���

��

��������������� �����������������������

�������������

�������������������

������������������

����������������

Figure 7.4: Simulation rule detecting a preenabled interaction for an After role trigger

The inference engine searches for an interaction, where a corresponding module is the player
of the mapped collaboration role. Furthermore, because of the After role trigger, the module
must be in a postactive state denoted by a corresponding state annotation. If this combination
is found, the inference engine marks the interaction as preenabled, which corresponds to a
state switch. As mentioned above, a preenabled interaction becomes enabled afterwards and
thus, is ready for execution by the Deurema interpreter. The depicted simulation rule focuses

– 198 –

7.1. Execution State Models

on the After role trigger. The simulation rules for the other role trigger combinations can be
found in the Appendix D.

As a consequence of the explicit modeled collaborating state for modules, the Deurema
execution environment can clearly distinguish at every point in time between the execution of
local adaptation behavior of a corresponding module and its interacting behavior within the
collaboration. Furthermore, as long as the module is considered as active or collaborating,
contained Deurema behavioral elements are visible for the simulation environment and thus,
can be executed.

7.1.2. Module Template Elements

The state model for elements that are contained in a module template is depicted in Figure 7.5.
There are different element types in a module depending on the corresponding module template.
For example, a FLD contains operations as initial nodes, adaptation activities, or final nodes.
A BRD contains adaptation rules and an ACD contains components, tasks as well as runnables.
In the following, each state is described for those elements, whereas the term adaptation effect
is chosen as representative.

enable
waiting preenabled

enabled

active

postactive collaborating

ready

execute

postExecute

executed
finish

wait

interact

finish

blockedblock

enable

Figure 7.5: Deurema state model for contained module elements

State: waiting
If the parent module becomes active, all contained elements enter the waiting state. As a
consequence, they are visible for the execution environment. Therefore, the inference engine
reasons about these adaptation effects to determine next possible states and track state
changes during their execution.

State: preenabled
This state denotes that the adaptation effect (e. g., an activity in a feedback loop or a behavior
rule) fulfills all preconditions to be executed. This preconditions depend on the module
template type and its contained elements. A behavior rule in a BRD is preenabled, if a
match for its LHS is found and all behavior rule properties are fulfilled (cf. discussion in

– 199 –

7. Simulation

Section 5.3.5). A runnable in an ACD is preenabled, if the corresponding task is active and
the previous runnable in that task is active (cf. description in Section 5.3.4).

As an example, Figure 7.6 shows the simulation rule for detecting a preenabled operation
in a feedback loop. An operation is preenabled, if the previous operation is active and the
specified control flow denotes the operation as the following adaptation effect. Therefore, the
active operation references the following operation via the next reference as defined in the
Deurema metamodel (cf. Section 5.3.2). If the following operation is in the waiting state,
which implies that it is not active, an appropriate preenabled state annotation is created by
the inference engine for that operation. All other simulation rules for detecting preenabled
adaptation effects, as for example the initial node in a feedback loop, runnables in a task, or
behavior rules, are enumerated in the Appendix D.

����������������������

���������������������������

�����������������������������

����������������������������

��

������������������������

������������������������

��������������������������������

�����������������������

��� �������������������������������������

��

���������������������

����

��������������
�������������������

���������������������

�������������������
������������������

����������������

���������������������

Figure 7.6: Simulation rule for detecting a preenabled operation

State: blocked
This state denotes that the preenabled adaptation effect is blocked by an active interaction.
Therefore, another adaptation effect in the same module currently collaborates with an-
other module. The blocked adaptation effect has to wait until the interaction is performed.
Afterwards, it becomes preenabled again.

State: enabled
If no active interactions are performed in the parent module, the preenabled adaptation effect
becomes enabled. In this state, the adaptation effect can be picked by the scheduler for further
execution.

State: active
Similar to modules, this state denotes the active execution of the adaptation effect by the
interpreter.

State: postactive
In this state, the local adaptation effect is completely executed and thus, denoted as postactive.
Afterwards, collaborative behavior can be enabled via an interaction.

– 200 –

7.2. Interpreter

State: collaborating
In the case of an available interaction, a local adaptation effect changes in the collaborating
state denoting the active collaboration with another module.

State: executed
In this state, the adaptation effect is processed for cleanup by the execution environment.
This implies that the local adaptation effect was already executed and there is no collaborating
activity. After the cleanup, the adaptation effect waits again for its execution. Furthermore,
the parent module can only be disabled (cf. state model for modules and interactions in
Figure 7.2), if all local adaptation effects are in the states executed or waiting.

In summary, the Deurema execution environment maintains for each modeled element
an individual state, which denotes the current status of that element during a simulation.
Enabled model elements can be picked by the Deurema simulator and active elements are
currently executed by the Deurema interpreter. The current state is directly marked in the
Deurema models, whereas transitions between states are encoded in simulation rules. An
inference engine can directly execute these simulation rules on the modeled adaptive SoS,
which creates new state annotations in the model. During a simulation, the states change,
which is observed and maintained by the inference engine, too.

7.2. Interpreter

Beside the Deurema execution state models, this section describes the concrete execution
semantic for each Deurema model element. Thereby, each element defined in the Deurema
metamodel is considered. Executing elements is realized by the Deurema interpreter. The
interpreter is only responsible for the execution of model elements and does not maintain
any states. Therefore, it executes every element, which is picked by the Deurema simulator
beforehand.

7.2.1. Execution Semantic Module

Deurema modules are execution entities, which are placed in the layered system architecture.
Therefore, systems are not directly executed by the interpreter. The hierarchical, layered
architecture of a system is unfolded and the contained modules become visible for the execution
environment. A module can be executed by the interpreter, if the trigger conditions are
fulfilled. The interpreter marks the module as active, where the contained internal adaptation
activities as defined by the corresponding template become visible for further execution.
Exceptions are software modules that encapsulate black box functionality, which are handled
as behavior models as discussed below. After all internal adaptation effects of the module are
executed, all specified event trigger are emitted by the interpreter and the list of incoming
event trigger is reset. Furthermore, the optional time trigger is reset and the corresponding
module becomes disabled for the specified waiting period of the time trigger.

The adaptation effects within a module can be conceptually distinguished into two parts.
First, there are elements that are provided and fully controlled by Deurema. Second, behavior
models, e. g., an activity or runnable, can contain domain specific adaptation logic, which
leaves the focus of the Deurema modeling language. The following section describes the
elements that are fully controlled by Deurema. Afterwards, the execution semantic of behavior
models is discussed.

– 201 –

7. Simulation

7.2.2. Execution Semantic Deurema Elements

Feedback loops offer different operation types for specifying the intra-loop coordination
between adaptation activities as summarized on the left in Figure 7.7. Initial nodes are the
starting point of a feedback loop, whereas their execution is very simple. The interpreter
marks an initial node as active, which will enable the subsequent operation following the
control flow over the next reference. Beside the active marker, the execution of an initial node
has no further adaptation side effect.

<<FeedbackLoopModuleTemplate>>

InitialNode

DecisionNode

FinalNode

DestructionNode

<<ApplicationModuleTemplate>>

<<SWC>>

Name
T1

{2}

10s

<<Message>>

MessageName

<<Message>>

MessageName

<<
R

ol
e>

>

R
o

le
T

yp
e

<<
R

ol
e>

>

R
o

le
T

yp
e

<<InteractionTemplate>>

Figure 7.7: Deurema controlled elements

A decision node branches the control flow within the feedback loop. Therefore, the interpreter
successively evaluates the specified branch conditions. The first condition, which returns true,
enables the corresponding path for further execution. The evaluation of the other conditions is
aborted. Furthermore, the order of evaluating the branch conditions is nondeterministic and
the developer has to ensure that one of the branch conditions evaluates to true. Otherwise, no
following operation can be determined and the overall simulation of the feedback loop ends in
a deadlock.

The execution of a final node ends the overall feedback loop. Therefore, all state marker
from the contained feedback loop operations are removed and the parent module is marked as
postactive. A destruction node has the additional effect, that the module instance is removed
from the system template architecture. Therefore, the feedback loop module instance cannot
be executed again. Thereby, the corresponding template description is still available for other
module instances.

An ACD facilitates the specification of a component-based adaptation logic. Components
and corresponding ports encapsulate the available adaptation logic specified in form of
runnables. Because both Deurema elements define the structure of the corresponding module,
they are not executed by the interpreter. In contrast, tasks define executable groups of
runnables. During execution, the interpreter marks a given task as active with the consequence
that all mapped runnables are visible for further execution. If the last runnable in the task
is executed, the complete task becomes inactive and the interpreter cleans all state marker
from the mapped runnables. Furthermore, the period timer of the task is reset so that the
simulation environment can determine the next time slot, where the task is enabled again.

Interactions in collaborations use the additional Deurema message concept defining the
interaction protocol. The specified message properties define the execution behavior as
comprehensively discussed in Section 5.5.3. Therefore, if a message is enabled for execution or
not is encoded in appropriate simulation rules. The interpreter is only responsible for realizing
the execution effect, which is rather simple in contrast of determining enabled messages. First,
the Deurema interpreter determines the direction of the message (sender or receiver). For

– 202 –

7.2. Interpreter

sending a trigger message, the interpreter retrieves all receivers and stores the corresponding
trigger event in their local queue. Straight forward, receiving a message is realized by retrieving
and deleting all events from the local event queue. For a model message, the beforehand
retrieved amount of data is stored into respectively retrieved from the local queue. A service
is considered as behavior model as discussed below. Again, if the interaction can proceed
after the message is sent/received depends on the defined message properties and belongs to
the responsibility of the simulator and not to the Deurema interpreter.

7.2.3. Execution Semantic Behavior Model
Deurema behavior models integrate domain specific behavior into the adaptive SoS archi-
tecture. As comprehensively discussed in Section 5.3.2, Deurema supports behavior models
following a black-gray-white box concept. Behavioral black boxes point to a domain specific
implementation that can be invoked by the Deurema interpreter (cf. Figure 5.21). Gray boxes
specify an additional trigger condition known by Deurema, which describes the applicability
of the behavior model. The adaptation implementation remains unknown in the gray box
case. White boxes define the adaptation effect in form of a graph transformation rule by
means of a trigger-action condition, which is completely known by Deurema. Therefore,
white box behavior can be fully analyzed with the Deurema analysis concept as outlined
in Chapter 6. Figure 7.8 subsumes the different behavior model types within the Deurema
modeling language.

On module level, a software module allows the integration of domain specific behavior, which
can be directly placed on the layered system architecture. The execution steps are highlighted
in the running example Wheel software module in Figure 7.8. First, for step (1), all interactions
for all played collaborations with the specified role trigger Before (cf. Section 5.5.6) must be
executed. Detecting enable interactions belongs to the responsibility of the inference engine
and choosing the interactions for execution belongs to the simulator. However, each module
can only be executed if all of these interactions are successfully processed. The execution
of a software module starts with an update of the local knowledge base by executing all
reflect module operations denoted with step (2) in the figure. Afterwards, the optional trigger
condition is evaluated in step (3). If no trigger condition is specified or if the trigger condition
is evaluated to true, the behavior implementation is invoked in step (4). Step (4) to (6) are
skipped, if the trigger condition is not fulfilled. Executing the adaptation effect might affect
other modules denoted in step (5). After the successful execution of the adaptation effect,
all interactions of played collaborations with the After role trigger are ready for execution
denoted as step (6). Finally, the interpreter emits all outgoing events in step (7) and resets
the period of the timed trigger in step (8).

The execution of feedback loop activities in FLD, behavior rules in BRD, runnables in
ACD, and services in interactions follows the same principle and is sketched at the bottom
in Figure 7.8. At first, all reflecting module operations in step (1) are updated, which point
to a runtime model view that is read in step (2) by the behavior model afterwards. Note,
reflect and affect module operations are specified between modules only. The Deurema view
delegation concept is used to delegate the reflected information to the corresponding runtime
model view (cf. Section 5.6). For the sake of simplicity, the delegation is omitted for the
feedback loop activity on the lower left in Figure 7.8 and the reflection module operation
directly points to the runtime model view. However, after the update of the local knowledge
by reflecting (1) key points of interest and reading (2) the runtime model data, the trigger (3)
and action (4) is executed for the behavior model. The execution of the concrete adaptation

– 203 –

7. Simulation

trigger : String
action : String
executionTime : int
urgent : boolean
committed : boolean

<<abstract>>

BehaviorModel
<<SoftwareModuleTemplate>>

Wheel

<<Trigger>> <<Action>>

tractionControl()

errorCode = wheelspin

status:State

w:Wheel

R1

<<SWC>>

C1

R1

R2 w

r

T1

R1

R2

ws1:Wheelspin

(2) reflect (5) affect

(5) a,w,d,c

<<Monitor>>

Update

<<SystemModel>>

Architecture

 (2) r

<<MonitoringModel>>

Monitoring Rules

(1) reflect (6) affect

 (2) r

<<MonitoringModel>>

Monitoring Rules

(5) a,w,d,c

<<SystemModel>>

Architecture

<<MonitoringModel>>

Monitoring Rules

<<SystemModel>>

Architecture

(3)

(4)

(7)

(8)

 (2) r

 (2) r

r

(3) (4) (4)(3) (3) (4)

(2)

(2,5)

<<Collaboration>>

p:Platoon

<<Collaboration>>

t: Traffic

c:Client

f:Follower

(1)
(6)

Figure 7.8: Deurema behavior models

effect depends on the specified black-gray-white box situation. For all three situations, the
optional trigger condition is evaluated first in step (3). Only if the trigger condition indicates
the further application of the adaptation action (the return value of the trigger condition
is true), the defined action is executed as denoted by step (4). For black boxes, Deurema
subsequently hands the beforehand retrieved knowledge over to the domain specific trigger and
action implementation. Because the trigger condition is known for gray boxes, the Deurema
interpreter applies the specified condition and invokes the unknown domain action afterwards.
For white boxes, the trigger and action are combined in a graph transformation rule, which
can be directly applied by the interpreter. During the execution of the adaptation effect,
the Deurema execution environment recognizes changes on the underlying runtime models
depicted as modifying runtime model operation in step (5). Therefore, modifying model
operations (e. g., write or annotate in step (5)) as well as affecting module operations in step
(6) can be applied by the Deurema interpreter accordingly.

Model operations consist of model queries, whereas each query is considered as executable
behavior model (cf. Figure 5.22). The trigger attribute corresponds to a knowledge retrieval
step and the action to an optional filter operation, which is applied on the retrieved data. The
Deurema interpreter first invokes the retrieval implementation that can be a domain specific
function (black box) or a graph pattern (gray and white box). Afterwards, the optional filter

– 204 –

7.3. Simulator

operation is invoked, which is always domain specific. A discussion about all combinations
of black-gray-white box behavior models and model operations is given in Section 5.3.2 in
Table 5.3.

7.2.4. Execution Semantic Interaction
The execution of an interaction, which is woven into the local adaptation behavior of a module,
is similar to a behavior model explained above. The execution steps are depicted in Figure 7.9.
The Deurema interpreter updates the knowledge base by performing all reflecting (1) module
operation dependencies and read model operations (2). The retrieved knowledge is handed over
to the interaction. The internals of the interactions are defined by a corresponding template
definition and depend on the played role. Due to the Deurema metamodel, an interaction is a
feedback loop template (with an extended message concept) and thus, executed in the same
way as above explained for modules. The interpreter marks the interaction instance as active
denoted by step (3), where the contained operations become visible and are further processed
by the Deurema simulation environment. Incoming (2) and outgoing (4) knowledge of an
interaction is defined in the knowledge collaboration specification as discussed in Section 5.5.2.
Therefore, the interpreter can track changes in the runtime model during the execution of
the interaction, where the data becomes visible for the player module after the interaction is
executed (step (4)).

(4) a,w,d,c

c

<<Interaction>>

Leader:ShareEnvironment

<<MonitoringModel>>

Monitoring Rules

 (2) r

<<SystemModel>>

Route

(1) reflect (4) affect

(3)

Figure 7.9: Deurema interaction

7.3. Simulator
The overall Deurema simulation workflow is depicted as activity diagram in Figure 7.10. At
first, the modeled adaptive SoS in form of the Deurema models must be registered in the
simulator to define the amount of adaptation logic and contained systems that have to be
simulated. Additionally, the available domain knowledge, which is captured in runtime models,
must be registered in the simulator. After the Deurema models and domain knowledge are
known, the simulator preprocesses the given models. Thereby, it validates the Deurema models
against syntactical correctness and deploys the available modules from the system template

– 205 –

7. Simulation

Register
Deurema Models

Register
Domain Models

Preprocessing

Validate Deurema
Models

Deploy Modules

Reset ClocksBuild Megamodel

Process Simulation Step

[time step]

Update Local
Clocks

Update Global
Clocks

[else] Determine
Enabled Models

Pick Model
by Scheduler

Interprete Model
Element

Cleanup

Update
Megamodel

Check Simulation
Condition

Check Invariants

[else]

[violation]

[else]

[fulfilled]

Figure 7.10: Deurema simulation workflow

architecture in the inference engine. Furthermore, all global and local clocks are reset and
the initial build of the megamodel is started. The megamodel contains all Deurema models,
runtime models as well as states in form of annotations from the inference engine during the
simulation. The inference engine together with the underlying megamodel monitors and keeps
track of every change in the runtime models and the specified Deurema architecture during
the simulation, which is caused by the execution of the adaptation effects.

After the preprocessing, the main simulation loop starts, indicated by the UpdateMegamodel
activity in Figure 7.10. During the update of the megamodel, the inference engine applies the
defined simulation rules on the registered Deurema and runtime models. Thereby, it creates
state information for each visible module and adaptation effect. Because it is possible to
run analysis rules along with the simulation, the simulator checks if all specified invariants
(runtime analysis rules) hold on the updated megamodel. If an invariant is violated, the
simulation is aborted. The last simulation state is maintained and can be used for further
offline analysis, e. g., for investigating the occurred, erroneous situation. If all domain
specific invariants are fulfilled, the simulator checks defined simulation conditions. Simulation
conditions indicate when a simulation should stop. Examples for simulation conditions are
a fix number of simulation steps, when a global simulation time is reached, or if a specific
situation occurs (e. g., a concrete collaboration instance is active). Checking invariants and
simulation conditions belongs to the decision if the overall simulation process should be
stopped or not. If the simulation is not stopped, one simulation step is processed (cf. activity
on the right in Figure 7.10).

– 206 –

7.3. Simulator

One simulation step is distinguished in a time step and an adaptation step. A time step
comprises the update of local clocks for each module instance as well as the update of the
global clock. The simulator performs a time step, whenever no adaptation step can be
performed. Updating the local and global clocks is equal to a waiting step, where time elapses.
This leads to new enabled modules and adaptation effects after the specified waiting period is
reached. In contrast, in an adaptation step, the simulator determines all enabled Deurema
model elements by looking at the state annotations. Afterwards, the simulator picks one of the
enabled elements according to a defined scheduling strategy and hands it over to the Deurema
interpreter for execution. Finally, the simulator cleans up intermediate data structures and
ends the simulation step. Therefore, the megamodel is updated again and the next simulation
round is processed.

Time Step Semantic
There are different possibilities for the simulator realizing a time step. If the developer wants
to investigate the overall interplay between systems within the adaptive SoS to ensure that
the modeled interaction works as expected, a zero execution time semantic can be applied
very early during the development process, where the exact execution times of the modeled
elements are not known or less important. A zero execution time simulation denotes that the
time of executing an adaptation effect is not considered. Therefore, the simulator maintains a
logical time for each deployed module. During the execution of a module, e. g., a feedback
loop, no time elapses. If the execution of adaptation effects stops, e. g., because there is a time
trigger specified that denotes a waiting period, the simulator increases the local or if necessary
global logical time, updates the megamodel, and continues the execution of new enabled
adaptation effects. Therefore, the zero execution time simulation focuses on the general
interplay of adaptation effects, whereas the order is determined by the chosen scheduling
strategy. On the one hand, this simulation strategy can be helpful in the early design process
by investigating the interplay of local and collaborative adaptation activities. On the other
hand, it is unrealistic with respect to the timing domain by ignoring the influence of elapsing
time during the execution of an adaptation effect.

The simulator supports two further strategies by measuring the execution time or taking
the specified execution time. The former strategy can be applied if the timing behavior is
important, but the concrete execution times are not known by the developer. Therefore, the
simulator measures how long the execution of each adaptation effect takes and updates the
local and global clocks accordingly. Of course, the measured execution time depends on the
underlying hardware capabilities of the system. Executing the simulation on a multi-core
desktop computer will be much faster than the execution of the simulation on an embedded
device. Avoiding these different execution times leads to the real-time simulation capabilities
of the Deurema simulator. For this simulation strategy, the execution times must be specified
by the developer along with the definition of the adaptation effects. This implies that the
execution times are known or can be estimated upfront, which is a realistic assumption for
embedded real-time systems but may not be predictable for long term analysis as well as
planning activities.

Scheduling
Beside timing aspects, different scheduling strategies are thinkable for simulating the adaptive
SoS. Caused by the independence of system and module instances, multiple adaptation
effects can be enabled for execution at the same point in time. Furthermore, picking one
enabled model element and execute it, may affect other model elements, which can lead to

– 207 –

7. Simulation

further enabled as well as disabled models. Thus, the scheduling strategy has an effect on the
overall simulated SoS behavior. The simplest policy is a random based scheduling, where the
simulator randomly picks one enabled Deurema model and hands it over to the interpreter.

More complex policies are for example a FIFO or LIFO scheduling, where the simulator
maintains an additional order of incoming enabled Deurema models. Thereby, a FIFO
scheduling realizes a kind of fairness criterion, where model elements that are enabled before
other model elements are executed before those. In contrast, a LIFO strategy is related to
a most recently enabled adaptation effect scheduling policy, where new appearing, possible
system adaptation and interaction effects are preferred.

Beside the discussed three scheduling policies, further strategies such as collaborative behav-
ior before local adaptation behavior, adaptive behavior on lower system layers before behavior
on higher layers, or temporally urgent adaptation effects first are thinkable. Additionally,
tracing of the simulation execution trace can be attractive. If for example an error is found
during a simulation, a reexecution of the logged trace can help verifying whether the error
is fixed in the next system version or not. However, each scheduling strategy introduces an
additional overhead to determine the next element for execution. Furthermore, the scheduling
strategy mostly influences the observed adaptive behavior of the SoS, which might be com-
pletely different by exchanging the underlying scheduling algorithm. The Deurema simulator
can be extended by realizing a scheduling strategy that fits best to the aimed simulation
progress. As explained above, the scheduling algorithm is always applied on the beforehand
retrieved enabled Deurema models and belongs to an adaptation simulation step (cf. pick
model by scheduler activity in Figure 7.10).

7.4. Simulation Run Example

In the following, an exemplary simulation run is described that summarizes the discussion
about the Deurema simulation framework above. According to the running example of this
thesis, two self-configuring feedback loops sc1 and sc2 that interact with each other over the
platoon p collaboration are considered. Pinpointing to the individual simulation steps in
combination to an overview of the collaboration situation between the two feedback loops,
a mixture of a Deurema LD and FLD is chosen as depicted in Figure 7.11. Thereby, the
simulation steps are annotated on the corresponding elements.

The focus of the simulation run is on the feedback loop sc1 and its played SharedEnvironment
interaction in the leader role of the platoon collaboration. As precondition of the module
execution, the event trigger e1 from type ModeSwitch must occurred at least once and the
time trigger with a period of 30 seconds must be elapsed, which is denoted with step (1)
in Figure 7.11. The inference engine detects the enabled sc1 module and marks it with a
corresponding annotation. During a simulation step, the simulator selects the enabled module
sc1 and sends it to the Deurema interpreter for execution. As discussed above, the interpreter
marks the module as active (step 2 in the simulation run) with the effect that all contained
feedback loop operations become visible for the inference engine. The inference engine detects
the enabled initial node of the feedback loop, which is again sent from the simulator to the
interpreter for execution. Detecting enabled model elements and picking those by the simulator
is done for all following Deurema model elements of this simulation run and thus not mentioned
for the rest of the example discussion. The interpreter marks the initial node as active denoted
by step (3), which enables the Update activity. Because this activity is a behavior model
element, it defines a domain specific adaptation effect. For its execution, which is subsumed by

– 208 –

7.4. Simulation Run Example

a

c

<<
In

te
ra

ct
io

n>
>

Le
ad

er
:S

h
ar

eE
nv

ir
on

m
en

t

<<
M

on
it

or
>>

U
p

da
te

<<
M

on
it

or
in

g
M

o
de

l>
>

M
on

it
or

in
g

Ru
le

s

r

M
o

n
it

o
r

<<
Sy

st
em

M
od

el
>>

A
rc

hi
te

ct
u

re

E
xe

cu
te

d

rw

r<<
Sy

st
em

M
od

el
>>

R
ou

te
 <<

Fe
ed

b
ac

kL
o

op
M

o
d

ul
eT

em
p

la
te

>>

sc
1
:S

el
f-

Co
n

fi
gu

ri
n

g

<<
In

te
ra

ct
io

nT
em

pl
at

e>
>

Sh
ar

e
En

vi
ro

n
m

e
n

t

<<Role>>

Leader

<<
M

od
el

M
es

sa
g

e>
>

En
vI

n
fo

St
ar

t

<<
A

n
a

ly
ze

>>

C
he

ck
R

ou
te

<<
C

on
te

xt
M

o
d

el
>>

En
vi

ro
n

m
en

t

w
r

<<
Sy

st
em

M
od

el
>>

R
o

u
te

3
0

s
r

a

D
o

ne

D
o

ne

re
fl

ec
t

<
<d

e
le

g
at

e
>

>

<
<d

e
le

g
at

e
>

>

a
ff

ec
t

e
1:

M
o

d
e

Sw
it

ch
;

M
o

n
it

o
r

l:L
ea

d
er

<<
C

ol
la

b
o

ra
ti

o
n>

>

p
: P

la
to

o
n

f:
Fo

llo
w

e
r

<<
Fe

ed
b

ac
kL

o
op

M
o

d
ul

e
>>

sc
2
:S

el
f-

C
on

fi
gu

ri
n

g

3
0

s

3
0

s

e
2:

E
ve

n
t

e
3:

E
ve

n
t

..
.

..
.

(1
)

(2
) (3

)

(4
)

(4
.2

)

(4
.2

)

(4
.3

)

(4
.4

)

(5
)

(6
)

(7
)

(4
.1

)
(4

.5
)

(8
)

(8
)

(9
)

(5
.1

)

(5
.2

)
(5

.3
)

(5
.4

)
(5

.5
)

(5
.6

)

(1
)

Fi
gu

re
7.

11
:

D
eu

re
m

a
sim

ul
at

io
n

ru
n

ex
am

pl
e

– 209 –

7. Simulation

step (4), the interpreter follows several steps. It updates all accessed runtime models, whereas
the Deurema reflection module operations are evaluated first (4.1) and the amount of runtime
data is retrieved over the read model operations afterwards in step (4.2). In the example,
there is one reflection dependency, whereas the information is delegated to the Architecture
runtime model. Furthermore, there are two read model operations from the Monitoring Rules
and Architecture runtime model to the Update activity. Once all information is retrieved, the
data is handed over to the activity and the adaptation effect is executed (4.3). Depending on
the black-gray-white box specification of the Update activity, the execution can comprise several
steps as comprehensively discussed above and in Section 5.3.2. Changes on the runtime model
by the Update activity are recognized by the Deurema execution environment and appropriately
applied to the corresponding runtime model denoted by step (4.4). Furthermore, changes that
influence an underlying module or collaboration are propagated accordingly via the affect
module operation in step (4.5). Afterwards, denoted by the control flow, the ShareEnvironment
interaction becomes enabled and thus, is executed as step (5) by the interpreter. According
to the collaboration knowledge specification, all incoming runtime models are retrieved (5.1)
and are now available for the interaction. The details of the interaction for the leader role are
shown on the right in Figure 7.11. As soon as the interaction becomes active, which happens
by executing the initial node (5.2), the corresponding interaction player module sc1 changes
its state to collaborating. In this example, the collaboration consists of exchanging data via
a model message, which is stored in the Environment runtime model (5.3) and an internal
CheckRoute analyze activity within the leader role (5.4). Executing the analyze activity follows
the same interpretation sequence as described for the execution of the Update activity in step
(4). After the final node of the interaction is reached and executed (5.5), the updated Route
runtime model is provided to the local context of the feedback loop sc1 (5.6). The interaction
is successfully completed and changes its state to disabled. Furthermore, the module instance
sc1 becomes active again and all other operations of the feedback loop can be subsequently
executed (step (6) and (7)). If the execution reaches and processes the final node (7), the
corresponding feedback loop module becomes postactive and finally disabled. The outgoing
module events e2 and e3 are emitted by the simulator in step (8) and the timed trigger is
reset denoted by step (9) so that the module must wait the defined period before it can be
executed again.

There are some implications of this exemplary simulation run. First, the other module
instance sc2 must send the environmental data in step (5.3) within a time slot of thirty seconds.
Otherwise, the interaction is aborted over the final node, which can be reached from the timed
trigger of the corresponding model message. Second, all operations of the second feedback
loop instance sc2 run completely independent from the operations in sc1. In this example,
both modules synchronize their behavior only by exchanging the model message. Therefore,
each module and interaction has a corresponding template definition, whereas the Deurema
execution environment maintains individual states for each module and interaction instance.

7.5. Runtime Analysis

In contrast to the static analysis of the modeled adaptive SoS architecture as outlined in the
former Chapter 6, the Deurema simulation framework facilitates the coexistence of analysis
rules and the simulated SoS, which enables a runtime analysis of the adaptive behavior.
Figure 7.12 sketches two possibilities of applying a runtime analysis during a Deurema SoS
simulation. At first, the same static analysis rules can be applied during the simulation to

– 210 –

7.5. Runtime Analysis
<<

La
ye

r>
>

G
o

al
<<

La
ye

r>
>

A
d

a
p

ti
ve

<<
La

ye
r>

>

So
ft

w
a

re

<<SystemTemplate>>

SmartCity

<<System>>

audi:SmartCar

<<FeedbackLoopModule>>

to:TrafficOptimization

<<FeedbackLoopModule>>

sc1:Self-Configuring

<<ApplicationModule>>

ad:AutonomousDriving

<<FeedbackLoopModule>>

sc2:Self-Configuring

reflect affect reflect affect30s 30s

30s

l:Leader

<<Collaboration>>

p:Platoon

f:Follower

o:Observer

Analysis

Rules

<<BehaviorModule>>

tm:TrafficMonitor

 Sim
ulatio

n

Figure 7.12: Smart city running example: Deurema runtime analysis

reason about different metrics within the Deurema models and thus, of the adaptive SoS
architecture during runtime. In this case, the analysis rules are separated from the modeled
adaptive SoS and both, the analysis rules as well as the Deurema models are hand over to
the simulation framework. In the second possibility, the analysis rules are modeled within the
adaptive SoS by using the Deurema rule-based behavior module concept. In this variant, the
analysis rules are encoded into a behavior module template, whereas a corresponding instance
is placed on the layered system template definition of the SoS. The second case is sketched by
the TrafficMonitor module on the goal layer in the SmartCity system template as highlighted
in gray in Figure 7.12. The focus of both runtime analysis possibilities is different. The
separation of analysis rules and the modeled adaptive SoS targets the analysis of the Deurema
models and thus, retrieves dependencies as well as patterns between modules, systems, and
collaborations. The integration of analysis rules within the SoS in form of module instances
enables the reasoning about the domain specific behavior. For example, the traffic monitor
can reason about existing platoon collaborations in the smart city, which clearly belongs
to a domain specific analysis concern instead of investigating causal dependencies between
Deurema modules as done for the first variant. Furthermore, the integrated module containing
the analysis rules can use the Deurema reflection and adaptation concepts to define the overall
amount of local knowledge that is used to apply the modeled analysis rules. In this case, the
dependencies of the runtime analysis are explicitly defined in the Deurema model and thus,
become visible for the system developer. The decision of modeling analysis rules separately
or within the adaptive SoS belongs to the system developer and the aimed analysis metric
(domain specific or Deurema model specific). However, the Deurema execution environment
supports both variants.

– 211 –

7. Simulation

With respect to the separated analysis variant, analysis rules are applied on the concrete
instance situation of the running system during the simulation, which enables the investigation
of concrete runtime effects instead of statically analyzing all possible effects of the system.
For example, there are two possible adaptation paths in the feedback loop in Figure 6.18.
Therefore, the static analysis retrieves both paths together with all causal dependencies as
well as their closures as discussed in Section 6.1.1. At runtime, only one path can be executed,
which is for example Activity1 followed by Activity2 in the upper path in Figure 6.18. This
narrows the overall possible causal dependencies and their corresponding causal closures down
to the both activities in the upper path, where the both activities at the bottom cannot
be causally happen in this concrete situation. As a consequence, annotations for all the
different analysis metrics pinpoint to the concrete simulated situation of the running SoS by
considering the currently executed entities and their current states in the system instead of
enumerating all possible dependencies as done in the static analysis. Of course, the static
analysis rules must be slightly adapted to detect those entities in the overall adaptive SoS that
are currently running (e. g., Activity1 in the example above) and those, which are not able to
run (e. g., Activity3 and Activity4) by detecting the annotated state information as explained
above. Thereby, the analysis results change during the execution of the adaptive behavior.
For example, feedback loops usually run periodically. If the feedback loop in Figure 6.18 is
executed again, it might be possible that the lower path is enabled in the subsequent execution
run instead of the upper path. Thus, causal dependencies arise as well as disappear during the
simulation by applying runtime analysis. Another example for a difference between static and
runtime analysis is the concrete effects of design flaws. Consider Figure 6.18 again, the static
analysis retrieves an annotation for a design flaw, whereas the overall causality contradicts
the knowledge dependencies in the feedback loop as discussed in Section 6.3. At runtime,
it might happen that the lower path of the feedback loop is never executed and thus, the
potential static violation of the causality and knowledge is never detected at lifetime of the
adaptive SoS.

The integrated runtime analysis variant supports the monitoring of concrete situations in the
corresponding domain. Instead of analyzing the modeled Deurema architecture, the runtime
analysis can focus on the available information in the local runtime models. Furthermore, the
local information can be enriched by reflecting other modules, collaborations, and subsystems
in the system template. This enables the runtime analysis with respect to the underlying
problem domain. Transferred to the smart city running example of this thesis, an analysis rule
can be responsible for detecting a car accident within a platoon, where both smart cars run in
an autonomous driving mode. Of course, such an accident should never happen, otherwise the
autonomous driving functionality of the smart car seems to be erroneous. Therefore, runtime
analysis rules can be used to detect forbidden or special situations in the concrete domain
looking at the runtime models of the system.

Penalties of applying runtime analysis are the additional overhead of evaluating the analysis
rules along with the system execution. Usually, this overhead can be handled in a simulation
of the adaptation logic but exits the resources in the concrete system realization. Especially
small embedded systems within the overall SoS have limited computation and memory
resources, where an additional runtime analysis cannot be realized. Furthermore, the analysis
rules must be able to monitor the execution states to reason about the current simulation
situation. Because the Deurema analysis framework annotates a found situation directly
into the Deurema model, the developer must decide about the consequences if for example a

– 212 –

7.6. Discussion

forbidden situation was found in the system. This can for example trigger additional offline
development activities such as bug fixing or redesigning parts of the layered system structure.

7.6. Discussion
The basic design decision of independently running systems and modules during a simulation
leads to the separation of responsibilities of the inference engine, which maintains the overall
state situation, the simulator, which controls the simulation run, and the interpreter, which
executes a single Deurema model element. Thereby, each Deurema element follows a predefined
state model during the simulation. The starting point of a simulation is a modeled SoS
architecture in form of a Deurema system template, which evolves during the simulation. In
general, an inference engine detects enabled Deurema elements with the help of simulation
rules. The simulation rules are enumerated in the Appendix D. For the execution of the
simulation rules, the inference engine implementation from [35] is used. On basis of the
retrieved enabled elements, the Deurema simulator picks one element and hands it over to
the Deurema interpreter for execution. Thereby, the simulator supports different scheduling
strategies deciding which element is picked next for its execution. The Deurema interpreter
realizes the execution and invokes the corresponding adaptation effects, which may lead to
changes in the initial deployed system template specification, e. g., a feedback loop may change
the behavior of an underlying module instance. As a consequence, the inference engine detects
changes in the Deurema runtime megamodel, which comprises the state annotations, the
runtime models, and the Deurema system model itself, and reevaluates depending simulations
rules. The reevaluation leads to new enabled elements, which are again picked by the simulator.

The simulation workflow described in Figure 7.10 and the interpreter are completely
implemented in Java. Thereby, the Deurema metamodel is realized by the Eclipse Modeling
Framework. On basis of the metamodel, simulation rules are defined to detect the current
state situation for all deployed module and interaction instances within the adaptive SoS.
Execution metrics of a Deurema simulation for the running example are enumerated in the
Appendix D.

Finally, the analysis rules discussed in Chapter 6 are also realized as declarative rules
with the inference engine tool. Therefore, these rules can be executed side by side with
the system simulation, which realizes the runtime analysis capabilities of the Deurema
execution framework. During the simulation, found analysis metrics are directly annotated
in the Deurema models. Thereby, the Deurema execution environment facilitates the direct
simulation of Deurema models and thus, no implementation artifacts as for example Java or
C++ code are derived from the models for its execution. Deriving a concrete implementation
belongs to the realization of a modeled adaptive SoS, which is discussed in the next chapter.

– 213 –

8. Realization

This chapter discusses the realization of Deurema modeling concepts with focus on the
embedded, automotive domain. Whereas the Deurema analysis and simulation framework
helps verifying the behavior of the modeled adaptive SoS, this chapter is concerned with an
exemplary mapping of Deurema concepts to a concrete application domain showing that the
modeling language concepts can be realized in current systems. Furthermore, realizing the
modeled adaptive SoS enables analysis and simulation of the system within the real target
platform, which introduces additional, domain specific execution effects (e. g., sensor noise,
realistic timing behavior) that cannot be investigated in a virtual simulation as discussed in
Chapter 7. In general, the Deurema concepts can be realized differently depending on the
underlying execution platform, domain, or preferences of the software developer. Therefore,
this chapter pinpoints to one possible realization using the AUTOSAR de facto standard
from the automotive, embedded domain and does not claim that this realization is required
nor the only possible implementation of the modeling concepts. The AUTOSAR standard is
used, because it is widely adopted for the development of modern cars. Furthermore, smart
cars are complex cyber-physical systems. On the one hand, they include different adaptive
capabilities and may collaborate with other smart cars to optimized the local behavior. On
the other hand, cars have high demands on safety, including hard timing constraints, and
must be efficiently realized with respect to a resource restricted execution environment.

The main idea of realizing Deurema models is sketched in Figure 8.1. The starting point for
a concrete implementation is a system template description, which comprises modeled modules,
templates, and collaborations. Although a complete implementation of the system template
is highly desirable so that the resulting realization is as close as possible to the modeled SoS,
this chapter describes a mapping for each Deurema template type to the AUTOSAR standard.
This facilitates a partial step-by-step realization of the modeled SoS architecture, which
further enables a refinement of domain specific modifications such as a concrete distribution
to physical available computing resources.

This chapter is structured as follows: Section 8.1 introduces the modules and Deurema
concepts of the smart car running example, which are used to explain the mapping to
the AUTOSAR standard. Afterwards, Section 8.2 explains all necessary concepts from the
AUTOSAR standard that are needed for the realization discussion. Based on the introduced
excerpt of the running example and the AUTOSAR concepts, the mapping of each Deurema
module template type is discussed, starting with software module templates in Section 8.4,
application module templates in Section 8.5, feedback loop module templates in Section 8.6
to behavior module templates in Section 8.7. Within the module template type realization
discussion, the mapping of Deurema cross cutting concepts such as collaboration and the
reflection mechanism are highlighted. This chapter concludes in Section 8.8 by pinpointing
to the used software tools and an exemplary modeling process, which comprises analysis,
simulation and realization steps discussed in this thesis.

– 215 –

8. Realization

<<
La

ye
r>

>

G
o

al
<<

La
ye

r>
>

A
d

ap
ti

ve
<<

La
ye

r>
>

So
ft

w
ar

e
<<SystemTemplate>>

SmartCity

<<System>>

audi:SmartCar

<<FeedbackLoopModule>>

to:TrafficOptimization

<<FeedbackLoopModule>>

sc1:Self-Configuring

<<ApplicationModule>>

ad:AutonomousDriving

<<FeedbackLoopModule>>

sc2:Self-Configuring

reflect affect reflect affect30s 30s

30s

l:Leader

<<Collaboration>>

p:Platoon

f:Follower

o:Observer

Realization
:SmartCar

:Platoon
:SmartCar

Figure 8.1: Smart city running example: Deurema realization

8.1. Scope

A comprehensive discussion about Deurema concepts along with the running example of this
thesis is given in Section 5.7. This chapter focuses on dedicated modules of the SmartCar example
as highlighted gray in Figure 8.2. The selected modules comprise all supported Deurema
template types, the Deurema reflection capabilities and the collaboration modeling concept.
At the lowest layer L-0, the Motor software module encapsulates the control functionality of the
car engine. This module is reflected by the AutonomousDriving module at layer L-1 and the ESP
module at layer L-2. The former follows the component-based specification of the behavior and
realizes autonomous driving functionalities. The latter module uses the rule-based approach
and implements a supervising traction control behavior of the smart car. An additional ABS
module is modeled as feedback loop that supervises the wheels of the car and ensures an
antilock braking functionality. The ALC module runs in parallel to the other modules and
implements an adaptive light control functionality, which turns up and down the headlights
of the smart car depending on oncoming vehicles. A black board collaboration connects the
independent modules ESP, ALC and AutonomousDriving and enables the data exchange. The
autonomous driving module is the head of the collaboration and the other both modules
contribute important data.

– 216 –

8.2. AUTOSAR

wc:Wheel
Controller

mc:Motor
Controller

<<SoftwareModule>>

frontRight:Wheel

<<ApplicationModule>>

alc:ALC

<<SoftwareModule>>

motor:Motor

<<FeedbackLoopModule>>

asrFront:ASR

<<SoftwareModule>>

frontLeft:Wheel
<<SoftwareModule>>

rearRight:Wheel
<<SoftwareModule>>

rearLeft:Wheel

<<FeedbackLoopModule>>

abs:ABS

100ms

1s

10ms 10ms 10ms 10ms

<<ApplicationModule>>

ad:AutonomousDriving

<<BehaviorModule>>

esp:ESP

<<FeedbackLoopModule>>

asrRear:ASR

<<FeedbackLoopModule>>

asr:ASR

 reflect

 affect

reflect

reflect

reflect

 reflect

<<Collaboration>>

s: Stability

reflect

affect

<<Collaboration>>

bb: BlackBoard

bc:BoardController

 c1:Contributer

c2:Contributer

c3:Contributer

c4:Contributer

100ms

200ms

200ms<<
La

ye
r>

>

L-
1

<<
La

ye
r>

>

L-
0

<<
La

ye
r>

>

L-
2

<<SystemTemplate>>

SmartCar

reflect

Figure 8.2: Highlighted Deurema modules that are discussed concerning a realization

8.2. AUTOSAR

The Automotive Open System Architecture (AUTOSAR) is the de facto standard in the
automotive domain1 for the development of complex, distributed systems such as modern
cars [62]. The standard defines a layered reference architecture, provides standardized
communication mechanisms and a complete development methodology. This facilitates the
cooperation between different car manufactures and their suppliers. Figure 8.3 gives an
overview of the layered AUTOSAR architecture, which is based on the standard specification
in [61]. The lowest layer at the bottom encapsulates the concrete hardware including the access
to the underlying microcontrollers called Electronic Control Units (ECU) and communication
buses in the car. On top, a basic software layer provides standardized interfaces to the
hardware layer below as well as it realizes basic functionality of an operating system, which
includes task scheduling as well as access to operating system resources such as memory. The
AUTOSAR runtime environment is responsible to realize the concrete communication from
and to the software layer on top. The three lowest layers are completely standardized by
AUTOSAR. Due to resource restrictions in automotive systems, the runtime environment and
basic software can be efficiently generated considering only the communication mechanisms
and the operating system functionality needed by the software abstraction layer above as well
as the available hardware resources at the lowest layer.

The highest layer contains the application logic, where the AUTOSAR architecture style
changes from a layered to a component-based development approach [61, 62]. AUTOSAR
provides concepts to specify the domain specific functionality by a set of AUTOSAR software
components, which can communicate with each other over well-defined ports using AUTOSAR
interfaces. Thereby, the modeled communication is realized by the AUTOSAR runtime
environment layer. Each AUTOSAR component consists of behavioral entities that are named
Runnables, which encapsulate an individual piece of functionality. Usually, runnables are
implemented by means of C/C++ functions. Furthermore, they can read and write data from
the available ports of the corresponding component. For execution, runnables are mapped to
operating system tasks, which are scheduled by the operating system functionality included in

1www.autosar.org

– 217 –

www.autosar.org

8. Realization

ECU Hardware

Basic Software

AUTOSAR Runtime Environment

AUTOSAR
Software

AUTOSAR
Software

Component

AUTOSAR
Software

Component...

Figure 8.3: Layered AUTOSAR architecture [61]

the basic software layer. AUTOSAR defines different port concepts, where the developer can
choose an appropriate type according to the underlying problem. For example, a component
with a client-server port can provide (server) a specific service for other components (client).
Thus, a client component can invoke a possible distributed service, where the computational
effort is transferred to the server component. Another example are sender-receiver interfaces
that are designed for the data exchange between components. The direction of the data flow
is defined from the sender component to the receiver. A comprehensive discussion of applying
the AUTOSAR standard for the development of embedded robotic systems is given in own
former work in [14].

Figure 8.4 summarizes the AUTOSAR elements, which are necessary for the mapping of
the Deurema concepts discussed in this chapter. In the following, each element is briefly
introduced, where a comprehensive definition can be found in the standard specification
in [62].

ComponentType

Interface

SenderReceiverPort
ModeSwitchPort

ClientServerPort

MotorModule

Figure 8.4: AUTOSAR components, ports, and interfaces

– 218 –

8.2. AUTOSAR

Composition
A composition is a structuring software component type that has no direct functionality
specified. It contains other subcomponents such as compositions and software components.
Therefore, compositions can be used for grouping components and building a hierarchical
software architecture. Figure 8.4 shows the concrete syntax of an AUTOSAR composition for
the MotorModule, which is labeled with the tag Composition.

Component
An AUTOSAR atomic software component (also application software component, or short
component) is the basic entity for the specification of the overall architecture that defines
the application software functionality (cf. Navigation component in Figure 8.4). A component
contains a behavior description, which can be separated in different internal functional units
called Runnables. In contrast to a composition, a component must be deployed on an Electronic
Control Unit (ECU), which is the execution environment of the defined software specification.
Components can communicate with each other as well as exchange data over ports, whereas
the type of the communication is defined by the corresponding interface.

A service component is a special software component that provides an accessible service
functionality, which can be invoked over an appropriate port (cf. CollabBlackBoard component
in Figure 8.4).

A complex device driver is a special software component, which encapsulates non AUTOSAR
specific domain functionality (e. g., device specific control commands as done for the Motor
component in Figure 8.4). Encapsulated, domain specific functionality in a complex device
driver component can be accessed by other AUTOSAR components and thus, can be integrated
in the overall software architecture.

Port
Ports are connection points of a component that enable communication and data exchange
using an appropriate communication type defined by an interface description. The port type
must correspond to the interface type, which is described below. The communication flow
is defined from the provided port to the requested port. Furthermore, compositions may
contain ports, whereas the communication flow is forwarded by the composition to an inner
component.

Interface
Interfaces define the protocol and content of the communication between components and
are attached to a port. Only ports between two components with a compatible interface
description can be connected with each other. AUTOSAR provides, among others, different
interface types, which are sender-receiver, client-server, and mode switch interfaces. The
concrete syntax for each interface type and corresponding port is depicted in Figure 8.4.

A sender-receiver communication is unidirectional, where the sender distributes data to one
or more receivers. The receiver asynchronously processes the data but does not respond to
the sender.

A client-server interface enables service-oriented, bidirectional communication that can
be synchronous or asynchronous. The server provides a certain functionality, which can be
invoked by the client. The computation is executed on the server side, where data can be
provided by the client and the computation result can be returned from the server.

A mode switch interface can be used to inform the software component about changing
its mode. Modes must be predefined in mode declaration groups. A mode switch enables or
disables a certain functionality of the corresponding ECU.

– 219 –

8. Realization

Runnable
Runnables are the smallest entities inside a component and define the internal behavior. They
can be compared with a C function or Java method. Runnables are assigned to tasks and are
scheduled by the operating system for their execution. Furthermore, runnables can read/write
data from/to ports as well as share data with other runnables within one software component
via interrunnable variables. Therefore, once a specific piece of information is read over a port,
it is available for all runnables in the parent software component.

Task
A task references a list of runnables, which are subsequently executed by the operating systems.
Tasks run concurrently with other tasks and are controlled by the operating system scheduler.
Thus, components define the structural architecture of the software, where tasks are behavioral
entities executed on the underlying ECU.

Having a common understanding about the AUTOSAR concepts, the mapping of each
module template type as well as the collaboration aspects highlighted in Figure 8.2 are
discussed in the following.

8.3. Systems and Modules

In general, the AUTOSAR standard follows the component-based development approach
for the specification of the software functionality. Therefore, all Deurema concepts must be
translated to the component-based AUTOSAR methodology. From a high to a low granularity
level, a first step is the mapping of Deurema systems. In Deurema, system templates can
contain multiple module instances as well as subsystems, which specify the overall adaptive SoS
architecture. An AUTOSAR composition can contain other compositions and components,
which defines a hierarchical structure of the software architecture. Therefore, Deurema system
instances are mapped to AUTOSAR compositions. Furthermore, AUTOSAR distinguishes
between the structural specification of a composition and its instantiation (deployment).
This is similar to the Deurema system template as well as module template and their
corresponding instances placed on the layered SoS architecture, which enables a one-to-one
mapping of Deurema templates and instances to AUTOSAR composition descriptions and
their deployment specification. With respect to the example in Figure 8.2, the SmartCar system
template is realized by an AUTOSAR composition as shown in Figure 8.5. The figure sketches
the hierarchy of AUTOSAR compositions. At the highest level, the smart car system template
is realized as AUTOSAR composition and contains all other compositions.

Unfortunately, AUTOSAR does not support the layering of a software architecture as first
class concept. In contrast, Deurema system templates can have arbitrary layers. Therefore,
each layer is emulated in AUTOSAR by encapsulating the complete content of a layer (the
placed modules and subsystems) in a composition, which results in a hierarchical AUTOSAR
software architecture. According to the example, there are three compositions in Figure 8.5
encapsulating the three layers of the SmartCar system template.

Finally, Deurema modules are the smallest entities that can be placed on a layer in the system
template description. Because modules encapsulate the adaptive behavior in corresponding
template definitions, each Deurema module is mapped to an AUTOSAR composition as well.
Depending on the template type, the module composition can be refined by an AUTOSAR
component architecture that follows the template specification. Consequently, each Deurema

– 220 –

8.4. Software Module Template

module from Figure 8.2 is realized by an AUTOSAR composition as shown in the mapped
layer compositions in Figure 8.5.

In summary, Deurema system, layer, and module elements that are specified in the system
template definition are mapped to AUTOSAR compositions accordingly. Thereby, a system
composition contains layer compositions, which represent the layer from the Deurema system
template description. Again, each layer composition contains appropriate module as well as
subsystem compositions. Subsystems are unfolded following the same strategy of mapping
system layers and contained subsystems until there are only modules left at the lowest hierarchy
level. The module compositions are further refined by a component-based specification
depending on the module template type as described in the following.

SmartCarSystemTemplate

Layer-L-0

MotorModule

Layer-L-1

Layer-L-2

Figure 8.5: Deurema modules as AUTOSAR compositions

8.4. Software Module Template
At the top, Figure 8.4 shows the mapping of a Deurema software module (template) to an
AUTOSAR component. Software modules encapsulate black box adaptation behavior and
the internals are not known in Deurema. Therefore, the domain specific implementation can
be mapped to a ComplexDeviceDriver component in AUTOSAR. Although the naming of this
component might be confusing, a complex device driver component has similar characteristics
to a software module. First, the intention of this AUTOSAR component type is to encapsulate

– 221 –

8. Realization

domain specific functionality by simultaneously hiding implementation details. This might
comprise different levels of complexity by providing simple driver for devices up to complex
wrapper to integrate company, non AUTOSAR, specific legacy software. Thus the concrete
internals are not known and appear as black box component. Second, although the behavior
is not modeled, the component type may have AUTOSAR ports and interfaces, which enables
an integration of black box behavior into the overall AUTOSAR architecture as well as the
interplay with other components. As a consequence, each Deurema software module turns
into an AUTOSAR composition, which is further refined by one or more complex device driver
components. Thus, the Motor software module from Figure 8.2 appears as corresponding
component at the top of Figure 8.4.

Furthermore, the Deurema reflect module operation, which is performed by the Autonomous-
Driving module, retrieves information about the Motor module. Because AUTOSAR does not
support dynamic component reflection, the Deurema module operation is realized by a sender
port with a corresponding sender-receiver interface. In general, AUTOSAR sender-receiver
ports are used to exchange data between components, whereas the data types are defined by
the interfaces that are attached to the ports. In Deurema, module operations are defined by
one or more model queries that are performed on the corresponding module (cf. Section 5.3.2).
Therefore, the module operation is mapped to a sender port of the reflected AUTOSAR
component. Consequently, the Motor component in Figure 8.4 has a sender port named
PPData and a corresponding sender-receiver interface named IMotor, which enables the retrieval
(reflection) of internal information.

In contrast, the Deurema affect module operation may result in changing the underlying
module behavior, which is realized by a mode switch port and corresponding interface in
AUTOSAR. Mode switches can be used to change the behavior of an AUTOSAR component,
whereas the concrete modes depend on the specified reconfiguration possibilities of the
corresponding Deurema module. Thus, the Motor component has an incoming mode switch
port RPMode, which enables the affecting access to this component from the outside.

It has to be noted that the AUTOSAR MotorModule composition encapsulates the Motor
component. Therefore, another component cannot access the defined ports of the contained
component directly. However, AUTOSAR allows the specification of ports on a composition
and uses delegation connections to forward the communication from the composition to inner
components. According to the hierarchical composition structure in Figure 8.5, such ports
and corresponding delegation connections must be added for each parent composition. For the
running example, the communication that realizes the reflection module operation between the
AutonomousDriving and Motor module requires a sender port as well as delegation connections
in the MotorModule and Layer-L-0 composition. Straight forward, it needs receiver ports as
well as delegation connections in the Layer-L-1 and AutonomousDrivingModule composition (cf.
Figure 8.5).

The internals of a Deurema software module are defined by the corresponding template
specification. As discussed in Section 5.3.3, a Deurema software module template specification
comprises an optional trigger and action definition, which refers to the domain specific
implementation. Both entities are mapped to an AUTOSAR runnable as shown in Figure 8.6.
These runnables are contained in the AUTOSAR component and must be mapped to an
operating system task for their execution. Therefore, for each software module a corresponding
task is created as exemplarily shown on the right in Figure 8.6. The task gets the same
timed trigger as the software module, which is directly supported by the AUTOSAR standard.
Because an operating system task must have a priority, which is not supported by a Deurema

– 222 –

8.5. Application Module Template

<<SoftwareModuleTemplate>>

Motor

<<Action>>

tractionControl()

<<Trigger>>

TriggerRunnable

ActionRunnable AutosarTask {2}

TriggerRunnable

ActionRunnable

100ms

100ms

Figure 8.6: Deurema software module as AUTOSAR component

module specification, it is a design decision of the developer to define an appropriate priority
for the task in AUTOSAR.

Beside the both runnables referring to the trigger and action definition of the software
module, there must be at least one runnable that accesses the ports for reading and writing
data. Conceptually, there are two possibilities of realizing this behavior. First, accessing the
ports is realized within the beforehand mentioned trigger and/or action runnable. Second,
additional runnables can be created, whereas the behavior of these runnables can be derived
from the specified Deurema model operation queries. Afterwards, these runnables must be
mapped to the AUTOSAR task for execution.

8.5. Application Module Template
Both, the AUTOSAR standard and Deurema application module templates follow the
component-based development approach. Furthermore, the concepts of the application module
template are developed with respect of an easy integration of the development paradigm in
the embedded domain, where the AUTOSAR standard plays an important and inspiring role.
Consequently, Deurema and AUTOSAR are very similar with respect to the component model,
which eases the mapping between both. Figure 8.7 shows the internals of the AutonomousDriving
and AdaptiveLightControl Deurema module template. The autonomous driving template contains
nine components. Three sensor components retrieve data from the environment of the smart
car, which are preprocessed and used for navigation afterwards. The Driving component reads
the planned navigation path and realizes the autonomous driving by sending appropriate
commands to the engine and wheel controller.

Beside the autonomous driving module, the adaptive light control module regulates the light
intensity of the car depending on environmental conditions and oncoming vehicles. Therefore,
the sensor data is aggregated by the SensorFusion component, evaluated by the LightCalculation
component, and finally realized by the LightController actuator.

The modeled Deurema components in an application module template can be directly
translated to AUTOSAR components. Thereby, Deurema sensor and actuator components
are realized by AUTOSAR SensorActuatorSoftware components as shown for the autonomous
driving module in Figure 8.8. Deurema software components are translated to AUTOSAR

– 223 –

8. Realization

<<ApplicationModuleTemplate>>

AutonomousDriving

<<Sensor>>

Distance

<<Sensor>>

Battery

<<Sensor>>

GPS

<<SWC>>

SensorFusion

<<Actuator>>

WheelController

<<Actuator>>

EngineController

<<SWC>>

Environment
Builder

<<SWC>>

Navigation

<<SWC>>

Driving

<<Sensor>>

Humidity

<<Sensor>>

Distance
<<SWC>>

SensorFusion
<<Actuator>>

LightController

<<SWC>>

LightCalculation

<<ApplicationModuleTemplate>>

AdaptiveLightControl

Figure 8.7: AutonomousDriving and AdaptiveLightControl Deurema module templates

ApplicationSoftware components respectively. As a consequence, each Deurema component in
Figure 8.7 appears in the AUTOSAR component architecture realization in Figure 8.8 (for
autonomous driving) and Figure 8.9 (for adaptive light control).

Figure 8.8: AutonomousDriving as AUTOSAR component architecture

Beside components, Deurema runnables can be mapped one-to-one to AUTOSAR runnables,
whereas the access to knowledge is realized by appropriate AUTOSAR interfaces. Furthermore,
AUTOSAR allows the fine-grain specification of data access for each modeled runnable
according to the Deurema model. After realizing the AUTOSAR component architecture,
runnables must be mapped to operating system tasks, which defines the behavioral aspect of
the smart car. Thereby, the AUTOSAR task definition follows the Deurema task specification,
where priorities, periods, and task trigger can be translated one-to-one.

There are two further aspects for the autonomous driving module in the Deurema SmartCar
system template shown in Figure 8.2. First, the module reflects and affects the Motor software

– 224 –

8.5. Application Module Template

Figure 8.9: AdaptiveLightControl as AUTOSAR component architecture

module. Second, it participates in a BlackBoard collaboration. As already discussed before, the
software module is realized by an AUTOSAR complex device driver component. Therefore,
this specific component can be reused and appears in the component architecture in Figure 8.8,
whereas the wiring of the interfaces enable the reflection and affection of the corresponding
module (cf. the software module realization of the Motor in Figure 8.6).

Concerning the second aspect, Deurema collaborations are realized by AUTOSAR service
components. The service component contains the appropriate number of runnables, which
corresponds to the modeled interactions in the Deurema orchestration specification. Addition-
ally, the service components offer a client-server port/interface, which enables the invocation
of the interaction by a runnable according to the Deurema collaboration mapping as discussed
in Section 5.5.5. Depending on the collaboration and modeled knowledge specification, the
AUTOSAR collaboration service component needs additional sender-receiver ports to read
and write data that are necessary for realizing the collaboration interactions.

The mapping of Deurema roles and the corresponding interactions to runnables within
the AUTOSAR collaboration service component has two implications. First, the AUTOSAR
component can be reused from all modules that participate in the collaboration. Thus,
the service component appears in the realization of the AUTOSAR autonomous driving
architecture in Figure 8.8 as well as adaptive light architecture in Figure 8.9. Second,
Deurema modules play the role as defined by the collaboration deployment, which corresponds
to an invocation of the runnable in the AUTOSAR collaboration component. In the example
in Figure 8.2, the adaptive light control module plays the c1:Contributor role, whereas the
autonomous driving module realizes the bc:BoardController role. Both roles are mapped to
AUTOSAR runnables in the collaboration service component and thus, can be invoked
properly.

– 225 –

8. Realization

8.6. Feedback Loop Module Template
The Deurema feedback loop module template defines the adaptation behavior in form of
subsequently executed adaptation activities as discussed in Section 5.23. In the embedded
domain, a feedback loop controller is usually developed according to the embedded control
model as sketched in Figure 8.10. A dedicated controller is aware of the system goals, senses
the state of the environment and computes an appropriate reaction according to the current
situation, which is realized by effectors afterwards. This control functionality can be realized
in different ways. As emphasized in own former work in [14], the model-based development of
the control functionality with tools as Matlab focuses on the realization of distinct control
functionalities that ranges from the single adaptation activity to a complete control loop.
Furthermore, those realized control artifacts can be integrated in AUTOSAR components as
runnables, which is also comprehensively discussed in [14].

Feedback Loop Module
(Controller)

Effecting
Plant

Actions

Trigger

Influence
Environment

Sensing

Knowledge

Figure 8.10: Embedded control model

As a consequence, the Deurema feedback loop module template is mapped to an AUTOSAR
application software component. The adaptation activities in a feedback loop module appear as
AUTOSAR runnables, where the concrete mapping depends on the implementation. Thus, one
runnable may realize several adaptation activities, where the implementation must preserve the
causal order as defined in the Deurema model. The mapping and invocation of collaboration
interactions and the realization of knowledge access by runnables follow the same concepts as
discussed above. Because runnables must be assigned to operating system tasks in AUTOSAR,
all mapped runnables from the feedback loop module should be assigned to one independent
operating system task. The period/trigger of the Deurema module must correspond to the
period/trigger of the AUTOSAR task.

8.7. Behavior Module Template
The declarative character of behavior rules in a Deurema behavior module template can be
realized in appropriate if-else conditions of an AUTOSAR runnable implementation. Thereby,
each rule should be mapped to one runnable, where the parent module is realized by an
AUTOSAR application component. In Deurema, each behavior rule runs independently from
other rules. To get the same behavior in AUTOSAR, each runnable should be conceptually
mapped on an independent operating system task, where the period and priority correspond
to the behavior rule properties. However, if a large set of behavior rules must be mapped
to runnables and further to tasks, the large number of arising operating system tasks can

– 226 –

8.8. Discussion

be impractical. Therefore, rules may be grouped according to their properties (e. g., same
priority), where each group is mapped to a task definition. Of course, this introduces a causal
order between rules that corresponds to the order of runnables in the task, which is not
modeled in Deurema. On the one hand, the causal order might be negligible, if the evaluation
of the rule application condition is very simple and fast. On the other hand, grouping rules to
one and the same task may reduce the scheduling overhead of the operating system. However,
the concrete mapping of Deurema rules to AUTOSAR runnables as well as the assignment to
tasks depends on the specific application problem and thus, must be individually optimized
by the developer.

8.8. Discussion

The realization of a modeled Deurema architecture enables the analysis and simulation of
the adaptive SoS for a concrete implementation setting. This chapter shows how Deurema
concepts can be mapped to an AUTOSAR architecture. On the basis of this mapping, this
section outlines possible analysis and simulation steps of Deurema models during different
development stages modeling as well as realizing adaptive SoS architectures. Afterwards,
software tools and frameworks, which are used for the realization described in this chapter,
are subsumed.

8.8.1. Deurema Modeling Process

Staying in the embedded domain, Broekman et al. [43] show typical development stages and
emphasize to typical testing as well as simulation activities in such stages. Figure 8.11 gives
an overview of the three development stages simulation, prototyping, and pre-production. The
first simulation stage focuses on the conceptual design of the system and the development of
a simulation model representing a possible solution [43]. Therefore, the goals of verifying the
system are a proof of concept testing the preliminary solution and optimizing the system design.
As simulation techniques, one-way simulation (model test (MT)) and feedback simulation
(model-in-the-loop (MiL)) are used on basis of the simulation model. In the context of this
thesis, the modeled Deurema SoS architecture represents the simulation model, which can be
directly analyzed and executed. Therefore, one-way and feedback simulation can be applied
on the Deurema models as highlighted gray in Figure 8.11. Another step in the simulation
stage is the rapid prototyping, where the simulation model is connected with the real world
environment to verify assumption of the simulation model against the real world.

The second stage transfers the simulation model to a concrete realization in the problem
domain. In the software-in-the-loop (SiL) step a concrete implementation for the model
elements is derived and simulated, whereas the hardware-in-the-loop (HiL) step focuses on
the deployment on the real underlying hardware platform. Finally, the pre-production stage
focuses on the verification of the overall system behavior in comprehensive system tests using
the concrete system implementation and hardware together. A comprehensive discussion
about the development stages in the embedded domain and their application to embedded
robotic systems can be found in own former work in [14].

On basis of the former experience in [14], the development stages of the embedded domain
in Figure 8.11 and their corresponding simulation activities can be partially mapped to the
analysis and testing of an adaptive SoS architecture using the Deurema modeling language.
The considered simulation activities are highlighted gray in Figure 8.11. The described

– 227 –

8. Realization

Prototyping
stage

Simulation
stage

Pre-production
stage

MT/MiL

RP
SiL

HiL

ST

MT = model test
MiL = model-in-the-loop
RP = rapid prototyping
SiL = software-in-the-loop
HiL = hardware-in-the-loop
ST = system test

Figure 8.11: Development stages in the embedded domain according to [43]

Deurema analysis (cf. Chapter 6) and simulation (cf. Chapter 7) capabilities enable one-way
simulation (MT) as well as feedback simulation (MiL). The realization of Deurema model
elements to the AUTOSAR standard contributes to an implementation of the modeling
concepts, whereas software tools can be used to perform SiL simulations. In contrast, the
rapid prototyping step requires a connection of the simulation model to the real environment,
which is hard to realize in the context of an adaptive SoS. Furthermore, HiL simulations focus
on testing the underlying hardware, which is not in the focus of this thesis. Finally, system
tests are necessary in the embedded domain to verify the interplay between the hardware
and software realization of the complete system. Because a SoS comprises a large number
of different, independent systems, which are also independently developed and governed, a
complete setup of SoS system tests are unrealistic. However, focusing on single systems within
the SoS, system tests and integration scenarios are thinkable. In the following, verification
steps during the development of an adaptive SoS by modeling with the Deurema language
are exemplarily highlighted.

Figure 8.12 shows four different situations as they might appear during the development
of the running example. At the top, the figure depicts single developed modules, which is
usually the case in an early stage of the development. The developer can use the Deurema
software module concept to put black box placeholders at the layered system architecture.
Over time, those modules can be refined by developing corresponding module templates and
linking those to the module instance in the system architecture. The example in Figure 8.12
shows a single feedback loop module that encapsulates the adaptive behavior of the ABS
functionality, an application module that realized the autonomous driving of the smart car
and an instance of the BlackBoard collaboration together with two black box modules that
realize the corresponding required roles. Each of these modules and collaboration instances
can be individually analyzed and executed using one-way simulation tests as indicated on
the upper left in Figure 8.12. From an engineering perspective, the internals of the modules
can be stepwise refined until the overall design corresponds to the requirements of the aimed
target system. In this early stage, the Deurema analysis helps understanding dependencies

– 228 –

8.8. Discussion

c 1
:C

o
nt

ri
bu

te
r

b
c:

B
o

ar
d

C
o

nt
ro

lle
r

<<
C

ol
la

b
o

ra
ti

o
n

>>

bb
: B

la
ck

B
oa

rd
<<

So
ft

w
a

re
M

o
du

le
>>

rp
1
:R

ol
eP

la
ye

r
<<

So
ft

w
a

re
M

o
du

le
>>

rp
2
:R

ol
eP

la
ye

r
<<

Fe
ed

b
ac

kL
o

op
M

o
d

ul
e

>>

ab
s:

A
B

S

1
0

0m
s

<<
A

p
p

lic
a

ti
o

nM
od

ul
e>

>

ad
:A

u
to

n
om

o
us

D
ri

vi
n

g 2
0

0m
s

<<
So

ft
w

a
re

M
o

du
le

>>

m
ot

or
:M

ot
o

r

1
0

0m
s

<<
A

p
p

lic
a

ti
o

nM
od

ul
e>

>

ad
:A

u
to

n
om

o
us

D
ri

vi
n

g 2
0

0m
s

a
ff

ec
t

re

fl
ec

t

<<
Fe

ed
b

ac
kL

o
op

M
o

d
ul

e
>>

ab
s:

A
B

S

1
0

0m
s

<<
So

ft
w

a
re

M
o

du
le

>>

re
ar

Le
ft

:W
h

ee
l 1

0
m

s

re

fl
ec

t

<<
So

ft
w

a
re

M
o

du
le

>>

m
ot

or
:M

ot
o

r

1
0

0m
s

<<
A

p
p

lic
a

ti
o

nM
od

ul
e>

>

ad
:A

u
to

n
o

m
o

u
sD

ri
v

in
g 2

0
0m

s

a
ff

ec
t

re

fl
ec

t

M
iL

M
T

A
n

al
ys

is

Si
m

ul
at

io
n

A
n

al
ys

is

Si
m

ul
at

io
n

<<
Fe

ed
b

ac
kL

o
op

M
o

d
ul

e
>>

a
b

s:
A

B
S

1
0

0m
s

<<
So

ft
w

a
re

M
o

du
le

>>

re
ar

Le
ft

:W
h

e
e

l 1
0

m
s

re

fl
ec

t

c 1
:C

o
nt

ri
bu

te
r

b
c:

B
o

ar
d

C
o

nt
ro

lle
r

<<
C

ol
la

b
o

ra
ti

o
n

>>

bb
: B

la
ck

B
oa

rd

<<
So

ft
w

a
re

M
o

du
le

>>

m
ot

or
:M

ot
o

r

1
0

0m
s

<<
A

p
p

lic
a

ti
o

nM
od

ul
e>

>

a
d

:A
u

to
n

o
m

o
u

sD
ri

v
in

g 2
0

0m
s

a
ff

ec
t

re

fl
ec

t

M
iL

/S
iL

A
n

al
ys

is

Si
m

ul
at

io
n

R
ea

liz
at

io
n

M
iL

/S
iL

A
n

al
ys

is

Si
m

ul
at

io
n

R
ea

liz
at

io
n

Integration

R
ea

liz
at

io
n

<<
Fe

ed
b

ac
kL

o
op

M
o

d
ul

e
>>

ab
s:

A
B

S

1
0

0m
s

<<
A

p
p

lic
a

ti
o

nM
od

ul
e>

>

ad
:A

u
to

n
om

o
us

D
ri

vi
n

g 2
0

0m
s

<<
C

ol
la

b
o

ra
ti

o
n

>>

bb
: B

la
ck

B
oa

rdb
c:

B
o

ar
d

C
o

nt
ro

lle
r

c 1

:C
o

nt
ri

bu
te

r

Fi
gu

re
8.

12
:

Ve
rifi

ca
tio

n
st

ep
s

du
rin

g
th

e
ad

ap
tiv

e
So

S
m

od
el

in
g

w
ith

D
eu

re
m

a

– 229 –

8. Realization

within a single module as well as collaboration instance, helps developing the adaptation logic
according to typical patterns (e. g., the MAPE feedback loop and the corresponding access
patterns of single adaptation activities to the runtime models as described in Section 6.2.2),
and pinpoints to flaws in the module template design. Furthermore, one-way simulation runs,
which are restricted to one module instance, already provide a proof of concept for the internal
adaptation behavior.

A first combination of multiple modules on a pure model basis is shown in the second
situation in Figure 8.12. The developer can specify dependencies between modules such as
using the Deurema reflection or module triggering concept. In the example, the beforehand
developed ABS feedback loop module reflects another software module named Wheel, which
enriches the overall available knowledge base in the feedback loop module and might affect
the internal behavior. Beside a reflection dependency, the autonomous driving module affects
an underlying software module, where this interplay of reflecting and affecting the underlying
module emerges to new overall behavior. Additional to the Deurema reflection mechanism and
module triggering, the interaction behavior can be investigated by connecting the developed
single modules to the collaboration instance as shown for the BlackBoard collaboration. Thus,
the beforehand mentioned black box software modules rp1 and rp2 in the first depicted
situation in Figure 8.12 are refined by a concrete feedback loop instance abs and application
module instance ad. Connecting modules and collaboration is done later in the development
process and can be more and more extended by developing new modules. In this situation,
the Deurema analysis can additionally pinpoint to dependencies that cross the boundaries
of a single module. Furthermore, complex architectural patterns can be proposed, transitive
adaptation effects become visible and the knowledge distribution can be investigated. From a
simulation perspective, the Deurema execution framework facilitates the periodical simulation
of well-defined subsets of the overall SoS to investigate the influence between modules and
the emergent adaptive behavior over time. Of course, the subset of modules on the system
architecture can be extended towards a simulation of the complete adaptive SoS.

Up to this point, all analysis and simulation steps are performed on the Deurema models.
Realizing the modules in a concrete domain introduces new implementation specific effects
(e. g., sensor noise or limited computational power of the embedded hardware processor), which
must be analyzed and tested independently. This chapter discusses a mapping of the Deurema
concepts to the AUTOSAR framework, which is exemplarily shown in the third situation
in Figure 8.12. In the example, the two Deurema modules together with the reflecting and
affecting dependencies are translated to an AUTOSAR component architecture as discussed
above. The derived implementation can be analyzed and simulated by using available software
tools from the corresponding domain. Because there are many different ways of realizing a
modeled SoS, it is not in the focus of this thesis to provide such domain specific analysis and
simulation tools nor to focus on a specific analysis or simulation technique.

However, during the realization, which is the transition from the simulation stage to the
prototyping stage in Figure 8.11, more and more Deurema modules as well as collaborations
can be integrated into the SoS. This integration is depicted in the fourth and last situation
at the bottom in Figure 8.12. All beforehand isolated modules, their dependencies and the
collaboration behavior are mapped to an AUTOSAR architecture, which can be analyzed and
executed afterwards.

With respect to a SoS, another step is the integration of a new realized system into the
existing adaptive SoS. On model level, this integration is easy in Deurema by deploying a
new system instance and the corresponding system template. For the concrete realized SoS,

– 230 –

8.8. Discussion

it might be much more complicated to integrate a new implemented system instance, which
depends on the domain and thus, is not in the focus of this thesis.

In summary, Deurema models can be analyzed and simulated at different points in time
during the development process. A mapping of the Deurema concepts to a concrete domain
contributes to the implementation of the modeled adaptive behavior but leaves the boarder of
a model-based analysis and simulation. Although, Figure 8.12 pinpoints to different steps of
analyzing as well as simulating Deurema models at different points during the development,
it is not in the context of this thesis to provide a predefined modeling methodology nor
preferring a specific domain for realizing the Deurema concepts. This chapter discusses a
realization to the AUTOSAR standard highlighting how the Deurema concepts are mapped to
the embedded system domain. However, other domains or realization mappings are thinkable,
but not further discussed in the context of this thesis. In the following, the used software
tools for realizing the Deurema concepts to the AUTOSAR framework are discussed.

8.8.2. Software Tools
For the realization of a single adaptation effect and corresponding control functionalities the
software tool Matlab/Simulink2 was used. This tool allows the specification of the behavior
by means of block diagrams. Furthermore, it supports code generation, where the Targetlink3

extension is used. Beside the realization of single adaptation effects, the SystemDesk4 tool
is used to realize the component-based AUTOSAR architecture. A screenshot of this tool
showing the realization of the AutomousDriving Deurema module is depicted in Figure 8.13.

Thereby, the generated code from the Matlab tool is reused for the definition of the runnable
behavior, which are located in the AUTOSAR components. Both Matlab and SystemDesk
support the simulation of the modeled functionality. A comprehensive discussion about the
complete toolchain can be found in [14]. Further information about the AUTOSAR standard
can be found in [62]. Beside AUTOSAR, other standards are thinkable for the realization of
the Deurema concepts such as OSGi, where an interesting approach is discussed in [93].

2http://de.mathworks.com/products/simulink/
3http://www.dspace.com/en/pub/home/products/sw/pcgs/targetli.cfm
4http://www.dspace.com/en/pub/home/products/sw/system_architecture_software/systemdesk.cfm

– 231 –

http://de.mathworks.com/products/simulink/
http://www.dspace.com/en/pub/home/products/sw/pcgs/targetli.cfm
http://www.dspace.com/en/pub/home/products/sw/system_architecture_software/systemdesk.cfm

8. Realization

Figure
8.13:

Screenshot
ofthe

System
D

esk
softw

are
tool

– 232 –

9. Application

Additionally to the discussion in the former chapters about the Deurema verification capability
by means of static and runtime analysis in Chapter 6 as well as simulation in Chapter 7 and
the realization of Deurema concepts in Chapter 8, this chapter remodels two case studies to
show that the Deurema modeling language concepts are powerful enough to cope with current
research scenarios. The two case studies are chosen from different domains to target a broad
spectrum of Deurema concepts, which is discussed in Section 9.1. Beside the remodeling of
research scenarios in the two case studies, Deurema is compared with an up-to-date research
approach called DEECo in Section 9.2, which allows the modeling of dynamic ensembles
in component-based systems. Thereby, this section discusses how DEECo concepts can be
represented in Deurema to show that Deurema is expressive enough to describe such dynamic
ensemble structures. In summary, the application of the Deurema modeling language in the
two case studies and the DEECo approach is sketched in Figure 9.1.

Smart
Home

DEECo

Traffic
Monitoring

System
self-

healing
self-

config

Adaptation MART

Modeling

 Energy

 Traffic

Collaboration

 Platoon

Figure 9.1: Smart city running example: Deurema application

Beside the remodeling of the two case studies and the comparison to the DEECo approach,
Vogel et al. [175] already discuss the application of the predecessor modeling language Eurema
to the Rainbow [79], DIVA [138], and PLASMA [166] approach and show that the Eurema
language is expressive enough to capture these approaches. This thesis significantly extends
the Eurema concepts and thus, the Deurema language can cope with these approaches, too.
Therefore, this chapter does not discuss the application to these approaches again and refers
to [175] and the related work discussion in Chapter 10, where differences to the Deurema
language are comprehensively discussed for all the mentioned approaches above.

9.1. Case Studies
This thesis choses two case studies to evaluate the applicability of the Deurema modeling
language. First, a distributed traffic monitoring system is modeled, which is originally
introduced by Vromant et al. [179]. Beside the distribution aspect, individual systems use

– 233 –

9. Application

collaborations to coordinate each other and to contribute a specific functionality within the
overall traffic monitoring system. Therefore, this case study is used to evaluate the Deurema
collaboration concept. The second case study is in the context of a smart home, which
extensively uses the Deurema reflection and reconfiguration mechanism in a layered, adaptive
system architecture. The smart home case study is originally introduced by Cetina et al. [57].
In the following, both case studies are modeled with the Deurema language and discussed in
detail.

9.1.1. Traffic Monitoring System
The traffic monitoring system introduced by Vromant et al. [179] uses multiple, interacting
feedback loops in varying collaboration settings. Thereby, the overall SoS consists of individual
cameras that are placed along the road, where each camera detects traffic jams in its fix viewing
range. Cameras adaptively build so-called organizations, where the viewing range of all included
cameras spans the detected traffic jam. The coordination inside an organization follows the
master slave interaction pattern, where the master role is dynamically elected. Furthermore,
the system is able to detect camera failures that eventually trigger a reorganization of existing
camera interactions. Therefore, the inter-loop coordination is necessary between cameras
inside an organization and its neighbors. Beside the inter-loop coordination, cameras are
designed as self-adaptive systems, where a self-healing feedback loop runs on top of the domain
functionality (an agent that realizes the traffic jam detection called local traffic monitoring
system). The case study comprises different types of collaborations that are mandatory to
realize the overall SoS functionality. The system as well as the collaborations are modeled in
the Deurema modeling language in Figure 9.2 according to the description in [179] without
redesigning the system structure. Furthermore, the same names for subsystems, interfaces and
interactions are used to model the case study as close as possible to the original. Consequently,
the Deurema modeling language is powerful enough to cope with the distributed collaboration
and adaptive system aspects of this case study.

At the top, Figure 9.2 shows an excerpt of an instance situation in form of a Deurema LD
with three cameras inside one organization instance org. On the left, the internals of the camera
system template are shown. Each camera consists of two subsystems and an application
specific communication infrastructure placed on an overall two layer system architecture. The
lowest layer contains the communication infrastructure, which is encapsulated in a black box
Deurema software module. The top system layer contains the two subsystems that are the local
traffic monitoring system and the self-healing subsystem. The local traffic monitoring system
consists again of two architectural layers, where the organization middleware offers services for
an agent to initially create and maintain organizations. Furthermore, the agent realizes the
domain functionality of detecting a traffic jam. Both parts are modeled as Deurema software
modules, where the middleware module triggers the agent module functionality.

The self-healing subsystem within each camera copes with different failure scenarios such
as the failure of a master or slave node within one organization. In general, a camera failure
affects the behavior of the direct neighbor camera nodes. Additionally, the failure of a master
node affects neighbored organizations. The self-healing subsystem has a two layer architecture,
where the communication manager software module on the bottom facilitates the local and
remote communication of the camera system. Local messages are sent to the local traffic
monitoring system, where remote messages are forwarded to the communication infrastructure
module. Therefore, Figure 9.2 depicts two communication collaboration instances c1 and
c2 within the camera system. The c1 collaboration enables a communication with a self-

– 234 –

9.1. Case Studies

re
fl

ec
t

<<
C

ol
la

b
o

ra
ti

o
n

>>

Co
m

m
u

ni
ca

ti
o

n
<<

R
ol

e>
>

Su
bs

ys
te

m
2.

.*

<<
C

ol
la

b
o

ra
ti

o
nS

tr
u

ct
ur

e>
>

Co
m

m
u

ni
ca

ti
o

n

<<
C

ol
la

b
o

ra
ti

o
n

>>

O
rg

an
iz

at
io

n
<<

R
ol

e>
>

Sl
av

e
0.

.*

<<
C

ol
la

b
o

ra
ti

o
nS

tr
u

ct
ur

e>
>

O
rg

an
iz

at
io

n

<<
R

ol
e>

>

M
as

te
r

1

<<
C

ol
la

b
o

ra
ti

o
nC

h
or

eo
gr

a
ph

y>
>

C
o

m
m

u
n

ic
at

io
n

<<
In

te
ra

ct
io

n>
>

Se
n

d

c

<<
In

te
ra

ct
io

n>
>

R
ec

ei
ve

c

<<
C

ol
la

b
o

ra
ti

o
nC

h
or

eo
gr

a
ph

y>
>

O
rg

an
iz

at
io

n

<<
In

te
ra

ct
io

n>
>

M
as

te
rE

le
ct

io
n

c

<<
In

te
ra

ct
io

n>
>

Pi
ng

Ec
h

o

c

r

w

a

<<
Fe

ed
b

ac
kL

o
op

M
o

d
ul

eT
em

p
la

te
>>

M
A

P
EM

an
ag

er

M
o

n
it

o
r

<<
M

on
it

or
>>

M
on

it
or

<<
P

la
n

>>

Pl
an

<<
Ex

ec
ut

e>
>

Ex
ec

u
te

<<
A

n
a

ly
ze

>>

A
n

al
yz

e

<<
Sy

st
em

M
od

el
>>

D
ep

en
de

n
cy

M
od

el

<<
C

ha
ng

eM
o

de
l>

>

R
ep

ai
rS

tr
at

eg
ie

s

E
xe

cu
te

d

<<
In

te
ra

ct
io

n>
>

Su
bs

ys
te

m
:S

en
dc

<<
In

te
ra

ct
io

n>
>

Su
bs

ys
te

m
:R

ec
ei

vec

<<
In

te
ra

ct
io

n>
>

M
as

te
r:

M
as

te
rE

le
ct

io
nc

<<
In

te
ra

ct
io

n>
>

M
as

te
r:

Pi
ng

Ec
h

oc

r

r
r

r
a

w
w

w

a
r

a
r

r

<<
A

p
p

lic
a

ti
o

nM
od

ul
eT

em
pl

a
te

>>

H
ea

lin
gC

on
tr

o
lle

r

s 5
:S

ub
sy

st
em

<<
d

el
e

ga
te

>>

<<Layer>>

L-1
<<Layer>>

 L-0

<<
So

ft
w

a
re

M
o

du
le

>>

co
m

:C
o

m
m

un
ic

at
io

nI
n

fr
as

tr
uc

tu
re

<<Layer>>

L-1
<<Layer>>

 L-0

<<
Sy

st
em

T
em

p
la

te
>>

Lo
ca

lT
ra

ff
ic

M
o

ni
to

ri
n

gS
ys

te
m

<<
So

ft
w

a
re

M
o

du
le

>>

om
:O

rg
an

iz
at

io
nM

id
dl

ew
ar

e

<<
So

ft
w

a
re

M
o

du
le

>>

a:
A

ge
nt

s 2
:S

ub
sy

st
em

<<Layer>>

L-1
<<Layer>>

 L-0

<<
Sy

st
em

T
em

p
la

te
>>

Se
lf

-H
ea

lin
gS

u
b

sy
st

em

<<
A

p
p

lic
a

ti
o

nM
od

ul
e>

>

hc
:H

ea
lin

gC
o

nt
ro

lle
r

<<
So

ft
w

a
re

M
o

du
le

>>

cm
:C

o
m

m
u

n
ic

at
io

n
M

an
ag

e
r

<<
C

ol
la

b
o

ra
ti

o
n

>>

c 1
:C

om
m

un
ic

at
io

n

s 1
:S

ub
sy

st
em

p

o
s:

P
e

rf
o

rm
O

rg
a

n
iz

at
io

n
Se

rv
ic

e
s

<<
C

ol
la

b
o

ra
ti

o
n

>>

c 2
:C

om
m

un
ic

at
io

n

s 3
:S

ub
sy

st
em

s 4
:S

ub
sy

st
em

s 5
:S

ub
sy

st
em

<<
C

ol
la

b
o

ra
ti

o
n

>>

or
g:

O
rg

an
iz

at
io

n

m
:M

as
te

r

sl
1:

Sl
av

e

<<
C

ol
la

b
o

ra
ti

o
n

>>

c3
:C

om
m

u
ni

ca
ti

o
ns 6
:S

ub
sy

st
em

sl
2:

Sl
av

e

s 7
:S

ub
sy

st
em

<<
d

el
e

ga
te

>>

<<
d

el
e

ga
te

>>

<<
d

el
e

ga
te

>>

<<
Sy

st
em

>>

cs
2
:C

am
er

aS
ys

te
m

<<
Sy

st
em

>>

cs
3
:C

am
er

aS
ys

te
m

<<
Sy

st
em

T
em

p
la

te
>>

Ca
m

er
aS

ys
te

m

re
fl

ec
t

a
ff

ec
t

<<
d

el
e

ga
te

>>

a
ff

ec
t

r
a

<<
Se

ns
or

>>

R
o

le
M

o
n

it
o

r
<<

SW
C>

>

R
ol

eM
an

ag
er

<<
M

on
it

or
in

g
M

o
de

l>
>

M
on

it
or

in
gR

ul
es

<<

Sy
st

em
M

od
el

>>

M
A

PE
M

an
ag

er

<<
Fe

ed
b

ac
kL

o
op

M
o

d
ul

e
>>

m
m

:M
A

PE
M

an
ag

er

r

Figure 9.2: Traffic Monitoring System modeled with Deurema

– 235 –

9. Application

healing feedback loop at layer L-1 in the camera system. Whereas the c2 facilitates the local
message transfer to the traffic monitoring system and the remote communication over the
communication infrastructure module. The self-healing logic is realized by the MAPEManager
feedback loop module in the self-healing subsystem at layer L-1. Therefore, the MAPE manager
reflects the local traffic system, detects failures and maintains a dependency model to other
cameras in the organization. If a failure is detected, the manager may communicate with
other MAPE managers to choose the best repair strategy for the organization, which is based
on the dependency model and includes the current played role of the camera. Beside the
feedback loop, a healing controller observes the self-healing logic and employs appropriate
repair strategies according to the failure scenario and the role of the camera system. Therefore,
the healing controller adapts the underlying pool of functionality of the MAPE manager.

In the LD in Figure 9.2, there are two cameras performing as slaves within one organization
collaboration instance. The camera system, which is depicted in the system template notation,
performs the master role. Furthermore, the communication collaboration c3 realizes the
message exchange of the distributed cameras. In the following, the details of the collaborations
are described.

There are two collaboration types in this case study that are depicted in the middle of
Figure 9.2. The first collaboration realizes the communication infrastructure that is used
for two aspects. On the one hand, it enables a communication between cameras, which is
needed for the master election as well as to report camera failures. On the other hand, the
communication collaboration links the domain logic (traffic jam detection) with the self-healing
subsystem. Therefore, the Communication collaboration has one role type named Subsystem. The
number of role instances is not limited as long as two subsystems collaborate with each other,
which is defined by the multiplicity 2..* in the collaboration structure definition in Figure 9.2.
The choreography specification of the communication collaboration comprises a generic Send
and Receive interaction, which allows the sending respectively receiving of arbitrary message
types. In [179], the authors present different message types that are used for communication,
which are directly supported by the Deurema message concept. Thereby, synchronization
messages of arbitrary types are supported. Furthermore, Deurema model messages can be
used to send additional data to another collaboration participant.

The second collaboration type considers the coordination between cameras and is named
Organization accordingly. One organization consists of exact one Master role and an arbitrary
number of Slave roles, which realizes the mentioned master-slave pattern. It has to be noted
that the Slave role type is an optional multi-role (multiplicity 0..*). As a consequence, an
organization may contain only one camera that is in this case the master node. In the
context of the organization collaboration, there are two interactions between cameras. First, a
ping-echo protocol detects camera failures and is encapsulated in the corresponding PingEcho
interaction in Figure 9.2. The ping-echo protocol works in the same way as the HeartBeat
interaction discussed in Section 5.5.3, where the concrete interaction template is depicted
in Figure 5.50. The second interaction handles the master election within an organization.
The internals of the master election are outlined in [179] and consist of simple sequences of
exchanging messages between the participating cameras. The master election is performed
in the case of a camera failure that acts as master node. The master election results in a
new determined master camera node and triggers a reorganization of the current organization
collaboration according to the new role allocation.

At the bottom of Figure 9.2, there are two module template definitions from the modules
placed in the layer L-1 in the self-healing subsystem. As outlined above, the MAPE manager

– 236 –

9.1. Case Studies

detects and repairs camera failures based on the own role allocation and the current situation
in the organization. Therefore, the MAPE manager consists of a full MAPE cycle, which
additionally integrates the deployed roles as depicted in the LD on top in Figure 9.2. The
template definition shows the feedback loop module template for the master (organization
collaboration) and subsystem (communication collaboration) role. The feedback loop performs
around a common knowledge base, which is represented by two runtime models. The
DepedencyModel describes the current situation of the cameras in the own organization as
well as maintains relationships to neighbor organizations. Furthermore, the RepairStrategies
runtime model contains appropriate recovering strategies in the case of a detected camera
failure. According to the role deployment, all interactions from the collaborations are woven
into the local feedback loop behavior.

At first, the feedback loop starts with the Receive interaction to coordinate necessary
self-healing actions with other cameras, which is enabled by the deployed Communication
collaboration. Afterwards, the local Monitor activity updates the dependency model, which
includes the current status of camera failures. On basis of a consistent updated view, the
PingEcho interaction is performed, which synchronizes the own status with other cameras
in the same organization and in particular with the master node. The subsequent analysis
activity checks whether a reorganization of the current organization is necessary, which can be
in the case a camera failure is detected or if another camera joins the organization because of
a larger detected traffic jam. Therefore, the master election interaction is executed afterwards,
which leads to a planning activity of necessary local adaptation steps. Finally, the Execute
activity performs the planned system adaptations and synchronizes the changes with other
cameras using the Send interaction.

Beside the feedback loop, an additional HealingController supervises the feedback loop and
optimizes its strategy according to occurring role changes. The healing controller follows the
component-based specification approach and consists of two components and two runtime
models. The RoleMonitor sensor component determines the current role of the MAPE manager,
which is enabled by the MonitoringRules runtime model. If the role changes, the RoleManager
component is informed via an annotation in the corresponding system runtime model. The
role manager adapts the underlying feedback loop strategy for dealing with failure events that
are relevant to the new role. If for example a camera changes its role to perform as master
node within an organization, the healing controller detects this role change and adapts the
strategy of the underlying MAPEManager feedback loop accordingly. Adapting the MAPE
manager includes the exchange and integration of appropriate role interactions into the local
feedback loop behavior.

The Deurema approach is powerful enough to describe the collaboration aspects of the
distributed traffic monitoring system. Thereby, a broad spectrum of Deurema concepts is used.
First, the encapsulation of the intra-loop and inter-loop communication in a collaboration
type enables the reuse of the generic send and receive interactions on different layers within
the adaptive SoS. For example, the c1 communication collaboration instance between the
communication manager and MAPE manager within the self-healing subsystem follows
the same interaction specification as the c3 communication collaboration instance between
cameras. Furthermore, Deurema facilitates the deployment of collaboration instances on
arbitrary system layers as well as directly supports the delegation of roles to an inner system
module. The role mapping in a Deurema LD clearly distinguishes the different responsibilities
of the collaboration participants, where the concrete interactions of the collaboration are woven
into the local adaptation behavior of the corresponding role playing module. For this case

– 237 –

9. Application

study, three different Deurema template types are used. The domain specific behavior of the
traffic jam detection and the communication infrastructure are modeled as software modules.
Additionally, the modeling of the self-healing feedback loop and the supervising healing
controller are directly supported by an appropriate template type in Deurema. Thereby,
the available data can be seamlessly integrated into the module templates as well as in the
collaboration interaction. In summary, this case study uses a broad spectrum of Deurema
concepts such as the reflection mechanism between systems and modules, collaborations, and
the specification of a layered adaptive architecture. After the specification with the Deurema
language, the modeled traffic monitoring system can be investigated using the Deurema
analysis framework (cf. Chapter 6) to detect design flaws, architectural patterns, or to get a
better understanding of the specified interactions as well as the influence of the adaptation
effects. Additionally, the system can be simulated to further investigate runtime effects as
comprehensively discussed in Chapter 7.

9.1.2. Smart Home
Where the traffic monitoring system heavily uses the Deurema collaboration concept for
coordinating the distributed systems, the smart home case study shows the applicability of
the modeling language for multi-layered adaptive system architectures. Furthermore, the
Deurema adaptation and reconfiguration capabilities are used to change the overall available
functionality at runtime. The smart home case study is taken from Cetina et al. [57], where
the adaptive smart home architecture as well as the variability model are not changed, but
directly adopted by modeling the system with the Deurema language. Figure 9.3 shows the
modeled smart home case study.

In general, a smart home has several task controlling devices such as heaters, lights, cameras,
and multimedia according to the individual needs of the user. For example, if the user is not
at home, the smart home can switch off the lights and turn down the heaters to save energy
and costs. Another scenario is the closing of open windows if it starts to rain outside. Beside
the behavioral adaptation on environmental changes and user needs, the smart home should
have self-configuration capabilities. New devices can be incorporated into the system such as
a new movement sensor or heater controller. The smart home can support the integration of
such new devices by offering configurations or new features that suit the current available pool
of functionality. Beside new incoming devices, the smart home has to deal with device failures.
If for example a single heater fails, the smart home can inform the user and automatically
adapt the heating behavior of neighboring heaters to keep the room temperature as expected.

At the top, Figure 9.3 depicts the adaptive, layered system architecture of a smart home as
described in [57]. There are three layers, which semantically group devices, services, and the
reconfiguration logic of the smart home. The lowest layer named Device contains all physically
available devices. The access to the specific device is encapsulated in a Deurema software
module. There are five devices that are a TV, the lights, two movement sensors and an alarm.
The Lights module controls all lights in the smart home and can individually switch them on
or off. The two movement sensors are able to detect a human being and the alarm will inform
the user as well as the police if an intruder is detected.

The middle layer of the adaptive architecture contains all active functionalities of the smart
home, which are grouped in different running services. All services are modeled as application
modules and thus, the internal adaptation logic follows the component-based design principle.
Figure 9.3 shows two different scenarios of running services. In the first scenario, the user
is not home and only the lighting service and the security service are running. The lighting

– 238 –

9.1. Case Studies

reflect affect

<<
La

ye
r>

>

A
d

ap
ta

ti
o

n
<<

La
ye

r>
>

 S
er

vi
ce

<<SystemTemplate>>

SmartHome

reflect affect

<<SoftwareModule>>

tv:TV
<<SoftwareModule>>

l:Lights
<<SoftwareModule>>

a:Alarm
<<SoftwareModule>>

m1:Movement
<<SoftwareModule>>

m2:Movement

<<ApplicationModule>>

++ms:MultimediaService
<<ApplicationModule>>

ls:LightingService

<<ApplicationModule>>

++os:OccupancyService

<<ApplicationModule>>

--sec:SecurityService

<<FeedbackLoopModule>>

re:ReconfigurationEngine

reflect++reflect ++affect --reflect--reflect--reflect

++reflect ++reflect --reflect++tv:TV ++l:light --s:security

reflect affect

<<
La

ye
r>

>

D
ev

ic
e

--affect++affect

++reflect --reflect

<<FeedbackLoopModuleTemplate>>

ReconfigurationEngine

r
w

Monitor Executedr

r

r r ra w

rr

<<Monitor>>

ContextMonitor
<<SystemModel>>

ComponentModel

<<Analyze>>

VariabilityAnalysis
<<Plan>>

ReconfigurationPlanning
<<Execute>>

JavaCodeGeneration

<<VariabilityModel>>

SmartHomeFeatures
<<ModificationModel>>

ReconfigurationActions

<<SystemModel>>

ReconfigurationPlan

<<ExecutionModel>>

CodeGenerationRules

<<MonitoringModel>>

MonitoringRules

a

<<ApplicationModuleTemplate>>

SecurityService

<<Variable>>

In-HomeSecurity
<<Variable>>

SecurityComponent

<<VariabilityRuntimeModel>>

Variable Configurations SmartHomeFeatures

<<Variable>>

In-HomeSecurity

<<Variable>>

SecurityComponent

<<Actuator>>

BlinkingLights
<<Actuator>>

VisualAlarm
<<Actuator>>

Siren
<<Actuator>>

SilentAlarm

<<Sensor>>

InfraRed
<<Sensor>>

Volumetric
<<Sensor>>

InfraRed
<<Sensor>>

Volumetric

Figure 9.3: Smart home modeled with Deurema

– 239 –

9. Application

service reflects the status of all lights in the house and because the user is not home switches
all remaining activated lights off. The security service uses the movement sensors to detect
intruders and sends in the positive case a silent alarm to the user as well as to the police. The
second scenario deals with the situation, where the user is at home. The new available services
for the second scenario are highlighted green and are denoted with a ++ sign. Furthermore,
services that disappear are highlighted red with a – sign. The user moves through the house
and an occupancy service handles the current situation and optimizes the available devices
accordingly. For example, if the user turns on the TV, the occupancy service is aware of
that situation by reflecting the corresponding multimedia service. Furthermore, it instructs
the lighting service to dim the lamps. Again, the lighting service uses an in-home movement
sensor to detect all people in the house and switches of or dims the lights accordingly by
affecting the corresponding Lights module.

On top of all services, there is a single reconfiguration engine at the highest layer, which is
realized in form of a feedback loop. The reconfiguration engine decides about the necessary
amount of services that fits best to the current situation and the defined user needs. Therefore,
the engine is the heart of the adaptation capabilities of the smart home. Consequently,
the smart home in this case study is strictly hierarchically structured. At the bottom, the
functionality of hardware devices is encapsulated in software modules and thus, becomes
accessible for the services located in the layer above. The services provide different basic
functionalities and know how to access as well as control the underlying devices. The
reconfiguration engine supervises all services, deploys as well as deletes services, or changes the
strategy of an existing service according to the given requirements. In the example scenario
in Figure 9.3, when the user arrives at home, the reconfiguration engine determines the new
situation and deploys the occupancy service and the multimedia service. At the same time,
the engine removes the security service because the detection of intruders is not needed in
this situation.

The reconfiguration engine is modeled as feedback loop, where the internals are depicted in
the middle of Figure 9.3. According to the case study, there is a full MAPE cycle working
around a predefined set of runtime models. The monitor activity retrieves the current situation
of the smart home, which is denoted as context. Thereby, it updates a component model
of available devices, services and with the current situation of the smart home (e. g., the
home becomes empty). Afterwards, an analysis queries the updated runtime model searching
for predefined situations that fit to an adaptation need. The planning activity derives an
appropriate reconfiguration plan, which includes so-called reconfiguration actions to derive
the underlying system architecture (services). These reconfiguration actions are translated to
Java code by the execute activity, which is further used by an underlying OSGi framework
to perform the adaptation steps. Therefore, the reconfiguration engine directly reflects the
current running services and affects the complete service layer by generating an executable
reconfiguration plan.

Cetina et al. [57] uses a predefined feature model that helps deriving the appropriate config-
uration at runtime. This feature model can be translated to the Deurema modeling language
variability concept. The configurations for the security service module of the smart home case
study are shown at the bottom in Figure 9.3. The corresponding application module template
comprises two component variables, which are named In-HomeSecurity and SecurityComponent.
The configuration of both variables can be changed during the lifetime of the corresponding
smart home system. The in-home security component variable realizes the sensing functionality
to detect people as well as intruders in the smart home. Therefore, it can access different

– 240 –

9.2. Ensemble-Based Component Systems

configurations as an infra red sensor, a volumetric sensor, or a combination of both. The
combined sensor configuration is the current configuration of the example as highlighted in
gray in Figure 9.3. Furthermore, the security component variable realizes the notification
of the user as well as the police in the case of a positive intruder detection. The variable
comprises four configurations that are a silent alarm (current configuration in the example), a
siren, a visual alarm and the blinking of the house lights. The reconfiguration engine reflects
the Deurema variability model, which is represented by the SmartHomeFeatures variability
runtime model in the feedback loop template definition. Of course, new configurations can be
created dynamically at runtime. The planning activity can derive such new configurations,
which can be stored in the same runtime model and become available for the analysis activity
in the next execution cycle of the feedback loop.

In summary, the smart home case study has a hierarchical architecture that uses the Deurema
reflection mechanism to reason about as well as change underlying modules according to the
current situation. Thereby, this case study uses the Deurema variability concept to model
predefined configurations following a given feature model. Although the smart home case
study focuses on one house, this case study can be easily extended by introducing more smart
homes that start to collaborate with each other. A possible scenario is the optimizing of local
electrical energy production and consumption with respect to a smart grid. In such a scenario,
each smart home may negotiate its electrical power contribution to the grid by simultaneously
optimizing its own behavior according local goals. However, the extension of the case study
can be easily modeled with Deurema by instantiating the SmartHome system template multiple
times and specifying additional collaboration protocols between the houses. Furthermore,
variables in system templates can be used to individualize the smart home system templates,
which introduce additional variability in the scenario. As a consequence, multiple smart
house instances with corresponding collaborations shifts the focus from a hierarchical control
architecture to an adaptive SoS scenario, which can be analyzed as well as simulated with
Deurema.

9.2. Ensemble-Based Component Systems

Similar to SoS, an Ensemble-Based Component System (EBCS) is defined by Bures et al.
as ”distributed system composed of components that feature autonomic and (self-)adaptive
behavior and are organized into emergent ensembles to achieve cooperation” [50]. Therefore, an
EBCS shows the same distribution and emergent behavior characteristics as SoS. In contrast,
an EBCS focuses on systems that follow the component-based paradigm, which is included
but not required for SoS. Furthermore, Bures et al. [50] present the Distributed Emergent
Ensembles of Components (DEECo) approach for describing EBCS. DEECo defines an own
component model that facilitates the encapsulation of the adaptive behavior. Furthermore, it
considers component interaction in so-called ensembles as first class entities. Finally, Bures
et al. present a Java framework (jDEECo) that implements the DEECo component model for
execution and simulation purposes.

Because DEECo targets the description of highly dynamic component ensembles as well as
their interaction, it is a valuable candidate for showing the expressive power of the Deurema
modeling language. Therefore, this section maps the DEECo concepts to the Deurema
modeling language concepts showing that Deurema is powerful enough to cope with the
DEECo concepts.

– 241 –

9. Application

DEECo introduces two first class concepts that are components and ensembles. Components
are independent entities that comprise knowledge and processes. An interface description
denotes the available knowledge in an ensemble. A set of components is linked within an
ensemble, which is the only way for a component to interact and share data with other
components. The DEECo component mapping is shown at the top in Figure 9.4. Because
Deurema application module templates are designed to define the adaptive behavior following
the component-based paradigm, they can be used to represent DEECo components. Thereby,
each DEECo component specification can be mapped to one Deurema component.

Furthermore, DEECo components contain an arbitrary number of processes that manipulate
the available knowledge of the component. Deurema defines the available knowledge in form of
runtime models. Each Deurema component can have an arbitrary number of ports, where each
port references a runtime model. The entities that manipulates those runtime information are
Deurema runnables, which are located within the component and access the corresponding
runtime models over the specified ports. Thus, each DEECo component process is mapped to
a Deurema runnable. DEECo supports the direct execution of a component, which includes
the execution of the internal processes. In contrast, Deurema does not directly execute a
component description, but rather uses tasks for the execution of the adaptive behavior.
Therefore, all DEECo processes (runnables) must be assigned to an individual task, where the
period of the Deurema task corresponds to the period of the DEECo component specification.
The execution semantic of a runnable within the task corresponds to a DEECo process. A
DEECo process defines a period or a trigger, where the former specifies a periodic execution
and the latter a condition that has to be met for execution. Both can be represented by the
task period and trigger in Deurema (cf. Figure 5.28 in Section 5.3.4). Additionally, Deurema
allows different priorities for tasks, which is not supported by DEECo.

DEECo uses ensembles to describe the dynamic interaction between components, where
each ensemble has a predefined structure. There is one dedicated coordinator and an arbitrary
number of members. The predefined structure of a DEECo ensemble can be modeled with
the Deurema collaboration concept. Therefore, an ensemble corresponds to a collaboration
with the single role Coordinator and multi-role Member as shown in the collaboration structure
specification in Figure 9.4. In DEECo, components play their corresponding role as defined
in the ensemble specification, which is similar to the Deurema role mapping as described in
Section 5.5.5. Thereby, each DEECo component can participate in multiple (overlapping)
ensembles, which corresponds to a mapping of multiple roles from different collaboration
instances to one module instance in Deurema. Thus, interactions of the same component in
different ensembles are directly supported by Deurema.

The interaction between components within a DEECo ensemble is limited to a knowledge
exchange from the coordinator to the members. This one-to-many interactions can be modeled
with a single Deurema model message as shown at the example interaction at the bottom in
Figure 9.4. Furthermore, Deurema supports different message properties (e. g., synchronous
and asynchronous messages), which are not further supported by the DEECo approach.

For the execution of the DEECo components, a corresponding framework translates the
component description to a Java implementation. In contrast, an adaptive SoS architecture
and included collaborations modeled with Deurema can be directly simulated. In summary,
DEECo allows the specification of components that include the adaptation logic and knowledge.
These components can interact with each other over a predefined ensemble collaboration,
where the coordinator distributes the knowledge to all member components. Deurema is able
to map the DEECo component concept within the application component concept.

– 242 –

9.2. Ensemble-Based Component Systems

<<SystemModel>>

DEECo
Component

Interface

<<SWC>>

DEECo
Component

DEECo process

r

w

<<Collaboration>>

Ensemble
<<Role>>

Member

1..*

<<CollaborationStructure>>

DEECoEnsemble

<<CollaborationChoreography>>

DEECoEnsembleInteraction

<<Interaction>>

KnowledgeExchange

c

<<Role>>

Coordinator

1

Done

Start Done

<<InteractionTemplate>>

KnowledgeExchange

<<SystemModel>>

ExchangedModel

r

<<
R

ol
e>

>
 C

o
o

rd
in

at
o

r
<<

R
ol

e>
>

 M
em

b
er

<<ModelMessage>>

Exchange

<<ModelMessage>>

Exchange
Start

<<SystemModel>>

ExchangedModel

w

 Task

 DEECo process1

 DEECo process2

10s

<<ApplicationModuleTemplate>>

DEECoComponentModelMapping

Figure 9.4: Mapping DEECo concepts to Deurema

– 243 –

9. Application

Furthermore, the ensemble and the corresponding roles can be easily modeled by a corre-
sponding Deurema collaboration structure. The possible interaction belongs to the Deurema
collaboration choreography specification and includes a one-to-many exchange of knowledge
realized by a Deurema model message. In contrast to the predefined single ensemble inter-
action concept in DEECo, Deurema supports arbitrary collaboration structures as well as
choreography specifications. Consequently, the mapping of the DEECo component model
together with the ensemble concept shows that the Deurema modeling language is powerful
enough to remodel those concepts. Furthermore, DEECo focuses on distributed, component-
based systems. In contrast, the Deurema concepts are developed to describe the adaptive
architecture of a SoS together with the collaboration aspects of contained systems.

However, this chapter shows the applicability of the Deurema modeling language by pre-
senting two case studies. Moreover, Deurema can easily map the concepts of a state of the art
approach in the context of distributed, component-based systems. The next chapter outlines
the related work for the Deurema modeling language and compares it with respect to the
supported concepts.

– 244 –

10. Related Work

This chapter discusses related approaches concerning the modeling of collaborations in adaptive
SoS on basis of the derived modeling language requirements from Chapter 3. According to
the goals if this thesis, the Deurema modeling approach facilitates the systematical modeling
of the adaptive SoS behavior, the integration of runtime models and the explicit description
of collaborations. Furthermore, this thesis presents an analysis framework together with
meaningful metrics to investigate the adaptive SoS modeled with the Deurema approach.
Beside the analysis, a simulation framework supports the execution of Deurema models and
the investigation of the system behavior by means of a runtime analysis. The realization of
Deurema models in a concrete domain by mapping the Deurema modeling concepts to the
AUTOSAR standard shows the applicability of the Deurema approach for actual systems.
Finally, the remodeling of state of the art case studies from research emphasizes that the
Deurema modeling language are powerful enough to cope with current research problems.
In the following, these enumerated contributions of this thesis are compared with related
approaches from the current literature.

At first, Section 10.1 describes different general purpose modeling languages in the context
of software and systems engineering. Thereby, ideas that influence the design of the Deurema
modeling language are highlighted. Afterwards, Section 10.2 focuses on related domain specific
approaches that target different aspects such as using runtime models, collaborations, or
modeling adaptation capabilities. Those existing domain specific modeling languages are
enumerated and compared with the Deurema approach. Section 10.3 investigates related
frameworks towards existing approaches for the realization, simulation and execution of
modeled collaborative, adaptive behavior. Furthermore, this section enumerates approaches
that propose patterns in the context of modeling multiple, interacting feedback loops. The
roots of the Deurema modeling language are discussed in Section 10.4 by referring to former
work from the research group. Finally, this chapter summarizes the related work discussion in
Section 10.5 by pinpointing to own former work that contributes to the development of the
Deurema modeling language.

10.1. General Purpose Modeling Languages

First of all, Deurema is a modeling language, whereas existing general-purpose modeling
languages provide ideas and concepts that influence the design of the Deurema language
summarized in Table 10.1. There are two conceptual perspectives for system modeling using a
general-purpose modeling language, which is the system perspective and software perspective.
From the systems engineering perspective, the Systems Modeling Language (SysML) [89]
is a general-purpose modeling language specified by the OMG for modeling complex and
possible distributed systems. Therefore, this modeling language comprises the specification of
requirements, system structure, behavior and constraints on system properties. SysML does
not focus on specifying the software part of a system, but rather defining the overall system
architecture, its subcomponents, distribution, and resource allocation aspects.

– 245 –

10. Related Work

Table
10.1:

M
odeling

language
requirem

ents
m

apping
for

generalpurpose
m

odeling
languages

Feedback
Loop

C
om

m
u-

M
odeling

C
ollaboration

R
untim

e
M

odels
nication

A
daptation

D
evelopm

ent
A

nalysis

Explicit
(R–01)
Intra-Loop
(R–02)
Inter-Loop
(R–03)
Trigger
(R–04)
Distribution
(R–05)
Delegation
(R–06)
Roles
(R–07)
Protocol
(R–08)
Explicit
(R–09)
Management
(R–10)
Partial
(R–11)
Exchange
(R–12)
Multiple
(R–13)
Synchronization
(R–14)
Reconfiguration
(R–15)
Adaptation
(R–16)
Meta-Adaptation
(R–17)
Off-/ Online
(R–18)
Pattern
(R–19)
Domains
(R–20)
Causality
(R–21)
Knowledge
(R–22)
Static
(R–23)
Runtime
(R–24)
Simulation
(R–25)

SysM
L

[89]
8

8
8

8
4

o
o

o
8

8
8

8
4

4
8

8
8

8
8

4
8

8
4

8
o

A
D

L
[60,139]

8
8

8
8

4
8

8
8

8
8

8
8

o
o

8
8

8
o

o
4

8
8

4
8

o

U
M

L
[87]

8
8

8
8

o
o

4
o

8
8

8
8

4
4

8
8

8
8

o
4

8
8

8
8

8

SoaM
L

[88]
8

8
8

8
4

4
4

o
8

8
8

8
4

4
8

8
8

8
o

8
8

8
8

8
8

C
om

bining
U

M
L

and
SoaM

L
by

Sanders
etal.[157]

8
8

8
8

8
o

4
o

8
8

8
8

o
o

8
8

8
8

8
8

8
8

o
8

8

R
ole

B
ased

M
odeling

A
pproaches

by
[152,153]

8
8

8
8

o
o

4
4

8
8

8
8

8
8

8
8

8
8

4
8

8
8

8
8

8

4
:

fulfilled;
o

:
partially

fulfilled;
8:

not
fulfilled

– 246 –

10.1. General Purpose Modeling Languages

One simple but powerful concept of SysML is the structural system specification via blocks.
Blocks are modular units that can be hierarchical decomposed, interact with other blocks, or
contain constraint properties of the corresponding subsystem part. Consequently, on basis
of the SysML models, further design, verification, and validation activities are enabled [89].
On the one hand, due to SysML focuses on systems engineering, it supports a broad range of
different system types such as CPS as well as SoS and combines hardware as well as software
specifications. On the other hand, SysML lacks in comprehensive modeling techniques for the
software related parts of the system. Especially, SysML does not consider structural dynamics
of self-adaptive systems, feedback loop modeling, the representation of knowledge as runtime
models, and collaborations as first class concepts.

Another possibility of describing systems are Architecture Description Languages (ADL).
ADL ”are formal languages that can be used to represent the architecture of a software-intensive
system.” [60]. Such an architecture specification comprises subsystem components, structural
system patterns, and interaction mechanisms between components. For enabling further
simulation and verification capabilities, ADL are based on well-defined formal notations. For
example, the ArchWare ADL introduced by Morrison et al. [139] is based on the π-calculus
process algebra and supports evolvable architectures as required by SoS. Although there are a
lot of other formal architectural notations, there is no ADL covering dynamic collaborations
between feedback loops of large SoS. In general, ADL focus on building concrete system
solutions rather than describing changing system structures at runtime. Additionally, the
representation of runtime knowledge, e. g., the requirements or runtime constraints, is not in
the focus of ADL. A comprehensive discussion about different ADL can be found in [60, 139].

In contrast to the modeling from the system engineering perspective using SysML or ADL,
the Unified Modeling Language (UML) [87] enables the modeling of SoS architectures from
the software perspective. The SysML and UML are no distinct modeling languages but rather
overlap in basic concepts (e. g., the SysML reuses a subset of UML concepts to define an own
language extension).1 However, as emphasized by Mittal et al. [137], both modeling languages
can be used describing different architectural perspectives of the overall SoS. The UML [87]
provides language concepts for modeling architectural collaborations. In these collaborations,
roles with dedicated interfaces describe the behavior of the systems while the SoS level behavior
emerges from the interactions of these roles. Furthermore, the Service-oriented architecture
Modeling Language (SoaML) [88] is an UML profile that extents the collaboration concepts
of the UML in the context of service compositions. SoaML provides advanced modeling
concepts as for example the specification of service contracts, service choreographies, service
roles, and service hierarchies (compositions) in the context of service-oriented systems. Both
modeling languages UML and SoaML provide a set of building blocks to describe high level
collaborations, an interaction behavior, or the collaborating roles. However, both approaches
lack in a formal semantic and therefore in simulation as well as verification capabilities.
Moreover, both approaches do not focus on adaptive SoS systems and therefore do not support
concepts of feedback loop modeling nor taking the specifics of the tight interaction between
the physical and cyber world (as needed for CPS) into account. Furthermore, both modeling
languages do not consider runtime models as first class entities.

Sanders et al. [157] use the UML collaboration concept and extend the interaction between
systems by so-called semantic interfaces. They use the Object Constraint Language (OCL)
to define the goals of a collaboration and model the internal collaboration behavior in form of

1For a comprehensive discussion about SysML and UML concepts, the corresponding specifications can be
considered in [87] and [89].

– 247 –

10. Related Work

extended state machines, which includes a behavior separation according to the collaboration
roles. On basis of the interface description, the authors are able to compose elementary services
to higher level services using the defined collaboration. As a consequence, Sanders et al. [157]
enrich the basic UML collaboration concept with respect to a semantical notion of the
collaboration interfaces. Thereby, different concepts from the UML and service specification
of the SoaML are combined. Additionally, the authors show how abstract role specification
can be instantiated (deployed) in a concrete service composition, which is similar to the role
binding concept of the Deurema modeling language. However, the approach lacks in a formal
semantic definition of the internal behavior of the services, which hinder an analysis and
execution of the services as well as collaboration behavior. Furthermore, the approach is
restricted to service specification and thus, it does not focus on adaptive systems or SoS.
Consequently, the modeling of feedback loops, the use of runtime models and collaborations
between adaptive behavior is not considered.

As emphasized for the modeling language requirements in Chapter 3, one important
aspect is the encapsulation of local behavior related to an interaction in form of a role
description (together with an interaction protocol and the knowledge specification). The
general idea of applying role modeling concepts is introduced and comprehensively discussed
by Reenskaug et al. [152] and further enriched with new role modeling concepts for framework
designs by Riehle et al. [153]. In the papers, the authors describe how the role concept can
be used to foster separation of concerns, which further enables the specification and usage
of reusable patterns. In these papers, only general concepts concerning role modeling are
discussed. The Deurema modeling language adopts the general idea of using roles to foster
separation of concerns and refines the role concept into the context of adaptive SoS by tacking
dynamic role assignments and emergent behavior into account.

Because of the generality of the discussed modeling languages respectively the role concept
idea, they do not consider specifics of adaptive systems, emergent behavior in an adaptive
SoS, feedback loop modeling, the representation of knowledge as runtime models, and the
coupling respectively distribution of shared knowledge over collaborations. Therefore, as the
name general-purpose modeling language implies, the discussed modeling languages provide
general concepts to model a broad range of systems from different perspectives. Thereby,
the modeling languages offer building blocks to describe structural as well as behavioral
aspects of the system. Consequently, those general-purpose modeling language concepts
are of limited suitability with respect to the derived modeling language requirement of this
thesis in Chapter 3, which focus on the collaboration modeling inside an adaptive SoS. The
limited applicability of the discussed general-purpose modeling language is reflected in the
requirements mapping in Table 10.1.

Due to Table 10.1 subsumes the modeling language requirements concerning the feedback
loop modeling (R–01 to R–04), it is not surprising that the discussed approaches above do
not provide first class concepts for the explicit description of the adaptation logic in form of
feedback loops (R–01), intra-loop coordination (R–02), inter-loop coordination (R–03), or the
triggering of feedback loops (R–04).

In contrast, the requirements with focus on collaboration aspects (R–05 to R–08) are
partially supported, where different ideas influence the design of the Deurema modeling
language. Role based modeling introduces the concept of abstract roles for separation of
concerns (R–07) together with the notion of a role protocol (R–08) to define the role specific
behavior. In addition, SysML and ADL support the modeling of systems from a systems
engineering perspective and therefore, provide concepts for modeling distribution aspects

– 248 –

10.1. General Purpose Modeling Languages

(R–05). Furthermore, UML and SoaML adopt the role concept and offer basic collaboration
concepts to model role specific behavior. Thereby, SoaML focuses on service specifications
following the service-oriented architecture approach. Therefore, services can be distributed
over several service providers, which is reflected in the SoaML accordingly.

Additionally, Table 10.1 shows the modeling language requirements for the explicit support
of runtime models (R–09 to R–12). As emphasized above, the use of runtime models during
the lifetime of an adaptive system is a specific research direction that is not in the focus
of general-purpose languages. Therefore, the mentioned approaches do not offer modeling
language concepts for runtime models. Although the UML, SoaML and SysML define a broad
range of different model types, which is the basis for modeling systems, there are no first class
concepts supporting runtime models. Of course, each model (modeled in a general-purpose
language such as UML) can be potentially kept alive during system lifetime and thus, become
a runtime model, but this is not in the focus of the modeling language itself.

Focusing on communication requirements (R–13 to R–14), general-purpose modeling lan-
guages offer a broad spectrum for communication and synchronization concepts. For example,
the UML distinguishes between synchronous and asynchronous method invocation (R–13) in
sequence diagrams. Furthermore, predefined sequences between communication partners real-
ize a specific interaction protocol that includes the synchronization behavior (R–14) between
participants.

Similar to the line of argumentation concerning runtime models, requirements with respect
to adaptation aspects (R–15 to R–17) are not in the focus and thus, not supported by
general-purpose modeling languages. Of course, the discussed approaches offer specific model
types that can be extended to describe reconfiguration or adaptation aspects. For example,
Korherr et al. [118] present an UML profile that extends the basic UML language for the
explicit specification of variability models. This profile can be used to describe different
variation points in a software system, which further enables the reconfiguration of the system.
However, reconfiguration and adaptation concepts are not in the focus of the general modeling
language approaches discussed above.

Focusing on the development modeling language requirements, general-purpose modeling
languages support a broad range of different domains (R–20) by offering several model types.
In contrast, best practices for applying the broad range of model types for the current
underlying problem are not in the focus of these approaches. However, software and system
design patterns (R–19) evolve over time and are often described in terms of a modeling
language. For example, Gamma et al. [78] describe a set of common design patterns in an
UML related notation. Another example is shown in Table 10.1 for the role based modeling
approach described by Riehle et al. [153], who refer to a set of patterns that can be reused in
the presented role based framework design.

The last category in Table 10.1 enumerates the modeling language requirements with
focus on system analysis (R–21 to R–25). Because of the broad spectrum of general-purpose
languages, they often lack in a formal semantical background for the provided modeling
concepts. Exceptions are ADL that are based on a formalism (e. g., the π-calculus process
algebra in [139]). Those ADL are further suitable to statically analyze the modeled system (R–
23) or support its execution respectively simulation (R–25). There exists a subset of the UML,
the Foundational UML (fUML) [91], that describes an execution semantic for a predefined
subset of UML modeling concepts and thus, contributes to R–25, too. In general, there are
many domain specific solutions that use a subset of existing general-purpose languages or
define own additional concepts to remove the lack of a missing semantical background. With

– 249 –

10. Related Work

respect to the modeling of adaptive SoS in the context of this thesis, important domain specific
solutions are discussed in the following.

10.2. Domain Specific Languages and Approaches

Beside general-purpose modeling languages, there are several modeling approaches tailoring
very specific problems in the context of adaptive systems. In the following, this section
discusses related approaches that contain concepts or ideas, which influence the design of
the Deurema modeling language. Thereby, the related approaches are again discussed with
respect to the derived modeling language requirements in Chapter 3. At first, domain specific
approaches from control engineering and adaptive systems are discussed in general. Afterwards,
this section discusses specific directions, which are main concepts in Deurema, namely, runtime
models with focus on adaptive systems, meta-adaptation approaches, formal approaches for
adaptive systems, collaborations in adaptive systems and finally, related domain specific
modeling languages. A comprehensive mapping of supported requirements for the following
discussed approaches can be found in the Table 10.2.

Domain Specific Approaches for Adaptive Systems
This thesis follows the idea of modeling the adaptive behavior in form of feedback loops. As
outlined in Chapter 2, the specification of adaptive behavior is well understood for embedded
systems, where the corresponding control engineering discipline has a manifold set of formal
theories and approaches to describe and develop control loops. Based on a formal foundation,
the behavior of the developed control loops can be foreseen and specific characteristics
(e. g., stability) can be ensured. From the control engineering discipline, Kokar et al. [117]
introduce a set of different control loop designs on basis of a formal theory. The control loop
designs, such as an open-loop, closed-loop (feedback), or indirect-adaptive control loop, are
important to transfer the ideas from the hardware related control engineering perspective to a
feedback loop design in software intensive systems of the corresponding software engineering
domain. Although Kokar et al. present different control loop designs, which describe the
general structure of the control loop, the internals of the adaptive behavior are not explicitly
described.

Georgiadis et al. [80] start shifting the adaptive behavior to the software level by imple-
menting a runtime environment, which supports the dynamic binding of domain specific
functionalities in the context of distributed systems. Thereby, the authors encapsulate the
domain logic in software components, which offer the inner services over ports according to an
interface specification, but are treated as black boxes. Furthermore, the domain logic remains
hidden in the implemented runtime framework and is realized by a dedicated management
component. Thus, the approach from Georgiadis et al. is a first step towards the dynamic
binding of domain specific functionality, which leads to an adaptation of the overall distributed
system behavior (R–16), by tacking distribution aspects (R–05) of the components into
account. A key characteristic of many approaches solving a concrete domain specific problem
is the focus on a few (mostly one) self-* capabilities of the system. For example, the approach
of Georgiadis et al. [80] enables a self-organizing infrastructure for distributed systems. Or-
tiz et al. [144] present an approach that allows a distributed task management of individual
robots, which also belongs to an underlying self-organizing problem. Malek et al. [131] focus
on the redeployment of individual components in distributed systems to improve the overall
availability of a service, which belongs to the self-optimizing characteristic.

– 250 –

10.2. Domain Specific Languages and Approaches
Ta

bl
e

10
.2

:
M

od
el

in
g

la
ng

ua
ge

re
qu

ire
m

en
ts

m
ap

pi
ng

fo
r

do
m

ai
n

sp
ec

ifi
c

m
od

el
in

g
ap

pr
oa

ch
es

Fe
ed

ba
ck

Lo
op

C
om

m
u-

M
od

el
in

g
C

ol
la

bo
ra

tio
n

R
un

tim
e

M
od

el
s

ni
ca

tio
n

A
da

pt
at

io
n

D
ev

el
op

m
en

t
A

na
ly

sis

Explicit
(R–01)
Intra-Loop
(R–02)
Inter-Loop
(R–03)
Trigger
(R–04)
Distribution
(R–05)
Delegation
(R–06)
Roles
(R–07)
Protocol
(R–08)
Explicit
(R–09)
Management
(R–10)
Partial
(R–11)
Exchange
(R–12)
Multiple
(R–13)
Synchronization
(R–14)
Reconfiguration
(R–15)
Adaptation
(R–16)
Meta-Adaptation
(R–17)
Off-/Online
(R–18)
Pattern
(R–19)
Domains
(R–20)
Causality
(R–21)
Knowledge
(R–22)
Static
(R–23)
Runtime
(R–24)
Simulation
(R–25)

C
on

tr
ol

En
gi

ne
er

in
g

by
K

ok
ar

et
al

.[
11

7]
8

8
8

8
8

8
8

8
8

8
8

8
8

8
4

4
8

8
4

8
8

8
4

8
o

Se
lf-

*
A

pp
ro

ac
he

s
by

[8
0,

13
1,

14
4]

8
8

8
8

4
o

8
8

8
8

8
8

o
8

o
o

8
8

8
8

8
8

8
8

o

M
A

PE
A

pp
ro

ac
h

by
K

ep
ha

rt
et

al
.[

11
0]

o
o

8
8

8
8

8
8

8
8

8
8

8
8

8
4

8
8

8
8

8
8

8
8

8

C
oo

rd
in

at
io

n
of

A
da

pt
at

io
n

Lo
gi

c
A

pp
ro

ac
he

s
by

[1
5,

16
3,

16
4,

18
9]

o
o

4
4

4
o

8
4

8
8

8
8

o
4

8
o

8
8

o
8

8
8

o
8

o

D
SL

by
Fl

eu
re

y
et

al
.[

73
]

8
8

8
8

8
8

8
8

8
8

8
8

8
8

4
4

8
8

8
8

8
8

4
8

4

C
on

sid
er

in
g

R
un

tim
e

M
od

el
s

by
[5

7,
13

8]
4

8
8

8
8

8
8

8
4

4
8

8
8

8
4

4
8

8
8

8
8

8
8

8
o

Lo
ca

la
nd

G
lo

ba
lR

un
tim

e
M

od
el

A
sp

ec
ts

by
Tr

ol
lm

an
et

al
.[

16
9]

8
8

8
8

8
8

8
8

4
4

8
8

8
8

4
8

8
8

8
8

8
o

8
8

8

Pa
rt

ia
lR

un
tim

e
M

od
el

s
by

G
öt

z
et

al
.[

86
]

8
8

8
8

4
8

o
8

4
8

4
o

o
8

8
o

8
8

8
o

8
o

8
8

8

M
et

a-
A

da
pt

at
io

n
A

pp
ro

ac
he

s
by

[1
8,

92
,9

9]
8

8
o

8
o

8
8

8
8

8
8

8
8

8
o

4
4

o
8

8
8

8
8

8
4

D
ist

rib
ut

ed
M

et
a-

A
da

pt
at

io
n

by
Pi

ec
hn

ic
k

et
al

.[
14

9]
4

4
o

8
4

o
8

8
8

8
8

8
o

8
4

4
4

o
8

8
8

8
8

8
o

In
te

rle
av

in
g

M
et

a-
A

da
pt

at
io

n
w

ith
R

un
tim

e
M

od
el

s
by

K
lö

s
et

al
.[

11
6]

4
4

8
8

8
8

8
8

4
4

8
8

8
8

4
4

4
8

8
8

o
8

8
8

8

4
:

fu
lfi

lle
d;

o
:

pa
rt

ia
lly

fu
lfi

lle
d;

8
:

no
t

fu
lfi

lle
d

– 251 –

10. Related Work

However, all of these mentioned approaches do not explicitly model the adaptation logic
in form of feedback loops (R–01) nor consider multiple interacting feedback loops (R–03,
R–04) or collaborations (R–06, R–08). The approaches can be seen as representative solving
existing problems in the context of distributed, adaptive systems, but they present specific
solutions for a concrete problem rather than systematically use a modeling approach for the
specification of the internal adaptation behavior or the coordination between components
respectively systems.

Kephart et al. [110] subsume different self-* capabilities and propose a blueprint for a
feedback loop (called autonomic manager) that consists of four dedicated adaptation activities
named MAPE approach as already introduced in the preliminaries in Section 2.1.1. Therefore,
the internal structure of the feedback loop is explicitly determined (R–01) and the sequence
of the adaptation activities are known (R–02). This MAPE approach transfers the ideas
from the control engineering domain to a software engineering perspective, which was first
applied in the context of the autonomic computing domain, but became one dominant
approach for the research concerning adaptive systems. In the context of feedback loop
modules, Deurema adopts the idea of having different adaptation activities and follows
the proposal from Kephart et al. [110]. In contrast, Deurema allows arbitrary sequences of
adaptation activities, which extends the static structure of a classical MAPE feedback loop.
Brun et al. [49] comprehensively discuss the modeling of feedback loops starting in the control
engineering domain and shift the focus to a software engineering perspective afterwards.

Looking more precisely in the self-adaptation context that emphasize the use of the MAPE
feedback loop approach, Alvares de Oliveira et al. [15] propose one generic synchronization
protocol to coordinate different feedback loops by means of knowledge sharing and apply it
to an application example in the cloud computing domain. This paper extends the MAPE
approach by considering distribution (R–05) and coordination aspects (R–14), which arise
by using multiple feedback loops. However, Alvares de Oliveira et al. only cover a single
synchronization scheme for coordinating complete feedback loops while the Deurema modeling
language supports the specification of arbitrary coordination schemes for individual feedback
loop activities. Other examples for the coordination (R–08) and synchronization (R–14) of
adaptive behavior are presented by Sykes et al. [164] and Stehr et al. [163]. Sykes et al. extend
the ideas from Georgiadis et al. [80] in two ways. First, the monolithic manager component is
replaced by a gossip protocol, which enables a decentralized coordination scheme. Second,
they introduce a three layer architecture that realizes the overall adaptation logic, where
each layer focuses on a specific adaptation concern. In contrast, Stehr et al. [163] describe the
coordination in form of formal, declarative control rules, which specify the allowed interaction
between independent CPS. In the context of the automotive domain, Zeller et al. [189] present
a control architecture that handles hierarchically arranged MAPE feedback loops, where each
loop realizes an individual piece of adaptation functionality. Additionally, feedback loops
on a higher hierarchical layer have a unified, aggregated view on the whole knowledge and
functionality of the layer below. In this approach, the feedback loop and knowledge dependency
are rather fix and implicitly encoded in the formal model over the hierarchy. However, this
approach extends the original MAPE approach by an explicit feedback loop triggering concept
(R–04) and distribution aspects (R–05) in an overall hierarchical synchronization scheme
(R–14) following the hierarchical control pattern. The discussed examples above extend the
idea of a single MAPE feedback loop [110] by introducing multiple feedback loops together
with a specific coordination respectively synchronization protocol. In contrast to the Deurema
modeling language, they provide only specific solutions for a concrete underlying problem

– 252 –

10.2. Domain Specific Languages and Approaches

rather than a modeling approach to systematically describe the adaptation logic together with
the feedback loop interactions.

In MDE, Domain Specific Languages (DSL) are used to provide specific modeling elements
that are tailored to the corresponding problem domain. Therefore, DSL can be used to
fill the gap of missing concepts from the general-purpose modeling languages. On the one
hand, because of the clear focus and the missing demand of generality, a domain specific
modeling language often provides a small subset of modeling elements enriched with a formal
semantic. On the other hand, a DSL is inherently restricted to the domain and often cannot
be used for general modeling purposes. Fleurey et al. [73] propose a DSL for the specification,
simulation, and execution of adaptive systems. Within the proposed DSL, system variability
and adaptation rules can be modeled and the influence of specified constraints can be simulated
at design time. The system variants are derived from a variability model together with rules as
well as context constraints that have to be fulfilled. Therefore, system properties are modeled
as first class entities, which consist of the beforehand mentioned variability model, context
constraints, and rule model. The explicit modeling of feedback loops, collaborations, runtime
model knowledge, and a runtime analysis of system constraints are not in the focus of the
presented DSL.

Runtime Models as Knowledge Representation
Beside the specification of the adaptation logic, Deurema uses runtime models as first class
entities for knowledge representation. The runtime model concept is introduced by Blair and
Bencomo [32, 38] and describes the idea to keep development models alive during system
execution. Furthermore, the basic characteristics of runtime models as for example the causal
connection are discussed in both papers (cf. preliminaries in Section 2.2.3). Morin et al. [138]
show that runtime models can be used for specifying the configuration space for a dynamic
software product line. In this approach, the authors explicitly determine the runtime models in
their system architecture (R–09) and link the runtime models via the causal connection to an
underlying business architecture (the domain logic). According to a reasoning scheme and the
current situation of the system, the approach generates an appropriate system configuration
that is afterwards synchronized with the underlying domain logic. Thus, the authors consider
different system configurations to support dynamic adaptation, which corresponds to R–16.
A similar approach is introduced by Cetina et al. [57] in the context of smart homes as
comprehensively discussed in the application chapter in Section 9.1.2. In contrast to the
approach of Morin et al., Cetina et al. use predefined variability runtime models to describe
the overall reconfiguration space of the smart home rather than generating a suitable system
configuration on the fly. Trollman et al. [169] extend the view on runtime models by considering
different model types. They separate the overall available runtime model types according to
local and global adaptation concerns. As a consequence, Trollman et al. are aware of the fact
that distributed adaptation activities (e. g., located in different feedback loops) may influence
or contradict each other by manipulating the available knowledge base. This influence is
increased in adaptive SoS, where different systems collaborate and share knowledge with each
other as motivated in Chapter 3. Trollman et al. solve the problem by strictly separating
local and global reconfiguration aspects and do not extend this idea with respect to system
interactions.

Another important aspect is the availability and completeness of information stored in
a (runtime) model, especially if systems share only parts caused by data privacy aspects.
Götz et al. [86] present preliminary ideas, where distributed feedback loops formulate queries
that are applied on the knowledge base on interaction participants. Therefore, the authors

– 253 –

10. Related Work

emphasize the importance of considering different views over the complete available knowledge
base, which is related to R–11. Unfortunately, in [86], they present only first ideas and
pinpoint to possible solutions rather than describe a working modeling approach.

In summary, the discussed approaches handle runtime models as first class entities (R–09)
and manipulate them at runtime to enforce, over the causal connection, the desired system
adaptation. Thereby, each approach tailors a specific kind of runtime models (e. g., a variability
model) or a limited set of different types, which is suitable to solve the underlying problem.
In contrast, the Deurema modeling language supports arbitrary domain specific runtime
models and pinpoints to their contained information by assigning an appropriate purpose.
Furthermore, Deurema allows the integration of these runtime model information across
the whole SoS, which includes, among others, the use of runtime models in modules and
collaborations.

Meta-Adaptation
Beside the ability of a software system to adapt its pool of functionality to react on changing
environmental conditions and requirements, for complex or long running systems the adaptation
engine itself must be adapted to cope with software aging and evolution. The ability of adapting
the adaptation engine itself is called meta-adaptation as introduced in Section 2.1.1 and
requires an additional layer on top of the adaptation logic. Hillman et al. [99] introduce
a three layer architecture that realizes the meta-adaptation concept (R–17). The lowest
layer contains the domain logic. The middle layer realizes the adaptation engine called
reconfiguration manager and a change driver layer monitors the adaptation engine and
exchanges, if necessary, the underlying adaptation algorithm. Unfortunately, the approach
does not model the internals of the adaptation logic (R–01) nor of the meta-adaptation layer
and thus, the concrete implementation is hidden in the corresponding presented framework.
A similar conceptual three layer approach is presented by Assis et al. [18] in the context of
the hypermedia development environment called adaptive semantic hypermedia design model.
A difference is that the authors use ontologies to semantically define the adaptation model,
which is a common approach in the hypermedia context. Furthermore, RDF triples can
be used to work on the adaptation model in form of condition-action rules, which realizes
the meta-adaptation. Therefore, Assis et al. [18] use a declarative approach to define the
meta-adaptation logic, which is similar to the Deurema behavior module template concept
introduced in Section 5.3.5. A concrete example of using declarative rules for the modeling of
meta-adaptation is discussed in Section 5.6.3.

In contrast to the declarative approach, Gui et al. [92] follow the component-based approach
to encapsulate the adaptation logic in well-defined composable adaptation planners. The
approach defines a component model, where each component contains a piece of an adaptation
strategy together with some local knowledge. A transformer framework on top is responsible
for connecting the adaptation components and conflict resolution, where the deployed set of
aggregated, connected components realizes the overall adaptation logic. Thus, the framework
can rearrange the number of adaptation components as well as their connections to other
components, which is the meta-adaptation of the system (R–17). Deurema facilitates the
specification of component-based adaptation logic by the application module template concept
as explained in Section 5.3.4.

An approach that uses two coupled MAPE-K feedback loops to realize the meta-adaptation
concept is introduced by Piechnick et al. [149] in form of the ContextPoint architecture
approach. The first feedback loop is responsible to adapt the underlying domain logic and
thus, realizes the adaptive capabilities of the system. This feedback loop can be extended

– 254 –

10.2. Domain Specific Languages and Approaches

in two ways following the ContextPoint approach. First, the variability space (e. g., possible
configurations of the system) can be adapted. Transfered to the Deurema approach, this is
similar to change the underlying knowledge base that is the Deurema variability model. For
example, a feedback loop on top can insert a new configuration or delete an existing one. As
a consequence, an existing analysis or planning activity might change its outcome on basis
of the changed knowledge base. This corresponds to an indirect influence of the adaptation
logic. Second, the feedback loop on top can change the adaptation logic (feedback loop)
below by adapting the modeled adaptation activities and therefore, the way these activities
perform their functionality. For example, a monitor activity can be adapted by exchanging the
available set of sensors (e. g., in the corresponding monitoring runtime model) and replacing
the monitoring algorithm to the new available sensor situation. In this case, the feedback
loop on top does not influence the adaptation logic indirectly over the knowledge base, but
rather directly changes the available adaptation activities. Of course, combinations of direct
and indirect meta-adaptation scenarios are thinkable. The ContextPoint approach [149] has a
static architecture of exactly two coupled feedback loops, but already considers the deployment
of the architecture on different devices. A runtime environment synchronizes different devices
over a peer-to-peer network. Thus, the collaboration aspects between devices are not explicitly
modeled and remain in the runtime environment implementation. In contrast, Deurema is not
limited to two coupled feedback loops for realizing meta-adaptation and it explicitly considers
the collaboration aspects between different systems respectively feedback loops.

An interleaving approach within one feedback loop is presented by Klös et al. [116]. Addi-
tionally to the classical MAPE activities, the authors add an evaluation and learning step.
The former is explicitly triggered in the analysis step of the MAPE loop and the latter in the
planning step. Both, the evaluation and learning, may lead to a change of the underlying
knowledge base in form of removed or new generated (learned) adaptation rules. Therefore,
the adaptation engine adapts itself without an external trigger (e. g., another feedback loop).
On the one hand, one can argue that this behavior is no real meta-adaptation because the
feedback loop works in the expected range as it was designed for. On the other hand, the
available pool of functionality changes if new adaptation strategies are learned and thus,
the overall adaptation behavior might change over time. Thus, the underlying adaptation
engine is not static, which conforms to the definition of meta-adaptation. In the context of
this thesis, it is not important to answer the question whether this changing of adaptation
behavior caused by a learning step is meta-adaptation or not. The important observation is
that the overall behavior of the adaptation engine evolves over time based on the underlying
knowledge base. Because Deurema is not limited to a fix number of MAPE adaptation steps,
but rather supports the modeling of additional adaptation activities, such evolving feedback
loops can be directly specified in Deurema.

In summary, there are different approaches of realizing the meta-adaptation concept, which
spawns a range from declarative rule conditions over the encapsulation in adaptive components
to the use of coupled feedback loops or in-place adaptations. The presented approaches above
choose one of these concepts, which fits best to the underlying problem. In contrast, the
Deurema modeling language supports all of these variants for specifying the adaptation logic
(e. g., component-based, via feedback loops, or rule based) and encapsulates it in corresponding
module templates. Furthermore, Deurema allows arbitrary combinations of layered adaptation
of these modules using the Deurema reflection mechanism (cf. discussion in Section 5.6),
which enables the specification of such meta-adaptation behavior.

– 255 –

10. Related Work

Formal Approaches Supporting Verification
The mapping of modeling language requirements to formal approaches for modeling adaptive
systems is subsumed in Table 10.3 and subsequently discussed. In the context of service-
oriented architectures, Baresi et al. [26] focus on the dynamic binding of services at runtime,
which leads to a dynamic reconfiguration of the overall system functionality. Thereby, the
authors describe a type graph to represent an abstract model of the underlying domain, which
consists of components, ports, interfaces and basic messages. On basis of the type graph,
the authors are able to formally describe varying service bindings via graph transformation
rules. Unfortunately, the approach focuses on the structural representation of services in form
of components and the service bindings are represented via a connected port. Internals of
the interaction protocol are not considered. Although the authors uses graph transformation
as formal background to describe a deviating service composition, they do not describe the
arising analysis capabilities in detail. Furthermore, the approach targets the modeling of
service-oriented systems without taking the adaptive behavior as first class entity into account.
Similar to Baresi et al. [26], Bauer et al. [27] use partner graph grammars to formally define
evolving communication topologies for dynamic systems. Thereby, systems are represented as
nodes in a graph and communication links as edges. On basis of the graph structure, graph
transformation rules describe the creation of a collaboration, represented by creating edges
between independent system nodes. The authors use the set of graph transformation rules
and a given initial graph (instance situation) to define their partner graph grammar. This
grammar can be used to statically analyze soundness and completeness criteria on the defined
graph transformation rules and thus, of the specified system interaction. Because of the strong
abstraction of systems to nodes and system interaction to edges, the approach does neither
consider internals of the interaction protocol nor the internal, local behavior of the system.

Goldsby et al. [85] describe the AMOEBA-RT approach that targets runtime verification
of adaptive software systems. Therefore, the authors use the Linear Temporal Logic (LTL)
and a specific extension to define adaptation operations, which leads to the A-LTL approach.
Furthermore, the authors extend an existing model checker called AMOEBA with respect
to runtime monitoring and runtime analysis. The authors evaluate their approach by using
AspectJ to introspect an adaptive Java program. Additionally, an automaton is generated
from the LTL constraints, whereas the behavior of one execution sequence of the adaptive
Java program is verified against the automaton specification. Constraint violations and the
corresponding execution trace of the program can be detected and reported to the developer.
This approach directly introspects the adaptation logic on bytecode level of the corresponding
Java program. The authors refine the original approach [85] towards a modular verification at
runtime in [191] to cope with the state space explosion problem and increasing verification
costs (in terms of space and time) of their model checking approach. However, the approach
neither considers collaborative behavior nor the explicit modeling of the adaptation logic in
form of feedback loops.

In the context of SoS modeling, Gezgin et al. [81] describe preliminary ideas of describing the
different system goals and the resulting adaptive behavior within a SoS. Thereby, the authors
consider independent, possibly distributed systems, where each system realizes a specific
functionality (called service) and can interact with other systems over ports. Furthermore, the
authors describe a first idea of considering different interaction protocols that are separated
by roles. Based on the high level service concept, the authors use graph transformation rules
to describe the structure dynamics of the SoS, which consists of creating as well as deleting
services and the connection of roles. The latter can be seen as establishing an interaction

– 256 –

10.2. Domain Specific Languages and Approaches
Ta

bl
e

10
.3

:
M

od
el

in
g

la
ng

ua
ge

re
qu

ire
m

en
ts

m
ap

pi
ng

fo
r

ad
ap

tiv
e

sy
st

em
m

od
el

in
g

ba
se

d
on

fo
rm

al
ap

pr
oa

ch
es

Fe
ed

ba
ck

Lo
op

C
om

m
u-

M
od

el
in

g
C

ol
la

bo
ra

tio
n

R
un

tim
e

M
od

el
s

ni
ca

tio
n

A
da

pt
at

io
n

D
ev

el
op

m
en

t
A

na
ly

sis

Explicit
(R–01)
Intra-Loop
(R–02)
Inter-Loop
(R–03)
Trigger
(R–04)
Distribution
(R–05)
Delegation
(R–06)
Roles
(R–07)
Protocol
(R–08)
Explicit
(R–09)
Management
(R–10)
Partial
(R–11)
Exchange
(R–12)
Multiple
(R–13)
Synchronization
(R–14)
Reconfiguration
(R–15)
Adaptation
(R–16)
Meta-Adaptation
(R–17)
Off-/Online
(R–18)
Pattern
(R–19)
Domains
(R–20)
Causality
(R–21)
Knowledge
(R–22)
Static
(R–23)
Runtime
(R–24)
Simulation
(R–25)

U
sin

g
G

ra
ph

Tr
an

sf
or

m
at

io
n

R
ul

es
in

th
e

C
on

te
xt

of
th

e
Se

rv
ic

e-
O

rie
nt

ed
A

rc
hi

te
ct

ur
e

by
[2

6]
8

8
8

8
o

o
8

8
8

8
8

8
8

8
8

4
8

8
8

8
8

8
o

8
8

U
sin

g
G

ra
ph

Tr
an

sf
or

m
at

io
n

R
ul

es
fo

r
St

at
ic

A
na

ly
sis

by
B

au
er

et
al

.[
27

]
8

8
8

8
o

8
8

8
8

8
8

8
8

8
8

4
8

8
8

8
8

8
4

8
8

A
M

O
EB

A
-R

T
ap

pr
oa

ch
by

[8
5,

19
1]

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
4

8
8

8
8

8
8

4
4

o

A
M

od
el

in
g

Fo
rm

al
ism

fo
r

So
S

by
G

ez
gi

n
et

al
.[

81
]

8
8

8
o

4
o

o
8

8
8

8
8

8
o

8
4

8
8

8
8

8
8

o
8

8

FO
R

M
S

ap
pr

oa
ch

by
W

ey
ns

et
al

.[
18

2]
4

o
o

8
4

8
o

4
8

8
8

8
o

o
8

4
8

8
8

8
o

8
4

8
o

A
ct

iv
eF

O
R

M
S

ap
pr

oa
ch

by
Ift

ik
ha

r
et

al
.[

10
3]

4
o

o
4

8
8

8
8

8
8

8
8

8
4

8
4

8
8

o
8

o
8

4
4

4

M
ob

ile
Le

ar
ni

ng
A

pp
lic

at
io

n
C

as
e

St
ud

y
on

B
as

is
of

T
im

ed
A

ut
om

at
a

by
Ig

le
sia

et
al

.[
84

]
4

o
o

o
4

8
4

8
8

8
8

8
8

4
8

4
8

8
o

8
o

8
4

8
4

Tr
affi

c
M

on
ito

rin
g

Sy
st

em
C

as
e

St
ud

y
by

Vr
om

an
t

et
al

.[
17

9]
o

o
o

8
4

8
o

4
8

8
8

8
o

8
8

4
8

8
8

8
8

8
4

8
o

Fo
cu

s
on

C
ol

la
bo

ra
tio

n
vi

a
En

se
m

bl
es

by
H

öl
zl

et
al

.[
10

2]
8

8
8

8
4

8
8

8
8

8
8

8
8

8
8

4
8

8
8

8
8

8
4

8
4

D
EC

ID
E

ap
pr

oa
ch

w
ith

Pr
ob

ab
ili

st
ic

M
od

el
s

by
C

al
in

es
cu

et
al

.[
55

]
8

8
8

o
4

8
8

8
8

8
8

8
8

o
8

4
8

8
8

8
8

8
4

4
4

4
:

fu
lfi

lle
d;

o
:

pa
rt

ia
lly

fu
lfi

lle
d;

8
:

no
t

fu
lfi

lle
d

– 257 –

10. Related Work

between two systems. Unfortunately, the authors present only first ideas, which are promising
to cope with the dynamics in the SoS, but are incomplete and lack in a formal basis.

Based on a standardized formal specification language called Z, Weyns et al. [182] present
the FORMS approach. They introduce a set of basic primitives that can be used to model
dependencies between the local adaptation behavior as well as the interaction aspects to
other systems. Furthermore, the authors show a mapping of their FORMS approach to the
MAPE-K feedback loop from [110]. Although the FORMS approach has a formal background,
the authors emphasize the approach lacks in ”a precise vocabulary for describing and reasoning
about primary architectural characteristics of self-adaptive systems” [182]. Further research
leads to the ActivFORMS approach [103], where the adaptation logic itself is modeled by a
set of timed automata. The automata are directly executed along with the adaptive system,
which enables a verification of the adaptive behavior at runtime according to given goals
that are encoded on basis of the timed automata formalism. ActivFORMS uses the Uppaal2
tool that again uses model checking as underlying verification concept, which has two major
impacts on the approach. At first, the feedback loop consists of a set of automata that must
be defined once and cannot change during the verification. Thereby, models are represented as
automata or other data structures and do not appear in form of runtime models. Second, the
verification has to deal with the state space explosion problem, which is inherent to the chosen
verification technique. However, the ActiveFORMS approach demonstrates the verification of
the self-adaptive behavior during runtime by formally modeling the underlying feedback loop.
Unfortunately, the presented version of this approach in [103] does not consider collaboration
aspects. Iglesia et al. [84] show how timed automata can be used to describe coordination
aspects for a mobile learning application. However, in this case study, the timed automata
are statically defined to realize the underlying problem and to not consider specific runtime
information. Another case study is presented by Vromant et al. [179], which is the distributed
traffic monitoring system as already discussed in Chapter 9.

Hölzl et al. [102] focus on the interaction aspect of distributed, independent systems by
presenting a formal model for the definition of ensembles. Based on a global goal satisfaction
and fitness function each system (an autonomous robot in the presented approach) contributes
to the overall system goal. Therefore, the collaboration aspects are indirectly modeled, where
each system knowns about the global goals and optimizes its local behavior accordingly.
Furthermore, the authors integrate the local adaptive behavior as well-defined black boxes,
which means that the adaptation logic is not known in advance but has predefined input
and output interfaces. An advantage of this approach is the decentralized control scheme.
Disadvantages are the single, global goal optimization, the black box adaptation behavior and
the missing integration of runtime information.

Recently, Calinescu et al. [55] presented the DECIDE approach that enables runtime ver-
ification of completely decentralized control loops on basis of probabilistic models such as
probabilistic automata or continuous-time Markov chains. Probabilistic behavior suits the
description of adaptive system behavior in unknown or uncertain environments. Further-
more, sporadic software errors or hardware failures can be modeled as probabilistic effects.
Although of the growing state space for system verification that depends on the number of
distributed DECIDE components and the defined system requirements, the authors show that
DECIDE performs even for larger system sizes. However, the approach considers only one
local control loop for each DECIDE component, whereas the internals are not modeled in
detail. Furthermore, the collaboration aspects are restricted to an unspecified distribution of

2More information about the Uppaal software tool can be found at: http://www.uppaal.org/.

– 258 –

http://www.uppaal.org/

10.3. Frameworks and Patterns

the calculated local behavior optimization to the overall global available requirements. Thus,
each distributed component has a non-conflicting unique view on the overall system.

In summary, a formal basis enables the verification of the modeled adaptive system behavior
according to given goals. The discussed approaches lack in specific design concepts for adaptive
SoS, where the adaptation logic is defined by means of feedback loop activities. Furthermore,
the use of runtime models and the resulting effects of manipulating these models are not
considered. Beside verification, some approaches discuss the parallel execution of the formal
models (timed automata) to facilitate runtime analysis and pinpoint to violations during
the execution of the system. In contrast, Deurema supports static and runtime analysis by
providing different metrics such as the causality between adaptation effects or the distribution
of runtime models in form of declarative pattern. As described in Chapter 6, an inference
engine runs in parallel to the adaptive SoS simulation and directly annotates found violations
of the requirements or modeled patterns into the defined Deurema models. An overview about
the derived modeling language requirements and discussed related formal approaches can be
found in Table 10.3.

10.3. Frameworks and Patterns

Beside modeling languages, frameworks offer specific concepts and tools to ease the devel-
opment or support verification of adaptive systems. This sections discusses different kinds
of frameworks that influenced the design of the Deurema modeling language. Thereby,
frameworks from the embedded and cyber-physical domain are discussed first. Furthermore,
frameworks often define a predefined overall software architecture reducing the complexity
and offer well-defined customization points for inserting the domain specific adaptation logic.
Therefore, layered architecture based adaptation frameworks are discussed in this context.
Afterwards, frameworks with a special focus or supporting a specific concept (e. g., runtime
models) are highlighted. Finally, literature that proposes patterns and best practices for
the development of adaptive systems are retrieved. An overview of all discussed frameworks
and pattern approaches is collected and compared against the derived modeling language
requirements of this thesis in Table 10.4. In the following, each approach in the table is
discussed in detail.

Embedded and Cyber-Physical Systems Domain
In the context of the automotive domain, the DySCAS project investigates and offers concepts
for the dynamic reconfiguration of embedded and cyber-physical systems. In this domain,
problems arise by the high safety demands, where the system behavior (including the reconfig-
uration and adaptation capabilities) must fulfill hard real-time constraints. Anthony et al. [17]
define a set of reconfiguration scenarios in typical modern cars and propose first ideas of
introducing the reconfiguration behavior within the DySCAS framework. Ward et al. [180]
refine the ideas from [17] and introduce a context manager that is able to reconfigure the
deployed software components in the system. The adaptation logic is directly encoded in the
software components and due to the high demands on safety as well as real-time behavior,
all reconfiguration possibilities (decision points) are developed upfront and precompiled into
the software component implementation. At runtime, the context manager decides which
components in which configuration could be activated, which leads to the overall available
system behavior. In contrast, the Deurema modeling language follows the external adaptation
approach, which splits the adaptation logic from the domain logic.

– 259 –

10. Related Work
Table

10.4:
M

odeling
language

requirem
ents

m
apping

for
fram

ew
orks

and
pattern

approaches

Feedback
Loop

C
om

m
u-

M
odeling

C
ollaboration

R
untim

e
M

odels
nication

A
daptation

D
evelopm

ent
A

nalysis
Explicit
(R–01)
Intra-Loop
(R–02)
Inter-Loop
(R–03)
Trigger
(R–04)
Distribution
(R–05)
Delegation
(R–06)
Roles
(R–07)
Protocol
(R–08)
Explicit
(R–09)
Management
(R–10)
Partial
(R–11)
Exchange
(R–12)
Multiple
(R–13)
Synchronization
(R–14)
Reconfiguration
(R–15)
Adaptation
(R–16)
Meta-Adaptation
(R–17)
Off-/ Online
(R–18)
Pattern
(R–19)
Domains
(R–20)
Causality
(R–21)
Knowledge
(R–22)
Static
(R–23)
Runtime
(R–24)
Simulation
(R–25)

D
ySC

A
S

approach
by

[17,180]
8

8
8

8
o

o
8

8
8

8
8

8
o

8
4

o
8

8
8

8
8

8
8

8
4

M
A

R
S

approach
by

Trapp
etal.[168]

8
8

8
8

8
8

8
8

8
8

8
8

4
4

4
4

8
8

8
8

8
8

4
8

4

A
U

T
O

SA
R

and
an

O
rganic

M
iddlew

are
by

Trum
ler

etal.[170]
8

8
8

o
4

8
8

8
8

8
8

8
o

o
4

4
8

8
8

8
8

8
4

8
4

Soft
and

H
ard

R
eal-T

im
e

in
a

H
ybrid

C
om

ponent
M

odelby
G

uietal.[93]
8

8
8

8
o

8
8

8
8

8
8

8
8

8
4

4
8

4
8

o
8

8
8

8
4

R
ainbow

approach
by

G
arlan

etal.[79]
4

4
8

8
8

8
8

8
8

8
8

8
8

8
8

4
8

8
8

8
8

8
8

8
4

C
om

ponent
T

ypes
and

PLA
SM

A
by

[70,166]
4

4
8

4
8

8
8

8
8

8
8

8
8

8
4

4
4

8
8

8
8

8
8

8
4

D
EEC

o
for

Ensem
ble-B

ased
C

om
ponent

System
s

by
B

ures
etal.[50]

o
o

4
4

4
8

o
8

8
8

8
8

8
8

8
4

8
8

8
8

8
8

8
8

4

Patterns
for

D
ecentralized

Feedback
Loops

by
W

eyns
etal.[183]

4
o

o
8

o
8

8
8

8
8

8
8

8
8

8
8

8
8

4
8

8
8

8
8

8

4
:

fulfilled;
o

:
partially

fulfilled;
8:

not
fulfilled

– 260 –

10.3. Frameworks and Patterns

The MARS approach [168] extends the specification of different system configurations by
taking the interplay between components into account. The approach offers basic modeling
concepts such as modules to define the system behavior including different configurations. Due
to static verification techniques and simulation, the correct interplay of modules is analyzed
and specific safety properties such as deadlock freedom can be guaranteed. If the analysis
fulfills the development requirements, the system implementation is generated on basis of
the Matlab/Simulink tool. In contrast to the MARS and DySCAS approach, this thesis
discusses a realization of the Deurema concepts due to a direct mapping to the AUTOSAR
standard. Thereby, the adaptive behavior is realized by AUTOSAR software components that
can be integrated side by side with the software components specifying the domain logic of
the system. Integrating the modeled reconfiguration space of the Deurema variability model
suits well with the static AUTOSAR standard [62]. Thereby, the same problems arise by
realizing dynamic adaptation capabilities as known for the MARS and DySCAS approach.

Trumler et al. [170] extend the static reconfiguration capabilities of the AUTOSAR standard
by introducing an organic middleware. In this approach, each middleware node follows a
predefined architectural structure, but can differ in the amount of available services, which
realize the adaptive behavior as well as the domain logic. The interplay between nodes is
investigated by means of a corresponding simulation framework. Unfortunately, a mapping
from the presented middleware to an AUTOSAR implementation is missing. On the one hand,
the organic middleware enables the specification of dynamic adaptation capabilities. On the
other hand, it introduces a gap between a concrete AUTOSAR conform implementation and
the simulator realization.

To avoid this problem, Gui et al. [93] introduce a hybrid real-time component model that
separates hard and soft real-time functionality of the system by design. Furthermore, for the
hard real-time behavior mathematically modeled transfer functions are used that comprise
the domain logic and reconfiguration capabilities of the system. In contrast, non-real-time
behavior is separately developed and executed using an OSGi framework, which enables the
specification and execution of dynamic adaptation capabilities. Furthermore, the authors
present an interaction scheme of real-time and non-real-time behavior based on a global shared
memory. The shared memory solution introduces the drawback of this approach, which is
the missing distribution of components on different execution nodes. As a consequence, the
interaction between components is not explicitly considered with the exception of the interface
semantic. Therefore, components can only distribute and receive data, if the corresponding
interfaces of the other components fit to the own interface description. Furthermore, the
collaboration specific behavior is not explicitly considered.

In the context of this thesis, the Deurema modeling language concepts are mapped to
the AUTOSAR standard demonstrating the realization in a concrete application domain as
comprehensively discussed in Chapter 8. As a consequence, all reconfiguration and adaptation
capabilities must be mapped to the AUTOSAR approach, which leads to an integration of
the adaptive behavior into the AUTOSAR software components.

Architecture Based Adaptation Frameworks
Garlan et al. [79] describe the Rainbow framework that supports the decoupling of the adapta-
tion logic from the domain logic following the external adaptation approach as introduced in
Section 2.1.1. Thereby, the approach defines a two layer architecture consisting on a system
layer and an architecture layer. Furthermore, the architecture layer consists of four predefined
adaptation activities, which can be individualized according to the underlying problem. Thus,
Rainbow explicitly considers the feedback loop in the overall architectural design, although

– 261 –

10. Related Work

the activities are statically arranged. Rainbow does neither consider runtime models nor
collaboration between feedback loops as first class entities.

Kramer et al. [119] subsume different architectural designs for the development of adap-
tive systems and present a three layer reference architecture, which was adopted in many
following research approaches. For example, Edwards et al. [70] define a set of component
types, namely collector, analyzer, and admin, for typical adaptation activities. The collector
component is responsible for retrieving data of the underlying system, whereas the analyzer
component evaluates the data. The admin component manipulates the underlying system
according to the evaluation result of the analysis. The authors take the reference architecture
from Kramer et al. [119] and place one instance of each component type on the adaptation
layers, which leads to the following implications. First, the adaptation logic is explicitly
determined by the introduced component types, which are placed on the adaptive, layered
architecture. Second, the interactions between components is modeled via event triggering.
Third, because the authors use two adaptation layers on top of each other, they enable the
specification of meta-adaptation capabilities, although this concept is not discussed in more
detail. Based on a refinement of the introduced component types, the three layer architecture
from Edwards et al. [70] ends in the PLASMA framework as introduced in [166]. Similar to the
Rainbow framework, this approach does neither consider runtime models nor collaborations
in the overall adaptive architecture.

Frameworks with Special Focus
In the following, related approaches that have a very specific focus in a special domain or
concept are highlighted. Although none of the following approaches focuses on the definition
of a modeling language, those approaches are important because they describe ideas in related
domains that are realized by Deurema for modeling adaptive SoS. At first, Cossentino et al. [65]
describe the ASPECS approach that introduces a software engineering process for agent-
oriented systems. The important aspect adopted by Deurema is the explicit consideration of
collaborative behavior. Because agents are inherently considered as independent, they must
interact with each other to offer high level services or contribute to a bigger system goal.
Consequently, the authors introduce a set of terms such as organization (similar to a Deurema
collaboration), role, role task (similar to the Deurema choreography specification), and role
plan (similar to the Deurema role mapping concept). On basis of those basic terms, Deurema
adopts the agent-oriented concepts and changes them to model adaptive SoS architectures
that comprises several independent systems, the explicit specification of feedback loops,
collaborations, and the integration of runtime models.

Kim et al. [113] propose an application framework for loosely coupled networked CPS. A
key point of interest of this approach is the knowledge handling between multiple distributed
nodes. The underlying framework reasons about the underlying distributed topology of
so-called cyber nodes and provides an overall unique view on the shared knowledge base.
Therefore, the approach decouples the real physical deployment of nodes by the cyber node
concept and further prevents inconsistencies at the underlying data model. A fully decoupled
application layer can access the underlying framework (and thus, the knowledge base) via a
predefined API. Furthermore, the authors comprehensively discuss implications of simulating
the cyber framework and realizing the modeled system for a concrete application platform.
In the context of this thesis, similar observations occur. At first, the Deurema simulation
framework provides a unified, non-conflicting access to an arbitrary number of runtime model
views and maintains occurring changes during the simulation accordingly (cf. interpreter
and simulation semantic in Chapter 7). Realizing the Deurema approach by means of the

– 262 –

10.3. Frameworks and Patterns

AUTOSAR standard (cf. realization discussion in Chapter 8) introduces additional, domain
specific problems of synchronizing and distributing the underlying data structures.

With respect to the component-based development paradigm, which is supported by the
Deurema application module template type, this thesis is inspired by the comprehensive
classification of software component models in [66]. One related approach is introduced by
Bures et al. [50] called DEECo. DEECo combines the component-based development paradigm
with the idea of dynamically build ensembles (similar to Deurema collaborations). Chapter 9
shows that the Deurema modeling language concepts are powerful enough to cope with the
DEECo approach. Furthermore, Deurema additionally considers the modeling of adaptive
behavior in form of feedback loops and declarative behavior rules. Moreover, DEECo does
not focus on runtime model aspects. From an implementation point of view, the DEECo
approach facilitates the code generation of a corresponding DEECo model, which is integrated
into the jDEECo runtime framework. In contrast, Deurema supports the direct simulation
of the modeled architecture, but needs a manual realization in an appropriate application
domain as exemplarily discussed for the AUTOSAR standard.

Finally, a very interesting approach from the domain of smart spaces called SeSaMe [25]
introduces an adaptive middleware infrastructure. The advantage of this approach is that
existing components, as massively available in smart spaces in form of sensors or devices, can
connect to the middleware to exchange data or interact with each other. Furthermore, an
application layer on top of the middleware enables the decoupled development of domain
specific functionality without coping with device specific details. The middleware itself
is structured in different layers that deal with the component abstraction and adaptation
handling functionality. Although the middleware approach enables a high integration of
existing devices and an independent high level application development, the main drawback,
from a modeling perspective, is the hiding of dependencies of the adaptation logic as well as
for the collaboration aspect between different components within the middleware. Thus, the
Deurema approach explicitly determine these dependencies in the adaptive SoS architecture
to enable the reasoning about it by means of the presented Deurema analysis and simulation
framework. However, from a user perspective, such middleware solutions are highly attractive,
because they ease the interaction and integration of several devices in a predefined application
domain.

In summary, frameworks target the simplification of the development by providing predefined
architectural solutions that can be individualized in dedicated variation points. Furthermore,
a corresponding execution or code generation environment helps realizing the individualized
solution on a target platform. However, almost all frameworks hide the collaboration aspects
within the framework architecture. Therefore, the interaction of the systems is hidden in the
specific implementation details of the frameworks. In contrast, a modeling language allows
the specification of a broader spectrum of adaptive system architectures, which is on the one
hand only limited by the supported modeling language concepts and thus, more flexible. On
the other hand, a modeling language might lack in the support for an automatic realization of
the specified system solution.

Patterns for Adaptive Systems
On basis of clear modeling concepts, patterns help understand common used architectural
software and system designs. Furthermore, patterns highlight to advantages and known issues
by applying it, which facilitates design decisions during the development and might lead to a
better system respectively software design. Choi et al. [59] introduce application patterns of
the beforehand mentioned cyber framework from Kim et al. [113]. The patterns focus on the

– 263 –

10. Related Work

handling and distribution of the common, unified knowledge base of the underlying distributed
networked CPS.

In contrast, Frey et al. [76] discuss different interaction patterns in the context of the smart
grid domain. Thereby, the authors discuss responsibilities for hierarchical, stigmergy and
peer-to-peer collaborations. All of these different interaction patterns can be represented by
the Deurema collaboration concept, where some instances of these interaction patterns are
comprehensively discussed in the analysis chapter in Section 6.3.

In the context of adaptive systems, Weyns et al. [183] describe high level patterns by
combining different variants of the MAPE activities for distributed feedback loops. Examples
are the Information Sharing, Regional Planning, Hierarchical Control, or Master/Slave pattern,
whereas the latter appears slightly changed in the platoon collaboration with the leader and
follower role in the running example of this thesis. Unfortunately, the presented patterns
in [183] are described on an informal level based on the MAPE activities. Therefore, the
concrete interaction between single activities, e. g., in form of collaboration as done by the
Deurema modeling language, are not described. Furthermore, the integration of knowledge as
well as its distribution remains unclear in the pattern description. In contrast, the Deurema
modeling language provides clear modeling concepts, which enables the specification of well-
defined patterns. Although some architectural patterns such as hierarchical control or layered
adaptation are discussed in the analysis chapter (cf. Section 6.3), it is not in the focus of this
thesis providing a comprehensive set of different patterns for modeling adaptive SoS.

10.4. Experience from the Research Group

The former approaches of the research group that influence the design of the Deurema modeling
language are summarized in Table 10.5. Hebig et al. [96] identify different problems for the
development of adaptive systems and emphasize the need of an explicit modeling of the
underlying control loop. Therefore, the authors propose an UML profile that enables the
modeling of a so-called controller by means of an UML component. Furthermore, sensor
components are determined to retrieve data from other components (similar to monitoring
activities in Deurema feedback loop diagrams) and actuator components provide data to
influence other components according to the output of the controller (similar to execute
activities). Interactions between the controller, sensor and actuator components are modeled by
using UML interfaces. This approach enables the explicit modeling of the control architecture
by encapsulating the adaptation logic in different controller components. The internals of
the controller remains as black box. Furthermore, a protocol and concrete modeling of the
interaction over the UML interfaces is not presented. Multiple controller are represented by
distinct UML components, where a special sequence concept defines a causal order between
different controllers. The approach is a first step of describing and structuring the adaptation
capabilities without representing a concrete execution or realization semantic.

In the context of cyber-physical systems, the Mechatronic UML (mUML) modeling language
enables the description of the domain and adaptation logic of the system. Thereby, the mUML
concepts were extended over time with respect to different research questions. In [51, 53], the
authors present the model-driven development of mUML models by means of block diagrams
for describing architectural aspects and statecharts for defining behavior aspects. Thereby,
the SysML block diagram concept is extended to define hybrid mechatronic components that
transfer data over well-defined ports. Furthermore, structural reconfiguration aspects are
modeled in hybrid reconfiguration charts, which is basically an automaton that defines the

– 264 –

10.4. Experience from the Research Group

Ta
bl

e
10

.5
:

M
od

el
in

g
la

ng
ua

ge
re

qu
ire

m
en

ts
m

ap
pi

ng
fo

r
ap

pr
oa

ch
es

fr
om

th
e

ow
n

re
se

ar
ch

gr
ou

p

Fe
ed

ba
ck

Lo
op

C
om

m
u-

M
od

el
in

g
C

ol
la

bo
ra

tio
n

R
un

tim
e

M
od

el
s

ni
ca

tio
n

A
da

pt
at

io
n

D
ev

el
op

m
en

t
A

na
ly

sis

Explicit
(R–01)
Intra-Loop
(R–02)
Inter-Loop
(R–03)
Trigger
(R–04)
Distribution
(R–05)
Delegation
(R–06)
Roles
(R–07)
Protocol
(R–08)
Explicit
(R–09)
Management
(R–10)
Partial
(R–11)
Exchange
(R–12)
Multiple
(R–13)
Synchronization
(R–14)
Reconfiguration
(R–15)
Adaptation
(R–16)
Meta-Adaptation
(R–17)
Off-/Online
(R–18)
Pattern
(R–19)
Domains
(R–20)
Causality
(R–21)
Knowledge
(R–22)
Static
(R–23)
Runtime
(R–24)
Simulation
(R–25)

Ex
pl

ic
it

C
on

tr
ol

Lo
op

M
od

el
in

g
vi

a
an

U
M

L
Pr

ofi
le

by
H

eb
ig

et
al

.[
96

]
o

8
o

o
8

8
8

8
8

8
8

8
8

8
8

4
8

8
8

8
o

8
8

8
8

m
U

M
L

an
d

D
iff

er
en

t
Ex

te
ns

io
ns

by
[5

1,
52

,5
3,

82
,8

3,
10

0]
o

8
o

o
o

8
4

4
8

8
8

8
o

8
4

4
8

o
8

8
8

8
4

o
4

rig
So

aM
L

by
[2

8,
29

,3
0]

8
8

8
8

8
8

4
o

8
8

8
8

8
8

8
4

8
8

8
8

o
8

4
8

8

A
da

pt
at

io
n

an
d

R
un

tim
e

M
od

el
s

by
[1

74
,1

76
]

8
8

8
8

8
8

8
8

4
o

8
8

8
8

8
4

8
8

8
8

8
8

8
8

4

R
un

tim
e

M
eg

am
od

el
s

by
[9

7,
17

7,
17

8]
8

8
8

8
8

8
8

8
4

4
8

8
8

8
8

4
8

8
8

8
8

8
8

8
8

Eu
re

m
a

by
Vo

ge
le

ta
l.

[1
75

]
4

4
4

4
8

8
8

8
4

o
8

8
8

8
8

4
4

4
8

8
8

8
8

8
4

D
eu

re
m

a
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

o
o

4
4

4
4

4
4

4
:

fu
lfi

lle
d;

o
:

pa
rt

ia
lly

fu
lfi

lle
d;

8
:

no
t

fu
lfi

lle
d

– 265 –

10. Related Work

different allowed reconfigurations in form of system states as well as the transition between
different system configurations as state transitions. Thus, the adaptation logic is woven into
the local behavior of the system and not explicitly modeled in form of a feedback loop. Because
of an underlying toolchain described in [52], mUML models can be analyzed and simulated.
Another extension of mUML introduces a collaboration concept [100], which already has a
notion of collaboration roles. This concept enables an interaction between components and
extends the static reconfiguration capabilities to dynamic structural adaptations at runtime.
Graph transformation rules are used to describe the structural changes, whereas statecharts
describe the interaction behavior. Another important aspect of the mUML approach is the
proposal of a reference architecture called operator-controller-module architecture. Thereby, two
independent feedback loops decouple the hard real-time system reconfiguration logic (reflective
loop) from the soft real-time behavior (cognitive loop). Considering real-time constraints is
a crucial point for embedded and cyber-physical systems. One advantage of the proposed
architectural decoupling is the separation of concerns with respect to timing constraints. Thus,
the low level reflective loop is able to react fast on changing conditions of the system state or
environment, whereas the cognitive loop realizes non-critical self-optimization capabilities.
However, the real-time constraints of the underlying cyber-physical system limit the overall
possibility of applying arbitrary dynamic runtime adaptations. Later work formalizes modular
aspects of the mUML language [82] such as components and compositions and collaboration
aspects [83] towards a verification of the modeled system as well as interaction behavior.
Unfortunately, the mUML approach has no notion of integrating runtime models into the
proposed reference architecture. Furthermore, there is no explicit decoupling of the domain
and control logic. Finally, the language focuses basically on one cyber-physical system, which
can be partially extended by the collaboration concept. However, the description of several
independent systems on a multi-layered SoS architecture is not in the focus of this language.

Another research direction is the verification of structural adaptation effects on models
represented by graph structures. The general idea is that the current model (graph) describes
the state of the system and the modeled graph transformation rules specify the possible
behavior. Becker et al. [28] propose an approach called symbolic invariant verification that
investigates the modeled graph transformation rules (the adaptive behavior of the system)
and pinpoints to unwanted adaptation effects by finding forbidden future system states. The
approach is extended to coordination aspects between autonomous vehicles in [29]. Thereby,
the coordination is described by means of graph transformation rules that are extended by
clocks representing timing aspects as needed for embedded real-time systems. The verification
approach is further extended in the context of service-oriented systems via a service role
and service collaboration concept, which leads to the rigSoaML modeling language described
in [30]. Within the language, the complete adaptive behavior is modeled by means of graph
transformation rules. On the one hand, this suits for the formal verification aspects of the
language, which is the main intention of this approach. On the other hand, the language does
not explicitly distinguish between adaptation activities, their grouping to feedback loops, or
encapsulating collaborative behavior from local system behavior. Furthermore, the graph
transformation rules operate on a given system state (represented as graph), whereas the
representation of runtime models is not in the focus of this modeling approach.

Focusing on system adaptation in combination with the idea of abstract runtime model
representations, Vogel et al. [174] show how architectural models can be retrieved from a
running system and represented as runtime models during the execution of the system. The
authors used triple graph grammar rules for synchronizing system observations with the

– 266 –

10.4. Experience from the Research Group

more abstract runtime model representation. Furthermore, the authors realize the causal
connection and show how changes in the runtime model are translated to the running system,
which enforces corresponding changes in the domain logic. The approach is evaluated by a
self-healing scenario on basis of an Enterprise Java Beans (EJB) web application. Although
the approach focuses on an architectural representation of the running EJB components, it
demonstrates how the causal connection of runtime models to the running system can be
established and maintained during system lifetime. The runtime monitoring of this approach
is further improved in [176] by synchronizing runtime observations incrementally with the
runtime model representation looking only at changes in the system architecture instead of
rebuilding the runtime model at every monitoring step from scratch.

As discussed in the preliminaries in Section 2.2.4, the megamodel approach targets the
managing of different models as well as their relationships to other models as typical in a
MDE setting. On basis of a common understanding of the megamodel approach derived
in [97], Vogel et al. [177] present a first idea of combining megamodels with the runtime model
approach. An advantage of this idea is to benefit from the management techniques provided
by the megamodel at runtime. Thus, the authors describe how multiple runtime model types
can be considered during the lifetime of the system, which is an extension of the restricted
architectural view in [174], and how the megamodel can be used to maintain all these different
runtime models. This idea introduces a preliminary categorization of runtime models, which
is further refined in [178]. In the context of this thesis, this categorization is extended with
respect to modeling collaborations and a clear separation between different runtime model
types in Section 5.2. Additionally, a megamodel is used that contains all runtime models
within the Deurema models as well as maintains individual views in the corresponding module
templates together with the defined model operations on the runtime models as performed by
the different adaptation activities. At runtime (during a simulation), the megamodel is used
to manage the relationships between the different deployed runtime model instances as well
as module instances in the deployed adaptive systems.

Combining the ideas of runtime megamodels and the explicit modeling of the control
loop leads to the Executable Runtime Megamodels (Eurema) approach [175]. Eurema is the
predecessor modeling language and the starting point of the Deurema language described
in this thesis. Eurema explicitly determines feedback loops as first class entities and defines
modeling concepts to describe the order of adaptation effects by means of adaptation activities
and control flow concepts. Furthermore, Eurema considers multi-layered adaptive architectures
that facilitates the specification of meta-adaptation concepts. Beside the adaptation effects,
Eurema uses runtime models for knowledge representation, where the adaptation activities
can operate on the available knowledge base. An Eurema interpreter can directly execute the
defined feedback loops by following the control flow of the defined adaptation activities and
the trigger dependencies between different feedback loops. Unfortunately, Eurema focuses
on single self-adaptive software systems. Therefore, it does neither consider the concurrent
execution of feedback loops nor provides collaboration concepts to coordinate distributed
feedback loops contained in multiple system instances. Furthermore, Eurema does not
support the definition of partial runtime model views that is needed for sharing runtime
information via system collaborations. Thus, the Deurema modeling language extends the
Eurema concepts with respect to adaptive SoS modeling, which implies the need of considering
distributed knowledge and system collaborations. Additionally, Deurema considers not only
feedback loops for defining the adaptation capabilities of a system but rather supports multiple
domains by providing different module templates as discussed in Section 5.3. With respect

– 267 –

10. Related Work

of different systems types such as embedded and cyber-physical systems, Deurema provides
static reconfiguration as well as dynamic adaptation concepts. Thereby, the Deurema analysis
framework is able to reason about the modeled adaptive SoS architecture (cf. Chapter 6).
Finally, the Deurema simulation environment directly executes the Deurema models as well
as provides concepts of integrate analysis rules supporting runtime verification.

10.5. Discussion
In summary, this chapter shows that none of the discussed approaches above introduce a
systematical modeling approach for adaptive SoS with collaborations. Deurema benefits from
the ideas of these existing approaches above and integrates them into a new modeling language
approach. The design of the Deurema modeling language is further influenced by the following
own experience and publications. In [9], a first categorization of different runtime model types
is proposed together with some ideas of analyzing dependencies of interacting feedback loops
in an overall layered system architecture. Furthermore, the influence of uncertainty in runtime
models is discussed in [1]. The vision of combining multiple, interacting feedback loops that
hold runtime models as representation of the own system state and its context is presented
in [4]. In this context, different real world scenarios and state of the art research approaches
are compared in [11]. A first version of the Deurema modeling language, which comprises the
collaboration between feedback loops, is published in [10].

Concerning the realization of Deurema concepts, the work in [8] describes the mapping of a
component-based software description to the AUTOSAR standard. Furthermore, a mapping
from AUTOSAR to timed automata for formal verification of interface interaction behavior is
discussed in [7]. Finally, a comprehensive discussion about an embedded toolchain for the
development of robotic systems following the MDE approach can be found in [14].

– 268 –

11. Conclusion

This chapter summarizes the contribution of this thesis with respect to the introduced goals in
Chapter 1. Furthermore, it subsumes the Deurema modeling language concepts and compares
it with the derived requirements for the adaptive SoS modeling in Chapter 3. Finally, the
chapter outlines open points and possible future work.

11.1. Discussing Goals and Contribution

As motivated in the introduction, a research challenge for this thesis is the specification of
an adaptive SoS behavior by explicitly modeling the adaptation logic (G1), integrating the
available knowledge in form of runtime models (G2), and determining system interaction by
means of collaborations (G3). On basis of these three goals, the main contribution of this thesis
is the Deurema modeling language approach. Deurema is developed with respect to adaptive
SoS characteristics as well as subsequently derived modeling language requirements, which are
retrieved from the state of the art literature. Concerning goal G1, Deurema encapsulates the
adaptive behavior in modules, where the internals are specified by a corresponding template
description. Thereby, the specification of the adaptation logic follows different domain specific
development concepts, which are feedback loop modeling, component-based modeling, and
rule-based modeling. Furthermore, Deurema supports the adaptation and reconfiguration of
system behavior as first class concepts.

Looking at the knowledge with respect to goal G2, this thesis proposes a runtime model
categorization that defines the purpose of the runtime information without restricting the run-
time model types (metamodel). Thus, runtime models from arbitrary domains are supported.
Runtime models are maintained by a megamodel, which keeps track of occurring changes due
to adaptation and manipulation effects. Furthermore, runtime models can be integrated in
all three supported module template types by defining a view, which is locally available for
the adaptation logic. The access to runtime models is specified by model as well as module
operations that are maintained by the Deurema megamodel and can be directly executed.

The thesis goal G3 targets the modeling of collaborations. The Deurema modeling lan-
guage introduces a structural collaboration specification, which comprises abstract roles and
collaboration types. Furthermore, Deurema allows the modeling of the interaction behavior
as well as defines role interfaces. Thereby, the above mentioned runtime model concept can be
seamlessly integrated in the collaboration specification and used during system interactions
for the exchange of runtime information. In a first step, collaboration behavior is separately
defined from the local adaptation behavior, which facilitates the concurrent development of
both distinct aspects and fosters separation of concerns. Afterwards, the specified collaboration
behavior can be integrated into the overall adaptive SoS architecture.

Beside the explicit description of the adaptive SoS behavior, this thesis contributes to
the analysis of emergent SoS behavior as emphasized by the thesis goal G4. Therefore, the
Deurema analysis framework is introduced that supports the static analysis of the modeled
adaptive SoS. This thesis introduces different metrics for investigating causal dependencies, the

– 269 –

11. Conclusion

distribution and access to runtime models, collaboration behavior, and appearing adaptation
effects by means of the defined purpose. Furthermore, these basic metrics are combined to
investigate complex relationships between modules and systems. In this context, architectural
patterns as well as design flaws are outlined.

Beside the analysis, the Deurema simulation framework facilitates the direct execution
of the modeled SoS as required by G5. Thereby, the Deurema simulator supports different
scheduling strategies and the Deurema interpreter executes the modeled adaptation effects.
Furthermore, an inference engine maintains all Deurema models as well as the available
runtime models during the simulation. Combining the Deurema simulation and analysis
capabilities contributes to a runtime analysis of the adaptive behavior.

The goal G6 targets the realization of an adaptive SoS specification. Therefore, this thesis
describes a mapping of Deurema concepts to the state of the art AUTOSAR standard applied
in the embedded domain for the development of modern cars. This mapping contributes to
deriving an implementation of the adaptive behavior from the Deurema models. Additionally,
state of the art software tools for the simulation and analysis of the implementation are
outlined. Finally, this thesis describes the application of the Deurema modeling language in
two state of the art case studies as well as to an EBCS approach showing that the Deurema
concepts are powerful enough to cope with current research problems.

11.2. Modeling Language Requirements and Deurema

As shown at the bottom in Table 10.5 in the former chapter, Deurema integrates several
ideas from different approaches and domains into one consistent modeling approach. An
overview of the thesis goals and the realized modeling language requirements by the Deurema
approach is sketched in Figure 11.1. Thereby, Deurema supports the explicit modeling of the
adaptation logic in form of feedback loops (R–01) and the intra-loop coordination by means
of the control flow as requested by R–02. The adaptive behavior is encapsulated in modules
that are placed on the layered architecture of a system template. Furthermore, systems may
comprise arbitrary other systems and modules, which forms the overall adaptive SoS. Modules
can interact with each other at different ways. They can send event trigger, which is related
to the causal order between module execution (R–04). Thereby, modules are considered as
independent and possible distributed (R–05). Therefore, the Deurema collaboration concept
must be used to define interactions between modules (R–03). For collaborations, Deurema has
a clear notion of roles (R–07) that is an abstract entity that defines a piece of behavior within
the interaction. Those roles must be assigned to modules or systems that play (realize) the
interactions. Thereby, the collaboration participants can use the Deurema message concept
(R–13) for synchronizing (R–14) local adaptation behavior at dedicated points in time or
invoking remote functionality be means of services (R–06). The choreography specification
aggregates an arbitrary number of interaction protocols (R–08) within the corresponding
collaboration.

Focusing on the knowledge in the adaptive SoS, Deurema uses runtime models (R–09) that
reflect key points of interest, which comprises the context of the system or the system itself.
Deurema introduces a categorization for runtime models (R–10) that defines the purpose of
the contained information. Furthermore, the separation of runtime model types and arbitrary
views as well as the model operation concept for accessing the runtime model views facilitate
the specification of partial knowledge usage (R–11) in the module instances. Of course, runtime
models can be exchanged within a collaboration interaction (R–12) using the Deurema model

– 270 –

11.2. Modeling Language Requirements and Deurema

[G
5

] Sim
ulatio

n

[G6] Realization

self-
healing

self-
config

[G1] Adaptation [G2] MART

[G4] Analysis
42%

Rules

Modeling

 Energy

 Traffic

:SmartCar

:Platoon
:SmartCar

[G3] Collaboration

 Platoon

R-01 R-02

R-03

R-04

R-05

R-06

R-07

R-08

R-11R-10R-09

R-12

R-13R-14

R-15

R-16

R-17

R-18

R-19

R-20

R-21 R-22 R-23 R-24

R-25

Figure 11.1: Overview of thesis goals and modeling language requirements

message concept. A runtime megamodel maintains the available knowledge base and all
derived views during the simulation of the adaptive SoS.

The Deurema reflection mechanism enables the reasoning about module and system instances
on different layers as well as facilitates their manipulation by affecting module operations.
Therefore, this concept further enables the adaptation of the module behavior (R–16) as
well as introduces meta-adaptation capabilities (R–17). Beside adaptation, the Deurema
variability runtime model together with the variable concept in the module template definitions
contributes to the reconfiguration modeling language requirement (R–15).

This thesis introduces different module template types that target distinct development
concepts of defining the adaptation logic as it is requested by R–20. Furthermore, the
discussed Deurema analysis framework introduces metrics (R–21, R–22) as well as architectural
patterns (R–19) that can be statically (R–23) investigated within the modeled, adaptive SoS.
Furthermore, the execution of the Deurema models enables the runtime analysis (R–24) as
well as the simulation (R–25) of the adaptive SoS.

– 271 –

11. Conclusion

11.3. Future Work

Although the Deurema modeling language covers almost all derived requirements from Chap-
ter 3, there are further language, analysis, and simulation extensions thinkable.

Domain Extensions
The Deurema modeling language supports three template types for the specification of the
local adaptive behavior. Thereby, it covers the feedback loop modeling idea from the (self-)
adaptive research domain, the component-based development paradigm, which is dominant
for the development of embedded and cyber-physical systems, and the rule-based modeling by
means of graph transformation rules as widely adopted in the MDE domain. Thereby, the
supported module template types should not be seen as a fix, exhaustive set but rather as a
meaningful subset targeting typical development paradigms for systems included in a SoS.
However, the module template concept is developed in a way that further domain extensions
could be introduced into the Deurema language. For example, if Deurema should support
an agent-based module template type, the following steps must be applied. The abstract
class ModuleTemplate in the Deurema metamodel (cf. Section 5.3) is the base class for all
template types. Thus, a new subclass must be created, which corresponds to the new template
type as for example a new AgentModuleTemplate. As a consequence, this new template type
has automatically access to arbitrary runtime model views as defined by the super class.
Therefore, the language developer has to define, which entities (e. g., agents) have access to
the local runtime model views. Additionally, the language developer can inherit these new
entities from the BehaviorModel class, which automatically refines the notion of black-gray-white
box behavior that can be handled by the Deurema execution environment. Otherwise, the
developer must extend the new template specific execution semantic in the interpreter and
inference engine. Beside executable entities, the developer can define additional variable
types that can be used for this template type. For example an agent variable may define a
placeholder for one agent that can be replaced using the Deurema reconfiguration concept as
comprehensively discussed in Section 5.6. For analysis, the developer must extend the given
Deurema analysis rules to reason about the propagation of adaptation effects and the usage
of knowledge. However, if another module template type is introduced in Deurema or not
belongs to a design decision of the developer or community using this modeling language for
specifying the adaptive behavior in their corresponding domain. As discussed in Chapter 9,
the existing Deurema modeling language concepts are powerful enough to cope with a broad
range of current systems.

Extended Tool Support and Patterns
Currently, the Deurema concepts are defined in the Eclipse Modeling Framework, which
comprises an Ecore metamodel and a model-based editor. Furthermore, the analysis and
simulation framework are implemented in Java on basis of the Deurema metamodel. However,
using the Deurema modeling language may lead to best practices and beneficial design patterns
over time. Collecting those patterns and describing advantages as well as drawbacks in a
pattern catalog can improve the design of adaptive SoS architecture over time or may decrease
the development time. In this context, tool extensions can offer such well-known patterns and
may generate needed module, system, and template definitions, which further support the
developer of specifying the adaptive behavior and the overall system architecture.

Beside the generation of initial model artifacts on basis of a pattern catalog, tool support for
the realization of Deurema models, e. g., a code generator to a specific target platform, would

– 272 –

11.3. Future Work

ease the implementation in the corresponding domain. Realizing such a model transformation
from Deurema concepts to a target domain introduces overhead for the development of a code
generator, but may decrease the implementation time of the target system afterwards.

Analysis and Simulation
The analysis rules discussed in Chapter 6 and enumerated in the Appendix C show how
basic and complex metrics can be retrieved from the Deurema models. Depending on the
underlying problem, new analysis rules can be specified to retrieve key points of interest.
Conceptually, there are three kinds of analysis rules. First, the existing rule set can be
extended for investigated other metrics on the Deurema models. Second, domain specific rules
can investigate white box behavior, which is specified in form of graph transformation rules in
Deurema. Thus, domain specific analysis rules may search for modeling guidelines or design
flaws in the architecture, which depends on the underlying problem and cannot be foreseen in
the context of this thesis. Third, the content of the available runtime models depends on the
domain. Conceptually, Deurema can handle arbitrary runtime models, which is restricted by
the implementation using the Eclipse Modeling Framework. However, because the content of
the runtime models vary according to the domain, analysis rules that investigate the runtime
models are not provided in the context of this thesis, but can be extended by defining new
analysis rules. For example, if a domain specific runtime model represents the traffic situation
of a smart city, an additional analysis rule may search for a traffic jam in the abstract runtime
model representation. During a simulation, the traffic jams can be directly marked in the
corresponding runtime model and reported to the user following the annotation concept as
discussed in Chapter 6.

Beside the analysis, the Deurema simulation framework can be extended according different
aspects. At first, a combination or round trip engineering of analysis and simulation of the
adaptive SoS modeled with Deurema is thinkable. Therefore, the simulation must trace
the order of executed elements. Afterwards, specialized analysis rules can investigate the
simulation run to detect the source of found errors during the simulation. Thus, in this
scenario, there is an interplay of running a simulation, analyzing the trace, fix errors in the
model and running the simulation again.

Second, a simulation debugger similar to [6], which comprises fluently interactions with the
user, would be beneficial towards the understanding the adaptive SoS behavior. A step-wise
execution of interactions or the use of breakpoints directly in the Deurema models allow the
direct investigation of the Deurema models, without looking on the concrete implementation.
In combination with beforehand logged execution traces, a guided user simulation would ease
the understanding of failures. Furthermore, the developer might stop the simulation, fix the
error on the fly in the Deurema model and proceed the simulation without rerunning the
complete trace, which can increase the productivity during the development process. The
interpretation of Deurema models supports such a simulation debugger with dynamic changes
of the underlying Deurema model during the simulation.

Third, there is a possible extension of the simulation framework by combining partial realized
Deurema models in the concrete domain with a model-based simulation of other systems
in the SoS. This requires a rethinking of the current simulation implementation towards a
distributed simulation of systems within the SoS, where multiple simulator instances run on
different hardware platforms and are coordinated for the overall simulation via well-defined
interfaces. Having such a distributed simulation environment enables further combination
with respect to timing properties. For example, some systems may be simulated on a host
computer, where a logical simulation time is maintained, and other, already realized system

– 273 –

11. Conclusion

parts, can be simulated on the target platform having realistic execution times. Synchronizing
such combinations of virtual and real-time simulations in an overall distributed simulation
environment is very interesting for future work towards the understanding of the overall
emergent and complex SoS behavior.

– 274 –

Author’s References

Bibliography

Author’s References
[1] Holger Giese, Nelly Bencomo, Liliana Pasquale, Andres J. Ramirez, Paola Inverardi,

Sebastian Wätzoldt, and Siobhan Clarke. “Living with Uncertainty in the Age of
Runtime Models”. In: Models@run.time. Vol. 8378. LNCS. Springer, 2014, pp. 47–100.

[2] Holger Giese, Stephan Hildebrandt, Stefan Neumann, and Sebastian Wätzoldt. In-
dustrial Case Study on the Integration of SysML and AUTOSAR with Triple Graph
Grammars. Tech. rep. 57. Hasso Plattner Institute for IT-Systems Engineering at the
University of Potsdam, Sept. 2012.

[3] Holger Giese, Leen Lambers, Basil Becker, Stephan Hildebrandt, Stefan Neumann,
Thomas Vogel, and Sebastian Wätzoldt. “Graph Transformations for MDE, Adaptation,
and Models at Runtime”. In: Proceedings of the 12th International Conference on
Formal Methods for Model-Driven Engineering. Vol. 7320. LNCS. Springer, June 2012,
pp. 137–191.

[4] Holger Giese, Thomas Vogel, and Sebastian Wätzoldt. “Towards Smart Systems
of Systems”. In: 6th IPM International Conference on Fundamentals of Software
Engineering. LNCS. Springer, 2015.

[5] Edgar Jakumeit, Sebastian Buchwald, Dennis Wagelaar, Li Dan, Ábel Hegedüs, Markus
Herrmannsdörfer, Tassilo Horn, Elina Kalnina, Christian Krause, Kevin Lano, Markus
Lepper, Arend Rensink, Louis Rose, Sebastian Wätzoldt, and Steffen Mazanek. “A
Survey and Comparison of Transformation Tools based on the Transformation Tool
Contest”. In: Science of Computer Programming 85.1 (June 2014), pp. 41–99.

[6] Alexander Krasnogolowy, Stephan Hildebrandt, and Sebastian Wätzoldt. “Flexible
Debugging of Behavior Models”. In: International Conference on Industrial Technology.
ICIT. IEEE, Mar. 2012, pp. 331–336.

[7] Stefan Neumann, Norman Kluge, and Sebastian Wätzoldt. “Automatic Transformation
of Abstract AUTOSAR Architectures to Timed Automata”. In: Proceedings of the 5th

International Workshop on Model Based Architecting and Construction of Embedded
Systems. ACES-MB. ACM, 2012, pp. 55–60.

[8] Stefan Neumann, Sebastian Wätzoldt, and Holger Giese. “From Abstract Component
Descriptions to Timed I/O-Interfaces in AUTOSAR”. In: Proceeding of the Second
Analytic Virtual Integration of Cyber-Physical Systems Workshop. AVICPS, Nov. 2011,
pp. 25–32.

[9] Sebastian Wätzoldt and Holger Giese. “Classifying Distributed Self-* Systems Based
on Runtime Models and Their Coupling”. In: Proceedings of the 9th Workshop on
Models@run.time co-located with 17th International Conference on Model Driven Engi-
neering Languages and Systems. CEUR-WS, Sept. 2014, pp. 11–20.

– 275 –

Other References

[10] Sebastian Wätzoldt and Holger Giese. “Modeling Collaborations in Adaptive Systems
of Systems”. In: Proceedings of the European Conference on Software Architecture
Workshops. ECSAW. ACM, 2015.

[11] Sebastian Wätzoldt and Holger Giese. Modeling Collaborations in Self-Adaptive Systems
of Systems–Terms, Characteristics, Requirements, and Scenarios. Tech. rep. 96. Hasso
Plattner Institute for IT-Systems Engineering at the University of Potsdam, Apr. 2015.

[12] Sebastian Wätzoldt, Stephan Hildebrandt, Holger Giese, and Axel Uhl. Towards Scalable
and Self-Optimizing Software for Multi-Core and Cloud Computing II. Tech. rep. 70.
Hasso Plattner Institute for IT-Systems Engineering at the University of Potsdam,
2011.

[13] Sebastian Wätzoldt, Stephan Hildebrandt, Andreas Seibel, Gregor Gabrysiak, and
Holger Giese. Towards Scalable and Self-Optimizing Software for Multi-Core and Cloud
Computing. Tech. rep. 42. Hasso Plattner Institute for IT-Systems Engineering at the
University of Potsdam, Feb. 2010.

[14] Sebastian Wätzoldt, Stefan Neumann, Falk Benke, and Holger Giese. “Integrated
Software Development for Embedded Robotic Systems”. In: Proceedings of the 3rd

International Conference on Simulation, Modeling, and Programming for Autonomous
Robots. Vol. 7628. LNCS. Springer, Oct. 2012, pp. 335–348.

Other References
[15] Frederico Alvares de Oliveira, Remi Sharrock, and Thomas Ledoux. “Synchronization of

Multiple Autonomic Control Loops: Application to Cloud Computing”. In: Proceedings
of the 14th International Conference on Coordination Models and Languages. Vol. 7274.
COORDINATION. Springer, 2012, pp. 29–43.

[16] Jesper Andersson, Luciano Baresi, Nelly Bencomo, Rogério de Lemos, Alessandra Gorla,
Paola Inverardi, and Thomas Vogel. “Software Engineering Processes for Self-Adaptive
Systems”. In: Software Engineering for Self-Adaptive Systems II. Vol. 7475. LNCS.
Springer, Jan. 2013, pp. 51–75.

[17] Richard Anthony, Achim Rettberg, Dejiu Chen, Isabell Jahnich, Gerrit Boer, and
Cecilia Ekelin. “Towards a Dynamically Reconfigurable Automotive Control System
Architecture”. In: Embedded System Design: Topics, Techniques and Trends. Vol. 231.
IFIP. Springer, 2007, pp. 71–84.

[18] Patricia Seefelder Assis, Daniel Schwabe, and Demetrius Arraes Nunes. “ASHDM
– Model-Driven Adaptation and Meta-Adaptation”. In: Adaptive Hypermedia and
Adaptive Web-Based Systems. Vol. 4018. LNCS. Springer, June 2006, pp. 213–222.

[19] Uwe Aßmann, Sebastian Götz, Jean-Marc Jézéquel, Brice Morin, and Mario Trapp.
“A Reference Architecture and Roadmap for Models@run.time Systems”. In: Mod-
els@run.time. LNCS. Springer, 2014, pp. 1–18.

[20] Luigi Atzori, Antonio Iera, and Giacomo Morabito. “The Internet of Things: A Survey”.
In: Computer Networks 54.15 (Oct. 2010), pp. 2787–2805.

[21] Robert Baillargeon. “Vehicle System Development: A Challenge of Ultra-Large-Scale
Systems”. In: Proceedings of the International Workshop on Software Technologies for
Ultra-Large-Scale Systems. ULS. IEEE, May 2007.

– 276 –

Other References

[22] Mikael Barbero, Marcos Didonet Fabro, and Jean Bézivin. “Traceability and Provenance
Issues in Global Model Management”. In: Proceedings of 3rd Workshop on Traceability.
ECMDA-TW. SINTEF, June 2007, pp. 47–55.

[23] Roberto Barbuti and Luca Tesei. “Timed Automata with Urgent Transitions”. In: Acta
Informatica 40.5 (2004), pp. 317–347.

[24] Luciano Baresi, Elisabetta Di Nitto, and Carlo Ghezzi. “Toward Open-World Software:
Issue and Challenges”. In: Computer 39.10 (2006), pp. 36–43.

[25] Luciano Baresi, Sam Guinea, and Adnan Shahzada. “SeSaMe: Towards a Semantic
Self Adaptive Middleware for Smart Spaces”. In: Engineering Multi-Agent Systems.
LNCS. Springer, 2013, pp. 1–18.

[26] Luciano Baresi, Reiko Heckel, Sebastian Thöne, and Dániel Varró. “Style-based Mod-
eling and Refinement of Service-oriented Architectures”. In: Software and Systems
Modeling 5.2 (2006), pp. 187–207.

[27] Jörg Bauer and Reinhard Wilhelm. “Static Analysis of Dynamic Communication
Systems by Partner Abstraction”. In: Static Analysis. Vol. 4634. LNCS. Springer, 2007,
pp. 249–264.

[28] Basil Becker, Dirk Beyer, Holger Giese, Florian Klein, and Daniela Schilling. “Symbolic
Invariant Verification for Systems with Dynamic Structural Adaptation”. In: Proceedings
of the 28th International Conference on Software Engineering. ICSE. ACM, 2006, pp. 72–
81.

[29] Basil Becker and Holger Giese. “On Safe Service-Oriented Real-Time Coordination for
Autonomous Vehicles”. In: Proceedings of the 11th International Symposium on Object
Oriented Real-Time Distributed Computing. ISORC. IEEE, May 2008, pp. 203–210.

[30] Basil Becker and Holger Giese. Modeling and Verifying Dynamic Evolving Service-
Oriented Architectures. Tech. rep. 75. Hasso Plattner Institute for IT-Systems Engi-
neering at the University of Potsdam, 2013.

[31] Basil Becker, Holger Giese, Stefan Neumann, Martin Schenck, and Arian Treffer.
“Model-Based Extension of AUTOSAR for Architectural Online Reconfiguration”. In:
Models in Software Engineering. Vol. 6002. LNCS. Springer, Oct. 2010, pp. 83–97.

[32] Nelly Bencomo. “On the Use of Software Models during Software Execution”. In:
Proceedings of the ICSE Workshop on Modeling in Software Engineering. MISE. IEEE,
2009, pp. 62–67.

[33] Nelly Bencomo, Jon Whittle, Pete Sawyer, Anthony Finkelstein, and Emmanuel Letier.
“Requirements Reflection: Requirements As Runtime Entities”. In: Proceedings of the
32nd International Conference on Software Engineering. ICSE. ACM, 2010, pp. 199–
202.

[34] Johan Bengtsson and Wang Yi. “Timed Automata: Semantics, Algorithms and Tools”.
In: Lectures on Concurrency and Petri Nets. Vol. 3098. Lecture Notes in Computer
Science. Springer, 2004, pp. 87–124.

[35] Thomas Beyhl and Holger Giese. Efficient and Scalable Graph View Maintenance for
Deductive Graph Databases based on Generalized Discrimination Networks. Tech. rep.
Hasso Plattner Institute for IT-Systems Engineering at the University of Potsdam,
2015.

– 277 –

Other References

[36] Jean Bézevin. “On the Unification Power of Models”. In: Software & Systems Modeling
4.2 (2005), pp. 171–188.

[37] Jean Bézivin, Sébastian Gérard, Pierre-Alain Muller, and Laurent Rioux. “MDA
components: Challenges and Opportunities”. In: First International Workshop on
Metamodelling for MDA. LINA, Nov. 2003, pp. 23–41.

[38] Gordon Blair, Nelly Bencomo, and Robert B. France. “Models@run.time”. In: Computer
42.10 (2009), pp. 22–27.

[39] John Boardman and Brian Sauser. “System of Systems - The Meaning of of”. In:
International Conference on System of Systems Engineering. IEEE, Apr. 2006, pp. 1–6.

[40] Birgit Bomsdorf, Stefan Grau, Martin Hudasch, and Jan-Torsten Milde. “Configurable
Executable Task Models Supporting the Transition from Design Time to Runtime”. In:
Human-Computer Interaction. Design and Development Approaches. Vol. 6761. LNCS.
Springer, 2011, pp. 155–164.

[41] Mélanie Bouroche, Barbara Hughes, and Vinny Cahill. “Real-time Coordination of
Autonomous Vehicles”. In: Intelligent Transportation Systems Conference. IEEE, Sept.
2006, pp. 1232–1239.

[42] Bruno Bouyssounouse and Joseph Sifakis. Embedded Systems Design: The ARTIST
Roadmap for Research and Development. Vol. 3436. LNCS. Springer, 2005.

[43] Bart Broekman and Edwin Notenboom. Testing Embedded Software. Addison Wesley,
2003.

[44] Alan W. Brown. “Model Driven Architecture: Principles and Practice”. In: Software
and Systems Modeling 3.4 (Dec. 2004), pp. 314–327.

[45] Manfred Broy, Maŕıa Victoria Cengarle, and Eva Geisberger. “Cyber-Physical Systems:
Imminent Challenges”. In: Large-Scale Complex IT Systems. Development, Operation
and Management. Vol. 7539. LNCS. Springer, 2012, pp. 1–28.

[46] Manfred Broy, I.H. Kruger, A. Pretschner, and C. Salzmann. “Engineering Automotive
Software”. In: Proceedings of the IEEE 95.2 (Feb. 2007), pp. 356–373.

[47] Davide Brugali and Patrizia Scandurra. “Component-Based Robotic Rngineering Part
I: Reusable Building Blocks”. In: Robotics Automation Magazine 16.4 (Dec. 2009),
pp. 84–96.

[48] Davide Brugali and Azamat Shakhimardanov. “Component-Based Robotic Engineering
Part II: Systems and Models”. In: Robotics Automation Magazine 17.1 (Mar. 2010),
pp. 100–112.

[49] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger
Kienle, Marin Litoiu, Hausi A. Müller, Mauro Pezzè, and Mary Shaw. “Engineering Self-
Adaptive Systems through Feedback Loops”. In: Software Engineering for Self-Adaptive
Systems. Vol. 5525. LNCS. Springer, 2009, pp. 48–70.

[50] Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl, Michal Kit, and
Frantisek Plasil. “DEECO: An Ensemble-based Component System”. In: Proceedings
of the 16th International Symposium on Component-based Software Engineering. CBSE.
ACM, 2013, pp. 81–90.

– 278 –

Other References

[51] Sven Burmester and Holger Giese. “Visual Integration of UML 2.0 and Block Diagrams
for Flexible Reconfiguration in Mechatronic UML”. In: Proceedings of the Symposium
on Visual Languages and Human-Centric Computing. VL/HCC. IEEE, Sept. 2005,
pp. 109–116.

[52] Sven Burmester, Holger Giese, Eckehard Münch, Oliver Oberschelp, Florian Klein,
and Peter Scheideler. “Tool Support for the Design of Self-Optimizing Mechatronic
Multi-Agent Systems”. In: International journal on Software Tools for Technology
Transfer 10.3 (June 2008), pp. 207–222.

[53] Sven Burmester, Holger Giese, and Matthias Tichy. “Model-Driven Development of
Reconfigurable Mechatronic Systems with Mechatronic UML”. In: Proceedings of the
2003 European Conference on Model Driven Architecture: Foundations and Applications.
MDAFA. Springer, 2005, pp. 47–61.

[54] Roland Burns. Advanced Control Engineering. Butterworth-Heinemann, 2001.
[55] Radu Calinescu, Simos Gerasimou, and Alec Banks. “Self-Adaptive Software with

Decentralised Control Loops”. In: Proceedings of the 18th International Conference on
Fundamental Approaches to Software Engineering. FASE. Springer, 2015, pp. 1–15.

[56] Radu Calinescu, Lars Grunske, Marta Kwiatkowska, Raffaela Mirandola, and Giordano
Tamburrelli. “Dynamic QoS Management and Optimization in Service-Based Systems”.
In: Transactions on Software Engineering 37.3 (May 2011), pp. 387–409.

[57] Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano. “Autonomic Computing
through Reuse of Variability Models at Runtime: The Case of Smart Homes”. In:
Computer 42.10 (2009), pp. 37–43.

[58] Betty H. Cheng et al. “Software Engineering for Self-Adaptive Systems: A Research
Roadmap”. In: Software Engineering for Self-Adaptive Systems. Vol. 5525. LNCS.
Springer, 2009, pp. 1–26.

[59] Jong-Seok Choi, T. McCarthy, M. Yadav, Minyoung Kim, Carolyn Talcott, and E.
Gressier-Soudan. “Application Patterns for Cyber-Physical Systems”. In: 1st Interna-
tional Conference on Cyber-Physical Systems, Networks, and Applications. CPSNA.
IEEE, Aug. 2013, pp. 52–59.

[60] Paul C. Clements. “A Survey of Architecture Description Languages”. In: Proceedings
of the 8th International Workshop on Software Specification and Design. IWSSD. IEEE,
Mar. 1996, pp. 16–25.

[61] AUTOSAR Consortium. AUTOSAR EXP LayeredSoftwareArchitecture.pdf. Version
4.0, page id: 94ju5, http://www.autosar.org/ visited: 09th of January 2016. 2015.

[62] AUTOSAR Consortium. AUTOSAR Specification. Version 4.2, http://www.autosar.
org/specifications/ visited: 07th of October 2015. 2015.

[63] World Wide Web Consortium. SPARQL Protocol And RDF Query Language (SPARQL),
Overview. Version 1.1, http://www.w3.org/TR/sparql11-overview/ visited: 13th of
December 2015. Mar. 2013.

[64] Y. Correa and Charles Keating. “An Approach to Model Formulation for Systems
of Systems”. In: International Conference on Systems, Man and Cybernetics. Vol. 4.
IEEE, Oct. 2003, pp. 3553–3558.

– 279 –

http://www.autosar.org/
http://www.autosar.org/specifications/
http://www.autosar.org/specifications/
http://www.w3.org/TR/sparql11-overview/

Other References

[65] Massimo Cossentino, Nicolas Gaud, Vincent Hilaire, Stéphane Galland, and Abderrafiâa
Koukam. “ASPECS: An Agent-oriented Software Process for Engineering Complex
Systems”. In: Autonomous Agents and Multi-Agent Systems 20.2 (2010), pp. 260–304.

[66] Ivica Crnković, Séverine Sentilles, Aneta Vulgarakis, and Michel R.V. Chaudron.
“A Classification Framework for Software Component Models”. In: Transactions on
Software Engineering 37.5 (Sept. 2011), pp. 593–615.

[67] Anind K. Dey. “Understanding and Using Context”. In: Personal Ubiquitous Computing
5.1 (Jan. 2001), pp. 4–7.

[68] Elisabetta Di Nitto, Carlo Ghezzi, Andreas Metzger, Mike Papazoglou, and Klaus
Pohl. “A Journey to Highly Dynamic, Self-Adaptive Service-Based Applications”. In:
Automated Software Engineering 15.3 (Dec. 2008), pp. 313–341.

[69] acatech (Ed.) Cyber-Physical Systems: Driving force for innovation in mobility, health,
energy and production. Springer, 2011.

[70] George Edwards, Joshua Garcia, Hossein Tajalli, Daniel Popescu, Nenad Medvi-
dovic, Sukhat Gaurav, and Brad Petrus. “Architecture-driven Self-adaptation and
Self-management in Robotics Systems”. In: Proceedings of the Workshop on Soft-
ware Engineering for Adaptive and Self-Managing Systems. SEAMS. IEEE, May 2009,
pp. 142–151.

[71] European Telecommunications Standards Institute. Intelligent Transportation Systems
(ITS); Vehicular Communications; Basic Set of Applications; Definitions. Tech. rep.
V1.1.1. European Telecommunications Standards Institute, June 2009.

[72] Jean-Marie Favre. “Foundations of Model (Driven) (Reverse) Engineering : Models –
Episode I: Stories of The Fidus Papyrus and of The Solarus”. In: Language Engineering
for Model-Driven Software Development. Dagstuhl Seminar Proceedings 04101. IBFI,
2005.

[73] Franck Fleurey and Arnor Solberg. “A Domain Specific Modeling Language Supporting
Specification, Simulation and Execution of Dynamic Adaptive Systems”. In: Proceedings
of the 12th International Conference on Model Driven Engineering Languages and
Systems. Vol. 5795. MODELS. Springer, 2009, pp. 606–621.

[74] Francois Fouquet, Grégory Nain, Brice Morin, Erwan Daubert, Olivier Barais, Noël
Plouzeau, and Jean-Marc Jézéquel. “Kevoree Modeling Framework (KMF): Efficient
Modeling Techniques for Runtime Use”. In: CoRR 1405.6817 (2014).

[75] Robert B. France and Bernhard Rumpe. “Model-driven Development of Complex
Software: A Research Roadmap”. In: Future of Software Engineering. FOSE. IEEE,
2007, pp. 37–54.

[76] Sylvain Frey, Ada Diaconescu, David Menga, and Isabelle Demeure. “A Generic Holonic
Control Architecture for Heterogeneous Multi-Scale and Multi-Objective Smart Micro-
Grids”. In: Transactions on Autonomous and Adaptive Systems. SASO 10.2 (June
2015), pp. 1–20.

[77] Cristina Gacek, Holger Giese, and Ethan Hadar. “Friends or Foes?: A Conceptual
Analysis of Self-Adaptation and IT Change Management”. In: Proceedings of the
International Workshop on Software Engineering for Adaptive and Self-Managing
Systems. SEAMS. ACM, May 2008, pp. 121–128.

– 280 –

Other References

[78] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. 34th ed. Addison-Wesley, Mar. 2007.

[79] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter
Steenkiste. “Rainbow: Architecture-Based Self-Adaptation with Reusable Infrastruc-
ture”. In: Computer 37.10 (2004), pp. 46–54.

[80] Ioannis Georgiadis, Jeff Magee, and Jeff Kramer. “Self-Organising Software Architec-
tures for Distributed Systems”. In: Proceedings of the First Workshop on Self-healing
Systems. WOSS. ACM, 2002, pp. 33–38.

[81] T. Gezgin, C. Etzien, Stefan Henkler, and Achim Rettberg. “Towards a Rigorous
Modeling Formalism for Systems of Systems”. In: International Symposium on Object/
Component/ Service-Oriented Real-Time Distributed Computing. ISORCW. IEEE, Apr.
2012, pp. 204–211.

[82] Holger Giese, Sven Burmester, Wilhelm Schäfer, and Oliver Oberschelp. “Modu-
lar Design and Verification of Component-Based Mechatronic Systems with Online-
Reconfiguration”. In: Proceedings of the 12th International Symposium on Foundations
of Software Engineering. SIGSOFT/FSE. ACM, Nov. 2004, pp. 179–188.

[83] Holger Giese and Wilhelm Schäfer. “Model-Driven Development of Safe Self-Optimizing
Mechatronic Systems with MechatronicUML”. In: Assurances for Self-Adaptive Systems.
Vol. 7740. LNCS. Springer, Jan. 2013, pp. 152–186.

[84] Didac Gil de la Iglesia and Danny Weyns. “Guaranteeing Robustness in a Mobile
Learning Application Using Formally Verified MAPE Loops”. In: Proceedings of the
8th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems. SEAMS. IEEE, 2013, pp. 83–92.

[85] Heather J. Goldsby, Betty H. Cheng, and Ji Zhang. “AMOEBA-RT: Run-Time Ver-
ification of Adaptive Software”. In: Models in Software Engineering. Springer, 2008,
pp. 212–224.

[86] Sebastian Götz, Ilias Gerostathopoulos, Filip Krikava, Adnan Shahzada, and Romina
Spalazzese. “Adaptive Exchange of Distributed Partial Models@Run.Time for Highly
Dynamic Systems”. In: Proceedings of the 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. SEAMS. IEEE, 2015, pp. 64–70.

[87] Object Management Group. Unified Modeling Language (UML), Superstructure. Version
2.4.1, http://www.omg.org/spec/UML/2.4.1/ visited: 08th of December 2014. 2011.

[88] Object Management Group. Service oriented architecture Modeling Language (SoaML).
Version 1.0.1, http://www.omg.org/spec/SoaML/1.0.1/ visited: 08th of December
2014. 2012.

[89] Object Management Group. Systems Modeling Language (SysML). Version 1.3, http:
//www.omg.org/spec/SysML/ visited: 19th of February 2015. 2012.

[90] Object Management Group. MDA Guide revision 2.0. http://www.omg.org/cgi-
bin/doc?ormsc/14-06-01.pdf visited: December 2014. June 2014.

[91] Object Management Group. Foundational Unified Modeling Language (fUML). Version
1.2.1, http://www.omg.org/spec/FUML/1.2.1/ visited: 03rd of February 2016. Jan.
2016.

– 281 –

http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/SoaML/1.0.1/
http://www.omg.org/spec/SysML/
http://www.omg.org/spec/SysML/
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf
http://www.omg.org/spec/FUML/1.2.1/

Other References

[92] Ning Gui and Vincenzo De Florio. “Towards Meta-Adaptation Support with Reusable
and Composable Adaptation Components”. In: 6th International Conference on Self-
Adaptive and Self-Organizing Systems. SASO. IEEE, Sept. 2012, pp. 49–58.

[93] Ning Gui, Vincenzo De Florio, Hong Sun, and Chris Blondia. “A Hybrid Real-time
Component Model for Reconfigurable Embedded Systems”. In: Proceedings of the
Symposium on Applied Computing. SAC. ACM, 2008, pp. 1590–1596.

[94] Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid. “Dynamic Software
Product Lines”. In: Computer 41.4 (Apr. 2008), pp. 93–95.

[95] Bo Han, Weijia Jia, Ji Shen, and Man-Ching Yuen. “Context-Awareness in Mobile Web
Services”. In: Parallel and Distributed Processing and Applications. Vol. 3358. LNCS.
Springer, 2005, pp. 519–528.

[96] Regina Hebig, Holger Giese, and Basil Becker. “Making Control Loops Explicit when Ar-
chitecting Self-adaptive Systems”. In: Proceedings of the Second International Workshop
on Self-organizing Architectures. SOAR. ACM, June 2010, pp. 21–28.

[97] Regina Hebig, Andreas Seibel, and Holger Giese. “On the Unification of Megamodels”.
In: Proceedings of the 4th International Workshop on Multi-Paradigm Modeling. Vol. 42.
Electronic Communications of the EASST. EASST, 2011.

[98] Thomas A. Henzinger and Joseph Sifakis. “The Embedded Systems Design Challenge”.
In: 14th International Symposium on Formal Methods. Vol. 4085. LNCS. Springer, 2006,
pp. 1–15.

[99] Jamie Hillman and Ian Warren. “Meta-Adaptation in Autonomic Systems”. In: Pro-
ceedings of the 10th International Workshop on Future Trends of Distributed Computing
Systems. FTDCS. IEEE, May 2004, pp. 292–298.

[100] Martin Hirsch, Stefan Henkler, and Holger Giese. “Modeling Collaborations with Dy-
namic Structural Adaptation in Mechatronic UML”. In: Proceedings of the International
Workshop on Software Engineering for Adaptive and Self-managing Systems. SEAMS.
ACM, 2008, pp. 33–40.

[101] John H. Holland. Hidden Order: How Adaptation Builds Complexity. Addison Wesley,
1996.

[102] Matthias Hölzl and Martin Wirsing. “Towards a System Model for Ensembles”. In:
Formal Modeling: Actors, Open Systems, Biological Systems. Vol. 7000. LNCS. Springer,
2011, pp. 241–261.

[103] M. Usman Iftikhar and Danny Weyns. “ActivFORMS: Active Formal Models for
Self-adaptation”. In: Proceedings of the 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. SEAMS. ACM, 2014, pp. 125–
134.

[104] European Research Cluster on the Internet of Things. Internet of Things: IoT Semantic
Interoperability: Research Challenges, Best Practices, Recommendations and Next Steps.
Mar. 2015.

[105] Ethan K. Jackson, Eunsuk Kang, Markus Dahlweid, Dirk Seifert, and Thomas Santen.
“Components, Platforms and Possibilities: Towards Generic Automation for MDA”. In:
Proceedings of the 10th International Conference on Embedded Software. EMSOFT.
ACM, 2010, pp. 39–48.

– 282 –

Other References

[106] Mohammad Jamshidi, ed. System of Systems Engineering: Innovations for the 21st

Century. Systems Engineering and Management. Wiley, Nov. 2008.
[107] Xiong Jian, Ge Bing-feng, Zhang Xiao-ke, Yang Ke-wei, and Chen Ying-Wu. “Evaluation

Method of System-of-Systems Architecture using Knowledge-based Executable Model”.
In: International Conference on Management Science and Engineering. ICMSE. IEEE,
Nov. 2010, pp. 141–147.

[108] YC Jiang, ZY Xia, YP Zhong, and SY Zhang. “An Adaptive Adjusting Mechanism for
Agent Distributed Blackboard Architecture”. In: Microprocessors and Microsystems
29.1 (Feb. 2005), pp. 9–20.

[109] Jin Jing, Abdelsalam Sumi Helal, and Ahmed Elmagarmid. “Client-Server Computing
in Mobile Environments”. In: Computing Surveys 31.2 (June 1999), pp. 117–157.

[110] Jeffrey O. Kephart and David Chess. “The Vision of Autonomic Computing”. In:
Computer 36.1 (Jan. 2003), pp. 41–50.

[111] Nil Kilicay-Ergin and Cihan Dagli. “Executable Modeling for System of Systems Archi-
tecting: An Artificial Life Framework”. In: Proceedings of the 2nd Systems Conference.
IEEE, Apr. 2008, pp. 1–5.

[112] Kyoung-Dae Kim and P.R. Kumar. “Cyber-Physical Systems: A Perspective at the
Centennial”. In: Proceedings of the IEEE 100.1 (May 2012), pp. 1287–1308.

[113] Minyoung Kim, Mark-Oliver Stehr, Jinwoo Kim, and Soonhoi Ha. “An Application
Framework for Loosely Coupled Networked Cyber-Physical Systems”. In: 8th Interna-
tional Conference on Embedded and Ubiquitous Computing. IEEE, Dec. 2010, pp. 144–
153.

[114] Florian Klein and Matthias Tichy. “Building Reliable Systems based on Self-Organizing
Multi-Agent Systems”. In: Proceedings of the 5th Workshop on Software Engineering
for Large-Scale Multi-Agent Systems. SELMAS. ACM, May 2006, pp. 51–58.

[115] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven
Architecture: Practice and Promise. Addison-Wesley, 2003.

[116] Verena Klös, Thomas Göthel, and Sabine Glesner. “Adaptive Knowledge Bases in
Self-Adaptive System Design”. In: Proceedings of the 41st Euromicro Conference on
Software Engineering and Advanced Applications. SEAA. IEEE, Aug. 2015, pp. 472–
478.

[117] Mieczyslaw M. Kokar, Kenneth Baclawski, and Yonet A. Eracar. “Control Theory-
Based Foundations of Self-Controlling Software”. In: Intelligent Systems 14.3 (May
1999), pp. 37–45.

[118] Birgit Korherr and Beate List. “A UML 2 Profile for Variability Models and their
Dependency to Business Processes”. In: Proceedings of the 18th International Workshop
on Database and Expert Systems Applications. DEXA. IEEE, Sept. 2007, pp. 829–834.

[119] Jeff Kramer and Jeff Magee. “Self-Managed Systems: an Architectural Challenge”. In:
Proceedings of Future of Software Engineering. FOSE. IEEE, May 2007, pp. 259–268.

[120] Fatma Krichen, Brahim Hamid, Bechir Zalila, and Mohamed Jmaiel. “Towards a
Model-based Approach for Reconfigurable DRE Systems”. In: Proceedings of the 5th

European Conference on Software Architecture. ECSA. Springer, 2011, pp. 295–302.

– 283 –

Other References

[121] Anette J. Krygiel. Behind the Wizard’s Curtain: An Integration Environment for a
System of Systems. National Defense University Press, June 1999.

[122] Axel van Lamsweerde. Requirements Engineering: From System Goals to UML Models
to Software Specifications. Wiley, 2009.

[123] Edward A. Lee. “Cyber-Physical Systems - Are Computing Foundations Adequate?”
In: Position Paper for NSF Workshop on Cyber-Physical Systems: Research Motivation,
Techniques and Roadmap. National Science Foundation, Oct. 2006.

[124] Edward A. Lee. “Cyber Physical Systems: Design Challenges”. In: 11th International
Symposium on Object Oriented Real-Time Distributed Computing. ISORC. IEEE, May
2008, pp. 363–369.

[125] Edward A. Lee. “CPS Foundations”. In: Proceedings of the 47th Design Automation
Conference. DAC. ACM, 2010, pp. 737–742.

[126] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems: A Cyber-
Physical Systems Approach. http://leeseshia.org, 2011.

[127] Rogério de Lemos et al. “Software Engineering for Self-Adaptive Systems: A second
Research Roadmap”. In: Software Engineering for Self-Adaptive Systems II. Vol. 7475.
LNCS. Springer, Jan. 2013, pp. 1–32.

[128] Jochen Ludewig. “Models in Software Engineering: An Introduction”. In: Software and
Systems Modeling 2.1 (2003), pp. 5–14.

[129] Pattie Maes. “Concepts and Experiments in Computational Reflection”. In: Conference
proceedings on Object-Oriented Programming Systems, Languages and Applications.
OOPSLA. ACM, 1987, pp. 147–155.

[130] Pedro Maia, Everton Cavalcante, Porf́ırio Gomes, Thais Batista, Flavia C. Delicato,
and Paulo F. Pires. “On the Development of Systems-of-Systems Based on the Internet
of Things: A Systematic Mapping”. In: Proceedings of the European Conference on
Software Architecture Workshops. ECSAW. ACM, 2014, pp. 1–8.

[131] Sam Malek, Marija Mikic-Rakic, and Nenad Medvidovic. “A Decentralized Redeploy-
ment Algorithm for Improving the Availability of Distributed Systems”. In: Component
Deployment. Vol. 3798. LNCS. Springer, 2005, pp. 99–114.

[132] Radu Manuca, Yi Li, Rick Riolo, and Robert Savit. The Structure of Adaptive Compe-
tition in Minority Games. Tech. rep. PSCS-98-11-001. Cornell University, 1998.

[133] A. Marconi, Antonio Bucchiarone, K. Bratanis, Antonio Brogi, Javier Camara, D.
Dranidis, Holger Giese, R. Kazhamiakink, Rogério de Lemos, C.C. Marquezan, and
Andreas Metzger. “Research Challenges on Multi-layer and Mixed-initiative Monitoring
and Adaptation for Service-based Systems”. In: Workshop on European Software
Services and Systems Research - Results and Challenges (S-Cube). IEEE, June 2012,
pp. 40–46.

[134] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H. C. Cheng.
“Composing Adaptive Software”. In: Computer 37.7 (July 2004), pp. 56–64.

[135] Andreas Metzger and Klaus Pohl. “Software Product Line Engineering and Variability
Management: Achievements and Challenges”. In: Proceedings of the on Future of
Software Engineering. FOSE. ACM, 2014, pp. 70–84.

– 284 –

http://leeseshia.org

Other References

[136] Ronald Miller and Qingfeng Huang. “An Adaptive Peer-to-Peer Collision Warning
System”. In: Proceedings of the 55th Vehicular Technology Conference. Vol. 1. IEEE,
2002, pp. 317–321.

[137] Saurabh Mittal and José Luis Risco Mart́ın. “Model-driven Systems Engineering for
Netcentric System of Systems with DEVS Unified Process”. In: Proceedings of the
Simulation Conference. WSC. IEEE, Dec. 2013, pp. 1140–1151.

[138] Brice Morin, Olivier Barais, Jean-Marc Jézéquel, Franck Fleurey, and Arnor Solberg.
“Models@Run.Time to Support Dynamic Adaptation”. In: Computer 42.10 (Oct. 2009),
pp. 44–51.

[139] Ron Morrison, Graham Kirby, Dharini Balasubramaniam, Kath Mickan, Flavio
Oquendo, Sorana Ĉımpan, Brian Warboys, Bob Snowdon, and R. Mark Greenwood.
“Support for Evolving Software Architectures in the ArchWare ADL”. In: Proceedings
of the 4th Working Conference on Software Architecture. WICSA. IEEE, June 2004,
pp. 69–78.

[140] Georgios Moschoglou, Timothy Eveleigh, Thomas Holzer, and Shahryar Sarkani. “An
Approach to Semantic Interoperability in Federations of Systems”. In: International
Journal of System of Systems Engineering 4.1 (2013), pp. 79–97.

[141] David J. Musliner, Robert P. Goldman, Michael J. Pelican, and Kurt D. Krebsbach.
“Self-Adaptive Software for Hard Real-Time Environments”. In: Intelligent Systems
and their Applications 14.4 (July 1999), pp. 23–29.

[142] Linda Northrop, Peter H. Feiler, Richard P. Gabriel, Rick Linger, Tom Longstaff,
Rick Kazman, Markus Klein, and Douglas Schmidt. Ultra-Large-Scale Systems: The
Software Challenge of the Future. Software Engineering Institute, Carnegie Mellon
University, 2006.

[143] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner, Gregory
Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and Alexander L. Wolf.
“An Architecture-Based Approach to Self-Adaptive Software”. In: Intelligent Systems
14.3 (May 1999), pp. 54–62.

[144] Charles L. Ortiz, Régis Vincent, and Benoit Morisset. “Task Inference and Distributed
Task Management in the Centibots Robotic System”. In: Proceedings of the Fourth In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems. AAMAS.
ACM, 2005, pp. 860–867.

[145] H. Van Dyke Parunak. “A Survey of Environments and Mechanisms for Human-Human
Stigmergy”. In: Environments for Multi-Agent Systems II. Vol. 3830. LNCS. Springer,
2006, pp. 163–186.

[146] H. Van Dyke Parunak, Sven Brueckner, Mitch Fleischer, and James Odell. “Co-X:
Defining what Agents Do Together”. In: Workshop on Team and Coalition Formation.
AAMAS. ACM, July 2002.

[147] H. Van Dyke Parunak, Sven Brueckner, Mitch Fleischer, and James Odell. “A Pre-
liminary Taxonomy of Multi-Agent Interactions”. In: Proceedings of the Second Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems. AAMAS.
ACM, 2003, pp. 1090–1091.

– 285 –

Other References

[148] H. Van Dyke Parunak, Sven Brueckner, Mitch Fleischer, and James Odell. “A Design
Taxonomy of Multi-Agent Interactions”. In: Agent-Oriented Software Engineering IV.
Vol. 2935. LNCS. Springer, 2004, pp. 123–137.

[149] Christian Piechnick, Sebastian Richly, Thomas Kühn, Sebastian Götz, Georg Püschel,
and Uwe Aßmann. “ContextPoint: An Architecture for Extrinsic Meta-Adaptation
in Smart Environments”. In: The 6th International Conference on Adaptive and Self-
Adaptive Systems and Applications. ADAPTIVE. IARIA, May 2014, pp. 121–128.

[150] Klaus Pohl, Günter Böckl, and Frank van der Linden. Software Product Line Engineer-
ing. Foundations, Principles, and Techniques. Springer, 2005.

[151] Akshay Rajhans, Ajinkya Bhave, Ivan Ruchkin, Bruce H. Krogh, David Garlan, André
Platzer, and Bradley Schmerl. “Supporting Heterogeneity in Cyber-Physical Systems
Architectures”. In: Transactions on Automatic Control 59.12 (Dec. 2014), pp. 3178–
3193.

[152] Trygve Reenskaug, Per Wold, and Odd Arild Lehne. Working With Objects - The
OOram Software Engineering Method. Prentice Hall, 1996.

[153] Dirk Riehle and Thomas Gross. “Role Model Based Framework Design and Integration”.
In: Proceedings of the 13th Conference on Object-Oriented Programming, Systems,
Languages, and Applications. OOPSLA. ACM, 1998, pp. 117–133.

[154] Grzegorz Rozenberg, ed. Handbook of Graph Grammars and Computing by Graph
Transformation: Volume I. Foundations. World Scientific Publishing, 1997.

[155] Ramzi Ben Salah, Marius Bozga, and Oded Maler. “On Timed Components and Their
Abstraction”. In: Proceedings of the Conference on Specification and Verification of
Component-based Systems. SAVCBS. ACM, 2007, pp. 63–71.

[156] Mazeiar Salehie and Ladan Tahvildari. “Self-Adaptive Software: Landscape and Re-
search Challenges”. In: Transactions on Autonomous and Adaptive Systems 4.2 (2009),
pp. 1–42.

[157] Richard Torbjørn Sanders, Humberto Nicolás Castejón, Frank Kraemer, and Rolv
Bræk. “Using UML 2.0 Collaborations for Compositional Service Specification”. In:
Model Driven Engineering Languages and Systems. Vol. 3713. LNCS. Springer, 2005,
pp. 460–475.

[158] Pete Sawyer, Nelly Bencomo, Jon Whittle, Emmanuel Letier, and Anthony Finkelstein.
“Requirements-Aware Systems: A Research Agenda for RE for Self-adaptive Systems”.
In: International Conference on Requirements Engineering. IEEE, 2010, pp. 95–103.

[159] Wilhelm Schäfer and Heike Wehrheim. “The Challenges of Building Advanced Mecha-
tronic Systems”. In: Future of Software Engineering. FOSE. IEEE, 2007, pp. 72–84.

[160] Klaus-Dieter Schewe and Bernhard Thalheim. “Development of Collaboration Frame-
works for Web Information Systems”. In: Proceedings of the 20th International Confer-
ence on Artifical Intelligence. EMC. ACM, 2007, pp. 27–32.

[161] Douglas C. Schmidt. “Model-Driven Engineering”. In: Computer 39.2 (Feb. 2006).
[162] John A. Stankovic, Insup Lee, Aloysius Mok, and Raj Rajkumar. “Opportunities

and Obligations for Physical Computing Systems”. In: Computer 38.11 (Nov. 2005),
pp. 23–31.

– 286 –

Other References

[163] Mark-Oliver Stehr, Minyoung Kim, and Carolyn Talcott. “Toward Distributed Declar-
ative Control of Networked Cyber-Physical Systems”. In: Ubiquitous Intelligence and
Computing. Vol. 6406. LNCS. Springer, Oct. 2010, pp. 397–413.

[164] Daniel Sykes, Jeff Magee, and Jeff Kramer. “FlashMob: Distributed Adaptive Self-
assembly”. In: Proceedings of the 6th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems. SEAMS. ACM, 2011, pp. 100–109.

[165] Janos Sztipanovits, Gabor Karsai, and Ted Bapty. “Self-Adaptive Software for Signal
Processing”. In: Communication 41.5 (1998), pp. 66–73.

[166] Hossein Tajalli, Joshua Garcia, George Edwards, and Nenad Medvidovic. “PLASMA:
A Plan-based Layered Architecture for Software Model-driven Adaptation”. In: Pro-
ceedings of the International Conference on Automated Software Engineering. ASE.
ACM, 2010, pp. 467–476.

[167] Guy Theraulaz and Eric Bonbeau. “A Brief History of Stigmergy”. In: Artificial Life
5.2 (Apr. 1999), pp. 97–116.

[168] Mario Trapp, Rasmus Adler, Marc Förster, and Janosch Junger. “Runtime Adaptation
in Safety-Critical Automotive Systems”. In: Proceedings of the 25th Conference on
IASTED International Multi-Conference: Software Engineering. SE. ACTA Press, 2007,
pp. 308–315.

[169] Frank Trollman, Grzegorz Lehmann, and Sahin Albayrak. “Separating Local and Global
Aspects of Runtime Model Reconfiguration”. In: Proceedings of the 5th Workshop on
Models@run.time. Vol. 641. CEUR Workshop Proceedings. CEUR-WS, 2010, pp. 72–83.

[170] Wolfgang Trumler, Markus Helbig, Andreas Pietzowski, Benjamin Satzger, and Theo
Ungerer. “Self-Configuration and Self-Healing in AUTOSAR”. In: Proceedings of the
14th Asia Pacific Conference on Automotive Engineering. APAC. SAE International,
Aug. 2007, pp. 1–12.

[171] Zoltán Ujhelyi, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, Benedek Izsó, István
Ráth, Zoltán Szatmári, and Dániel Varró. “EMF-IncQuery: An Integrated Development
Environment for Live Model Queries”. In: Science of Computer Programming 98.1
(Feb. 2015).

[172] Ricardo Valerdi, Elliot Axelband, Thomas Baehren, Barry Boehm, Dave Dorenbos,
Scott Jackson, Azad Madni, Gerald Nadler, Paul Robitaille, and Stan Settles. “A
Research Agenda for Systems of Systems Architecting”. In: International journal of
System of Systems Engineering 1.1 (2008), pp. 171–188.

[173] Emil Vassev and Mike Hinchey. “The Challenge of Developing Autonomic Systems”.
In: Computer 43.12 (2010), pp. 93–96.

[174] Thomas Vogel and Holger Giese. “Adaptation and Abstract Runtime Models”. In:
Proceedings of the 5th Workshop on Software Engineering for Adaptive and Self-
Managing Systems at the 32nd International Conference on Software Engineering.
SEAMS. ACM, May 2010, pp. 39–48.

[175] Thomas Vogel and Holger Giese. “Model-Driven Engineering of Self-Adaptive Software
with EUREMA”. In: Transactions on Autonomous and Adaptive Systems 8.4 (Jan.
2014), pp. 1–33.

– 287 –

Other References

[176] Thomas Vogel, Stefan Neumann, Stephan Hildebrandt, Holger Giese, and Basil Becker.
“Incremental Model Synchronization for Efficient Run-time Monitoring”. In: Proceedings
of the International Conference on Models in Software Engineering. Vol. 6002. LNCS.
Springer, Apr. 2010, pp. 124–139.

[177] Thomas Vogel, Andreas Seibel, and Holger Giese. “Toward Megamodels at Runtime”.
In: Proceedings of the 5th International Workshop on Models@run.time at the 13th

IEEE/ACM International Conference on Model Driven Engineering Languages and
Systems. Vol. 641. CEUR Workshop Proceedings. CEUR-WS, Oct. 2010, pp. 13–24.

[178] Thomas Vogel, Andreas Seibel, and Holger Giese. “The Role of Models and Megamodels
at Runtime”. In: Proceedings of the International Conference on Models in Software
Engineering. Vol. 6627. LNCS. Springer, May 2011, pp. 224–238.

[179] Pieter Vromant, Danny Weyns, Sam Malek, and Jesper Andersson. “On Interacting
Control Loops in Self-Adaptive Systems”. In: Proceedings of the 6th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems. SEAMS.
ACM, 2011, pp. 202–207.

[180] Paul Ward, Mariusz Pelc, James Hawthorne, and Richard Anthony. “Embedding
Dynamic Behaviour into a Self-configuring Software System”. In: Proceedings of the
5th International Conference on Autonomic and Trusted Computing. ATC. Springer,
2008, pp. 373–387.

[181] Danny Weyns, Sam Malek, and Jesper Andersson. “On Decentralized Self-adaptation:
Lessons from the Trenches and Challenges for the Future”. In: Proceedings of the
Workshop on Software Engineering for Adaptive and Self-Managing Systems. SEAMS.
ACM, 2010, pp. 84–93.

[182] Danny Weyns, Sam Malek, and Jesper Andersson. “FORMS: Unifying Reference Model
for Formal Specification of Distributed Self-adaptive Systems”. In: Transactions on
Autonomous and Adaptive Systems 7.1 (May 2012), pp. 1–61.

[183] Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Mirandola,
Christian Prehofer, Jochen Wuttke, Jesper Andersson, Holger Giese, and Karl M.
Göschka. “On Patterns for Decentralized Control in Self-Adaptive Systems”. In: Soft-
ware Engineering for Self-Adaptive Systems II. Vol. 7475. LNCS. Springer, 2013, pp. 76–
107.

[184] Martin Wirsing and European Research Consortium for Informatics and Mathematics
and National Science Foundation (U.S.) Report on the EU/NSF Strategic Workshop
on Engineering Software-Intensive Systems. ERCIM, May 2004.

[185] Wayne Wolf. “The Good News and the Bad News”. In: Computer 40.11 (2007), pp. 104–
105.

[186] Peter T. Wood. “Query Languages for Graph Databases”. In: SIGMOD Record 41.1
(Apr. 2012), pp. 50–60.

[187] Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. “Coordinating Hundreds
of Cooperative, Autonomous Vehicles in Warehouses”. In: AI Magazine 29.1 (2008),
pp. 9–20.

[188] Pamela Zave and Michael Jackson. “Four Dark Corners of Requirements Engineering”.
In: Transaction Software Engineering Methodology 6.1 (Jan. 1997), pp. 1–30.

– 288 –

Other References

[189] Marc Zeller and Christian Prehofer. “A Multi-layered Control Approach for Self-
adaptation in Automotive Embedded Systems”. In: Advances in Software Engineering
2012.10 (Jan. 2012), pp. 1–15.

[190] Dandan Zhang, Guangming Xie, Junzhi Yu, and Long Wang. “Adaptive Task Assign-
ment for Multiple Mobile Robots via Swarm Intelligence Approach”. In: Robotics and
Autonomous Systems 55.7 (July 2007), pp. 572–588.

[191] Jian Zhang, Heather J. Goldsby, and Betty H.C. Cheng. “Modular Verification of
Dynamically Adaptive Systems”. In: Proceedings of the 8th International Conference
on Aspect-oriented Software Development. AOSD. ACM, 2009, pp. 161–172.

– 289 –

Appendix A. Deurema Metamodel

0..* subsystems

<<abstract>>

DeuremaTemplate

identifier : UUID
name : String
description: String

<<abstract>>

DeuremaElement

Megamodel

1..*templates

<<abstract>>

DeuremaType

<<abstract>>

DeuremaModel

1..* types

System

1..*systems

SystemTemplate

level : int

Layer

1..* layers
1

instances 0..*
template

<<abstract>>

ModuleTemplate

BehaviorModule
Template

FeedbackLoop
ModuleTemplate

Application
Module Template

SoftwareModule
Template

0..*

modules

1

triggered
B

y0..*

receiver

instances
1

0..*

type

1

instances 0..*

template

triggerCondition:String

Module

<<abstract>>

TriggerType

Trigger

EventTrigger

period : int

TimedTrigger

0..1

m
od

u
le

s0..*

timedTrigger

0..*emitted
Trigger

Figure A.1: This figure shows the excerpt of the Deurema metamodel according to the
megamodel, system and module concept. The megamodel maintains all Deurema model
elements as introduced in Section 5.1. Systems define a layered, adaptive architecture and
contain modules. Modules encapsulate the local adaptation logic, which is specified in
a corresponding template description. Deurema supports four module template types as
discussed in Section 5.3. Furthermore, Deurema supports the triggering between modules as
comprehensively discussed in Section 5.4.

– 291 –

Appendix A. Deurema Metamodel

RuntimeModel
View

RuntimeModel

1

instances 0..*

type

SystemModel
ContextModel
MonitoringModel
ExecutionModel
RequirementModel
AssumptionModel
VariabilityModel
ModificationModel

<<enumeration>>

RuntimeModel
Purpose

1..*
purpose

<<abstract>>

DeuremaModel

<<abstract>>

DeuremaType
Megamodel

1..*

types

<<abstract>>

DeuremaTemplate

<<abstract>>

ModuleTemplate 0..*

runtimeModels

Variable
<<abstract>>

VariableType

1instances

0..* type

0..*

variables

SoftwareModule
Template

trigger : String
action : String
executionTime : int
urgent : boolean
committed : boolean

<<abstract>>

BehaviorModel

1..*

templates

Figure A.2: The Deurema metamodel excerpt defines the responsibilities of a module template
with respect to the runtime model view handling (cf. Section 5.2) and variables (cf. Section 5.6).
The supported runtime model purposes follow the runtime model categorization in Section 5.2.

– 292 –

<<abstract>>

ModuleTemplate

FeedbackLoop
ModuleTemplate

<<abstract>>

Operation

1..* o
pe

ra
ti

o
n

s

0..1

next

InitialNode

FinalNode DecisionNode

Activity

<<abstract>>

DeuremaModel

DestructionNode

1 next

guard : String

Condition

2..*

conditions

trigger : String
action : String
executionTime : int
urgent : boolean
committed : boolean

<<abstract>>

BehaviorModel

ActivityType

1instances0..* type

Monitor
Analyze
Plan
Execute

<<enumeration>>

ActivityPurpose
1..*

purpose

<<abstract>>

DeuremaType

ModelOperation

0..* modelOperations

RuntimeModel
View 1

modelOperations 0..*

view

Read
Write
Annotate
Create
Destroy

<<enumeration>>

ModelOperation
Type

1
type

ModelOperation
Query

1..*

queries

Figure A.3: The Deurema metamodel excerpt defining the feedback loop module template
concepts. Feedback loops contain operations such as initial and final nodes, decision nodes
for branching the control flow as well as activities that realize the adaptive domain behavior.
Activities can access and manipulate the runtime models views via model operations, where
the amount of information is specified by model queries. The supported activity purposes
follow the MAPE paradigm. The control flow between operations defines the causal order
of feedback loop operations. Feedback loop module templates together with the Deurema
black-gray-white box concept of specifying the local adaptation effects are comprehensively
discussed in Section 5.3.2.

– 293 –

Appendix A. Deurema Metamodel

1

instances

0..*

type
0..*

rules

<<abstract>>

ModuleTemplate

BehaviorModule
Template

RuleType

<<abstract>>

DeuremaType

<<abstract>>

DeuremaModel

trigger : String
action : String
executionTime : int
urgent : boolean
committed : boolean

<<abstract>>

BehaviorModel

priority : int
localApplication : int
globalApplication : int
period : int
probability : int
trial : int

Rule

ModelOperation
0..*

model
Operations

Figure A.4: The Deurema metamodel excerpt defining the behavior module template concept
of using declarative graph transformation rules for specifying local adaptation effects. The
adaptation rules have access to runtime models via Deurema model operations. Furthermore,
rule properties such as a priority or probability further restrict the application of the local
adaptation effects as comprehensively discussed in Section 5.3.5.

– 294 –

type

1

<<abstract>>

ModuleTemplate

Application
ModuleTemplate

priority : int
period : int
trigger : String

Task

0..*tasks

Component
0..*

components

Sensor
Actuator
SWC

<<enumeration>>

ComponentType

<<abstract>>

DeuremaModel

0..* runnables

1

instances0..*

type

RunnablePort

0..*p
or

ts

re
q

u
es

ts
0..*

RunnableType

trigger : String
action : String
executionTime : int
urgent : boolean
committed : boolean

<<abstract>>

BehaviorModel

runnables

0..*

<<ordered>>

ModelOperation
RuntimeModel

View

0..* modelOperations
1 view

1 M
od

el
O

pe
ratio

n
s

0..*view

ModelOperation
Query

1..*
queries

<<abstract>>

DeuremaType

Figure A.5: The Deurema metamodel defining the application module template concepts.
Deurema supports the component-based specification of adaptive behavior, where components
and ports define the statical software architecture. Runnables and tasks realize the dynamic
(behavioral) part of the component architecture, where runnables can manipulate the runtime
model data. Application module templates are comprehensively discussed in Section 5.3.4.

– 295 –

Appendix A. Deurema Metamodel

1 instances
0..*type

1..*

roles

Collaboration

1
role

System Module

RoleDelegation
<<abstract>>

Delegation
0..*

delegations

1
delegate

Before
After
Internal

<<enumeration>>

RoleTrigger

1

trigger1

playedRoles
0..*

player

1

instances 0..*

template

Collaboration
Type

lowerBound : int
upperBound : int

RoleType

1..*roles

Interaction
Type

1..*

interactions

Interaction
Template

1..*templates

Interaction Role
1

role

1
role

1

instances 0..*

type

<<abstract>>

DeuremaType

FeedbackLoop
ModuleTemplate

<<abstract>>

DeuremaModel

<<abstract>>

Collaborative
Element

0..*

interactions

<<abstract>>

InteractionTrigger

<<abstract>>

Operation
Rule Runnable

1

interaction1..*

trigger

Figure A.6: This figure shows the Deurema metamodel class definition with respect to the
collaboration concept. Structural aspects are defined in the collaboration structure definition,
which comprises the collaboration type and the role types. Behavioral aspects are defined
in the collaboration choreography specification by means of interactions that are specialized
feedback loops. The collaboration mapping defines the systems and modules that play the
corresponding roles defined by the collaboration structure. Systems must delegate the role
to an inner system or module, which realized the interaction behavior. According to the
module template type, an operation, rule, or runnable can trigger the mapped collaboration
starting the interaction with another module or system. The Deurema collaboration concept
is comprehensively discussed in Section 5.5.

– 296 –

Interaction
Template

FeedbackLoop
ModuleTemplate

synchronous : boolean
cooperative : boolean
reactive : boolean

<<abstract>>

AbstractMessage
1..*

senders

1..*

receivers

ModelMessageMessage Service

<<abstract>>

Operation

1..* operations

trigger : String
action : String
executionTime : int
urgent : boolean
committed : boolean

<<abstract>>

BehaviorModel
ModelOperation

0..*

modelOperations

RuntimeModel
View

1

modelOperations0..*

view

period : int

TimedTrigger

0..1
messages

0..*
timedTrigger

Figure A.7: The metamodel excerpt defines the Deurema message concept within interactions.
Deurema supports synchronization messages, model messages and services, where each type
is comprehensively discussed in Section 5.5.3.

– 297 –

Appendix A. Deurema Metamodel

RuleVariable

RuleSetVariable

Component
Variable

Composition
Variable

RunnableVariable

RunnableSet
Variable

FeedbackLoop
Variable

ActivityVariableTimerVariable

EventVariable

<<abstract>>

DeuremaModel

<<abstract>>

DeuremaType

<<abstract>>

ModuleTemplate

Variable
<<abstract>>

VariableType 1 instances
0..*type

0..*variables

<<abstract>>

DeuremaTemplate

Megamodel

1..* types 1..* templates

RuntimeModel

<<abstract>>

DeuremaType

Variability
Model

ConfigurationType
0..*

configurations

Variable

1

instances 0..*

type<<abstract>>

VariableType

1 variable

identifier : UUID
name : String
description: String

<<abstract>>

DeuremaElement

1..*parameters
Configuration

1
instances 0..*

type

1
parameter

1variable

Module

0..*

assignments

<<abstract>>

DeuremaModel

Figure A.8: This metamodel excerpt shows the supported variable types of the Deurema
modeling language. The variable types are introduced along with the module template
description. Variables and the corresponding variability Deurema runtime model enable the
Deurema reflection mechanism supporting system reconfiguration. The Deurema reflection
mechanism, reconfiguration and adaptation capabilities are comprehensively discussed in
Section 5.6.

– 298 –

1

model
Operations

0..*

view

<<abstract>>

ReflectiveElement
ModuleOperation

0..*
module

Operations

ViewDelegation
0..*

view
Delegation

<<abstract>>

Delegation

1
delegate

System Module

Collaboration

ModelOperation

Reflect
Affect

<<enumeration>>

ModelOperation
Type1

type

RuntimeModel
View

ModelOperation
Query

1..*

queries

1
target

Figure A.9: This figure shows the metamodel excerpt of the Deurema view delegation concept.
Systems, modules, and collaborations (short reflective elements) can reflect respectively affect
underlying reflective elements. The reflected runtime information is delegated to a runtime
model view in the corresponding module respectively interaction template. The view delegation
concept is introduced in Section 5.6.

– 299 –

Appendix B. Interaction Message

As motivated in Section 5.5.3, a message in an interaction has a synchronous, cooperative, as
well as reactive property, which influence the execution semantic of this message. Figure B.1
enumerates all four possible combinations concerning the cooperative and reactive property. The
semantic of these properties is already discussed in Section 5.5.3. In the following, concrete
scenarios of sending and receiving messages over time are discussed.

synchronous : boolean
cooperative : boolean
reactive : boolean

<<abstract>>

AbstractMessage

Reactive Cooperative
(Sender) (Receiver)

(1) first (true) or (false)
(2) first (true) and (true)
(3) all (false) or (false)
(4) all (false) and (true)

Figure B.1: Combinations of the reactive and cooperative message properties

Figure B.2 shows the example collaboration definition on the left and the scenarios enumer-
ated from I to V on the right. The collaboration structure defines two multi-roles, named
Sender and Receiver. Furthermore, the choreography specification defines one interaction,
where the sender role sends a single message M to the receiver role. On the bottom, the
collaboration deployment is shown, where two software modules realize the sender role and
two software modules realize the receiver role. Thus, there are two senders and two receivers
in the collaboration example.

On the right, Figure B.2 enumerates five scenarios of sending and receiving the message
M at different point in times (t1 to t4). The rectangle labeled with the name s1M denotes
the sending of the message M by the sender playing the role s1 as shown for the software
module sm1 in the collaboration deployment specification on the left. The sender always emits
the message immediately after it is executed. Furthermore, the sender waits (synchronous
case) two time steps for the reception of the message by one or both receivers. After waiting
two time steps, the sender cancels its waiting and aborts execution. Straight forward, the
rectangle labeled with the name r1M denotes the receiving of the message M by the receiver
playing the role r1. The receiver is able to process the message directly after it is executed
and waits for two time steps for an incoming message, if no message was already sent. For
example, the scenario I describes the parallel execution of three software modules sm1, sm3,
and sm4 from time t0 to t2. Afterwards, the parallel sending respectively receiving of the
message is performed from time t2 to t4. In all scenarios, the interaction is performed after
the black box behavior of the corresponding player software module is executed. Table B.1
shows the causal execution order for all five scenarios in Figure B.2 for all four combinations
of the message properties in Figure B.1.

– 301 –

Appendix B. Interaction Message

<<Collaboration>>

Example
<<Role>>

Sender
<<Role>>

Receiver1..*
1..*

<<CollaborationStructure>>

PlatoonStructure

s1:Sender

<<SoftwareModule>>

sm2:BlackBox

<<SoftwareModule>>

sm1:BlackBox

<<Collaboration>>

e: Example

<<SoftwareModule>>

sm3:BlackBox

<<SoftwareModule>>

sm4:BlackBox

r1:Receiver

<<
La

ye
r>

>

L-
1

<<CollaborationChoreography>>

Example

c

<<Interaction>>

ExampleInteraction

Done

<<InteractionTemplate>>

ExampleInteraction

<<
R

ol
e>

>

Se
nd

er
<<

R
ol

e>
>

R
e

ce
iv

er

<<Message>>

M
Start

Done

<<Message>>

M
Start

s2:Sender

r2:Receiver

<<SystemTemplate>>

ExampleDeployment

timescenario

sm1 s1M

sm3 r1M

sm4 r2M

sm1 s1M

sm3 r1M

sm4 r2M

time

time

t1 t2 t3 t4

sm1 s1M

sm3 r1M

sm4 r2M
time

sm1 s1M

sm2 s2M

sm3 r1M
time

sm1 s1M

sm2 s2M

sm3 r1M

s1M

Sender emits
message

Synchronous sender
stops waiting

r1M

Receiver is able to
receive message

Receiver stops waiting
for message

I

II

III

IV

V

sm4 r2M

Figure B.2: Interaction scenarios with multiple senders and receivers

– 302 –

Table B.1: Execution order for the scenarios (Sc) from Figure B.2 together with the message
property combinations (MPC) in Figure B.1

Sc MPC Causal Execution Order

I (1) 0−→ sm1 ‖ sm3 ‖ sm4
2−→ s1M → r1M ‖ r2M

I (2) as I (1)
I (3) as I (1)
I (4) as I (1)

II (1) 0−→ sm1 ‖ sm4
1−→ sm1 ‖ sm3 ‖ sm4

2−→ sm3 ‖ s1M → r2M

II (2) 0−→ sm1 ‖ sm4
1−→ sm1 ‖ sm3 ‖ sm4

2−→ sm3 ‖ s1M
3−→ r1M ‖ r2M

II (3) as II (1)
II (4) as II (2)

III (1) 0−→ sm1 ‖ sm3 ‖ sm4
1−→ sm1 ‖ sm4

2−→ s1M → r1M ‖ r2M

III (2) as III (1)
III (3) as III (1)
III (4) as III (1)

IV (1) 0−→ sm1 ‖ sm3
1−→ sm1 ‖ sm2 ‖ sm3

2−→ sm2 ‖ s1M → r1M

IV (2) as IV (1)
IV (3) 0−→ sm1 ‖ sm3

1−→ sm1 ‖ sm2 ‖ sm3
2−→ sm2 ‖ s1M

3−→ s2M → r1M

IV (4) as IV (3)

V (1) 0−→ sm1 ‖ sm2 ‖ sm4
1−→ sm1 ‖ sm2 ‖ s2M

2−→ s1M ‖ sm3 ‖ r2M

V (2) 0−→ sm1 ‖ sm2 ‖ sm4
1−→ sm1 ‖ sm2 ‖ s2M

2−→ s1M ‖ sm3
3−→ r1M ‖ r2M

V (3) as V (1)
V (4) as V (3)

sm1 ‖ sm2 : The software module sm1 runs in parallel with the software module sm2;
→ : Causal execution dependency; 3−→ : A simulation time step to global time 3 (cf. Section 7.3);
s1M : The sender s1 of message M; r1M : The receiver r1 of message M

Note, for the scenario V together with the message property combination (1) in Table B.1,
the execution after r2M is non-deterministic depending on the execution of sender s1M .
Because sender s1M and receiver r2M run in parallel, the receiver can process both messages
(from s1M and s2M), if the sender s1M is executed before. Otherwise, if the receiver r2M
is executed before sender s1M , the receiver r1M will be enabled. Both execution traces are
possible and depend on the scheduling of the simulation run.

– 303 –

Appendix C. Analysis Rules

The Deurema analysis framework uses the deductive inference engine from Beyhl et al. [35].
Both, the analysis framework and the inference engine are implemented in Java using the
Eclipse Modeling Framework. In the following, the basic concepts of the inference engine are
subsumed. Afterwards, all specified annotation types are enumerated in Section C.1. Finally,
all modeled Deurema analysis rules are depicted in the concrete syntax of the inference engine
in Section C.2.

Figure C.1 shows an exemplary analysis rule in concrete syntax of the inference engine tool,
which is used to explain the core concept of the inference engine. As discussed in Chapter 6,
the analysis rules are modeled within the inference engine tool on basis of the Deurema
metamodel. An analysis rule consists of a graph pattern, which is the information of interest
that is searched in the Deurema model. Graph pattern objects are modeled as rectangles.
Furthermore, each object has a name and a type, whereas the type refers to a class type in
the Deurema metamodel. Pattern objects can be linked over references as defined by the
metamodel. If the modeled pattern is found, the inference engine creates an annotation, which
is directly stored in the Deurema model and maintained by the Deurema megamodel during
simulation (e. g., for a runtime analysis). The rule pattern can be further restricted by an
OCL constraint as shown at the top in the example rule in Figure C.1. A created annotation
is denoted as green rounded, dashed rectangle. Furthermore, the ++ sign denotes the creation
of an annotation. Beside new annotations, analysis rules can depend on results of other
analysis rules. In this case, the rule pattern is enriched with already retrieved annotations
from the former rules. Needed annotations are modeled as rounded, dashed rectangles as
shown at the bottom in the graph pattern in Figure C.1. Annotations link to pattern objects
via role links. Each role link has a name and is defined by a role type, which is specified in the
inference engine. Annotations are also typed, which refers to the desired analysis fact. Finally,
annotations can include arbitrary additional attributes, which contain further information
belonging to the retrieved analysis pattern.

In summary, the analysis rule in Figure C.1 describes a pattern, which consists of three
Operation objects and two CausalDependency annotations. Furthermore, the pattern is restricted
by an additional OCL constraint. If the pattern is found in the Deurema model and if the
two annotations are found before, a ClosureDependency annotation is created. Additionally, a
level attribute is set for the closure dependency annotation. Each analysis rule specified in the
inference engine has incoming ports denoting the needed, beforehand retrieved annotations
(e. g., CausalDependency annotations in the example in Figure C.1) and outgoing ports denoting
the retrieved analysis fact in form of the created annotation (e. g., the ClosureDependency
annotation in the example). A comprehensive discussion about the inference engine tool can
be found in [35].

– 305 –

Appendix C. Analysis Rules

��������������������

���

��

�������������������

�����������������������

��

�����������������������

��

��

�������������������������������������

���������������������������������������

��������������

��������������

����������������

���������������

��

������������������������������������

Figure C.1: Inference engine rule example searching for closure dependencies in a feedback
loop module template on basis of two causal dependencies.

– 306 –

C.1. Annotation Types

C.1. Annotation Types
All realized metrics and patterns for analyzing the modeled adaptive SoS architecture with
the Deurema approach are comprehensively discussed in Chapter 6. This section enumerates
all necessary annotation types as they are created in the inference engine for the introduced
analysis metrics accordingly.

Deurema InteractionsDeurema Collaborations

Deurema ModulesDeurema Templates

Dependency
Causal

Dependency

Closure
Dependency

Path
Dependency

DestructionPath
Dependency

ConstraintCausal
Dependency

ClosureTrigger
Dependency

Trigger
Dependency

LayeredTrigger
Dependency

WeakCausal
Dependency

WeakClosure
Dependency

Deffered
CollaborationTrigger

Dependency

InAdvance
CollaborationTrigger

Dependency

InBetween
CollaborationTrigger

Dependency

DeferredInterleaving
CollaborationTrigger

Dependency

InAdvanceInterleaving
CollaborationTrigger

Dependency

Interleaving
CollaborationTrigger

Dependency

Causal
Collaboration
Dependency

Communication
Message

Dependency

UniDirectional
InteractionMessage

Dependency

BiDirectional
InteractionMessage

Dependency

UniDirectional
Collaboration

BiDirectiona
lCollaboration

Figure C.2: Overview of annotation types for causal dependencies

– 307 –

Appendix C. Analysis Rules

Knowledge
Dependency

Knowledge
Purpose

Self
Representative

Context
Representative

Requirements
Representative

Change
Representative

Sensor
Representative

Effector
Representative

KnowledgeAccess

Knowledge
AccessRead

Knowledge
AccessModify

Knowledge
AccessAnnotate

Knowledge
AccessWrite

Knowledge
AccessDestroy

Knowledge
AccessCreate

Dependency

Combined
Dependency

KnowledgePurpose
Combined

Reflective

Changeable

CausalConnected

Reflection
Dependency

Affect
Dependency

Reflect
Dependency

LayeredReflect
Dependency

LayeredAffect
Dependency

Figure C.3: Overview of annotation types for knowledge dependencies

Dependency
Adaptation
Purpose

Adaptation
PurposeComponent

Adaptation
PurposeActivity

Sensor

Software

Actuator

Monitor

Analyze

Plan

Execute

MAPE

Collector

Analyzer

Planer

SWA

Compute

SenseEffect

SensingTask

EffectingTask

ComputingTask

ComponentCentric
Task

Figure C.4: Overview of annotation types for the adaptation purpose

– 308 –

C.2. Analysis Rules

Monitor
SystemModel
Modification

Execute
SystemModel

ModificationViolation

Analyze
ChangeModel
Awareness

Plan
MonitoringModel
AwarenessViolation

Anitpattern
Collaboration

Antipattern
Missing

Communication

Pattern
ExitAfterAnalyze

Pattern
MAPE

Antipattern
AMPE

Antipattern
Reflection

Dependency
Combined
Dependency

Knowledge
ImpactRelation

Knowledge
Aware

Knowledge
Modification

Knowledge
Derivation

Knowledge
Transition

Knowledge
Propagation

Knowledge
Source

Knowledge
Sink

AccessPattern DesignPattern

Figure C.5: Overview of annotation types for combined dependencies and patterns

C.2. Analysis Rules
In total, the Deurema analysis framework realizes 83 analysis rules to retrieve important
metrics and patterns as discussed in Chapter 6. This thesis does not claim that these analysis
rules are complete nor that all important metrics are covered. The realized rules are a proof
of concept and can be individually extended towards important key aspects of the concrete
domain or underlying problem. All depicted rules in this section are realized within the
inference engine. In this context, thanks to the student Paul Geppert, who technically modeled
the rules in the inference engine tool.

– 309 –

Appendix C. Analysis Rules

�������������������

���

�������������������������� ������������������������

��������������������������������������

����������

�������������������������������

����������������������

���������������������

����

�����������������

Figure C.6: This rule detects a causal dependency between operations in a feedback loop
module template by determining the control flow.

�����������������������������

��

��������������������������� ��

����������

���

�������������������� ��

������������������

����

���������������

����������

Figure C.7: This rule detects a constraint causal dependency between a decision node and an
arbitrary operation in a feedback loop module template by determining the control flow.

�������������������

���

������������������������������ ���������������

��������������������������������������

����������

�������������������������������

������������ ��������������������

��������������

���������

�����������������

���������

����������������

Figure C.8: This rule detects a causal dependency between two runnables in a behavior rule
module template by determining the runnable task mapping.

– 310 –

C.2. Analysis Rules

��������������������

���

��

�������������������

�����������������������

��

�����������������������

��

��

�������������������������������������

���������������������������������������

��������������

��������������

����������������

���������������

��

������������������������������������

Figure C.9: This rule recursively infers all closure causal dependencies in feedback loop module
templates based on the direct causal dependencies and already inferred closure dependencies.
The indirection level of the closure is set in the level attribute of the corresponding annotation.

��������������������

��

�����������������������

��

������������������������

�������������

����������������

�����������������������

��

�������������������������������������

���������������������������������������

�����������������

����������������
������������������

������������������������������ ���������

��������������

����������

��������������

Figure C.10: This rule recursively infers all closure causal dependencies in behavior rule module
templates based on the direct causal dependencies and already inferred closure dependencies.
The indirection level of the closure is set in the level attribute of the corresponding annotation.

�������

�����������������������������

������������������� ���������������

����������������������������������

���������������������������

����������������������

���������������

���������������������

�����������������

��������������

Figure C.11: The inference rule retrieves all possible paths in a feedback loop module templates
by looking at the initial and final nodes.

– 311 –

Appendix C. Analysis Rules

������������������

������������������� ���������������������

����������������������������

��

���������������������������

���������������������������������

�����������������

��������������

���������������������

���������������

Figure C.12: The inference rule retrieves all possible destruction paths in a feedback loop
module templates by looking at the initial and destruction nodes.

��������������������

���������������������� ������������������������

��

�����������������

����������

���������������������������������������

���������������� ������������������

���������������������

����������������������

�����������������

Figure C.13: The rule infers direct trigger dependencies between modules, which is a causal
dependency on level of the corresponding system template specification.

���������������������������

���

��

����������������������� �������������������������

�������������� ������������ ��������������

��

��

��������������������������������������

�����������������������������������

���������������
��������������

������������������������������

�����������������
�����������������

������������������������������

��������������������������

Figure C.14: The rule recursively infers all trigger dependency closures between module
instances. The indirection level is annotated in the corresponding closure annotation.

– 312 –

C.2. Analysis Rules

���������������������������

������������������������������

��������������� �����������������

�������������� ��������������

��

��������������������������������

���

��������������

�������������

�����������������

����������������������

���������������

�������

Figure C.15: This inference rule refines a beforehand retrieved trigger dependency, if modules
are located on different layers.

�������������������������������

���

�����������������������������

������������ ������������

��

��������������������������������

���

�� ����������������

�����

������

��������������

�����

��������������������

������

��������������

Figure C.16: The rule determines the causal order of interactions played by a pair of modules.
The corresponding role trigger defines when the interactions in the corresponding collaboration
instance must be executed.

��������������������������������

���

�����������������������������

������������ ������������

��

��������������������������������

��

������������������������������ ������������ ����������������

�����

������

�����

�������������� ��������������

������

��������������������

Figure C.17: The rule determines the causal order of interactions played by a pair of modules.
The corresponding role trigger defines when the interactions in the corresponding collaboration
instance must be executed.

– 313 –

Appendix C. Analysis Rules

��������������������������������

��

�����������������������������

������������������������

��

���������������� ����������������

��

�� ����������������

�����

������

��������������

������

��������������������
��������������

�����

Figure C.18: The rule determines the causal order of interactions played by a pair of modules.
The corresponding role trigger defines when the interactions in the corresponding collaboration
instance must be executed.

������������������������

��

�����������������������������

������������������������

���

���������������� ����������������

���

�� ����������������

�������������� ��������������������

�����

������

�����

��������������

������

Figure C.19: The rule determines the causal order of interactions played by a pair of modules.
The corresponding role trigger defines when the interactions in the corresponding collaboration
instance must be executed.

������������������������

���

�����������������������������

������������ ������������

��

��������������������������������

��

�� ����������������

�������������� ��������������������

������

��������������

����� �����

������

Figure C.20: The rule determines the causal order of interactions played by a pair of modules.
The corresponding role trigger defines when the interactions in the corresponding collaboration
instance must be executed.

– 314 –

C.2. Analysis Rules

�����������������������������������

���

�����������������������������

������������ ������������

��

���������������� ����������������

���

�� ����������������

�����

������

�����

��������������������

������

�������������� ��������������

Figure C.21: The rule determines the causal order of interactions played by a pair of modules.
The corresponding role trigger defines when the interactions in the corresponding collaboration
instance must be executed.

��������������������

��

���

�����������������������������

��

�������������������������������

��� ����������������������������������

���

��

������������������������������

��������

����������������������������

����� ����� ��������

��������������������������

���������������������������

��������������������������������

Figure C.22: This inference rule retrieves occurring communication flows between two roles.
Thereby a communication can be a send/receive of a synchronization message, a model
message, or a service invocation.

– 315 –

Appendix C. Analysis Rules

���

������������������������������������

��

��

��������������������������������

�����������������������������

���

�������������������������������

����������������������������������

��� ��

���

�������������������������

��������������������������

�����������������������
����������������������������

���

�����������������������

��������������������������������

���

��������������������������

������������������������������

������������������������
������������������������

�����������������������

���������������������������

Figure C.23: Based on the communication flow, this rule detects unidirectional interactions.

��

�������������������������������������

�������������������������������������

���

����������������������������������

����������������������������������

��������������������������

��������������������������

��

���

���

���������������������������

�������������������

������������������������������

�������������������
������������������������

������������������������

�����������������������������

����������������������������

�������������������������

��������������������������
������������������������

���������������������������
���������������������������

���������������������������

������������������������

Figure C.24: Based on the communication flow, this rule detects bidirectional interactions.

– 316 –

C.2. Analysis Rules

�����������������������������

��

�����������������������������

��

������������������������� �����������

��

������������������������������������

������������������������������

������������

��������������������

�����
����

����������������

Figure C.25: A collaboration that contains a bidirectional interaction is seen as bidirectional,
too.

������������������������������

��

�����������������������������

���

�������������������������������

�������������������������������������

������������������������������

�������������������

��������������������

Figure C.26: A collaboration that contains only unidirectional interaction is considered as
unidirectional, too.

���������������������

���

�������������������������������

��

����������������������������������� ������������������

���������������

��

��������������������

����������� ������������������������ �������������������

���������������������

���������������������

�������������

����

���������

�����������������������
�������������

Figure C.27: This rule infers the self-representative property by looking on the available local
knowledge and the defined purposes. The runtime model view must specify a SystemModel
purpose.

– 317 –

Appendix C. Analysis Rules

������������������������

��

����������������������������������� ������������������

������������������������������� ���������������

��

��

������������������������ �������������������

��������������������

�����������

����

���������������������

��

���������

�������������

Figure C.28: This rule infers the context-representative property by looking on the available
local knowledge and the defined purposes. The runtime model view must specify a ContextModel
purpose.

����������������������������

���

��

���

�������������������������������
���������������

���

���

������������������������ �������������������

��������������������

����������������

����

���������������������� �������������

���������

����������������������������������

�����������������������

Figure C.29: This rule infers the requirement-representative property by looking on the
available local knowledge and the defined purposes. The runtime model view must specify a
RequriementModel or AssumptionModel purpose.

�����������������������

���

���

���

������������������������������� ���������������

��

��

������������������������ �������������������

��������������������

����������������

����

����������������������������������

���������������������� ������������������������������������

���������

Figure C.30: This rule infers the change-representative property by looking on the avail-
able local knowledge and the defined purposes. The runtime model view must specify a
ModificationModel or VariabilityModel purpose.

– 318 –

C.2. Analysis Rules

�����������������������

��

���

������������������������������� ���������������

��

��

������������������������ �������������������

��������������������

����������������

���������

����������������������

����������������������� �������������

�������������

����

���������������������

Figure C.31: This rule infers the sensor-representative property by looking on the available local
knowledge and the defined purposes. The runtime model view must specify a MonitoringModel
purpose.

�������������������������

���

���

������������������������������� ���������������

��

��

������������������������ �������������������

��������������������

����������������

���������

���������������������

����

����������������������

�������������

�����������������������
�������������

Figure C.32: This rule infers the effector-representative property by looking on the avail-
able local knowledge and the defined purposes. The runtime model view must specify a
ExecutionModel purpose.

������������

������������������������

������������������������� �������������������������������

�������������������������������

��

����������������������

��������������������

����������������������

��������������������

Figure C.33: A module template is considered as reflective, if it is self-representative and
context-representative.

– 319 –

Appendix C. Analysis Rules

�������������

��������������������������

��������������������������������� �����������������������������

�������������������������������

��

������������������������

����������������������

�������������������� ��������������������

Figure C.34: A module template is considered as changeable, if it is requirements-representative
and change-representative.

������������������

������������������������������������

����������������������������� ���������������������������������

�������������������������������

������������������������������ ���������������������������

���������������������

��������������������

����������������������

��������������������

Figure C.35: A module template is considered as causal connected, if it is sensor-representative
and effector-representative.

����������������������

���

�������������� ������������������� ���

��

���������������������������

��������������������� �������������������� ������������������������ �������������������

�����������������������

���������������

����

���������������������

����

���������������������

������������

Figure C.36: This rule retrieves all read accesses on the local knowledge base for feedback
loop templates.

– 320 –

C.2. Analysis Rules

����������������������

���

��

�������������� ������������������� ���

���������������������������

��������������� �������������������� ������������������������ �������������������

���������������������
���������������

�����������������������

���������������������

����

������������

����

Figure C.37: This rule retrieves all read accesses on the local knowledge base for application
module templates.

����������������������

���

��

����������� ������������������� ���

���������������������������

������������ �������������������� ������������������������ �������������������

���������������������
���������������������

����

������������

����

�����������������������

���������������

Figure C.38: This rule retrieves all read accesses on the local knowledge base for behavior
module templates.

�����������������������

��

�������������� ������������������� ����������������������� ������������������

���

�����������������������������

������������� �������������������� ������������������������ �������������������

������������

����

���������������

����

���������������������

��

Figure C.39: This rule retrieves all write accesses on the local knowledge base for feedback
loop module templates. The analysis rule for behavior rules and runnables follows the same
principle.

– 321 –

Appendix C. Analysis Rules

��������������������������

���

�������������� ������������������� ����������������������� ������������������

��

�����������������������������������

������������� �������������������� ������������������������ �������������������

������������

���������������

����

���������������������

����

�����������������������

���������������������

Figure C.40: This rule retrieves all annotate accesses on the local knowledge base for feedback
loop module templates.

������������������������

���

�������������� ������������������� ����������������������� ������������������

��

�������������������������������

������������� �������������������� ������������������������ �������������������

����

������������

����

��������������� ���������������������
��������������������� �����������������������

Figure C.41: This rule retrieves all create accesses on the local knowledge base for feedback
loop module templates.

�������������������������

��

�������������� ������������������� ����������������������� ������������������

���

���������������������������������

������������� �������������������� ������������������������ �������������������

�����������������������

���������������������

����

���������������������

���������������

������������

����

Figure C.42: This rule retrieves all destroy accesses on the local knowledge base for feedback
loop module templates.

– 322 –

C.2. Analysis Rules

������������������������

��

���������������������������������

�����������������������

���������������������������������������

������������������� �������������������������������

��������������������������

�������������������������������

���������������������

��������������������������������������

���������������������
�����������������������

���������������������

����������

������������

Figure C.43: This rule subsumes all non-read accesses (annotate, write, create, destroy) to a
modify access on the corresponding runtime model view of the local knowledge base.

�������������������

��

��������������������������������������

����������������������������������� ���������������������

��������������������������

���������������� ����������������������������

�������������������� ��������������������

����������������

������

����������������������

Figure C.44: This rule retrieves reflection dependencies between module instances.

��������������������������

��

�� ���������������������

�������������� ���

��������������������������

��

��������������

��������������������

������������������

�������

����������������������

������������������

��������������������

���������������������������

Figure C.45: This rule refines beforehand retrieved reflection dependencies between module
instances, if there are two independent layers involved.

– 323 –

Appendix C. Analysis Rules

�������������������

���

��������������������������������������

��������������� ���

��������������������������

���������������� ����������������������������

��������������������

������

��

����������������

Figure C.46: This rule retrieves affect dependencies between module instances.

��������������������������

��

�� ���������������������

�������������� ���

��������������������������

��

��������������

����������������������

��������������������
�������

��������������������

�������������������������
������������������

��������������������

Figure C.47: This rule refines beforehand retrieved affect dependencies between module
instances, if there are two independent layers involved.

– 324 –

C.2. Analysis Rules

���������������������������

���

��

������������������� ���

���

��������������������� ���

��������������������

����

��������������������� ���������������

����������

Figure C.48: This rule detects a monitoring activity.

���������������������������

���

��

������������������� ���

���

��������������������� ���

���������������������

����������

��������������� ��������������������

����

Figure C.49: This rule detects an analyzing activity.

������������������������

��

��

������������������� ���

��

��������������������� ���

��������������������

���������� ����

���������������������
���������������

Figure C.50: This rule detects a planning activity.

– 325 –

Appendix C. Analysis Rules

���������������������������

���

��

������������������� ���

���

��������������������� ���

���������������

����������

��������������������

����

���������������������

Figure C.51: This rule detects an executing activity.

������������������������

��������������

������������������������������������ ������������������������������������ ��������������������������������� ������������������������������������

������������������������� ���������������

�������������������������������������

�������������������������������������

����������������������������������

�������������������������������������

������������������������

����������������

��������������������� �������������

�������������������

�������������������������

�������������������������

�������������������

�������������������������

�������������������

�������������������������

���������

�������������������

Figure C.52: This rule detects the MAPE feedback loop pattern by means of the adaptation
purposes only.

�����������������������������

������������������������

������������������������������������ ������������������������������������ ���

�������������������������
���������������

�������������������������������������

�������������������������������������

�������������������������������������

����������������������������������

����������������������

����������������

�������������������

�������������������������

�������������������������������������� �������������������

��������������������� ��������������������������������������

���������

Figure C.53: This rule detects the collector feedback loop pattern by means of the adaptation
purposes only.

– 326 –

C.2. Analysis Rules

�����������������������������

������������������������

�������������������������

������������������������������������ ������������������������������������ ���

���������������

�������������������������������������

�������������������������������������

����������������������������������

�������������������������������������

����������������������

����������������

�������������������

�������������������
�������������������

�������������������

���������������������

���������

������������������������� �������������

Figure C.54: This rule detects the collector feedback loop pattern by means of the adaptation
purposes only.

����������������������������

����������������������

�� ���

������������������������� ���������������

�������������������������������������

�������������������������������������

�������������������������������������

����������������������������������

��������������������

����������������

�������������������
�������������������

�������������������������

���������

�������������������

���������������������

�������������������

�������������

Figure C.55: This rule detects the analyzer feedback loop pattern by means of the adaptation
purposes only.

����������������������������

����������������������

������������������������������������ ������������������������������������ ���

������������������������� ���������������

�������������������������������������

������������������������������������� �������������������������������������

����������������������������������

��������������������

����������������

�������������������

�������������������

�������������������������

�������������������������
�������������������

�������������

������������������� ���������

���������������������

Figure C.56: This rule detects the analyzer feedback loop pattern by means of the adaptation
purposes only.

– 327 –

Appendix C. Analysis Rules

����������������������������

������������������������������������ ������������������������������������ ���

����������������������

�������������������������

���������������

�������������������������������������

������������������������������������� �������������������������������������

����������������������������������

��������������������

����������������

���������

��

�������������������

������������� �������������������������

�������������������

�������������������

�������������������

Figure C.57: This rule detects the analyzer feedback loop pattern by means of the adaptation
purposes only.

����������������������������

������������������������������������ ������������������������������������ ���

�������������������������

����������������������

���������������

�������������������������������������

������������������������������������� �������������������������������������

����������������������������������

��������������������

����������������

�������������������

�������������������

��������������������������������������

�������������������

�������������������������

���������

��

�������������������

Figure C.58: This rule detects the analyzer feedback loop pattern by means of the adaptation
purposes only.

���������������������������

��������������������

�������������������������

������������������������������������ ������������������������������������ ���

���������������

�������������������������������������

������������������������������������� �������������������������������������

����������������������������������

������������������

����������������

���������

�������������������

�������������

�������������������

�������������������������

��������������������������������������

���������������������

�������������������������

Figure C.59: This rule detects the planner feedback loop pattern by means of the adaptation
purposes only.

– 328 –

C.2. Analysis Rules

���������������������������

��������������������

��� ������������������������������������

������������������������� ���������������

�������������������������������������

������������������������������������� �������������������������������������

����������������������������������

������������������

����������������

���������

�������������������������

������������������� �������������������

���������������������

������������������� �������������������

�������������

Figure C.60: This rule detects the planner feedback loop pattern by means of the adaptation
purposes only.

��������������������������

���

���

��

���

���

����������

�������������������������������������

Figure C.61: This rule searches for sensor components in application module templates by
looking at the modeled purpose.

�����������������������

��

��

���

���

���

����������

���������������������
����������������

Figure C.62: This rule searches for software components in application module templates by
looking at the modeled purpose.

– 329 –

Appendix C. Analysis Rules

����������������������������

���

���

���

���

���

����������������

����������

���������������������

Figure C.63: This rule searches for actuator components in application module templates by
looking at the modeled purpose.

�����������������������

������������

������������������������������������ ��������������������������������������� ��������������������������������������

������������������������� ���������������

�� ��

���

����������

����������������

�������������������������

���������

�������������

��������������������

���������������������

�������������������������� �������������������������

�������������������
�������������������

Figure C.64: This rule retrieves the SWA pattern for application module templates by looking
on the available component purposes only.

���������������������������

������������������������������������ ���

��������������������

������������������������� ���������������

�� ��

���

������������������

����������������

��������������������

�������������

�������������������

���������������������

���������

��������������������������

�������������������

Figure C.65: This rule retrieves the compute pattern for application module templates by
looking on the available component purposes only.

– 330 –

C.2. Analysis Rules

�������������������������������

������������������������������������ ���

�������������������������

����������������������������

���������������

�� ��

���

��������������������������

����������������

������������� �������������������������

��������������������

���������������������

�������������������

�������������������

�������������������������

���������

Figure C.66: This rule retrieves the sense-effect pattern for application module templates by
looking on the available component purposes only.

�������������������������������

����������������������������������

���

���

�����������

����������������������������

��������������������������

������������

���������������������

Figure C.67: This rule determines sensing tasks, where each mapped runnable is contained in
a sensor component.

���������������������������������

����������������������������������

���

���

�����������

��������������������������������

������������������������������

������������

�����������������������

Figure C.68: This rule determines effecting tasks, where each mapped runnable is contained
in an actuator component.

– 331 –

Appendix C. Analysis Rules

���������������������������������

����������������������������������

��

���

�����������

��������������������������������

������������������������������

������������

�����������������������

Figure C.69: This rule determines computing tasks, where each mapped runnable is contained
in a software component.

��

����������������������������������

��

�����������

��

��

������������

������������������������������

Figure C.70: This rule determines component-centric tasks, where each mapped runnable is
contained in the same component.

�����������������������������

���

��

��

�������������������

���������������������������

����������������������� ���

��

��� �������������������������������

��

��������������������

����������������������

���������������������

�����������������������������������

�������������

����������

����������������������

�������������������

Figure C.71: An exemplary access pattern for an advised modify model operation of a monitor
activity.

– 332 –

C.2. Analysis Rules

��������������������������������������

���

���

��

��

�������������������

���������������������������

����������������������� ���

��� �������������������������������

��

�����������������������

�����������������������������

����������������������

���������������������

��������������������

�������������

������������ ����������������������

Figure C.72: An exemplary access pattern violation for a modify model operation of an
execute activity.

���������������������������

��

��

��

������������������� ��������������������� ���

��

��� ���������������������������

���������������������������������������

����������

�������������

��������������������

�����������������������

���������������������

���������������������������������� ����������������������

�������������������

Figure C.73: An exemplary access pattern violation for a modify model operation of an
execute activity.

���������������������������������

���

���

��

������������������������������������ ��������������������������

������������������� ��������������������� ���

�� ���������������������������

���

���������������������� �����������������������

�������������������

�������������������������������

����������������������

��������������������

�������������

������������

Figure C.74: An exemplary access pattern violation for a read model operation of a plan
activity.

– 333 –

Appendix C. Analysis Rules

�����������������

����������������������������������

���

��

���������������������������

����������������������������

�����������������������������������

���������� ���������������������
�������������������

����������������������

Figure C.75: This rule retrieves the knowledge-awareness property.

�����������������������

��

����������������������

������������� ����������������������� ������������������

������������������������������

����������������������������

�������������������������������

���������������������������

�����������������������

��������������������

���������������������

������������

����������

�����������

����������������������

�������������������

Figure C.76: This rule retrieves the knowledge modifications on basis of the local available
runtime model views.

����������������������

����������������������

�������������������������������������

�����������������������������

������������������� �������������������

��

������������������������

���������������������������� �����������������������������������

���������������������������������

����������� �����������

������������������������

����������������������

�����������������������

����������������������

������������

�������������������� ��������������������

������������������������

�����������������������

Figure C.77: This rule retrieves the knowledge derivations on basis of the local available
runtime model views.

– 334 –

C.2. Analysis Rules

����������������������

��

������������������������� �����������������������

���

������������������

����������������������������

����������������������������

�����������������������������������

��������������������������

���������������������������������

�����������

����������

���������������������

�������������

���������������� ��������������

�����������������������

����������������������

�����������������
����������������������

����������������������
�������������������

Figure C.78: This rule retrieves the knowledge transitions on basis of the local available
runtime model views.

�����������������������

����������������������������

������������������������ ������������������������

��

��������������������������������

�������������������

����������������������������������

�������������������

��������������������������������� �����������������������������������

�����������������������������������

�������������������������������

�����������������������

�����������

������������������������

�������������

����������������������

�������������

������������������������

��������������� ������������������

����������������������

�����������������������

Figure C.79: This rule retrieves the knowledge propagations on basis of the local available
runtime model views.

����������������

��������������������������������

�������������� ����������������������� ��������������

����������������������������� ������������������������������

������������������

�����������������������������������

���������������������

�����������������������
����������������������

��������������������

�����������

����������������������

�������������

����������������������

�������������

�����������
��������������������

Figure C.80: This rule retrieves the knowledge sinks on basis of the local available runtime
model views.

– 335 –

Appendix C. Analysis Rules

������������������

������������������������������������

���������������������� �����������������������

����������������������� ���������������������������� ������������������

����������������������������

�������������������������

��������������������

�������������
����������������������

�����������

����������� ����������������������

�������������
�����������������������

���������������������� ��������������������

Figure C.81: This rule retrieves the knowledge sources on basis of the local available runtime
model views.

�������������������

���

��

�����������

��������������������������������������

�������������������������������������

�������������������������

�������������������������������������

����������������������������������

���������������

������������

������������

������������ ������������

���������������������������������

������������

�������������������������������

����

������������������������

������������������������

����

������������������������

����

���������������������

��������������

��������������������

��������������������

�������������

��������������������

�������������������������

�������������������������

�������������� ��������������������

��������������

�������������������������

��������������

���������������

������������������������

�������������������������

Figure C.82: The rule detects a feedback loop that follows the MAPE blueprint by looking at
the adaptation purposes and the control flow.

– 336 –

C.2. Analysis Rules

������������������

��

��������������������������������������
�������������������������������������

������������������������

��

���

�����������

���������������������������������� ������������

�������������������������

������������

�����������������������

������������������������

��������������

������������������������

��������������������

�������������
���������������������

����������������������

��������������������

����������� ����������������������

������������������������

��������������

��������������

����

������������������������

����

��������������

����

��������������������

����������������������

��������������������

�������������������

����������������������

Figure C.83: An example rule for retrieving anti-patterns of modeled feedback loops. In this
case a AMPE combination is retrieved.

��������������������

�����������������������������

�������������

������������������ ���������������

������������������������

��

��������������������������

�������������������������������

��������������

�����������������

�������

������������������

�������

����������������������� �������������������

��������������������

���������������������

Figure C.84: This rule detects a design flaw of using a reflect module operation on the same
layer.

– 337 –

Appendix C. Analysis Rules

��������������������

�������������������������������������

�����������������������������������

������������������������

������������������������������

�������������

��������������������������

�������������������������������

��������������

������������������

���������������������

�������

�����������������

�������������������

�������

�����������������������

��������������������

Figure C.85: This rule detects a design flaw of using an affect module operation on the same
layer.

��������������������������

������������������������������������

��������������������

��������������������������������

���������������������������

���������������������������������������

������������������

������������������������������������� ���������������������������������

����������������������������������

�������������

���������������

���������������

�������������������

���������������������

����������������

����

Figure C.86: This rule detects the exit after analyze pattern in a feedback loop module
template.

– 338 –

C.2. Analysis Rules

�����������������������

��

��

���������������������������������������

��

���

��

���

��������

����������������������

������������������

Figure C.87: This rule retrieves all interactions that have no message communication defined,
which is a design flaw.

���������������������������

�����������������������������

������������ ������������ ��������������������������������

����������������������������

��

�����������������������������������

������������ ��

�����

������

�������������� ��������������

������

��������������������

�������������������

Figure C.88: This rule detects the design flaw, where a collaboration is used between different
layers in the adaptive SoS architecture.

– 339 –

Appendix D. Simulation Rules

D.1. Simulation Rules

R01
DeployedSystem

R02
Deployed

Subsystem

R40
ActiveChild

R34
WaitingRule

R28
EnabledOperation

R33
ExecutedModule

R25
PreEnabled
Operation

R24
ActiveChild

R20
PreEnabled
Interaction

R19
PreEnabled
Interaction

R18
PreEnabled
Interaction

R42
ActiveInteraction

R07
Waiting

EventTrigger

R05
Deployed

Interaction

R04
Deployed

Interaction

R06
WaitingModule

R03
DeployedModule

R43
Activated

Interaction

R21
Enabled

Interaction

R16
EnabledModule

R17
PreEnabled
Interaction

R15
Preenabled

Module

R10Enabled
TimedTriggerWith

EventTrigger

R12
WaitingModule

TriggeredByEvent

R14WaitingModule
TriggeredBy

EventAndTime

R11Enabled
TimedTrigger

Without
EventTrigger

R13
WaitingModule

TriggeredByTime

R09
Enabled

EventTrigger

R22
ActiveModule

R08
WaitingClock

R23
WaitingOperation

R32
PostactiveModule

R45
WaitingModule

Operation

R29
ActiveOperation

R26
PreEnabled
Operation

R27
EnabledChild

R44
WaitingModel

Operation
R38

EnabledRule

R41
ExecutedRule

R35
PreEnabledRule

R36
PreEnabledRule

R39
ActiveRule

R37
EnabledChild

R46
Example

DomainPattern

R31
Executed
Operation

R30
Executed
Operation

Figure D.1: The dependency graph of all Deurema simulation rules, where corresponding
retrieved annotations are send to the subsequent modules. An arrow denotes a dependency
of the retrieved annotations, where the receiving module uses the annotation in the positive
application condition. A dashed arrow denotes the use of an annotation in a negative
application condition. In the following figures, the internals of each simulation rule are
depicted in the concrete syntax of the inference engine. The concrete syntax of inference rules
is already introduced at the beginning of the Appendix C. The simulation rules follow the
Deurema state model as depicted in Figure 7.2 and Figure 7.5, which are comprehensively
discussed in Chapter 7.

– 341 –

Appendix D. Simulation Rules

�����������������

��������������� ��������������������� ��������������� �������������

����������������������������������

��������������������������������

���������������� ���������������������� ���������������� ��������������

�������������������������

������� ������� ������

Figure D.2: This rule searches for all deployed systems in the megamodel and annotates each
system and corresponding layer combination. The annotation corresponds to the deployed
state.

��������������������

������������� ������������������ ����������������

����������������������

�������������������������������������

��������������������������������

��������������������������������

���������������� ��������������

����������

��������������������������

���������� ������

Figure D.3: This rule recursively retrieves deployed subsystems based on the found deployed
systems of the inference rule R01DeployedSystem in Figure D.2. All subsystems and corresponding
layer combinations are annotated. The annotation corresponds to the deployed state.

�����������������

�������������

����������������������

���������������

��

�������������������������

������������������������

��

���������������� ��������������������������

��������

��������������������� ����������������������

�������

����������

Figure D.4: Based on all retrieved deployed systems, this rule searches for all deployed modules
and its corresponding template description. Each module is annotated with a deployed state.

– 342 –

D.1. Simulation Rules

����������������������

��������������� �������������������������

�����������������������������

��

�������������������������������

��

��������������������������

������������������

�����������������������

������������

�������������

Figure D.5: This rules searches for a module that realizes an interaction as defined by the
collaboration role mapping. Only those interactions that are played by a module are important
for the simulation and thus, marked as deployed for further processing.

����������������������

�������������������������

���������������������������

���

����������������������

����������������������������������

��

�����������������������

��������������������� ���������������������

����������������

��������

Figure D.6: The corresponding template specification is retrieved for all deployed interactions,
which is defined in the collaboration choreography specification of the corresponding interaction
role part.

– 343 –

Appendix D. Simulation Rules

����������������

�����������������������

��

������������������������������

�������������������������

��������������������������������

��������������������������������������

�������������������

���������������������

�������������������

���������������������

Figure D.7: Each deployed module and interaction (represented by the AbstractModule object in
the pattern) change in the waiting state during the build process of the underlying megamodel.
A corresponding state annotation marks the module respectively interaction instance and the
template description.

����������������������

�����������������������������

������������������ �����������������

�������������������������������������

�������������������

������������������������������

�������������������������������

����������������������������

������������������

��������������������

����������������������

��������������������

��������������

��������������������

�������������

Figure D.8: A module can trigger another module, which defines a causal order between both
modules. This rule detects all direct trigger dependencies between deployed modules, which
enables a correct detection of an emitted event trigger during a simulation run. The rule
annotates the sender and receiver module instance as well as the corresponding event trigger.

– 344 –

D.1. Simulation Rules

���������������

���������������

�����������������������������

������������������

����������������������������������

�������������������

�������������������������������

������������������������������

��������������

�������������������

�������������������

������ ������

�������������������������������

Figure D.9: During the simulation, each module maintains its own local clock. Furthermore,
each local clock has a reference to the global simulation clock. This rule retrieves the individual
clocks and annotates the corresponding module instance. This clock annotation is important
for the retrieval of an enabled timed trigger condition belonging to the module instance.

����������������������

�����������������

���������������

�������������������������������������

�����������������

���������������������������

����������������������������

�����������������������������������

�����������

�������������

������������

��������������

Figure D.10: The rule detects enabled event trigger by means of the trigger count. A trigger
count greater zero indicates that another module emits at least one trigger event. The rule
annotates the receiving module as well as the corresponding event trigger. The rule depends
on the beforehand found causal trigger dependencies between modules.

– 345 –

Appendix D. Simulation Rules

��������������������������������������

�������������������������������������

��������������� ������������������

���������������������������

���

��������������������������

�������������������

���

����������������������������������

�����������

������������������

���������������� �����������������
����������������

�������������

Figure D.11: This rule checks the trigger conditions for each module instance by determining
event trigger and timed trigger.

���

�������������������������������������

���������������������������������

��

�������������������������� ���������������������������

�������������������

����������������������� ����������������������������

����������������������������������

����������������

�������������

����������������

������������������

���������������� �����������������

Figure D.12: This rule checks the trigger conditions for each module instance by determining
timed trigger only, where a local clock implies a corresponding timed trigger.

��������������������������������

���������������

���������������������������

������������������������������������

��������������������������

���������������������������� �����������������������

����������������������������������

������������������������������

�������������

Figure D.13: This rule checks for a successfully triggered module by determining module
instances that have only specified incoming event triggers. The negative application condition
ensures that no timed trigger is specified.

– 346 –

D.1. Simulation Rules

�������������������������������

���������������

���������������������������

������������������������������������

��������������������������������

��������������������������� ����������������������������

����������������������������������

����������� �����������������������

�������������

Figure D.14: This rule checks for a successfully triggered module by determining module
instances that have only one specified timed trigger. The negative application condition
ensures that no event triggers are specified.

���������������������������������������

���������������

��������������������������� ����������������������������

������������������������������������

��������������������������� ����������������������������

����������������������������������

������������

�������������

�����������

Figure D.15: This rule checks for a successfully triggered module by determining module
instances that have specified timed and event triggers.

�������������������

�����������������������

���������������

��������������������������������������

�������������������������

������������������������� ��������������������������

����������������������������

���������������������������������

�������������

Figure D.16: After a module instance is successfully triggered, it becomes preenabled if no active
collaboration interaction is performed. This rule annotates the module instance accordingly.

– 347 –

Appendix D. Simulation Rules

����������������

���������������

������������������������

��������������������������������

����������������������������������

�������������������������� ������������������������������������

������������������������������

�������������

����������� ��������������������������

Figure D.17: This rule detects a preenabled module instance, which is not active ensured by
the negative application condition. The module becomes enabled and can be picked by the
Deurema scheduler.

������������������������

���

��

��������������������������������������

��

����������������������� ����������������������������������

��� ���

��

������������� ������������������

������������������������������� ����������������������������������

Figure D.18: The rule infers preenabled interactions, where the corresponding player module
has a role trigger denoting the execution of the collaborative behavior before the execution of
the local adaptation behavior. The player module must already be successfully triggered.

– 348 –

D.1. Simulation Rules

������������������������

��������������������������������������

������������������������� ���������������

�����������������������

���������������������

��

����������������������������������

���������������������������������� ���������������������������� ���

��

����������������������������� �����������������������

�������������

����������������

������������������

�������

Figure D.19: The rule infers preenabled interactions, where the corresponding player module
integrates the collaboration behavior into the local adaptation behavior. This rule focus on
feedback loop templates and searches for an active operation that triggers the corresponding
interaction instance.

������������������������

������������������������� ���������������

��

�������������������

����������������������������������

��

���������������������������������� ������������������ ���

��

���������������

������������������

���������

�������

����������������

�������������

�����������������������

Figure D.20: The rule infers preenabled interactions, where the corresponding player module
integrates the collaboration behavior into the local adaptation behavior. This rule focus
on behavior rule templates and searches for an active rule that triggers the corresponding
interaction instance.

– 349 –

Appendix D. Simulation Rules

������������������������

��

��

�������������������������������� ��������������������������������������

��

����������������������������������

���������������������������������� ���������������������������������� ���

��

��������������� �����������������������

�������������

�������������������

������������������

����������������

Figure D.21: The rule infers preenabled interactions, where the corresponding player module
has a role trigger denoting the execution of the collaborative behavior after the execution of
the local adaptation behavior. The player module must be in the postactive state.

���������������������

��

�����������������������������

��

�������������������������������

��

��

��������������������������������������

�������������������������������

����������������

Figure D.22: A preenabled interactions becomes immediately enabled afterwards and thus, is
ready for execution. The negative application condition ensures that each interaction does
not become active twice.

���������������

�����������������������

�����������������������������

��������������

��������������������������������������

�������������������������

�������������������������������

������������������������������������

���������������

���������������������

�������������������

��������������������� ������������

�������������������

�������

Figure D.23: This rule detects an active module. The Deurema interpreter adds the active
state during the execution of the module.

– 350 –

D.1. Simulation Rules

�������������������

���������������������

��������������������������������������

�����������������������������

����������������������������

�����������������������

������������������������������

������������������������������������

����������������������

���������������������

�������������������

���������������������

�������������������

����������������

����������

Figure D.24: This rule detects an active feedback loop module and corresponding template
description and infers the contained operations, which are denoted as waiting.

��������������

����������������������������� ���������������������

���������������������������� �����������������������������

����������������������������

������������������������������ ����������������������������

��������������������������

�������������������

���������������������

����������

��������������

Figure D.25: This rule supervises a feedback loop module template and its contained operations.
As long as at least one contained operation is active, the parent template gets an ActiveChild
annotation.

– 351 –

Appendix D. Simulation Rules

����������������������

����������������������������� �������������������������

���

������������������������� ������������������������ �������������������������

�����������������������

��� ��������������������������

��

�������������������

���������������������

������������������

����������������

��������������
���

���������������������

Figure D.26: The rule infers preenabled initial nodes of an active feedback loop module template.
The initial node is the starting point for each feedback loop. The execution of the feedback
loop can only start, if all collaboration activities are completed, which is ensured by the
negative application condition.

����������������������

���������������������������

�����������������������������

����������������������������

��

������������������������

������������������������

��������������������������������

�����������������������

��� �������������������������������������

��

���������������������

����

��������������
�������������������

���������������������

�������������������
������������������

����������������

���������������������

Figure D.27: The rule infers preenabled operations of an active feedback loop module template
by following the control flow (next reference) of currently active operations.

���������������

�����������������������������

���������������������������

������������������������������

��������������������������������

����������������������������

���������������������

�������������������

Figure D.28: This rule annotates a feedback loop template with an EnabledChild annotation as
long as a contained operation is denoted as preenabled.

– 352 –

D.1. Simulation Rules

�������������������

���

���������������������

���������������������������

��������������������������������������

�����������������������������

�������������������������

�����������������������

�������������������������������� ��������������������������

������������������������������������

��������������������������������
������������������� �������������������

��������������������� ����������������

Figure D.29: The inference rule infers enabled operations within a feedback loop template,
where the operation is in the preenabled state and does not participate in any interactions.
Interaction messages, which are subclasses of the operation class, have an additional OCL
constraint that evaluates, whether the message is enabled or not. Messages that perform as
senders are always enabled. Receiver messages must wait until a sender emits a message.

������������������

��������������������� ��������������

������������������������������������

������������������������

�����������������������������

����������������������������������

���������������

��������������

����������������

�������

������������

Figure D.30: This rule infers active operations, which are marked by the Deurema interpreter
during the execution.

– 353 –

Appendix D. Simulation Rules

��������������������

������������������������ ������������������������

��������������������������� ���������������������

��

��������������

����������������������������

��������������������������������������

������������

������������������������

����������������

���������������

����

Figure D.31: The rule finds executed operations within a feedback loop module template by
means of two active operations that are directly connected over the control flow (next reference).
If the subsequently operation becomes active and thus, is executed by the Deurema interpreter,
the previous operation is annotated as executed.

��������������������

���������������������

������������������������������������

��������������

�����������������������

����������������������������

����������������������������������

����������������

������������

�������������� ����������

Figure D.32: The rule finds executed final nodes within a feedback loop module template. If
the final node is marked as active by the Deurema interpreter, it has no further side effect and
can be cleaned up.

– 354 –

D.1. Simulation Rules

�������������������

�����������������������

���������������������������� ��������������������

��

�������������� �������������������������

������������������������������ ���������������������

��

���������������������
���������� �������������������

������������

�������������������

��

Figure D.33: This rule detects postactive module instances together with its corresponding
template specification. A module instance is postactive, if no local adaptation steps are
possible denoted by the EnabledChild annotation. This rule also works for interaction instances
and the corresponding interaction part specification.

�����������������

������������������������� ������������������������������������

��������������������������������

��

�������������������������

���������������������������������� ��������������������������

��

�������������������
�������������������

���������������������

���������� ������������������

������������

Figure D.34: If a module instance does not collaborate after it became postactive, it is denoted
as executed. The negative application condition ensures that no interactions are actively
executed.

– 355 –

Appendix D. Simulation Rules

��������������

�������������������������

�����������������������������������

�������������������

����������������������������

���������������

������������������������������

��������������������������

������������

�����

�������������������

������������������������ ���������������������

�������������������

Figure D.35: A behavior rule becomes waiting and therefore, visible for the simulation
environment, if the corresponding module instance changes into the active state.

�����������������

��

�����������

�������������������

����������������������������������

��

���

�������������������

��������������������������������

���������������� �����������������������������

����

�����������

��������������������

����������������������������������

�������

�������������������

Figure D.36: This inference rule searches for a behavior rule, where the LHS has a match in
the corresponding domain. Furthermore, all rule properties such as the period or probability
must be fulfilled, which is ensured by the OCL constraint. This rule determines white box
behavior rules.

– 356 –

D.1. Simulation Rules

�����������������

���

�������������������

���

����������������������������������

�������������������

��������������������������������

���������������������

���������

������������� �����������

������������������������������

Figure D.37: This inference rule searches for a behavior rule, where the LHS has a match in
the corresponding domain. Furthermore, all rule properties such as the period or probability
must be fulfilled, which is ensured by the OCL constraint. This rule determines black box
behavior rules.

���������������

�������������������������

����������������������

������������������������������

����������������������

����������������������������

�������������������

���������������������

Figure D.38: This rule annotates a behavior module template with an EnabledChild annotation
as long as a contained behavior rule is denoted as preenabled.

– 357 –

Appendix D. Simulation Rules

��������������

�������������������

���

����������������������������

�������������������������

���������������

�� ��������������������������

��������������������������

����������� �������������������

�����������

�������������������������

Figure D.39: A behavior rule is inferred as enabled by the inference engine, if it is not already
active (not currently executed by the Deurema interpreter) and if it is not collaborating with
another module. Both constraints are ensured by the negative application conditions.

�������������

�������������������������

��������������������������

�������������������

���������������

�������������������

������������������������

���������������

�����������
������������

��������� �����������

�������

�������������

Figure D.40: A behavior rule is active, if the Deurema interpreter annotates a corresponding
state marker, which is detected by the inference engine.

��������������

�������������������������

����������������������������

�����������

�����������������������

����������������������������

������������������������������ ������������������

��������������������������

���������

�����

�������������������

���������������������

Figure D.41: This rule supervises a behavior rule module template and its contained rules. As
long as at least one contained rule is active, the parent template gets an ActiveChild annotation
by the inference engine.

– 358 –

D.1. Simulation Rules

���������������

�����������

������������������

�������������������������������

�������������� ���������������

�������������������������

������������������ ��������������������������

����������������������������

��������� ������������������

�����������������������

��������������������

Figure D.42: A behavior rule is denoted as executed after the successfully execution by the
Deurema interpreter and if no additional interactions are played.

��������������������

�������������������������

���������������������������

��

�����������������������������

����������������������������������

��������������������������������������

���������������

������������������

���������������������������

�������������
������������

�������

Figure D.43: The inference rule detects ongoing active interactions, which are currently
executed by the Deurema interpreter. This rule annotates the interaction and corresponding
player module instance.

– 359 –

Appendix D. Simulation Rules

�����������������������

��������������� ���������������������

���������������������������

���

�������������������������

����������������������������������

��

����������������������

���������������������������

�������

������������������ �������������������������

Figure D.44: This rule works similar to the rule in Figure D.43 and detects ongoing active
interactions, which are currently executed by the Deurema interpreter. This rule anno-
tates the interaction and corresponding player module instance. The difference is that the
ActivatedInteraction annotation is used to determine postactive modules afterwards.

������������������������

���

�������������������

������������������������

�������������������

��

�����������������������������

���������������������������������������

��������������������

����������������������
����������������

���������������

��������������

Figure D.45: The rule detects read model operations, where the contained model queries can
be executed to retrieve the local amount of knowledge from the runtime model view, which is
further hand over to the local adaptation effect.

– 360 –

D.1. Simulation Rules

�������������������������

���

���������������

���������������������������������

����������������������������� �������������������

�������������������������������

�������������������������������

���

���

���

���������������������������������������

�������������������� ������������������������

����������������

��������������������

���������������

�������������������

����������������

��������������

�������������������

����������������������

��������

Figure D.46: The rule detects reflect model operations, which are ready for execution afterwards
to update the local runtime model views within the annotated template description.

�����������������������

���

���������������� �������������������������

����������������

���������������

���������������

���������������������� ��

������������������

������� ���������

������������������

Figure D.47: This is an exemplary graph transformation behavior rule of a domain specific
adaptation effect. This example rule searches for a template description in the Deurema
megamodel, where the name of the template is SpecificTemplate. A side effect of this rule
could be for example the deletion of the template specification from the overall Deurema
model, which might cause further adaptation effects of the adaptive SoS architecture. In
general, Deurema supports arbitrary, domain specific graph transformation behavior rules.

– 361 –

Appendix D. Simulation Rules

D.2. Simulation Metrics

Although it is not in the focus of this thesis to create an efficient simulation environment for
Deurema models, this section pinpoints to measured performance metrics for two scenarios. In
general, a simulation performance evaluation is very hard because different aspects have to be
considered. Deurema supports the specification of adaptive behavior using a black-gray-white
box mechanism. Except for the white box behavior specification, the Deurema execution
environment does not know internals about the underlying, domain specific implementation.
Furthermore, the simulation of the modeled SoS architecture includes the invocation of
the domain specific behavior, which of course needs time for its execution. Separating
execution time of domain specific behavior and time that is needed by the Deurema execution
environment is hard to realize. There are the following key aspects that influence the execution
time of a Deurema model simulation.

At first, the inference engine maintains the Deurema megamodel, which includes all Deurema
models, the runtime models representing the available knowledge, and the dependencies
between adaptation effects and their access to the runtime model views. As described in
Chapter 7, the inference engine tracks changes in the megamodel and retrieves enabled
Deurema elements for their execution. Therefore, the inference engine applies all simulation
rules depicted in the Section D.1 above for each simulation step (cf. Figure 7.10 in Section 7.3).
Applying the simulation rules comprises a time consuming pattern matching on the Deurema
megamodel to reason about the current SoS situation. Retrieved matches and corresponding
state annotations are directly marked in the Deurema model.

Second, the time of picking the next enabled Deurema model element for its execution
depends on the scheduler implementation of the Deurema simulator. A random-based imple-
mentation or a FIFO algorithm are much faster than an earliest deadline first or complex
domain specific scheduler implementation.

Third, the execution of a single Deurema element by the interpreter is very fast, but the
invocation of domain specific adaptation effects can take a long time. For example, a domain
specific planning activity may derive long term optimization strategies by applying complex
and time consuming learning algorithms. In contrast, if the adaptation effect is defined as
white box, the corresponding graph transformation rule must be applied on the beforehand
retrieved knowledge base (cf. Section 5.3.2). Again, executing the graph transformation rule
comprises a pattern matching part, which can be time consuming depending on the rule
pattern and the amount of data in the base graph that has to be investigated. However, in
both cases (black box and white box), the time for executing the adaptation effect remains
problem specific.

Fourth, model operations are defined by means of model queries, which are again graph
pattern. Executing these model queries includes a pattern matching part on the underlying
knowledge base. Furthermore, the pattern size and the amount of model queries influence the
execution time.

In summary, there are many dimensions that influence the execution time during a simulation
of the adaptive SoS architecture. In the following, two scenarios are discussed, which are used
to measure execution metrics of a Deurema model simulation. The shown metrics should by
seen as starting point. Due to the goals of this thesis, implementing a scalable simulation
framework is not in the focus of this work and belongs to future work. All performance
metrics from the following Deurema model simulations are measured on an Intel Xeon E5-2630
processor with about 384 GB main memory and 2,3 GHz. The operating system is a Debian

– 362 –

D.2. Simulation Metrics

8 (Jessie) and the Deurema execution environment is a single core Java program developed
with the Eclipse Modeling Framework with the JDK 1.7.

Smart Home
Figure D.48 sketches the simulation scenario of a variable number of smart home instances.
Each smart home is modeled as black box software module. The implementation of the
module refers to a Java method, which is invoked by the Deurema interpreter. To decrease the
execution time of the Java method, which is domain specific behavior and thus, less important
for investigating the execution characteristics of the Deurema simulation environment, the
implementation is very simple and tracks its own execution by means of an execution log.
Obviously, the drawback of this simple implementation is that no meaningful domain specific
behavior is executed. However, each smart home software module triggers one feedback loop
module at a higher layer as shown in Figure D.48. Each feedback loop comprises a full MAPE
cycle, whereas the adaptation activities are again modeled as black boxes that trace their
invocation by means of an execution log. In this scenario, each smart home module instance
has a corresponding feedback loop module instance. All feedback loops refer to the same
template description, which is the full MAPE cycle. For the performance evaluation there are
two different scenarios. At first, the number of smart home and feedback loop pairs is constant
and the number of simulation steps is increased. Second, the simulation steps are fix and the
number of pairs is increased. Therefore, on the one hand, this scenario shows basic metrics for
multiple independent module instances by means of smart home and feedback loop pairs. On
the other hand, there is the trigger dependency between a smart home and its corresponding
feedback loop module. Furthermore, the intra-loop coordination of the feedback loop must be
considered during a simulation.

s1:Status

<<
La
ye
r>
>

L-
1

<<
La
ye
r>
>

L-
0

<<SystemTemplate>>

SmartCity

<<SoftwareModule>>

h1:SmartHome

10s

<<SoftwareModule>>

h2:SmartHome

10s

<<FeedbackLoopModule>>

eon1:EnergyOptimization
<<FeedbackLoopModule>>

eon2:EnergyOptimization

s2:Status

<<SoftwareModule>>

hx:SmartHome

10s

<<FeedbackLoopModule>>

eonx:EnergyOptimization

sx:Status

...

...

...
<<FeedbackLoopModuleTemplate>>

EnergyOptimization

<<Monitor>> <<Plan>> <<Execute>><<Analyze>>
Monitor Done

Figure D.48: Smart home simulation scenario

– 363 –

Appendix D. Simulation Rules

Smart Car
A more complex simulation scenario is sketched in Figure D.49. This scenario comprises mul-
tiple collaboration instances and thus extends the smart home scenario by using the Deurema
collaboration concept. In this scenario, there are always two cars with two corresponding
feedback loops, where one car plays a leader role and the other car realizes a follower role
within a platoon collaboration. The interaction is integrated into the feedback loop by means
of a heart beat protocol as comprehensively discussed in Section 5.5. As in the smart home
scenario, all adaptation effects are modeled as black boxes that trace their execution. This
scenario is investigated in two variants. At first, the number of platoon collaboration is fix
and the number of simulation steps is increased. Second, the simulation steps remain fix and
the number of collaboration instances is increased. Thereby, each collaboration comprises
exactly one leader and follower car as shown in Figure D.49.

ms1:ModeSwitch

<<
La
ye
r>
>

L-
1

<<
La
ye
r>
>

L-
0

l:Leader

<<Collaboration>>

p: Platoon
f:Follower

<<SystemTemplate>>

SmartCity

<<FeedbackLoopModule>>

sc1:Self-Configuring
<<FeedbackLoopModule>>

sc2:Self-Configuring

<<SoftwareModule>>

sc2:SmartCar

10s

<<SoftwareModule>>

sc1:SmartCar

10s

ms2:ModeSwitch

<<FeedbackLoopModuleTemplate>>

[Leader] Self-Configuring

<<Monitor>> <<Plan>> <<Execute>><<Analyze>>
Monitor Done

msx:ModeSwitch

l:Leader

<<Collaboration>>

px: Platoon
f:Follower

<<FeedbackLoopModule>>

scx:Self-Configuring
<<FeedbackLoopModule>>

scx+1:Self-Configuring

<<SoftwareModule>>

scx+1:SmartCar

10s

<<SoftwareModule>>

scx:SmartCar

10s

msx+1:ModeSwitch

...

...

...

<<FeedbackLoopModuleTemplate>>

[Follower] Self-Configuring

<<Monitor>> <<Plan>> <<Execute>><<Analyze>>
Monitor Done

c

<<Interaction>>

Leader:HeartBeat

c

<<Interaction>>

Follower:HeartBeat

Figure D.49: Smart car simulation scenario

– 364 –

D.2. Simulation Metrics

Increasing Simulation Steps
The performance metrics of the smart home and smart car scenario for a constant number of
module and collaboration elements, but an increasing number of simulation steps is shown
in Table D.1. A visualization is depicted in Figure D.50. The number of pair respectively
collaboration instances is ten. The simulator uses a random-based scheduling algorithm. The
needed simulation time increases with the number of simulation steps, whereas the smart home
scenario is faster than the smart car scenario. The difference in the execution times between
both is because of the different complexity of the setting. For the smart car scenario, the
Deurema execution environment must additionally consider collaborations between modules.

Table D.1: Performance metrics for an increasing number of simulation steps for the smart
home and smart car scenario. The time is measured in milliseconds.

Simulation Steps Execution Time (ms)

Smart Home

1 40
10 1.350
50 7.947
100 18.850
500 176.110

1.000 486.620

Smart Car

1 66
10 2.756
50 15.121
100 67.894
500 534.283

1.000 1.305.783

Number of instances: 10; Initial build of the megamodel for smart home scenario: 254 ms;
Initial build smart car: 657 ms; The mean execution time for one simulation steps over all
timing measurements is about 415 ms for the smart home scenario and 1160 ms for the smart
car scenario.

– 365 –

Appendix D. Simulation Rules

0,001

0,01

0,1

1

10

100

1000

10000

1 10 50 100 500 1000

se
co

n
d

s

simulation steps

Smart Home

Smart Car

Figure D.50: Simulation metric for increasing simulation steps. Measured time is in seconds.
Each simulation run was twenty times repeated and the mean value is plotted in the diagram.
The corresponding values are depicted in Table D.1.

Increasing Simulation Instances

The performance metrics of the smart home and smart car scenario for a constant number of
simulation steps, but increasing number of instances is shown in Table D.2. A visualization
is depicted in Figure D.51. The number of simulation steps is one hundred. The simulator
uses a random-based scheduling algorithm. The needed simulation time increases with the
number of instances, whereas the smart home scenario is faster than the smart car scenario.
The increased simulation time is caused by the increasing complexity of the Deurema model
and thus, the increasing time of the graph pattern matching via the application of simulation
rules and corresponding state annotations.

0,001

0,01

0,1

1

10

100

1000

10000

1 10 20 50 100

se
co

n
d

s

number of instances

Smart Home

Smart Car

Figure D.51: Simulation metric for scaling simulation instances. Measured time is in seconds.
Each simulation run was twenty times repeated and the mean value is plotted in the diagram.
The corresponding values are depicted in Table D.2.

– 366 –

D.2. Simulation Metrics

Table D.2: Performance metrics for an increasing number of simulation instances for the smart
home and smart car scenario. The time is measured in milliseconds.

Pairwise Instances Modules Collaborations Execution Time (ms) Initial Build (ms)

Smart Home

1 2 0 9.264 127
10 20 0 19.460 254
20 40 0 28.080 416
50 100 0 58.482 972
100 200 0 245.853 2.014

Smart Car

1 4 1 13291 175
10 40 10 63.114 657
20 80 20 70.548 945
50 200 50 293.400 2.663
100 400 100 1.627.111 6.692

Number of simulation steps: 100; The metric instance refers to the pair of smart home module
and corresponding feedback loop respectively to a complete leader-follower setting of a platoon
collaboration; The initial build refers to the first application of the simulation rules and
corresponding annotation of state information within the Deurema model.

In summary, this section shows some basic execution metrics of two scenarios for the
Deurema execution framework. Complex investigations that pinpoint to the execution metrics
of different parts in the Deurema execution framework such as the interpreter, simulator,
inference engine, model queries, or adaptation effects are not in the focus of this thesis and
are a good starting point for future work.

– 367 –

List of Figures

List of Figures

1.1. Overview of goals . 3

2.1. External adaptation and MAPE-K feedback loop 14
2.2. Hierarchy of self-* properties . 16
2.3. System type evolution . 20
2.4. Original and its model . 22
2.5. Metamodel with corresponding model . 23
2.6. Megamodel containing models and relationships 26
2.7. Graph transformation rule . 28
2.8. Eurema Feedback Loop Diagram . 30
2.9. Eurema Layer Diagram . 31
2.10. Collaboration terms . 33
2.11. Smart city running example . 36

4.1. Overview . 58
4.2. Smart city running example: Deurema adaptive SoS modeling 59
4.3. Modeling the adaptation logic in Deurema . 61
4.4. Deurema knowledge as runtime models . 63
4.5. Deurema system interactions via collaborations 64
4.6. Deurema adaptive SoS architecture . 65
4.7. Deurema analysis . 67
4.8. Simulating Deurema models . 68
4.9. Realization of Deurema models . 69

5.1. Smart city running example: Deurema system modeling 72
5.2. Deurema metamodel of core concepts . 73
5.3. Deurema system template example . 75
5.4. Smart city running example: Deurema runtime models 76
5.5. Runtime reflection model types . 77
5.6. Runtime system models . 78
5.7. Runtime context models . 79
5.8. Runtime adaptation model types . 79
5.9. Change and evaluation model . 80
5.10. Variability and modification model . 81
5.11. Runtime causal connection model types . 83
5.12. MAPE feedback loop with runtime models . 84
5.13. Sketch of a self-configuring smart car with runtime models 86
5.14. Deurema runtime model . 88
5.15. Deurema runtime model summary . 89
5.16. Smart city running example: Deurema modules 90
5.17. Deurema module templates . 91

– 369 –

List of Figures

5.18. Variables and runtime model views in module templates 93
5.19. Smart city running example: Deurema feedback loop template 94
5.20. Deurema FLD . 95
5.21. Feedback loop activities as behavioral models 97
5.22. Deurema FLD runtime models . 100
5.23. Deurema Self-Configuring feedback loop template 103
5.24. Smart city running example: Deurema software module template 104
5.25. Deurema Software Module Diagram . 104
5.26. Deurema SMD example . 105
5.27. Smart city running example: Deurema application module template 107
5.28. Deurema Application Component Diagram 107
5.29. Deurema ACD runnables and ports . 109
5.30. Deurema ACD runtime models . 111
5.31. Deurema ACD port and task combinations 112
5.32. ACD example . 114
5.33. Smart city running example: Deurema behavior module template 115
5.34. Deurema Behavior Rule Diagram . 117
5.35. Behavior rule property combinations . 119
5.36. BRD rules and runtime models . 120
5.37. Derived runtime model operation types . 121
5.38. BRD rule example . 122
5.39. Smart city running example: Deurema module trigger dependencies 123
5.40. Deurema module trigger . 124
5.41. Deurema LD example . 126
5.42. Smart city running example: Deurema collaborations 128
5.43. Deurema collaboration modeling dimensions 128
5.44. Deurema collaboration structure . 129
5.45. Collaboration structure example . 130
5.46. Collaboration knowledge specification . 131
5.47. Deurema collaboration choreography . 132
5.48. Choreography interaction example . 133
5.49. Deurema interaction templates . 134
5.50. Interaction template example using a message 135
5.51. Interaction template example using a service 136
5.52. Interaction template example using a model message 137
5.53. Delayed synchronization example . 138
5.54. Message property example . 139
5.55. Interaction role interface . 140
5.56. Collaboration role integration . 141
5.57. Deurema interaction trigger . 142
5.58. Deurema collaborative elements . 143
5.59. Collaboration deployment . 144
5.60. Collaboration role delegation . 145
5.61. Smart city running example: Deurema reflection and adaptation 146
5.62. Deurema reflection metamodel . 147
5.63. Module reflection example . 148
5.64. System reflection example . 148

– 370 –

List of Figures

5.65. Collaboration reflection example . 149
5.66. Deurema variability model . 150
5.67. Reconfiguration example . 151
5.68. Reconfiguration space . 152
5.69. Resolved variable configuration . 153
5.70. Deurema adaptation . 154
5.71. Module meta-adaptation example . 155
5.72. System meta-adaptation example . 156
5.73. Collaboration meta-adaptation example . 157
5.74. Smart car running example modeled in Deurema 159
5.75. Smart city running example modeled in Deurema 162

6.1. Smart city running example: Deurema analysis 167
6.2. Deurema analysis overview . 168
6.3. Causal dependencies in a FLD . 170
6.4. Causal dependency paths in FLD . 171
6.5. Causal dependencies in BRD . 173
6.6. Module trigger dependency . 174
6.7. Collaboration trigger dependencies . 175
6.8. Interaction message dependency . 176
6.9. Analysis of the knowledge purpose . 177
6.10. Analysis of reflective knowledge dependencies 178
6.11. Adaptation purpose in FLD . 179
6.12. Adaptation purpose in BRD . 180
6.13. Exit on analyze pattern . 182
6.14. Combining interaction message types and message flow 182
6.15. Analysis rules for combining knowledge and causality 185
6.16. Analysis of hierarchical and layered control 187
6.17. Layered trigger design flaw . 188
6.18. Analysis of causality knowledge design flaw 189
6.19. Analysis of architectural design flaws . 190

7.1. Smart city running example: Deurema simulation 194
7.2. Deurema state model for modules and interactions 195
7.3. Simulation rule for detecting waiting modules 197
7.4. Simulation rule detecting a preenabled interaction 198
7.5. Deurema state model for contained module elements 199
7.6. Simulation rule for detecting a preenabled operation 200
7.7. Deurema controlled elements . 202
7.8. Deurema behavior models . 204
7.9. Deurema interaction . 205
7.10. Deurema simulation workflow . 206
7.11. Deurema simulation run example . 209
7.12. Smart city running example: Deurema runtime analysis 211

8.1. Smart city running example: Deurema realization 216
8.2. Realized Deurema modules . 217
8.3. Layered AUTOSAR architecture . 218

– 371 –

List of Figures

8.4. AUTOSAR components, ports, and interfaces 218
8.5. Deurema modules as AUTOSAR compositions 221
8.6. Deurema software module as AUTOSAR component 223
8.7. AutonomousDriving and AdaptiveLightControl Deurema module templates 224
8.8. AutonomousDriving as AUTOSAR component architecture 224
8.9. AdaptiveLightControl as AUTOSAR component architecture 225
8.10. Embedded control model . 226
8.11. Development stages in the embedded domain 228
8.12. Verification steps during the adaptive SoS modeling with Deurema 229
8.13. SystemDesk software tool . 232

9.1. Smart city running example: Deurema application 233
9.2. Traffic Monitoring System modeled with Deurema 235
9.3. Smart home modeled with Deurema . 239
9.4. Mapping DEECo concepts to Deurema . 243

11.1. Thesis goals and modeling language requirements 271

A.1. Deurema system and template metamodel . 291
A.2. Deurema module template metamodel . 292
A.3. Deurema feedback loop template metamodel 293
A.4. Deurema behavior module template metamodel 294
A.5. Deurema application module template metamodel 295
A.6. Deurema collaboration metamodel . 296
A.7. Deurema message concept . 297
A.8. Deurema variable types . 298
A.9. Deurema view delegation concept . 299

B.1. Message properties . 301
B.2. Interaction scenarios with multiple senders and receivers 302

C.1. Inference engine rule example . 306
C.2. Overview of annotation types for causal dependencies 307
C.3. Overview of annotation types for knowledge dependencies 308
C.4. Overview of annotation types for the adaptation purpose 308
C.5. Overview of annotation types for combined dependencies and patterns 309
C.6. R01CausalDependency . 310
C.7. R02ConstraintCausalDependency . 310
C.8. R03CausalDependency . 310
C.9. R04ClosureDependency . 311
C.10.R05ClosureDependency . 311
C.11.R06Path . 311
C.12.R07DestructionPath . 312
C.13.R08TriggerDependency . 312
C.14.R09ClosureTriggerDependency . 312
C.15.R10LayeredTriggerDependency . 313
C.16.R11DeferredCollaborationTrigger . 313
C.17.R12InAdvanceCollaborationTrigger . 313
C.18.R13InBetweenCollaborationTrigger . 314

– 372 –

List of Figures

C.19.R14DefferredInterleaving . 314
C.20.R15InAdvanceInterleaving . 314
C.21.R16InterleavingCollaborationTrigger . 315
C.22.R17CommunicationFlow . 315
C.23.R18UniDirectionInteractionMessageDependency 316
C.24.R19BiDirectionInteractionMessageDependency 316
C.25.R20BiDirectionalCollaboration . 317
C.26.R21UniDirectionalCollaboration . 317
C.27.R22SelfRepresentative . 317
C.28.R23ContextRepresentative . 318
C.29.R24RequirementRepresentative . 318
C.30.R25ChangeRepresentative . 318
C.31.R26SensorRepresentative . 319
C.32.R27EffectorRepresentative . 319
C.33.R28Relective . 319
C.34.R29Changeable . 320
C.35.R30CausalConnected . 320
C.36.R31KnowledgeAccessRead . 320
C.37.R32KnowledgeAccessRead . 321
C.38.R33KnowledgeAccessRead . 321
C.39.R34KnowledgeAccessWrite . 321
C.40.R35KnowledgeAccessAnnotate . 322
C.41.R36KnowledgeAccessCreate . 322
C.42.R37KnowledgeAccessDestroy . 322
C.43.R38KnowledgeAccessModify . 323
C.44.R39ReflectDependency . 323
C.45.R40LayeredReflectDependency . 323
C.46.R41AffectDependency . 324
C.47.R42LayeredAffectDependency . 324
C.48.R43AdaptationPurposeMonitor . 325
C.49.R44AdaptationPurposeAnalyze . 325
C.50.R45AdaptationPurposePlan . 325
C.51.R46AdaptationPurposeExecute . 326
C.52.R47AdaptationPurposeMAPE . 326
C.53.R48AdaptationPurposeCollector . 326
C.54.R49AdaptationPurposeCollector . 327
C.55.R50AdaptationPurposeAnalyzer . 327
C.56.R51AdaptationPurposeAnalyzer . 327
C.57.R52AdaptationPurposeAnalyzer . 328
C.58.R53AdaptationPurposeAnalyzer . 328
C.59.R54AdaptationPurposePlanner . 328
C.60.R55AdaptationPurposePlanner . 329
C.61.R56AdaptationPurposeSensor . 329
C.62.R57AdaptationPurposeSWC . 329
C.63.R58AdaptationPurposeActuator . 330
C.64.R59AdaptationPurposeSWA . 330
C.65.R60AdaptationPurposeCompute . 330

– 373 –

List of Figures

C.66.R61AdaptationPurposeSenseEffect . 331
C.67.R62AdaptationPurposeSensingTask . 331
C.68.R63AdaptationPurposeEffectingTask . 331
C.69.R64AdaptationPurposeComputingTask . 332
C.70.R65AdaptationPurposeComponentCentricTask 332
C.71.R66AccessPatternMonitorModify . 332
C.72.R67AccessPatternExecuteModifyViolation . 333
C.73.R68AccessPatternAnalyzeRead . 333
C.74.R69AccessPatternPlanReadViolation . 333
C.75.R70KnowledgeAware . 334
C.76.R71KnowledgeModification . 334
C.77.R72KnowledgeDerivation . 334
C.78.R73KnowledgeTransition . 335
C.79.R74KnowledgePropagation . 335
C.80.R75KnowledgeSink . 335
C.81.R76KnowledgeSource . 336
C.82.R77MAPEFeedbackLoop . 336
C.83.R78AMPEAntiPattern . 337
C.84.R79AntiPatternReflect . 337
C.85.R80AntiPatternAffect . 338
C.86.R81ExitAfterAnalyzePattern . 338
C.87.R82MissingCommunication . 339
C.88.R83AntiPatternCollaboration . 339

D.1. Deurema simulation rules dependency graph 341
D.2. R01DeployedSystem . 342
D.3. R02DeployedSubsystem . 342
D.4. R03DeployedModule . 342
D.5. R04DeployedInteraction . 343
D.6. R05DeployedInteraction . 343
D.7. R06WaitingModule . 344
D.8. R07WaitingEventTrigger . 344
D.9. R08WaitingClock . 345
D.10.R09EnabledEventTrigger . 345
D.11.R10EnabledTimedTriggerWithEventTrigger 346
D.12.R11EnabledTimedTriggerWithoutEventTrigger 346
D.13.R12WaitingModuleTriggeredByEvent . 346
D.14.R13WaitingModuleTriggeredByTime . 347
D.15.R14WaitingModuleTriggeredByEventAndTime 347
D.16.R15PreenabledModule . 347
D.17.R16EnabledModule . 348
D.18.R17PreEnabledInteraction . 348
D.19.R18PreEnabledInteraction . 349
D.20.R19PreEnabledInteraction . 349
D.21.R20PreEnabledInteraction . 350
D.22.R21EnabledInteraction . 350
D.23.R22ActiveModule . 350

– 374 –

List of Figures

D.24.R23WaitingOperation . 351
D.25.R24ActiveChild . 351
D.26.R25PreEnabledOperation . 352
D.27.R26PreEnabledOperation . 352
D.28.R27EnabledChild . 352
D.29.R28EnabledOperation . 353
D.30.R29ActiveOperation . 353
D.31.R30ExecutedOperation . 354
D.32.R31ExecutedOperation . 354
D.33.R32PostactiveModule . 355
D.34.R33ExecutedModule . 355
D.35.R34WaitingRule . 356
D.36.R35PreEnabledRule . 356
D.37.R36PreEnabledRule . 357
D.38.R37EnabledChild . 357
D.39.R38EnabledRule . 358
D.40.R39ActiveRule . 358
D.41.R40ActiveChild . 358
D.42.R41ExecutedRule . 359
D.43.R42ActiveInteraction . 359
D.44.R43ActivatedInteraction . 360
D.45.R44WaitingModelOperation . 360
D.46.R45WaitingModuleOperation . 361
D.47.R46ExampleDomainPattern . 361
D.48.Smart home simulation scenario . 363
D.49.Smart car simulation scenario . 364
D.50.Metrics for simulation steps . 366
D.51.Metrics for scaling simulation instances . 366

– 375 –

List of Tables

List of Tables

2.1. Categories of communication . 34

5.1. Change model examples for parameter and dynamic adaptation 82
5.2. Trigger and action combination for behavior models 98
5.3. Domain knowledge and domain functionality dimensions 101

6.1. Access patterns for combining knowledge and adaptation purposes 183

10.1. Requirements and general purpose modeling languages 246
10.2. Requirements and domain specific modeling approaches 251
10.3. Requirements and formal modeling approaches 257
10.4. Requirements and frameworks . 260
10.5. Requirements and own research group experiences 265

B.1. Message properties execution scenarios . 303

D.1. Performance metrics for increasing simulation steps 365
D.2. Performance metrics for increasing simulation instances 367

– 377 –

List of Abbreviations

List of Abbreviations

ABS Antilock Braking System. .36
ACD Application Component Diagram . 108
ADL Architecture Description Language . 247
ALC Adaptive Light Control . 36
ASR Traction Control System . 36
AUTOSAR Automotive Open System Architecture . 217
BPMN Business Process Model and Notation . 23
BRD Behavior Rule Diagram . 116
CPS Cyber-Physical System. .16
DEECo Distributed Emergent Ensembles of Components . 241
Deurema Distributed Eurema with Collaborations . 57
DSL Domain Specific (Modeling) Language . 253
EBCS Ensemble-Based Component System . 241
ECU Electronic Control Unit . 27
ESP Electronic Stability Program . 36
Eurema Executable Runtime Megamodels . 29
FLD Feedback Loop Diagram . 29
FoS Federation of Systems. .18
fUML Foundational UML . 249
HiL hardware-in-the-loop . 227
IoT Internet of Things . 18
KAOS Knowledge Acquisition in Automated Specification . 24
LD Layer Diagram. 29
LHS left-hand-side . 27
LTL Linear Temporal Logic . 80
MAPE Monitor, Analyze, Plan, and Execute. .14
MAPE-K MAPE activities share a common knowledge base . 14
MART Models@runtime . 23
MDA Model-Driven Architecture . 21
MDE Model-Driven Engineering . 20
MiL model-in-the-loop . 227

– 379 –

List of Abbreviations

MT model test . 227
mUML Mechatronic UML . 35
NCPS Networked Cyber-Physical System . 17
NES Networked Embedded System . 16
OCL Object Constraint Language . 80
OMG Object Management Group . 21
PIM Platform Independent Model . 21
PSM Platform Specific Model . 21
RHS right-hand-side. .27
SAS Self-Adaptive System . 13
SiL software-in-the-loop . 227
SMD Software Module Diagram . 105
SoaML Service-oriented architecture Modeling Language . 35
SoS System of Systems . 18
SPLE Software Product Line Engineering. .15
SysML Systems Modeling Language . 245
ULSS Ultra-Large-Scale Systems . 18
UML Unified Modeling Language . 21
QoS Quality of Service . 80

– 380 –

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit mit dem Titel ”Modeling Collabo-
rations in Adaptive Systems of Systems“ selbstständig verfasst, andere als die angegebenen
Quellen und Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe. Die Arbeit wurde zuvor in keiner
anderen Hochschule und in keinem anderen Studiengang als Prüfungsleistung eingereicht.

Potsdam, 11. Oktober 2016 Unterschrift: .

Sebastian Wätzoldt

Statutory Declaration

I declare that I have authored this thesis entitled ”Modeling Collaborations in Adaptive
Systems of Systems” independently, that I have not used other than the referenced sources
and resources, and that I have explicitly marked all material which has been quoted either
literally or by content from the used sources. This thesis was neither submitted to another
university nor to another course of study.

Potsdam, October 11, 2016 Signature: .

Sebastian Wätzoldt

	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	Introduction
	Research Challenges and Goals
	Contributions
	Structure

	Preliminaries
	System Types
	Self-Adaptive System
	Cyber-Physical System
	Networked Cyber-Physical System
	System of Systems
	Internet of Things
	Adaptive Systems of Systems

	Model-Driven Engineering
	Model
	Metamodel
	Runtime Model
	Model Management
	Model Manipulation

	Eurema Modeling Language
	Collaborations in SoS
	Running example

	Modeling Language Requirements
	Characteristics
	Requirements
	State of the Art

	Overview
	Deurema Modeling Language
	Modeling the Adaptation Logic
	Knowledge as Runtime Models
	Modeling Collaborations
	Modeling the Adaptive SoS Architecture

	Deurema Analysis
	Deurema Simulation
	Deurema Realization

	Deurema Modeling Language
	Deurema Core Concepts
	Deurema Runtime Models
	Runtime Model Categorization
	Runtime Model Integration
	Runtime Model Example
	Runtime Model Metamodel
	Runtime Model Summary

	Deurema Module Templates
	Template Variables and Runtime Model Views
	Feedback Loop Module Template
	Software Module Template
	Application Module Template
	Behavior Module Template

	Deurema Adaptive System Architecture
	Deurema Collaboration
	Collaboration Structure
	Collaboration Knowledge
	Collaboration Choreography
	Collaboration Role Interfaces
	Collaboration Role Mapping
	Collaboration Deployment

	Deurema Reflection, Reconfiguration and Adaptation
	Runtime Reconfiguration
	Runtime Adaptation
	Meta-Adaptation

	Deurema Modeling Language Discussion
	Summary of Deurema concepts
	Design Decisions
	Coverage of Requirements

	Analysis
	Basic Metrics
	Causality
	Knowledge
	Adaptation Purpose

	Complex Metrics
	Combining Causality and Adaptation Purpose
	Combining Knowledge and Adaptation Purpose
	Combining Knowledge and Causality
	Complex Analysis Rule Combination

	Architectural Patterns and Design Smells
	Discussion

	Simulation
	Execution State Models
	Modules and Interactions
	Module Template Elements

	Interpreter
	Execution Semantic Module
	Execution Semantic Deurema Elements
	Execution Semantic Behavior Model
	Execution Semantic Interaction

	Simulator
	Simulation Run Example
	Runtime Analysis
	Discussion

	Realization
	Scope
	AUTOSAR
	Systems and Modules
	Software Module Template
	Application Module Template
	Feedback Loop Module Template
	Behavior Module Template
	Discussion
	Deurema Modeling Process
	Software Tools

	Application
	Case Studies
	Traffic Monitoring System
	Smart Home

	Ensemble-Based Component Systems

	Related Work
	General Purpose Modeling Languages
	Domain Specific Languages and Approaches
	Frameworks and Patterns
	Experience from the Research Group
	Discussion

	Conclusion
	Discussing Goals and Contribution
	Modeling Language Requirements and Deurema
	Future Work

	Bibliography
	Author's References
	Other References

	Appendix Deurema Metamodel
	Appendix Interaction Message
	Appendix Analysis Rules
	Annotation Types
	Analysis Rules

	Appendix Simulation Rules
	Simulation Rules
	Simulation Metrics

	List of Figures
	List of Tables
	List of Abbreviations

