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ABSTRACT
The design of embedded systems is a complex activity that
involves a lot of decisions. With high performance demands
of present day usage scenarios and software, they often in-
volve energy hungry state-of-the-art computing units. While
focusing on power consumption of computing units, the phys-
ical properties of software are often ignored. Recently, there
has been a growing interest to quantify and model the phys-
ical footprint of software (e.g. consumed power, generated
heat, execution time, etc.), and a component based approach
facilitates methods for describing such properties. Based on
these, software architects can make energy-efficient software
design solutions. This paper presents power consumption
and execution time profiling of a component software that
can be allocated on heterogenoeus computing units (CPU,
GPU, FPGA) of a tracked robot.

Categories and Subject Descriptors
C.4 [Computer systems organization]: Performance of
systems—Performance attributes; D.2.8 [Software Engi-
neering]: Metrics—Performance measures

General Terms
MEASUREMENT, PERFORMANCE

Keywords
software, component-based, software profiling, power con-
sumption, GPU, CPU, FPGA

1. INTRODUCTION
The design of present day embedded systems and the ac-

companying software is becoming ever more complex, and
with an emergence of specialized computing units for accel-
erating certain operations, this trend is growing. Along with
benefits, this also carries some drawbacks, i.e. additional
complexity which generates a variety of (side–)effects that
are hard to ignore while designing software. From the cyber-
physical systems theory perspective [11, 7], software is char-
acterized by physical properties, which are apparent in its
requirement and consumption of resources, e.g. time to exe-
cute, the power consumed, the generated heat, etc. [12]. For
software architects this presents additional considerations in
the software design process. Component based software en-
gineering facilitates techniques for expressing these system
characteristics in the form of extra–functional properties [3],

based on which software architects perform software design
decisions.

This paper presents the collection process and analysis of
extra–functional properties for a component based software
architecture deployable on multiple computing units within
a heterogeneous computing environment. The focus is on
execution time which reflects the system performance and
power consumption which is increasingly important in both
everyday computing and remote–hazardous environments.

1.1 Background
This research is the continuation of an effort to create a de-

cision making framework for allocation of component based
software on a heterogeneous computing platform [10]. The
allocation decision is based on the specified extra–functional
properties by the software architect. Assuming that one
software component can be allocated on different comput-
ing units within a computing platform, software architect
is faced with a large decision space mn (where m is the
number of computing units and n is the number of software
components). Therefore, we have created a multi–criterion
framework that presents a software architect with an opti-
mal allocation. However, it was only tested on computer
generated data, so in order to improve the reliability of the
framework, this paper provides information about collecting
real–world data that will be used to fine tune it.

1.2 System description
The software components profiled in this paper are the

part of the software architecture, which is designed for a
tracked robot, carrying a heterogeneous computing plat-
form. The platform is composed of commercial off–the–
shelf components (COTS), selected in a way to minimize
power consumption. It consists of a multicore CPU (Intel
i3-3240), a GPU (Radeon HD7750 1GB low profile) and an
FPGA (Xilinx Spartan 6)1. These components are hosted
by a mini-ITX Asus P8H61-I motherboard with Kingston
HyperX SSD (256GB) and RAM (8GB). For computer vi-
sion it currently uses Microsoft Kinect, and the operating
system is Linux Ubuntu 14.10 LTS.
Figure 1 presents an overview of the software components.
In this paper, only two components are analyzed; Image
filtering and Object detection. The Image filtering compo-
nent can be allocated on (i.e. is implemented for) a CPU, a
GPU and an FPGA, while the Object detection component
can be allocated on a CPU and a GPU. The following sec-

1LogiPi board, a Kickstarter FPGA project for RaspberryPi
– http://valentfx.com/logi-pi/
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Figure 1: Simplified software architecture layout

tion presents the collection of data for an average execution
time and an average power consumption of these compo-
nents. The collected data is intended to be used by software
architects to make decisions about software component al-
location.

2. MEASUREMENT AND RESULTS
The Image filtering and the Object detection components

are implemented in Java, however both use Java native inter-
face (JNI) to access OpenCL (AMD’s C++ implementation)
and OpenCV (C++ implementation). Image filtering com-
ponent provides OpenCL kernels for Gaussian blur, Sobel,
Erode, Dilate and Hysteresis filters, while Object detection
component uses OpenCL extensions for OpenCV to detect
objects (using a custom Haar’s classifier for arrow detec-
tion). For the FPGA, IP cores for Gaussian blur, Sobel,
Erode, Dilate and Hysteresis filters are provided by LogiPi.

2.1 Power consumption
The method used to profile the power consumption of the

software components is similar to the one presented by Col-
lange et al. [2]. While measuring the voltage and current of
the system2, power consumption of the CPU was monitored
by Intel’s Power Gadget tool. Repeated measurements have
shown that while idling the average power consumption of
the entire system was 32.38W , however with the GPU re-
moved it was only 13.59W . Hence, the average power con-
sumption of the idling GPU was 18.78W .

Image filtering component
To acquire the average power consumption of a component,
the functions from the components were called 25 times,
while measuring voltage and current. 25 repetitions are
rounded up from 21, necessary to statistically achieve con-
fidence level of 95% with 10% error margin. Table 1 shows
the results; average power consumption of the system, SD,
variance and the average power consumption of the active
software component, i.e. a raise of the average power con-
sumption while the component was active.

Figure 2 shows the comparison of an average power con-
sumption for different function calls and different allocations
of the Image filtering component. For the FPGA, the IP
cores only supported small images, but regardless of this
it consumed at least 10 times less power than other op-
tions. Surprisingly, while filtering high–resolution images,
the CPU consumed the most power (which is related to ex-
ecution time, addressed in subsection 2.2). To further test
this (not displayed on Figure 2), both the CPU and the
GPU software allocations were presented with a 8192×8192

2With UNI-T UT151C multimeter

Table 1: Filtering component power consumption
(per call)

Filters
Avg.pwr.
system

[W]
SD (σ) Var (σ2)

Avg.pwr.
sw.comp.

[W]

G
P

U

S
m

a
ll Gauss 35.8794 1.3739 1.8877 3.5006

Gauss, sobel 36.7176 2.2792 5.1950 4.3388
Gauss, sobel, dilate 37.7720 3.6222 13.1208 5.3932

B
ig

Gauss 36.5306 1.6057 2.5784 4.1518
Gauss, sobel 36.7205 2.1783 4.7451 4.3417
Gauss, sobel, dilate 37.9467 3.8378 14.7292 5.5679

Sobel (biggest) 53.9662 7.4789 55.9349 21.5874

C
P

U

S
m

a
ll Gauss 36.5834 1.2332 1.5209 4.2046

Gauss, sobel 37.1204 2.0879 4.3596 4.7416
Gauss, sobel, dilate 38.0295 3.3541 11.2501 5.6507

B
ig

Gauss 37.0105 1.8153 3.2956 4.6317
Gauss, sobel 38.1082 3.4041 11.5883 5.7294
Gauss, sobel, dilate 39.3136 5.5675 30.9974 6.9349

Sobel (biggest) 45.1727 12.0519 145.2498 12.7939

F
P

G
A

S
m

a
ll Gauss 2.1049 0.1003 0.0100 0.3651

Gauss, sobel 2.1187 0.1134 0.0128 0.3788
Gauss, sobel, dilate 2.1284 0.0986 0.0097 0.3885

* big image: 1280×720px, small image: 320×240 px, biggest: 8192×8192 px

px (8K) image to perform the Sobel filter. In that case (see
Table 1), GPU consumed more power.
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Figure 2: Average power consumption rankings

An interesting observation is shown in Figure 3. When allo-
cated on the GPU, the Image filtering component process-
ing small sized images consumes less power than the CPU,
which is attributed to data handling operations, as shown
by Collange et al. [2]. For software architects this means,
that while a component is allocated on a GPU, in reality
the code cannot be executed without a CPU host. There-
fore, components allocated on a GPU will always attribute
to power consumption from both a CPU and a GPU. The
spikes visible on the graph represent 25 function calls.

Object detection component
The average power consumption of the Object detection
component is shown in Table 2. Since this measurement was
automated, the number of repetitions could be increased, so
the measurement consisted of 400 function calls of the Ob-
ject detection component to achieve statistical confidence
level of 99% with error margin of 2.5% (rounded up from
315). From the power consumption perspective, even for
smaller images, the execution of the component on the CPU
consumes less power than the component on the GPU.

Although the average power consumption by the GPU was
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Figure 3: Avg. power consumption of GPU and
CPU for Sobel filter at GPU on a small image (25
function calls, reduced by idle power consumption)

Table 2: Detection component power consumption
(per call)

Img. size
Avg.pwr.
system

[W]
SD (σ) Var (σ2)

Avg.pwr.
sw.comp.

[W]

G
P

U Small 58.3868 14.7791 218.4228 26.0080
Big 69.7237 16.2128 262.8550 37.3449

C
P

U Small 52.4355 3.2249 10.4001 18.6756
Big 51.0544 4.5903 21.0713 20.0567

* big image: 1920x1080px, small image: 853x480px

Table 3: Filtering component execution times
Filters Avg.exec.t. [ms] SD (σ) Var (σ2)

G
P

U

S
m

a
ll Gauss 0.4696 0.0021 0.0000

Gauss, sobel 1.1188 0.0554 0.0030
Gauss, sobel, dilate 1.7822 0.1162 0.0135

B
ig

Gauss 5.4338 0.0035 0.0000
Gauss, sobel 15.1985 1.4826 2.1981
Gauss, sobel, dilate 22.7772 1.5903 2.5292
Sobel (biggest) 115.9208 0,5215 0,2720

C
P

U

S
m

a
ll Gauss 1.1896 0.2481 0.0615

Gauss, sobel 3.2682 0.6001 0.3601
Gauss, sobel, dilate 5.2714 1.1285 1.2736

B
ig

Gauss 13.8018 1.2850 1.6513
Gauss, sobel 32.9411 2.7509 7.5679
Gauss, sobel, dilate 49.0965 4.1844 17.5100
Sobel (biggest) 633.4548 12.8369 164.7860

F
P

G
A

S
m

a
ll Gauss 21.4378 0.0187 0.0003

Gauss, sobel 22.2371 0.0073 0.0001
Gauss, sobel, dilate 21.7476 0.0233 0.0005

* big image: 1280×720px, small image: 320×240px, biggest: 8192×8192 px

37.32W for big images, measurements have shown that for
short bursts it peaks at 51.18W , while for the CPU the peak
was at 29.45W .

2.2 Execution time

Image filtering component
While measuring power consumption, execution time for
each function call was recorded by software, so for both com-
ponents the number of repetitions is the same as for power
consumption measurement.

Table 3 shows the results. For the same filter configuration
the average execution time for the component allocated on

the GPU is better than the one allocated on the CPU, in all
cases, for both small and big images. Nonetheless, it is no-
ticeable that the average execution time largely depends on
the filter configuration (Figure 4). Consequently, in some oc-
casions the CPU performed better than the GPU (e.g. CPU
’Gaussian blur’ vs. GPU ’Gaussian blur, Sobel and Dilate’).
The results show that with filter addition, the average execu-
tion time grows almost in proportion, the most likely reason
for which is the implementation. In order to perform two
filters, the component is called twice because the component
interface exposes single filters, and not their combinations.
To avoid this, pipelining should be implemented, however it
would produce larger number of functions (all combinations)
or reduce flexibility of a component. The implementation of
the component for the FPGA is pipelined, so regardless of
the filter size, one can notice the fairly even execution time
of about 21.8ms. For FPGA standards this is a lot, and
with better implementation it can be fairly close to times
from CPU and GPU.
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Figure 4: Average execution time ranks

To fully stress the Image filtering component allocated on
the CPU and the GPU, 8K image was also tested. As shown
in Table 3, the Sobel filter executed on the GPU is on average
5.5 times faster (without any particular optimizations) than
on the CPU.

Object detection component
The average execution time of the Object detection compo-
nent is presented in Table 4. In all configurations, compo-
nent allocated on the GPU outperformed the one allocated
on the CPU. Strictly from the execution time perspective
the GPU is more efficient in performing the algorithm, how-
ever, measurements have shown that using the same Haar
classifier the CPU performed better in finding the pattern
within the image (the OpenCV version used was 2.4.11).

Table 4: Detection component execution times
Img. size Avg.exec.t. [ms] SD (σ) Var (σ2)

G
P

U Small 6.7713 1.0287 1.0582
Big 16.2945 2.2571 5.0946

C
P

U Small 33.2952 1.6500 2.7225
Big 192.9166 3.2467 10.5412

* big image: 1920x1080px, small image: 853x480px



3. RELATED WORK
There are numerous studies that compare the performance

of CPUs, GPUs and FPGAs. Since the results of the per-
formance are ambiguous in deciding which platform is the
best, authors tend to focus on specific use cases, e.g. image
processing, basic linear algebra subroutines, etc.

A research by Asano et al. reports that for image process-
ing (2D filters), a GPU is by far the best platform, followed
by a CPU, but only for filters up to a certain size, beyond
which an FPGA surpasses both a CPU and a GPU [1]. How-
ever, the experiment results by Pauwels et al., show that for
real–time image processing an FPGA is without doubt the
most suitable platform [6]. A comparison between a CPU
and a GPU by Lee et al., showed that the performance gap
between these platforms is not different in orders of magni-
tude as it is often considered [5].

For software architects this means that the current soft-
ware models must support multiple criteria. There are sev-
eral papers that take into consideration software profiling
from the perspective of energy consumption [8], and a lot
more from the perspective of execution time [9, 4], however
additional research in this area is required for component
based frameworks.

4. CONCLUSION AND FUTURE WORK
This paper presents the result of power consumption and

execution time profiling for the software components that
can be allocated on a heterogeneous computing platform.
Solely based on the average power consumption, an FPGA
seems to be the best choice to allocate the Image filtering
component. Based on execution time, the GPU is the best
choice for both Image filtering and Object detection compo-
nents, in most cases. In some occasions (Table 1), since it
performs the tasks much faster, the GPU consumed on av-
erage less power than the CPU. But, since the upper limit
of the power consumption of the CPU is much less than for
the GPU, for larger tasks the GPU consumed more power
than CPU. However, in cases with less data to handle, the
CPU performs just as well. The CPU has proven to be the
all–round platform in the middle, efficient from both power
consumption and execution time perspective.

Considering the software components in this paper, it is
not resolved which platform is the absolute winner. Each
one is well suited for a particular purpose, i.e. scenario.
The software architect faced with the decision to allocate
software components to a particular computing platform
therefore needs: a) a scenario based decision approach, b)
a decision support framework capable of handling multiple
criteria. Consequently, the extra–functional properties of a
component should reflect its internal implementation, be-
cause its performance is dependent on different scenarios.
With a knowledge of usage scenario and the behavior of
components in a particular scenario, software architects can
make better design decisions.

Finally, the research presented in this paper will be contin-
ued in future focusing on: a) performing power consumption
and execution time profiling for all the components, b) per-
forming profiling for communication channels between the
components, c) improving the measurement technique and
d) creation of a decision support framework for guiding soft-
ware architects faced with a challenge of allocating software
components on heterogeneous computing environments.
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