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ABSTRACT
Driving is a safety critical task that requires a high level of
attention and workload from the driver. Despite this, people
often also perform secondary tasks such as eating or using a
mobile phone, which increase workload levels and divert cog-
nitive and physical attention from the primary task of driving.
If a vehicle is aware that the driver is currently under high
workload, the vehicle functionality can be changed in order to
minimize any further demand. Traditionally, workload mea-
surements have been performed using intrusive means such
as physiological sensors. Another approach may be to moni-
tor workload online using readily available and robust sensors
accessible via the vehicle’s Controller Area Network (CAN).
In this paper, we present details of the Warwick-JLR Driver
Monitoring Dataset (DMD) collected for this purpose, and to
announce its publication for driver monitoring research. The
collection protocol is briefly introduced, followed by statisti-
cal analysis of the dataset to describe its structure. Finally, the
public release of the dataset, for use in both driver monitoring
and data mining research, is announced.
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INTRODUCTION
Driving is a safety critical task that requires a high level of
attention and workload from the driver. Despite this, people
often also perform secondary tasks such as eating or using a
mobile phone, which increase workload levels and divert cog-
nitive and physical attention from the primary task of driving
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[6, 10, 7, 17, 8]. In addition to these, the driver may be un-
der high workload for other reasons, such as dealing with an
incident on the road or holding a conversation in the vehicle.
One possible solution to this distraction problem is to limit
the functionality of in-car devices if the driver appears over-
loaded. This can take the form, for example, of withholding
an incoming phone call or holding back a non-urgent piece of
information about traffic or the vehicle status.

It is possible to infer the level of driver workload from ob-
servations of the vehicle and the driver. Based on these in-
ferences, the vehicle can determine whether or not to present
the driver with new information that might unnecessarily add
to their workload, or aid the driver in other ways. Tradition-
ally, such systems have monitored physiological signals such
as heart rate or skin conductance measures [1, 16, 5]. Such
approaches are not practical for everyday use, however, as
drivers cannot be expected to attach electrodes to themselves
before driving. Other systems have used image processing
for computing the driver’s head position or eye parameters
from driver facing cameras, but these are expensive and can
be unreliable in poor light conditions [9].

A alternative approach, that does not rely on intrusive or un-
reliable inputs, is to use telemetry data accessible via the
CAN-bus [3]. When a driver is performing additional tasks
unrelated to driving and is under higher workload, changes
can be observed in features such as the Steering Wheel Angle
(SWA) [2, 5, 14, 16]. The CAN is a central bus to which all
devices in the vehicle connect and communicate by a broad-
cast protocol [3]. This allows sensors and actuators to be eas-
ily added to the vehicle, enabling the reception and processing
of telemetric data from all modules of the car. This bus and
protocol also enables the recording of these signals, allow-
ing offline data analysis. In mining this data, we aim to build
a system that can recognise when a driver is overloaded and
then act accordingly. Our initial work has shown that features
extracted from the CAN are able to support machine learn-
ing models for predicting the workload of a driver [12] or the
state of a vehicle, such as the current road type [11].

We have previously outlined a protocol for collecting a
dataset for driver monitoring research [13]. In this paper, we
present initial analysis of this dataset and detail its structure.



Table 1: Experiment protocol and mean durations of stages.

Stage Mean duration (s) Std (s)
1 Habituation 1302 269
2 Baseline 280 99
3 0-back (introduction) 10 2
4 0-back 82 9
5 0-back (recovery) 256 59
6 1-back (introduction) 10 2
7 1-back 100 12
8 1-back (recovery) 300 81
9 2-back (introduction) 11 6
10 2-back 113 15
11 2-back (recovery) 294 127

PROTOCOL
The experimental protocol we use is based on that performed
by Reimer and Mehler et al. [9, 5], and is outlined in Table 1.
During the habituation period, the driver is asked to drive as if
they were on a highway to get used to the unfamiliar vehicle
and environment. After approximately 20 minutes (or more
in cases where the driver did not yet appear comfortable), a
baseline period of 4 minutes began. The protocol then alter-
nated between one of the N-back tasks and a recovery period
of normal driving, again of around 4 minutes. The 0-, 1-, and
2-back tasks were presented to the drivers in a random or-
der, and each participant performed each task once. For full
details of the protocol, refer to [13].

All digits in the N-back tasks were repeated regardless of the
shift (in contrast to Reimer and Mehler et al. [9, 5]), the 1-
back task was in effect one digit longer and the 2-back task
was two digits longer, than the 0-back task. This is reflected
in their mean durations shown in Table 1. Other variances in
durations were due to safety concerns, recording quality or
human error. In some cases, for example, the physiological
measures took longer to return to their baseline values and so
the recovery periods were extended. Some events on the road
such as low flying birds or overtaking vehicles, for example,
caused reactions from the driver that were both out of the
control of the experimenter and led to a pause in the protocol
or extension of a stage. In other cases, recording quality led
to changes in the length of the baseline periods.

DATASET ANALYSIS
The DMD is analysed first by investigating the subjective rat-
ings and data streams with respect to the secondary tasks. Fi-
nally, a ground truth for classification is produced.

Task performance and subjective ratings
The error rates for the digit recall tasks are shown in Figure 1.
The number of incorrect responses for the 0-back test were
very low on average, and there were no errors for the major-
ity of participants. In the 1-back test the number of errors
were higher, and for the 2-back task there were even more in-
correct responses on average. In some 2-back test blocks the
participant stopped responding to numbers, and the remain-
der of block was counted as incorrect responses. In some
other cases that were also counted as errors, the participant
responded in the 2-back test was if it were the 1-back test.

Figure 1: Mean error rates (out of 40 recalled digits) of par-
ticipants during each of the secondary tasks. Error bars rep-
resent the standard error.

Figure 2: Mean responses to NASA TLX questions. Error
bars represent the standard error.

When the protocol was complete, the participants were asked
to fill in four NASA-Task Load Index (TLX) questions – one
for normal driving and for each of the N-back tasks. The
TLX asks participants to rate their experiences out of 20 in 6
dimensions, namely: mental demand, physical demand, tem-
poral demand, performance, effort, and frustration. Figure 2
presents the mean responses of the participants by the TLX
Responses in general indicate that driving with the secondary
tasks were harder, and that the difficulty increased with the
delay in the digit recall tasks. The mental demand and effort
dimensions, as expected, reported the largest increase in re-
sponses. The estimated performances decreased with the 1-
and 2-back tasks, reported performance increased on average
for the 0-back test over normal driving.

Analysis of data streams
There were two data streams inspected, namely the physio-
logical and vehicle telemetry data streams. Results of statisti-
cal analyses of both are shown in Table 2, comparing normal
and distracted conditions in two ways to detail properties of
the dataset. First, the mean of measurements over all subjects
during normal (baseline or recovery) periods and distracted
periods (during a secondary task) and were compared using
a two t-test. Second, Analysis of Variance (ANOVA) is used
to determine if there was a significant difference in means
during any of the three secondary task periods and normal
driving. In follow-up to this, a four way pairwise t-test was



Table 2: The p-values from two way t-test and ANOVA for the physiological and selected signals from the vehicle telemetry
data streams. In the heading N represents periods of normal driving, 0, 1, and 2 represents periods of the 0-, 1- and 2-back tests
respectfully, and D is periods where any of the N-back tasks were being performed.

Signal Feature p-value N vs. D N vs. 0 N vs. 1 N vs. 2 0 vs. 1 0 vs. 2 1 vs. 2
ECG-PEAKS raw 0.031 0.006 1.000 0.422 0.050 1.000 1.000 1.000
EDA-PEAKS raw 0.034 0.004 0.605 0.265 0.122 1.000 1.000 1.000
Adaptive Cruise Control Cancel (by brake) STD 0.232 0.056 1.000 0.419 1.000 1.000 1.000 1.000
Brake on STD 0.239 0.057 1.000 0.436 1.000 1.000 1.000 1.000
Engine Speed raw 0.237 0.063 0.414 1.000 1.000 1.000 1.000 1.000
Engine Torque raw 0.053 0.016 0.067 1.000 0.672 1.000 1.000 1.000
Engine Coolant Temperature STD 0.190 0.036 0.362 1.000 1.000 1.000 1.000 1.000
Gear Selected (automatically) raw 0.085 0.012 0.207 1.000 0.556 1.000 1.000 1.000
Steering Wheel Movement Speed STD 0.003 0.066 1.000 0.087 0.055 0.030 0.020 1.000
Steering Wheel Angle STD 0.024 0.471 0.555 0.423 0.968 0.039 0.095 1.000
Suspension Height (front-right) STD 0.091 0.213 0.089 1.000 1.000 0.527 0.228 1.000
Throttle Position raw 0.044 0.010 0.068 1.000 0.473 1.000 1.000 1.000
Yaw Rate STD 0.022 0.532 0.422 0.679 0.715 0.048 0.051 1.000
. . .

(a) Heart rate

Figure 3: Mean heart rate and EDR over all subjects for the
different periods of the trial. Each recovery period is pre-
sented separately and error bars represent the standard error.

performed and normalized by the Bonferroni correction. All
results in this table produced p-values of less than 0.1 in at
least one of the t-test and the ANOVA and any p-value smaller
than 0.05 is highlighted in bold. The authors accept that con-
clusions made from this analysis are limited because it is a
multiple comparisons procedure, but a two-way ANOVA in-
cluding all signals is impractical due to their number.

The physiological data consisted of the ECG and EDA sig-
nals, from which the heart rate and electrodermal response
(EDR) frequencies were extracted respectively, both of which
are measured in beats or responses per minute. The two way
t-test showed a significant difference in all physiological mea-
surements with p < 0.01, and the ANOVA produced a signifi-
cant difference between at least one of the baseline or task pe-
riods (p < 0.05); shown in the top section of Table 2. In the
pairwise t-tests, however, only the difference in mean heart
rate of the 2-back task and normal driving periods was found
to have any significant difference (p < 0.05). Figure 3 shows
the mean heart rate (left) and EDR frequencies (right) com-
puted over the full baseline, task, and recovery periods. Both
physiological measures increased during the N-back tasks,
and increased more with higher difficulty tests.

In the lower section of Table 2 the results of the t-test and
ANOVA are shown for representative signals from the vehi-
cle telemetry data that had a p-value less than 0.1. As well
as the mean of the raw signal values, the standard deviation
(STD) was computed for each signal over a one second slid-
ing window. This produces a feature of the signals where
sample values are equal the STD of the twenty samples be-
fore and after the respective sample in the signal. Signals
that were expected to have a close relationship to the driver
workload were those related directly to the driving controls,
such as the pedals and steering wheel. The analysis shows
that the throttle position and STD of the steering wheel an-
gle speed both have a close relationship to the driving period
(p < 0.05 in both the two way t-test and ANOVA). The STD
of the SWA however, was not as closely related to the driving
period, which was unexpected. In fact, in the data the STD of
the SWA decreased from the baseline during the 0-back task
and increased during the 1- and 2-back tasks.

Signals with indirect relationships to the vehicle controls
were expected to have weak relationships to the driving con-
ditions. These had larger p-values in general than measures
of the vehicle controls, such as with the STDs of both the
suspension measurements and yaw rate. The raw values of
the engine speeds and target gear of the automatic gear box,
however, had relationships more similar to those of the vehi-
cle controls. Other signals that have no obvious link to the
driver were of course expected to have large p-values, and
for the majority this was the case. A small number, including
ACCCancelRequest, engine coolant temperature, and others
redacted from Table 2, had small p-values for the two way
t-test and can only be explained by chance.

Ground truth for classification
Both the timings of tasks and the physiological data streams
are used to produce ground truths. The task timings can be
used as one ground truth to create a binary labelling to de-
scribe whether there was a secondary task being performed
or not. Here, the label normal relates to driving under nor-
mal conditions and distracted signifies that a secondary task
was being performed. The distracted label is then also split
into three to signify which of the 0-, 1- or 2-back tasks was



being performed, to produce a multi-label classification prob-
lem with four labels.

Each of the physiological data streams can be used to produce
binary classification tasks, with a label of normal when the
observations are close to those found during the baseline pe-
riod, and distracted otherwise. Other levels can also be used
to produce a multi-label classification problem. For example,
increases of 5% or less can be assigned label A, of between
5% and 10% given label B, and of more than 10% label C.

DATA RELEASE
The dataset is available for download via www.dcs.warwick.
ac.uk/dmd/ in a comma separated variable (csv) format, with
samples in temporal order at 20Hz. Each of the class labels
are provided for each sample. The physiological data are also
available. This physiological data has timestamps, so that it
can be associated with the CAN-bus data, but the sample rate
remains at 256Hz.

Several features have been removed from the dataset to either
protect intellectual property or because they are irrelevant to
the problem. To avoid any human selection bias, correlation
analysis with Mutual Information (MI) [15] is used; where
features with a MI below a threshold have been removed.

The production and release of such a dataset may benefit both
the driver monitoring and data mining communities. The data
naturally has high autocorrelation, and several irrelevant and
redundant signals, all of which affect the performance of a
classification system [4]. As well as this, some of the sig-
nals may be correlated with time, introducing biases. Over-
coming these issues is not only essential to predicting driver
behaviour, but they are also difficult problems for data min-
ing in general. We provide a central dataset against which
driver workload monitoring methods and temporal data min-
ing techniques can be evaluated and compared.
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