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Abstract

This talk proposes a very simple “baseline architec-
ture” for a learning agent that can handle stochas-
tic, partially observable environments. The archi-
tecture uses reinforcement learning together with
a method for representing temporal processes as
graphical models. I will discuss methods for learn-
ing the parameters and structure of such representa-
tions from sensory inputs, and for computing pos-
terior probabilities. Some open problems remain
before we can try out the complete agent; more
arise when we consider scaling up.

A second theme of the talk will be whether rein-
forcement learning can provide a good model of
animal and human learning. To answer this ques-
tion, we must do inverse reinforcement learning:
given the observed behaviour, what reward signal,
if any, is being optimized? This seems to be a very
interesting problem for the COLT, UAI, and ML
communities, and has been addressed in econo-
metrics under the heading of structural estimation
of Markov decision processes.

1 Learning in uncertain environments

AI is about the construction of intelligent agents, i.e., sys-
tems that perceive and act effectively (according to some
performance measure) in an environment. I have argued
elsewhere Russell and Norvig (1995) that most AI research
has focused on environments that are static, deterministic,
discrete, and fully observable. What is to be done when,
as in the real world, the environment is dynamic, stochastic,
continuous, and partially observable?�This paper draws on a variety of research efforts supported
by NSF (IRI-9634215), ONR (N00014-97-1-0941), and ARO
(DAAH04-96-1-0341).

In recent years, reinforcement learning (also called neu-
rodynamic programming) has made rapid progress as an ap-
proach for building agents automatically (Sutton,1988; Kael-
bling et al., 1996; Bertsekas & Tsitsiklis, 1996). The basic
idea is that the performance measure is made available to the
agent in the form of a reward function specifying the reward
for each state that the agent passes through. The performance
measure is then the sum of the rewards obtained. For exam-
ple, when a bumble bee forages, the reward function at each
time step might be some combination of the distance flown
(weighted negatively) and the nectar ingested.

Reinforcement learning (RL) methods are essentially on-
line algorithmd for solving Markov decision processes (MDPs).
An MDP is defined by the reward function and a model, that
is, the state transition probabilities conditioned on each pos-
sible action. RL algorithms can be model-based, where the
agent learns a model, or model-free—e.g., Q-learning cite-
Watkins:1989, which learns just a function Q(s, a) specifying
the long-term value of taking action a in state s and acting
optimally thereafter.

Despite their successes, RL methods have been restricted
largely to fully observable MDPs, in which the sensory input
at each state is sufficient to identify the state. Obviously,
in the real world, we must often deal with partially observ-
able MDPs (POMDPs). Astrom (1965) proved that optimal
decisions in POMDPs depend on the belief state b at each
point in time, i.e., the posterior probability distribution over
all possible actual states, given all evidence to date. The
functions V and Q then become functions of b instead of
s. Parr and Russell (1995) describes a very simple POMDP
RL algorithm using an explicit representation of b as a vec-
tor of probabilities, and McCallum (1993) shows a way to
approximate the belief state using recent percept sequences.

Neither approach is likely to scale up to situations with
large numbers of state variables and long-term temporal de-
pendencies. What is needed is a way of representing the
model compactly and updating the belief state efficiently
given the model and each new observation. Dynamic Bayesian
networks (Dean & Kanazawa, 1989) seem to have some of
the required properties; in particular, they have significant
advantages over other approaches such as Kalman filters and
hidden Markov models. Our baseline architecture, shown in
Figure 1, uses DBNs to represent and update the belief state
as new sensor information arrives. Given a representation
for b, the reward signal is used to learn a Q-function rep-
resented by some “black-box” function approximator such
as a neural network. Provided we can handle hybrid (dis-
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Figure 1: A baseline architecture for learning agents in un-
certain environments

crete+continuous) DPNs, and provided we have a learning
algorithm that can construct an approximately correct DBN
model from scratch, then this baseline architecture has the
capacity, in principle, to be thrown into more or less any
environment and to learn to behave reasonably.1

The talk will cover a variety of research topics arising
from this proposal:� Parametric learning in DBNs (Binder, Koller, Russell,

& Kanazawa, 1997a).� Structural learning in DBNs (Friedman, Murphy, & Rus-
sell, 1998).� Approximate inference in DBNs (Kanazawa, Koller, &
Russell, 1995; Boyen & Koller, 1998).� Space-efficient inference in DBNs (Binder, Murphy, &
Russell, 1997b).� Reinforcement learning with DBN models—that is,how
to do Q-learning with the belief state information pro-
vided by the DBN. Some tentative ideas will be pre-
sented but as yet there are no convincing solutions.

Scaling up the environment will inevitably overtax the re-
sources of the baseline architecture. There are several obvi-
ous directions for improvement, including hierarchical and
first-order models, hierarchical representations of behaviour (Parr
& Russell, 1998), and model-based lookahead methods for
decision making. Which of these is important in any partic-
ular class of environments can only be ascertained by exper-
iment.

2 Inverse reinforcement learning

Reinforcement learning is a powerful method for adaptive
control in real tasks, so it is natural to seek analogous mecha-
nisms in nature. Connections have been made between rein-
forcement learning and operant conditioning models of ani-
mal learning (see, e.g., Schmajuk & Zanutto, 1997; Touretzky
& Saksida, 1997). There is also neurophysiological evidence
that reinforcement learning occurs in bee foraging (Montague
et al., 1995) and in songbird vocalization (Doya & Sejnowski,
1995).

In this work, it is generally assumed that the reward func-
tion is fixed and known. For example, in experiments on
bees it is assumed to be the rate of nectar ingestion: Mon-
tague et al. (1995) cite evidence of a “neuron with widespread
projections to odour processing regions of the honeybee brain

1We say “more or less” because full generality require dealing
with game-theoretic issues requiring stochastic decision making.

whose activity represents the reward value of gustatory stim-
uli.”

It seems clear, however, that in examining animal and
human behaviour we must consider the reward function as
an unknown to be ascertained. The reasons for this are
straightforward:� The specification of a given reward function is an em-

pirical hypothesis and may turn out to be wrong. For
example, it was assumed initially that horses’ gait se-
lection for a given speed was determined by energetic
economy (Hoyt & Taylor, 1981); this turns out not to be
the case (Farley & Taylor, 1991).� The parameters of a multiattribute reward function can
surely not be determined a priori; e.g., for running,
attributes might be speed, efficiency, stability against
perturbations, wear and tear on muscles, tendons, and
bones, etc. How are these to be weighted and combined?

Therefore, to model natural learning using reinforcement
learning ideas, we must first solve the following computa-
tional task, which we call inverse reinforcement learning:

Given 1) measurements of an agent’s behaviour over time,
in a variety of circumstances, 2) measurements of the
sensory inputs to that agent; 3) a model of the physical
environment (including the agent’s body).

Determine the reward function that the agent is optimizing.

Given an assumption of optimization, this computational task
is well-defined. Notice that is the dual of unsupervised re-
inforcement learning, where the task is to determine optimal
behaviour given the reward inputs.

To our knowledge, this computational task has not been
studied in any generality in computer science, control theory,
psychology, or biology. The closest work is in economics,
where the task of multiattribute utility assessment has been
studied in depth—that is, how does a person actually combine
the various attributes of each available choice when making
a decision. The theory is well-developed (Keeney & Raiffa,
1976), and the applications numerous. However, this field
studies only one-shot decisions where a single action is taken
and the outcome is immediate. The sequential case was not
considered until a seminal paper by Sargent (1978) tried to
ascertain the effective hiring cost for labor by examining a
firm’s hiring behaviour over time, assuming it to be rational.
In the last decade, the area of structural estimation of Markov
decision processes has grown rapidly in econometrics (Rust,
1994). Many of the basic results carry over to our setting,
although virtually nothing has been done on computational
aspects, experimentation, or control-type applications. The
open research problems are many:� What are efficient algorithms for solving the inverse

reinforcement learning problem? What is its computa-
tional complexity? Are there closed-form solutions for
some parametric forms?� Under what circumstances can we determine the exis-
tence of a consistent reward function? To what extent is
the reward function uniquely recoverable?� What effect do sensor and process noise have on robust-
ness of the determination? What are appropriate error
metrics for fitting?



� If behaviour is strongly inconsistent with optimality,
can we identify “locally consistent” reward functions
for specific regions in state space?� Can we determine the reward function by observation
during rather than after learning?� How much observation is required to determine an esti-
mated reward function that is within � of the true reward
function?� How can experiments be designed to maximize the iden-
tifiability of the reward function?

Considering the design of possible algorithms, one can
take maximum-likelihood approach to fit a parametric form
for the reward functionas is commonly done in economet-
rics. That is, one defines a function Lr(w)(B), the likelihood
of observing behaviour B if the true reward function is r(w).
From this, one can compute @L/@w. One important question
will be how to compute this gradient efficiently; presumably,
it can be done in an obvious way by carrying the differ-
ential operator through the optimization algorithm for the
behaviour. More elegant closed-form solutions may exist
in special cases (e.g., linear-quadratic regulators). One may
also be able to show that in some cases (e.g., linear reward
functions) a globally optimal estimate can always be found.

The solution of inverse reinforcement learning problems
may also be an effective way to learn from observing ex-
perts. For tasks such as walking, diving, and driving, the
designer of an artificial system may have only an intuitive
idea of the appropriate reward function to be supplied to an
RL algorithm in order to achieve “desirable” behavior. In-
stead of learning direct control functions from observation of
experts (as in Pomerleau’s ALVINN driging system), it may
be better to solve the inverse reinforcement learning problem.
The reward function should usually be a simple monotonic
function of the current sensory inputs, and thus may be much
simpler than the direct decision mapping itself. That is, the
most compact and hence robustly learnable representation of
expert behavior may be the reward function.
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