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ABSTRACT
A molecule traveling in a realistic propagation environment
can experience stochastic interactions with other molecules
and the environment boundary. The statistical behavior of
some isolated phenomena, such as dilute unbounded molec-
ular diffusion, are well understood. However, the coupling of
multiple interactions can impede closed-form analysis, such
that simulations are required to determine the statistics.
This paper compares the statistics of molecular reaction-
diffusion simulation models from the perspective of molecu-
lar communication systems. Microscopic methods track the
location and state of every molecule, whereas mesoscopic
methods partition the environment into virtual containers
that hold molecules. The properties of each model are de-
scribed and compared with a hybrid of both models. Simula-
tion results also assess the accuracy of Poisson and Gaussian
approximations of the underlying Binomial statistics.

1. INTRODUCTION
The prevalence of using molecules to communicate in bi-

ological systems (see [2, Ch. 16]) has recently attracted the
attention of the research community to adapt the princi-
ples of molecular communication (MC) for new applications
to transmit arbitrary amounts of information in environ-
ments where conventional methods of communication might
be hazardous or impractical; see [11]. One MC method, free
diffusion, is attractive because it does not require additional
infrastructure in the propagation medium. Free diffusion is
effectively a random process where a molecule collides with
other molecules in a fluid environment.

The behavior of any one molecule in a realistic propaga-
tion environment is unlikely to be characterized by diffu-
sion alone. Other potential phenomena include bulk fluid
flow, collisions with the environment boundary, and chemi-
cal reactions either throughout the environment or in a lo-
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cal region. Generally, these phenomena contribute to the
stochastic behavior of any single molecule.

We noted in [13] that communications analysis requires
the form and the statistics of the end-to-end channel im-
pulse response, i.e., the time-varying signal observed at the
receiver given that molecules are released at some instant by
the transmitter. The response can then be used to derive
the received signal for any modulation scheme. Analytical
models for some isolated processes are known, such as for
molecular diffusion; see [7]. However, when multiple inter-
actions are present, their impact is coupled and this can
impede closed-form theoretical analysis. Often, simplifying
assumptions are made and specific geometries are studied to
facilitate analysis. For example, we analyzed an unbounded
environment with diffusion, bulk fluid flow, and molecule
degradation in [12]. A closed-form time domain channel im-
pulse response was derived, but this was in the absence of
any local chemical reactions (such as at the receiver). Gen-
erally, we may need to rely on numerical methods or simu-
lations to determine the channel statistics.

Simulation methods for molecular behavior can range in
scale from molecular dynamics models (such as that used
in LAMMPS [14]), which account for all interactions be-
tween all individual molecules (including solvent molecules
in a fluid), to continuum models (such as that used in COM-
SOL Multiphysics [1]) where no individual molecules are de-
scribed. Two common “intermediate” models that tend to
be suitable for the study of reaction-diffusion environments
are microscopic and mesoscopic models. Both of these mod-
els treat the solvent in a fluid as a continuum and focus on
the behavior of solute molecules.

Microscopic simulators such as the Smoldyn simulator
track the coordinates and behavior of each solute molecule;
see [3]. Mesoscopic simulators partition the system into vir-
tual containers and track the number and type of solute
molecules in each container. If molecular concentrations in
each container are homogeneous, then a mesoscopic simu-
lation can accurately capture the behavior of the system;
see [15]. However, the assumption of homogeneity can place
severe constraints on the size of virtual containers; see [5,
15]. A microscopic model has better spatial accuracy, but
the advantages of a mesoscopic model include easier imple-
mentation of complex chemical reactions and better compu-
tational efficiency as the system dimensions grow.

From a MC perspective, we are ultimately interested in
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the accuracy of the statistics at the receiver. We may need
to simulate the system many thousands of times to com-
pile the receiver statistics. The behavior of the total system
is not as important, so we are motivated to improve com-
putational efficiency in regions that are not critical to the
receiver statistics, i.e., are sufficiently far from the commu-
nication link. In [13], we combined two schemes towards
this goal. In the first scheme, also described in [4], the local
accuracy is adjusted by using mesoscopic containers of differ-
ent sizes; generally, larger subvolumes are less accurate but
more computationally efficient. In the second scheme, the
environment is partitioned into microscopic and mesoscopic
regimes, thus providing additional flexibility in the trade-
off between local accuracy and computational complexity.
These hybrid schemes have been proposed in papers includ-
ing [10, 8, 9].

In this paper, we use simulations to study the accuracy
of both the average time-varying channel response and the
statistics of the response at specific times. Unlike in [13],
where we observed the channel response due to diffusion
only, here we study the channel response and statistics of dif-
fusion, a first-order chemical reaction, and a simple reaction-
diffusion scenario. We gain insight into how aggressively we
can reduce the computational complexity of the simulation
environment without compromising the accuracy at the re-
ceiver. A formal study of computational complexity is left
for future work, but preliminary results were shown in [13].

We also compare the suitability of the Poisson and Gaus-
sian approximations of the Binomial distribution when rep-
resenting the cumulative distribution function (CDF) of re-
ceiver observations made at a specific time. These approxi-
mations are commonly used in communications analysis be-
cause they are less computationally intensive, and were also
recently assessed for MC systems in [17].

The rest of this paper is organized as follows. The un-
derlying physical model and channel statistics are described
in Section 2. The microscopic, mesoscopic, and hybrid sim-
ulation models are briefly defined in Section 3. Simulation
results to compare the models are presented in Section 4.
Section 5 concludes the paper.

2. PHYSICAL MODEL
In this section, we describe the common physical model

that the simulation models represent. We present the ex-
pected channel responses for the scenarios that we will sim-
ulate, and discuss the statistics of those responses.

The environment is a bounded two-dimensional fluid “vol-
ume” V with a reflective boundary; generally, it could be
absorbing or reactive if there are local chemical reactions at
the boundary. There is a single molecular species, labeled
molecule A, with constant diffusion coefficient D. Using a
constant D implies that the A molecules are dilute.

We consider two diffusive scenarios where the expected
channel response at the receiver (RX) and the corresponding
statistics are (at least approximately) known so that we can
focus on assessing the accuracy of the simulation models.
In the first scenario, we distribute molecules uniformly over
V and observe the number of molecules present in VRX , a
subset of V. If N A molecules are distributed, then the
number of molecules expected in VRX , URX(t), is constant
and equal to

URX(t) = NVRX/V. (1)

In the second scenario, we release (i.e., transmit) N A
molecules in a small area near the center of V and observe
(i.e., receive) the number of molecules present in another
small area also near the center of V. If V is large enough to
model as infinite, and the transmitter (TX) and RX regions
are small enough to model as points, then from [7, Eq. (3.4)]
we can write URX(t) as

URX(t) =
Nh2

RX

4πDt
exp

(
− d2

4Dt

)
, (2)

where h2
RX is the area of the RX, and d is the distance be-

tween the centers of the TX and the RX. Eq. (2) is accurate
if hRX � d and d2 � V.

An A molecule can also degrade according to the first-

order chemical reaction A
k−→ ∅, where k is the reaction rate

constant in s−1. If there are N A molecules in the system
at time t = 0 s, and the RX is all of V, then the number of
molecules expected to remain at time t > 0, is [6, Eq. (9.7)]

URX(t) = N exp (−kt) , (3)

such that each molecule has a probability of exp (−kt) of
remaining at time t, and we can account for degradation in
the diffusive scenarios by scaling (1) or (2) by exp (−kt).

Now consider the statistics of the channel responses at a
specific instant t. Assuming no knowledge of one molecule’s
location or whether it has been degraded after time t >
0, then whether that molecule is in the RX at time t is
the outcome of an independent trial; see [16, Ch. 5.1]. For
general N, there is one trial for each molecule. The number
of molecules observed in the RX at time t, URX(t), is the
number of “successful” trials. Thus, URX(t) for some t is a
Binomial random variable, where the probability of success
of each trial is equal to URX(t) with N = 1.

By knowing URX(t), we can compare the empirical CDF
of each simulation model with the Binomial CDF. We can
also assess the Poisson and Gaussian approximations of the
Binomial CDF. From [16, Ch. 5.2], the Poisson approxima-
tion should be accurate when N is “large” and URX(t) for
N = 1 is “small”. From [16, Ch. 5.5] and the Central Limit
Theorem, the Gaussian approximation should be accurate
for sufficiently large N.

3. SIMULATION MODELS
In this section, we summarize the simulation models that

we will assess in Section 4.

3.1 Microscopic Model
In the microscopic model, the environment V is a single

container VM and there is a constant time step ∆tM. For
each time step, the coordinates of every A molecule are up-
dated by adding a random displacement n

√
2D∆tM to each

dimension, where n is an independent normal random value
with mean 0 and variance 1. Any molecule that ends up out-
side of VM is reflected against the boundary of VM. A given
molecule is degraded during the time step and removed from
V if u > exp (−k∆tM), where u is an independent uniform
random value between 0 and 1.

3.2 Mesoscopic Model
In the mesoscopic model, V is partitioned into virtual sub-

volumes or containers. We track the number of A molecules
within each subvolume and assume that each subvolume is



homogeneous. Mesoscopic simulations are described as a
series of “events”. A diffusion event is the transition of a
molecule between adjacent subvolumes, and a degradation
event is a decrement of the number of molecules in one sub-
volume. Every event is assigned a propensity, a, which de-
termines the probability of that event occurring next. In
this paper, we summarize how the relevant propensities are
calculated. Due to space, the reader is referred to [13] or to
works such as [5] for details on how to use the propensities
to simulate an event sequence.

Diffusion propensities describe the expected transition
rate of molecules between adjacent subvolumes. Following
[13], we consider square subvolumes that could have different
sizes in order to adjust the local computational complexity.
The transition rate from a square subvolume of width hi to
one of width hj , where the overlap of their adjacent faces is
length ho ≤ min{hi, hj}, is found to be [13, Eq. (9)]

ai,j =
2DhoUi

h2
i (hi + hj)

, (4)

where Ui is the number of molecules currently in subvolume
i. The propensity of a chemical reaction describes the ex-
pected frequency of the reaction. For our first-order degra-
dation, the propensity arxn,i of the reaction in subvolume i
is given by [5, Eq. (6)] as arxn,i = kUi.

3.3 Hybrid Model
In the hybrid model, V is partitioned into a microscopic

regime VM and a mesoscopic regime VS. Both regimes are
treated independently, as previously described, until there
are molecules that transition from one regime to the other.
For simplicity, as in [13], we adopt the simplified transition
rules described in [10]:
VS to VM: A source subvolume in VS must be along the

boundary with VM, and it has a mirror “imaginary” subvol-
ume of the same size in VM. A molecule leaving VS to enter
VM is placed at random within the mirror subvolume and
then treated as an individual molecule in VM.
VM to VS: When a molecule in VM is identified to have

entered VS, then we add that molecule to the subvolume
along the boundary with VM that is closest to the molecule’s
new location.

4. NUMERICAL RESULTS
In this section, we present simulation results to assess the

accuracy of the simulation models to generate the channel
response and the channel statistics. We consider the envi-
ronment defined in Fig. 1 (or a subset of it) for all of our

simulations. The coefficient of diffusion is D = 10−9 m2

s
.

The environment V is partitioned into 3 regions. Each re-
gion is modeled as either microscopic or mesoscopic. Unless
otherwise specified, the model labels used in the simulation
figures are described in Table 1. Namely, we consider micro-
scopic (MICRO), mesoscopic (MESO), multi-scale MESO
(MESO-MS) and hybrid (HYB) partitioning models, where
both the MESO-MS and HYB models are less accurate in
V2 and/or V3 because the communication link is in V1.

We describe a series of 5 simulations as summarized in Ta-
ble 2. The first two simulations are uniform diffusion tests.
For the first test, the system consists of region V1 only (this
is the only test where molecule motion is restricted to V1).
1000 molecules are initialized over all of V1 and we observe

V3

V2

V1

45µm

45µm

TX RX

Figure 1: Simulation environment V drawn to scale.
The inner region V1 has width 30µm and height
15µm. The TX and RX are squares of width 3µm,
are placed in the middle of V1, and are separated
by a distance of 15µm (center to center). The mid-
dle region V2 (in grey) surrounds V1 and has width
90µm. The outer region V3 (in black) surrounds V2,
has width 180µm, and has a reflective outer bound-
ary. The partitioning of the regions of V shown here
is an example of the HYB model in Table 1.

Table 1: System partitioning models, unless oth-
erwise specified. When a region is mesoscopic, all
subvolumes in that region have the specified width.
V2 for a HYB model is mesoscopic if h2 is defined.

Model V1 V2 V3

MICRO Micro Micro Micro

MESO h h h

MESO-MS h1 h2 h3

HYB Micro Micro or h2 h3

the number of molecules present in one half of the region
after t = 5 s, i.e., 500 molecules are expected. The empirical
CDF for each partitioning model, compiled over 104 real-
izations, is presented in Fig. 2. The empirical CDFs of the
simulation models all match the Binomial CDF, including
the MESO-MS model where here we observe the number of
molecules in a subvolume with width 15µm and the rest of
region is partitioned into subvolumes with width 1µm. The
Gaussian approximation is very close to the Binomial CDF
whereas the Poisson approximation is not, since the under-
lying trial success probability (i.e., the probability that a
given molecule is observed) is 0.5, which is very high.

In the second simulation, we perform a uniform diffusion
test where we initialize 10800 molecules over all of V and we
observe the number of molecules present in V1 after t = 20 s.
From (1), we expect to observe a mean of 200 molecules. The
empirical CDF for each simulation model, compiled over 104

realizations, is presented in Fig. 3. The empirical CDFs of
all three models match the Binomial CDF. Here, the Poisson
approximation also matches the Binomial CDF, whereas the



Table 2: Simulation test parameter summary. The
units for k and ∆tM are s−1 and ms, respectively.

Test System Source Observer N k ∆tM

1 V1 V1 Half of V1 1000 0 5

2 All All V1 10800 0 10

3 All TX RX 1500 0 5

4 - - - 1000 3 Vary

5 All TX RX 1500 3 5
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MESO h = 15 µm

MESO h = 1 µm

MESO-MS
Binom. CDF
Poiss. approx.

Gauss. approx.

Figure 2: CDF of simulation 1, i.e., the uniform
diffusion test where molecules are restricted to V1

only. The observation is made at time t = 5 s.
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MICRO
MESO h = 3 µm

Binom. CDF
Poiss. approx.

Gauss. approx.

MESO-MS {h1, h2, h3} = {3, 15, 45}µm

Figure 3: CDF of simulation 2, i.e., the uniform
diffusion test that places molecules over all of V. The
observation is made at time t = 20 s.

Gaussian approximation is slightly less accurate.
In the third simulation, we consider “point-to-point” diffu-

sion, where 1500 molecules are released at the TX and then
observed over time at the RX. The TX and RX are both
squares of width 3µm and are separated by a distance of
15µm from center to center, as shown in Fig. 1. The time-
varying channel impulse response, averaged over 105 real-
izations, is plotted for different simulation models in Figs. 4
and 5. We omit a curve of the expected channel impulse re-
sponse, as found by evaluating (2), because it is effectively
identical to that given by the MICRO simulation model.

In Fig. 4, we observe that the MESO model (with sub-
volumes of size 3µm everywhere) and the HYB model that
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 MICRO
MESO h = 3 µm
HYB h2 = h3 = 3 µm
HYB h3 = 3 µm

MESO-MS {h1, h2, h3} = {3, 15, 15}µm

MESO-MS {h1, h2, h3} = {3, 3, 15}µm

Figure 4: Time-varying channel response of simula-
tion 3, i.e., the “point-to-point” diffusion test.

is microscopic in regions V1 and V2 are both very accurate
when compared with the MICRO model. The MESO-MS
model with subvolumes of size 3µm in V2 is also very accu-
rate, but increasing those subvolumes to 15µm leads to an
18 % overestimation of the channel impulse response at the
time of the expected peak observation (∼ 0.55 s). This ex-
cess is because, from (4), it takes longer for molecules to dif-
fuse to larger subvolumes, which here are too close to the TX
and RX. However, this model is still asymptotically accu-
rate over time because the transition rate (4) derived in [13]
leads to a uniform molecule distribution. Finally, the HYB
model that is only microscopic in V1 generally overestimates
the channel impulse response (i.e., the MICRO/MESO in-
terface is too close to the communication link). We further
study the accuracy of HYB models in Fig. 5.

In Fig. 5, we compare the MICRO model with variations
of the HYB model that overestimated the channel impulse
response in Fig. 4, i.e., where regions V2 and V3 are both
mesoscopic. Here, we vary the microscopic time step ∆tM
of the HYB model, and we observe the resulting sensitiv-
ity. Smaller time steps lead to fewer molecules at the RX
(as expected; n

√
2D∆tM decreases but entering the MESO

regime introduces the same uncertainty in a molecule’s lo-
cation, leading to a net migration out of V1). These results
highlight the caution that must be taken when using hybrid
models. We emphasize that we implemented simple transi-
tion rules and that accuracy can be improved by optimizing
the transition rules for a given time step as described in [8].

In Fig. 6, we consider the empirical CDF of the third sim-
ulation, evaluated at times t = 0.05 s and t = 0.2 s after
the release by the TX, i.e., near the time of the peak of the
expected signal and after the signal is expected to have de-
creased by more than 3 dB from the peak value, respectively.
At those times, from (2), we expect 6.98 and 4.05 molecules,
respectively. For clarity, we only plot the empirical CDFs
for the MICRO model and the least accurate models pre-
sented in Fig. 4, since the CDFs for the MESO model with
subvolumes of the same size and the HYB model with mi-
croscopic V2 are identical to that of the MICRO model. The
MICRO model matches the Binomial CDF at both obser-
vation times, and the Poisson approximation is effectively
identical to the Binomial CDF. The simulation models that
did not accurately capture the expected channel response
also did not accurately match the Binomial CDF. Finally,
we observe that the Gaussian approximation of the Bino-
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HYB ∆tM = 10ms
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Figure 5: Time-varying channel response of simula-
tion 3, i.e., the “point-to-point” diffusion test, where
we highlight the impact of ∆tM on the accuracy of
the HYB model where h2 = h3 = 3µm.
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t = 0.05 s t = 0.2 s

Figure 6: CDF of simulation 3, i.e., the “point-to-
point” diffusion test.

mial CDF is almost as poor as the least accurate simulation
at both observation times, i.e., the MESO-MS model with
h2 = 15µm at t = 0.05 s and the HYB model that is meso-
scopic in V2 at t = 0.2 s.

In the fourth simulation, we consider first-order degrada-
tion only and do not allow molecules to diffuse. This test
emphasizes the accuracy of simulating chemical reactions
alone. We simulate the degradation of 1000 molecules when
the reaction constant is k = 3 s−1. The time-varying re-
sponse, averaged over 104 realizations, is observed in Fig. 6
for the MICRO models with different values of ∆tM and the
MESO model. We do not include a curve for the expected
response, as given by (3), but it is identical to the curve
shown for the MESO model. We observe that the MICRO
model is also very accurate for ∆tM varying over orders of
magnitude, and the loss of accuracy when ∆tM = 50ms is
only an artifact because this time step is longer than the
observation period of 20 ms.

In Fig. 8, we observe the empirical CDF of the fourth
simulation for the observation made t = 0.5 s after the start.
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Figure 7: Time-varying channel response of simula-
tion 4, i.e., the first-order reaction test. Diffusion is
not modeled.
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MICRO ∆tM = 50ms

MICRO ∆tM = 10ms
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MESO
Binom. CDF
Poiss. approx.

Gauss. approx.

Figure 8: CDF of simulation 4, i.e., the first-order
reaction test, where the observation is made at time
t = 0.5 s. Diffusion is not modeled.

From (3), about 223 molecules are expected to remain. All
of the simulation models agree with the Binomial CDF, and
the Gaussian approximation is much more accurate than the
Poisson approximation. Here, the underlying trial success
probability is 0.223.

In the fifth and final simulation, we combine the “point-
to-point” diffusion test with first-order degradation. 1500
molecules are released at the TX and then observed over
time at the RX when the reaction constant is k = 3 s−1.
Simulation results are averaged over 105 realizations. We
observe that the accuracy of the simulations is consistent
with that observed in the corresponding diffusion-only case.
In Fig. 9, we observe the time-varying response for the same
simulation models that we considered in the“point-to-point”
diffusion test without degradation. We do not plot the ex-
pected time-varying channel response, as given by the prod-
uct of (2) and exp (−kt), because it is effectively the same
as the average MICRO simulation. As in Fig. 4, the MESO
model, the MESO-MS model with h2 = 3µm, and the HYB
model where regions V1 and V2 are microscopic yield aver-
age simulation results that are very similar to the MICRO
model. The remaining simulation models are noticeably less
accurate than the MICRO model.

In Fig. 10, we observe the empirical CDF of the fifth sim-
ulation for the observation made t = 0.05 s after molecules
are released by TX. At that time, from (2) and exp (−kt) or
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Figure 9: Time-varying channel response of simu-
lation 5, i.e., the “point-to-point” reaction-diffusion
test.
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Figure 10: CDF of simulation 5, i.e., the “point-to-
point” reaction-diffusion test, where the observation
is made at time t = 0.05 s.

from inspection of Fig. 9, about 6 molecules are expected.
As in Fig. 6, we compare the least accurate simulation mod-
els with the MICRO model, whose empirical CDF is once
again equivalent to the Binomial CDF. Also, the Poisson
approximation of the Binomial CDF is again much more
accurate than the Gaussian approximation.

5. CONCLUSIONS
In this paper, we compared simulation models to assess

their accuracy in diffusion, first order reaction, and first-
order reaction-diffusion simulations. We observed the time-
varying channel response and the empirical CDF at spe-
cific time instants. The microscopic model and the meso-
scopic model were generally accurate and their statistics
very closely matched those of the underlying Binomial CDF
for all simulations. We demonstrated that multi-scale and
hybrid models could also maintain accuracy, unless we re-
duced the computational complexity too close to the commu-
nication link. Overall, the statistical accuracy of the receiver
was not affected if the hybrid interface or transition to larger
subvolumes was as far from the transmitter and receiver as
the distance between the transmitter and receiver.

We also compared the suitability of the Poisson and
Gaussian approximations of the Binomial CDF, since these
approximations are commonly applied in communications
analysis. When a large fraction of the released molecules

are expected at the receiver, the Gaussian approximation
is more accurate. When a small fraction of molecules are
expected, the Poisson approximation is more accurate.

Our on-going work is the development of a molecular sim-
ulator based on the models presented in this paper and the
motivation in [13]. Future implementation includes exten-
sion to three dimensions, modeling fluid flow, and imple-
menting more accurate rules for transitions between the mi-
croscopic and mesoscopic regimes.
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