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Abstract
We consider a participatory sensing scenario where a
group of private sensors observes the same phenomenon,
such as air pollution. We design a novel payment mecha-
nism that incentivizes participation and honest behavior us-
ing the peer prediction approach, i.e. by comparing sensors
reports. As it is the case with other peer prediction meth-
ods, the mechanism admits uninformed reporting equilibria.
However, in the novel mechanism these equilibria result in
worse payoff than truthful reporting.
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Introduction
A peculiar property of a participatory or community sens-
ing (e.g. [2], [1]) setting is that an aggregator of information,
here also called center, has no control over the sensing de-
vices, nor it has a way of directly verifying the correctness
of the obtained data. This means that standard approaches
of constructing incentives based on the quality of the pro-
vided information, e. g. proper scoring rules [12, 6] or pre-
diction markets [7, 3], are not applicable in the mentioned
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domains. Instead of directly verifying the collected data, the
center can use peer evaluation techniques. This is the ba-
sic idea of methods based on the peer prediction principle
[9], where a participant’s score reflects the information her
report carries about the reports of other participants.1

We design a payment mechanism that follows the Bayesian
Truth Serum (BTS) approach [10], in which the highest re-
ward is obtained for the report that is more common than
expected. Unlike the original BTS mechanism, our novel
mechanism does not require sensors to have a common
prior belief of how measurement are generated, and is
minimal in a sense that sensors report only their measure-
ments. It extends one of the few mechanisms proposed for
community sensing, the Peer Truth Serum (PTS) mecha-
nism from [5], by ensuring better game theoretic properties.
Thus, we refer to it as the Logarithmic Peer Truth Serum
(logarithmic PTS).

The novel mechanism is applicable to a setting where non-
binary information is elicited from a large group of rational
participants whose observations are statistically similar. In
particular, we focus on a pollution sensing scenario where a
dense network of sensors with similar characteristics mea-
sure air quality at different locations of a certain urban area.

The Setting

Sensors’ measurements
Sensors’ measurements
are modeled with random
variables that represent
their private signals. For two
different sensors s and s′,
private signals Xs and Xs′

are assumed to be obtained
in a statistically similar man-
ner - this captures the notion
of sensors having similar
characteristics.

Sensors’ beliefs
Peer prediction mechanisms
rely on the fact that sensors
(agents) do not know each
others measurements. With-
out knowing the measure-
ments of others, a sensor
needs to form its belief about
them. In particular, a sensor
forms a belief about the pa-
rameters of a pollution model
that generates sensors’ mea-
surements. The parameters
of the pollution model are not
(necessarily) known to the
logarithmic PTS mechanism
nor sensors, and sensors
are allowed to have different
beliefs about them. For this
paper, it is sufficient to say
that a sensor forms a belief
about the measurements of
the other sensors.

We model sensors as rational agents who seek to maxi-
mize their rewards. The set of all sensors is denoted by S.
After measuring the air pollution phenomenon, a sensor s
obtains a private signal Xs that corresponds to the level
of pollution at its location. We consider private signal Xs

that takes values in finite discrete set {x, y, z, ...}; this is a

1Although the original peer prediction [9] has a specific way of as-
signing scores, peer prediction often denotes a general class of scoring
techniques where a score is dependent on what peers report.

reasonable assumption considering the fact that ubiquitous
sensors are prone to measurement errors. For example,
there could be three levels of pollution {low,medium, high}.

From a sensor s’s perspective, there are two groups of sen-
sors: the set of all sensors, denoted by S; and peer sen-
sors P that are placed in the vicinity of sensor s. We as-
sume that the network of sensors is equally dense every-
where so that 1 << |P | << |S| holds.

Sensors might not be honest, so we differentiate sensor s’s
measurement Xs, from its reported values Ys. We classify
reporting strategies into three types:

• Honest reporting, i.e. Ys = Xs.

• Heuristic reporting without making any measure-
ments, described by a distribution πheur, where a
sensor s reports Ys = x with probability πheur(x).

• Misreporting in which reports are obtained from mea-
surements using function ρ : {x, y, z, ....} → {x, y, z, ....},
i.e. Ys = ρ(Xs).

These three types of strategies cover the most interesting
cases of sensor behaviour, including the collusion strategy
where all agents report the same value. We have not con-
sidered strategies that are dependent on sensors’ locations.
In a dense network of mobile sensors, these strategies are
hard to coordinate, while because of privacy concerns, sen-
sors might not be willing to share their locations.

Since our payment mechanism prescribes a score to a sen-
sor that is dependent on the reports of the other sensors,
we analyze its properties using game theory (Bayesian
mechanism design). In particular, the mechanism can be
viewed as a Bayesian game. We, thus, borrow the concept
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of a strict Bayesian-Nash equilibrium, that is in our case de-
fined as a sensors’ strategy profile for which any sensor that
deviates from its strategy receives in expectation a smaller
payoff, provided that the other sensors report according to
the strategy profile. We show that the logarithmic PTS is in-
centive compatible, and that out of all equilibria, truthfulness
results in the maximal payoff.

Strategy profiles and in-
centive compatibility
A strategy profile is a map-
ping from a set of sensors
to a set of strategies, i.e.
a strategy profile defines
a strategy of each sensor.
Equilibrium strategy profiles
are the only stable strategy
profiles: for any other profile
at least one sensor has in-
centive to deviate. Therefore,
for a good payment mecha-
nism, truthful reporting is a
strict Bayesian-Nash equilib-
rium, and we say that such
a mechanism is incentive
compatible.

To make an appropriate theoretical analysis, one needs to
make a model of air pollution. For a model that we consider,
as well as the formal analysis of our mechanism, we refer
the reader to the extended version of this paper [11]. Due
to the page limit, we provide in this paper only the intuitive
explanations of why certain properties of our mechanism
hold.

Logarithmic Peer Truth Serum
The basic idea behind our mechanism is to score a sensor
s based on how statistically significant its report is. To de-
termine the statistical significance, we first sample reports
on a global scale and make a normalized histogram xglobal
of reported values. That is, for each possible measurement
value x, we evaluate the fraction of reports in the sample
that are equal to x. Second, we calculate the normalized
histogram xlocal of reports that are in the vicinity of sensor
s. Finally, the statistical significance of a report equal to x is
then defined as log xlocal(x)

xglobal(x)
.

Logarithmic Peer Truth Serum has the following structure:

• Consider a sensor whose report is equal to Ys. Let us
denote by P sensor s’s peers, i.e. sensors that are in
the vicinity of sensor s.

• Calculate two empirical frequencies:

– Frequency of reports equal to x among sensor
s’s peers:

xlocal(x) =
nump∈P (Yp = x)

|P |

– Frequency of reports equal to x among refer-
ence sensors σ (|σ| >> 1) that are not each
other’s peers nor peers of sensor s:

xglobal(x) =
nums′∈σ(Ys′ = x)

|σ|

Here, num counts the number of reports Y equal to
x among a particular set of sensors.

• Finally, reward sensor s with:

score = a · log xlocal(Ys)

xglobal(Ys)
+ b

where a > 0 and b are constants.

To avoid potential issues with 0 values in xlocal and xglobal
histograms, one can apply Laplace (additive) smoothing
with small smoothing parameters, or simply include the re-
port of sensor s in both histograms. The latter would, for
example, make the score equal to 0 when xlocal(Ys) = 0
and xglobal(Ys) = 0. Furthermore, for reasonably large ur-
ban areas, one can consider σ to be the set of all sensors,
without affecting any incentive properties. Finally, peers P
of a sensor s can simply be defined as m sensors closest
to sensor s, where m should be much smaller than |S|.

Although the logarithmic PTS has unbounded score, from
a practical point of view this is almost never a problem.
Namely, the lower bound on possible values of xglobal and
xlocal is usually not hard to estimate (the histograms can
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be appropriately smoothed to have a known lower bound),
so by appropriately setting scaling parameters a and b, one
can easily fit scores to an arbitrary interval. For simplicity,
we set a = 1 and b = 0 in the remaining part of the paper

Let us now illustrate the incentive properties of our mech-
anism. Consider a sensor s and a ternary measurement
space {x, y, z} representing low, medium and high levels
of pollution, respectively. Suppose that sensor s observes
x and believes that the frequency of honest reports on a
global scale is xglobal(x) = 0.2, xglobal(y) = 0.5 and
xglobal(z) = 0.3, while on a local scale it is xlocal(x) = 0.3,
xlocal(y) = 0.6 and xlocal(z) = 0.1. These beliefs are con-
sistent with the fact that pollution is localized phenomenon -
sensor s’s observation x carries some information about
the observation of the neighboring sensors. Notice that
the sensor s’s beliefs might differ from the true frequencies
xglobal and xlocal. In fact, we rely on the assumption that
sensor s’s observation is informative in a sense that sensor
s’s beliefs depend on it. This further implies that for two dif-
ferent observations x and y, the beliefs are different. Such
an assumption is standard in Bayesian mechanism design,
which we use to analyze the properties of the logarithmic
PTS.

Misreporting
In the main text we give
intuitive examples of why
the logarithmic PTS has
strong incentive proper-
ties. It should be noted that
these examples do not fully
explain these properties.
Furthermore, notice that if a
misreporting strategy is such
that, for example, ρ(x) = y,
ρ(y) = z, ρ(z) = x, the
expected payoffs would be
the same as in the truthful re-
porting equilibrium. However,
this type of strategy is hard to
coordinate, while it does not
lead to higher payoffs, so it is
unlikely that sensors would
adopt it.

Incentive compatibility. Clearly, a constant score to sen-
sor s that provides a report consistent with a report of its
random peer (e.g. see [8]) would incentivize sensor s to
report y because y is the most likely value. However, the
logarithmic PTS score incentivizes sensor s to report x
since log 0.3

0.2 > log 0.6
0.5 > log 0.1

0.3 . Therefore, provided
that the other sensors are honest, sensor s is the best off
reporting honestly. In other words, truthful reporting is a
strict Bayes-Nash equilibrium. Notice that sensor s’s score
is (in expectation) strictly positive: log 0.3

0.2 > log 1 = 0.

Heuristic reporting. Suppose, now, that sensors agree to

use heuristic reporting strategy independent of their loca-
tions, i.e. without performing measurements they report
according to a certain policy described by a distribution
πheur. To illustrate what happens, suppose that the report-
ing distribution is equal to πheur(x) = 1 and πheur(y) =
πheur(z) = 0, i.e. all sensors collude and decide to report
x. In this case, we have that xglobal(x) = xlocal(x) = 1, so
scores are equal to 0, which is less than expected for being
honest.

Misreporting. Finally, suppose sensors collude and they
decide to report as follows. When they measure x or y,
they report x. When they measure z, they report z. In other
words, the reporting function is defined as: ρ(x) = x,
ρ(y) = x, ρ(z) = z. In this case, sensor s expects that
xlocal(x) = 0.3 + 0.6 and xglobal(x) = 0.2 + 0.5, because
sensors are not honest, and, thus, it believes its score will
be log( 0.3+0.6

0.2+0.5 ) = log( 0.90.7 ), which is less than in the honest
reporting equilibrium.

More formally, we can show that:
Theorem 1. The Logarithmic Peer Truth Serum is strictly
Bayes-Nash incentive compatible, with strictly positive ex-
pected payoffs in the truthful reporting equilibrium. Any
heuristic reporting equilibrium results in a lower expected
payoff than the honest reporting equilibrium. Any misreport-
ing strategy profile defined by a function
ρ : {x, y, z, ..} → {x, y, z, ...} is not in expectation more
profitable than truthful reporting.

Simulations
We examine the characteristics of the logarithmic PTS us-
ing realistic data of Nitrogen Dioxide (NO2) concentrations
over the city of Strasbourg. The data consists of both real
measurements collected by ASPA2 and estimations of pol-

2www.atmo-alsace.net
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lution from the physical model ADMS Urban V2.3 [4]. In
total, the data set contains concentrations of NO2 for each
hour, expressed in parts per billion (ppb), at 116 different
locations over a period of four weeks. These 116 locations
are in the further text referred to as sensors.

Although the initial measurements take values in continu-
ous domain, we discretize it using four levels of pollution
defined as: low : concentrations 0 − 20 ppb; medium: con-
centrations 20 − 40 ppb; high: concentrations 40 − 60 ppb;
extra-high: concentrations 60−∞ ppb. Each hour, sensors
report the measured level of pollution to the center and are
rewarded with the logarithmic PTS mechanism. As a cri-
terion for peer selection, we consider distance and define
peers of a certain sensor as 15 closest sensors. Namely,
with 15 sensors, one can obtain fairly good insight in local-
ized aspects of pollution, while satisfying the condition that
the number of peers is significantly smaller than the total
number of sensors. Local histogram xlocal is for a sensor s
calculated based on the reports of its 15 peers. Global his-
togram xglobal includes reports of all sensors, except for the
sensor s’s report. Moreover, both histograms are smoothed
with the Laplace (additive) smoothing operator using pa-
rameters αlocal = 10−4 and αglobal = 10−3 (parameters
reflect that xglobal is calculated based on approximately 8
times more reports than xlocal).

To demonstrate the correctness of our results, we examine
four different reporting strategies and evaluate their perfor-
mance by analyzing the average scores of sensors. The
four strategies are defined as follows. In truthful strategy, all
sensors are honest. In collude strategy, sensors collude so
that those who observe low or medium report low, while
those who observe high or extra − high report high. In
colludeLow strategy, all sensors collude and report low.
In random strategy, a sensor whose score is being calcu-

lated reports randomly with probabilities Pr(low) = · · · =
Pr(extra − high) = 0.25; while others sensors are hon-
est. In randomAll strategy, all sensors report randomly with
probabilities Pr(low) = · · · = Pr(extra− high) = 0.25.

The statistic of the average payoffs is shown in Table 1.
These payoffs can be scaled so that the incentives take
positive values and cover the cost of sensing.

Table 1: Average payoffs

Strategy mean min max
truthful 0.037 -1.153 0.291
collude 0.014 -0.27 0.106

colludeLow 0 0 0
random -0.876 -1.631 -0.36

randomAll -0.228 -0.362 -0.123

Strategy median 1st quartile 3rd quartile
truthful 0.047 -0.017 0.102
collude 0.019 -0.009 0.039

colludeLow 0 0 0
random -0.823 -1.075 -0.673

randomAll -0.228 -0.258 -0.19

As expected, random reporting strategies on average lead
to low scores. When a single sensor reports randomly,
while others are honest, its expected payoff is strictly neg-
ative. When all sensors report randomly, the average pay-
offs are more concentrated around 0. Colluding on a single
value results in payoff equal to 0, and this trivially follows
from the structure of the score. Collusion strategy collude
has a positive mean of the average payoffs, but lower than
for truthful reporting. Moreover, a careful inspection of me-
dians and quartiles shows that such collusion is worse than
truthful reporting for the majority of sensors. Namely, me-
dian, third quartile and maximum are greater for truthful
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reporting than for collude strategy.
Smaller number of sensors
The setting considered in
this paper assumes that
the network of senors is
dense. We also tested our
mechanism by decreasing
both the number of sensors
and the number of peers
for each sensor. Our re-
sults indicate that truthful
reporting remains the optimal
strategy until the number
of sensors decreases by
about two thirds and the
number of peers by about
one half, which represent
critical values where collusive
strategies colludeLow and
collude become more prof-
itable than truthfulness. For
more details, see [11].

Conclusion
In this paper, we have constructed an incentive mecha-
nism that can be applied in a participatory sensing scenario
where a large group of sensors take measurements of a
spatially distributed phenomenon. We have shown both
formally and empirically that the mechanism incentivizes
truthfulness in game-theoretic sense: it is incentive compat-
ible, with truthful equilibrium resulting in the maximal payoff
among a reasonable set of reporting strategies. The most
important future step would be to make the mechanism
more robust in a number of sensors required to achieve the
strong incentive properties.
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