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Abstract—Personal and participatory environmental sensing,
especially of air quality, is a topic of increasing importance.
However, as the employed sensors are often cheap, they are prone
to erroneous readings, e.g. due to sensor aging or low selectivity.
Additionally, non-expert users make mistakes when handling
equipment. We present an elegant approach that deals with such
problems on the sensor level. Instead of characterizing systematic
errors to remove them from the noisy signal, we reconstruct the
true signal solely from its Poisson noise. Our approach can be
applied to data from any phenomenon that can be modeled as
particles and is robust against both offset and drift, as well to
a certain extent against cross-sensitivity. We show its validity on
two real-world datasets.
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I. INTRODUCTION

Air quality sensing is undergoing a paradigm shift as low-
cost pollution sensors enable individuals to monitor their
surrounding environment [17]. The U.S. Environmental Pro-
tection Agency (EPA) recognizes growing support for passive
monitoring with wearable sensors [2] that are attached to the
body or worn in the hand or head. Example technology ranges
from multi-sensor devices (e.g. CommonSense [8], Envboard
[5]) over mobile phone accessories and body-worn sensors
(e.g. Breathe [15]) to sensor-enabled clothing (e.g. WearAir
[10], Conscious Clothing [1]). When compared to standardized
procedures, most handling requirements to ensure results of
high validity are typically not fulfilled, as:

• Correct and fixed placement of sensors -– in wearables
sensors are often placed opportunistically,

• Periodic or constant calibration of sensor — not feasible
in a wearable or mobile device

• Standardized measurement process — difficult to reach
due to unexperienced user

• Controlled environment conditions — very difficult due
to mobility of the user or movement of worn sensor

Thus, the significance of wearable measurements is low
and errors restrict the credibility and therewith the use of the
gathered information. Statistical error refers to a deviation
between multiple measurements of the same phenomenon,
e.g. due to sensor noise and/or the statistical nature of the
sensing process. In contrast, systematic error means that any
measurement differs from the actual value in the same way,
or in other words: The measurement system is de-calibrated.
Systematic errors can stem from a number of sources:

• Low-cost sensors may be susceptible to systematic cross-
sensitivity, e.g. caused by temperature dependencies of
electro-chemical sensors, cameras or photodiodes [6].

• Sensor aging can introduce both drifts and sudden offsets.
Drift may e.g. be caused by dirt deposition, abrupt
changes by degradation, e.g. pixel defects in image sen-
sors.

• Limited parameter control is an issue if existing smart-
phone or smart watch sensors are re-purposed as environ-
mental sensors. Limited hardware control may e.g. result
in unwanted or even unnoticed automatic gain or sensi-
tivity adjustments, potentially causing de-calibration.

• Novice/untrained users: If sensing requires proper device
handling and/or involves assembly, as e.g. with clip-on
approaches [4], the changing integrity of the sensing
system is another source of errors. In camera-based
sensing, a user could e.g. inadvertently put a smudge on
the camera lens, which would then create an offset in
subsequent readings.

In principle, all of these systematic errors can be quantified
and removed from the data. However, it is often not feasible to
do this in-situ without recalibration and/or a reference device.
We present a simple signal reconstruction scheme for the
monitoring of certain environmental phenomena that is robust
against the presented errors by reconstructing the true signal
solely from the Poisson noise of the erroneous signal. While
the signal itself may be skewed or distorted, its noise is a
relative property. Our approach is robust against both static and
dynamic baseline shifts (offset and drift), as well to a certain
extent against cross-sensitivity. We demonstrate the feasibility
on data from clip-on particulate matter sensors for camera-
phones [4] and from low-cost ozone sensing [13].
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II. RELATED WORK

There is a number of different purposes for which noise is
analyzed: One is fingerprinting sensors to uniquely identify
them, which has been demonstrated for cameras [7] and
accelerometers. In image processing, Poisson noise is usually
seen as something undesirable that should be to be removed
from an image [3]. However, in that context, the noise in
question is the pixel noise of a camera sensor element. In
contrast to the sensor noise which these approaches deal
with, we analyze sensor data noise, i.e. the Poisson noise
of the signal variation. Kalman filters can be used for state
estimation of noisy signals, e.g. for sensor drift correction.
Yet, they typically require a priori knowledge about the noise
characteristics, i.e. the models used in the filter need to match
the physical situation. While Adaptive Kalman Filters can to
a certain extent learn these models, they still require readings
from other sensors and/or periodic access to ground truth
to somehow rate the quality of the current estimation. An
approach to reconstruct signals from noisy data or incom-
plete information is Compressed Sensing. Haupt et al. [9]
showed that signal information can be obtained from several
random Fourier projections. Furthermore, Model et al. [14]
demonstrated the use of multi-sensor arrays to reduce data
noise of spatially separated signal sources. A more general
approach addresses data that is corrupted by some sort of
Poisson noise, in particular image noise [12]. However, all
these attempts have the assumption in common, that the noisy
data does actually represent the signal and is not altered by
some sort of systematic error or drift over time. As motivated
above, systematic error can also often be attributed to improper
handling by untrained users. Interestingly, while research on
mobile, low-cost and participatory sensing recognizes the need
to ensure credible readings from cheap sensors [11], the focus
is seldomly placed on the effects that are caused by novice
users. An intuitive approach is to either train participants or
try and determine their skill level or reputation beforehand
[18] and/or select them accordingly [16]. However, this again
requires some kind of ground truth determined by expert users
or a series of campaigns, making it an intricate option. So,
while some of the related work can deal with certain types of
errors, none of the approaches are able to compensate for all of
the presented sources of systematic errors without additional
knowledge or sensor data. Our approach uses only raw data
and is applicable for environmental sensing of any phenomena
that can be modeled as Poisson processes.

III. APPROACH

The basic idea of our approach is very simple: Measuring an
environmental phenomenon that can be modeled as particles is
observing its current concentration in a certain measurement
volume. Thus, we are basically looking at a series of count-
ing experiments that are conducted in parallel. Because we
are only observing a small measurement chamber we have
a certain chance that e.g. a particle is present during our
measurement or that it is not. This is – generally speaking – the
process of counting independent, uniformly distributed events
in a spatial volume. This is by definition a spatial Poisson

Data: raw environmental time series data
X = {Xt : t ∈ T}, window size w

Result: reconstructed signal Y = {Yt : t ∈ T}
/* 1: moving avg. to smooth */
XS = avg(X);
/* 2: spline interpolation */
s(t) = spline(XS);
/* 3: extract noise */
N = {Nt : Nt = Xt − s(t)};
forall the It = [t− w

2
, t+ w

2
] ⊂ T do

/* 4: std. dev. of N on interval It */
Yt = stdev(N |It);

end

Algorithm 1: Signal reconstruction from Poisson noise.

process. A vivid example for a Poisson process is observing
raindrops on the tiles of a rooftop.

The number of observed occurrences in a Poisson process
fluctuates with a standard deviation of σp =

√
n around

its mean n, or in other words, there is signal dependent
noise. From this noise, we can directly calculate the mean
concentration of the signal. This of course only works rea-
sonably well if the signal fluctuations σp are greater than the
sensor background noise, since the magnitude of the signal
is always higher than that of the noise. Still, this approach
has some huge advantages: As noise is a relative property, the
inferred concentration is unaffected by drift or de-calibration
offset shifts. This allows to derive the actual signal values
if the noise-to-signal-dependency is known. This statement is
generally true, even for non-Poisson processes. In case of a
Poisson process however, the dependency is known: The noise
will behave like the square-root of the signal.

The algorithm to reconstruct the signal has four steps,
as shown in Algorithm 1. We first apply a simple moving
average to the noisy data to reduce it to its mean values.
Then, a spline interpolation is constructed on the smoothed
data in order to determine the mean value on any point within
the measurement series. After that, the actual noise can be
extracted by subtracting the mean from the raw data. Finally,
to obtain a measure of fluctuation, we calculate the standard
deviation of that noise on several time intervals It, which
is then linearly correlated to the square-root of the signal
mean values corrected for drifts. Whenever a summation is
done on parts of the data (e.g. averaging) we weigh this sum

(a) (b) (c)

Figure 1: MobileDust dataset: (a) sensor design (passive version), (b)
active prototype of removable dust sensor attached to Nexus 4 phone
and (c) example light scattering image taken from the recorded data.
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Figure 2: Brightness signal vs. particle concentration (all normalized) for different measurements from the MobileDust dataset. Our approach
is robust against (a) dynamic baseline shifts, (b) sudden offsets and (c) systematic cross-sensitivity, in this example a strong temperature
dependency. Applicability on a different phenomenon is shown in (d): raw data and derived signal from the OpenSense dataset.

with a Gaussian window to minimize boundary effects of
convolution.

IV. EVALUATION

We selected data from two separate real-world projects to
test the feasibility for different phenomena: Particulate matter
sensing with camera-phone dust sensors (MobileDust [4])
and low-cost gas sensing (OpenSense [13]). The MobileDust
dataset was recorded in a lab setting with a Google Nexus 4
smartphone and a clip-on dust sensor that is integrated in a
removable back-cover (see Figure 1). Image resolution was
3264 × 2448 and sampling frequencies ranged from 0.5 Hz
to 1.5 Hz, depending on the settings for the individual mea-
surement run. The phone was placed in a container so that the
reference device was exposed to the same air flow. From the
images, we calculated the accumulated brightness per picture
as feature. As window size for the algorithm, we empirically
selected 130− 150 samples. Three illustrative examples from
the dataset are shown in Figure 2. The plots show that even
though the original brightness signal is affected by (a) a
dynamic baseline shift (b) sudden offsets and (c) systematic
cross-sensitivity (in this example a strong temperature depen-
dency), the true signal can be reconstructed without additional
information. The OpenSense dataset contains one full year of
ozone (O3) measurements, recorded with the low-cost MiCS-
OZ-47 sensor (one reading every 60 seconds) as well as by
a fixed station from the national air pollution monitoring
network (NABEL) in Zürich [13] (10-minute mean values).
Figure 2 (d) shows an envelope of the original reference signal
as signal reconstruction for this dataset.

To evaluate calibration stability, i.e. if it is possible to find
fixed parameters to map the noise to absolute concentration
values, we analyzed twelve measurement series from the Mo-

bileDust dataset. All data was recorded using the same smart-
phone, but in independent sensing runs over the course of one
year with long pauses between them. Thus, data was subject to
possible systematic errors due to varying temperature, slightly
different experimental setup and even changed methods of data
collection: The first few datasets were recorded with an older
version of the sensing app, which heavily used automatic white
balance and exposure compensation. Between sessions, the
experimental setup was disassembled and the clip-on sensor
fully detached. Measurements were taken at diverse daytimes
and seasons, with possible influence of ambient light and
temperature on the mean brightness of the pictures. Still, our
analysis yielded that the correlation behaves like the square-
root of reference, as expected for a Poisson process. The exact
model we used is y = A ·

√
x + B with B = 800 due to

background noise of the sensor. A least mean square (LMS)
fit of this model yields the parameters as shown in Table I, ∆A
being the statistical error of the fit. The mean relative statistical
error is only ∆Ā = 0.38%. This is a measure of correctness
of the model. Therefore the claim of Poisson distributed data
values holds with high probability. Furthermore the standard
deviation of the fit parameter A from its mean Ā = 16414.8
is σA = 1874.4. So we have relative error of about 11.4%

data01 data02 data03 data04 data05 data06

A 19214.2 16515.3 19424.1 16026.0 15847.0 18162.2
∆A 115.7 57.4 62.5 49.4 48.2 84.5

data07 data08 data09 data10 data11 data12

A 13451.2 12934.0 15961.0 16424.4 15958.4 17059.5
∆A 71.3 67.4 40.6 37.9 55.5 57.9

Table I: Calibration parameters derived by LMS fit for the individual
measurements. The relative error between parameters is only 11.4%.
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in adjusting the fit parameters between different measurement
series, which is a measure for stability of the calibration
approach.

V. DISCUSSION

While the proposed method is clearly able to compensate
for systematic errors, there are some constrains regarding its
application. If the dataset has already been smoothed, e.g.
due to some commercial and/or inaccessible sensor setup,
the time resolution will decrease. Also, there is a restriction
to drift compensation. If systematic errors change the signal
too rapidly, that is with high frequency, they cannot be
distinguished from signal noise. In a sense, it is then possible
to regard the systematic error approximately as pure statistical
fluctuations. If these fluctuations overcome the signal noise by
means of magnitude, it’s difficult to apply the noise extraction,
since the noise-to-signal-dependency will be blurred. This is
not a practical limitation though, as poor data with huge
background noise will always be problematic, no matter which
method of analysis is used. Applicability regarding drift from
cross-sensitivity may be limited in case that both measured
phenomena are Poisson distributed. If a gas sensor is e.g. sen-
sitive to two different gases, our approach may not be able to
reconstruct the signal, depending on the individual magnitudes.
By measuring the noise of the signal, we deliberately sacrifice
part of the signal-to-noise ratio (SNR), because signal noise
is by magnitude always smaller than the signal itself. Our
method thus is a trade-off between SNR and stability. On
the one hand, it will never yield as good results as proper
characterization and removal of the systematic error, but on
the other, no additional information is needed to account for
de-calibration and drift of (almost) any kind.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented an elegant signal reconstruc-
tion method to compensate dynamic and systematic errors
in environmental sensing that can be modeled as Poisson
process. Our technique is robust to a variety of error sources
that would usually require an advanced measurement setup
to control. This includes classes of errors caused by low-cost
sensors, limited parameter control and untrained, non-expert
users. We have confirmed the principle of operation of our
simple approach and shown that it works well on two separate
real-world datasets. Overall, we proposed and validated a
novel way to account for the natural instability of mobile
and wearable measurement setups for end-user environmental
sensing. In future work, we will investigate if this method can
be extended from stand-alone measurement to combinations
with other approaches, e.g. to stabilize readings and compose
more sophisticated signal processing techniques.
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