
On the Cost of Extracting Proximity Features
for Term-Dependency Models

Xiaolu Lu
RMIT University

Melbourne, Australia
xiaolu.lu@rmit.edu.au

Alistair Moffat
The University of Melbourne

Melbourne, Australia
ammoffat@unimelb.edu.au

J. Shane Culpepper
RMIT University

Melbourne, Australia
shane.culpepper@rmit.edu.au

ABSTRACT
Sophisticated ranking mechanisms make use of term dependency
features in order to compute similarity scores for documents. These
features often include exact phrase occurrences, and term proxim-
ity estimates. Both cases build on the intuition that if multiple
query terms appear near each other, the document is more likely
to be relevant to the query. In this paper we examine the processes
used to compute these statistics. Two distinct input structures can
be used – inverted files and direct files. Inverted files must store
the position offsets of the terms, while “direct” files represent each
document as a sequence of preprocessed term identifiers. Based
on these two input modalities, a number of algorithms can be used
to compute proximity statistics. Until now, these algorithms have
been described in terms of a single set of query terms. But simi-
larity computations such as the Full Dependency Model compute
proximity statistics for a collection of related term sets. We present
a new approach in which such collections are processed holistically
in time that is much less than would be the case if each subquery
were to be evaluated independently. The benefits of the new method
are demonstrated by a comprehensive experimental study.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware—Performance evaluation

Keywords
Experimentation; Measurement; Dependency Ranking Models

1. INTRODUCTION
A range of sophisticated ranking mechanisms have been pro-

posed that make use of term dependency features in order to com-
pute similarity scores for documents [16, 17, 19, 21]. The features
that get used include exact phrase occurrences, in which a sequence
of words appear consecutively; term bigram co-occurrences; and
more generalized term proximity estimates. Intuitively, these meth-
ods build on the belief that if multiple query terms appear next
to, or nearby each other, it can be inferred that the document in
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’15 , October 19–23 2015, Melbourne, VIC, Australia
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3794-6/15/10 ...$15.00.
http://dx.doi.org/10.1145/2806416.2806467.

question has an increased probability of being relevant to the query
compared to a document in which the occurrences are separated by
many intervening words.

Here we examine the processes that are used to compute the nec-
essary frequency statistics, with an emphasis on generalized term
proximity features. For example, the “unordered window” attribute
is based on, for each document being ranked, the number of distinct
intervals of some specified length within the document in which all
of the listed query terms appear. Two distinct input structures can
be used to compute proximity features – inverted files, in which
term positional information is retained as part of the posting asso-
ciated with each terms’ presence in the document; and the “direct”
files that are constructed by some retrieval systems, in which each
document is represented by a surrogate consisting of a sequence of
preprocessed term identifiers.

A number of algorithms have been described for computing prox-
imity statistics using these two input structures. These approaches
include the plane-sweep and divide-and-conquer methods described
by Sadakane and Imai [18], and other similar approaches described
by Huston [12] and Clarke et al. [8]. All of the algorithms are pre-
sented in terms of a single set of query terms, with the objective
being to compute a list of minimal intervals in the given document
within which each query term appears at least once. But similar-
ity computations such as the Full Dependency Model (FDM) [16]
involve the computation of proximity statistics for a collection of
related term sets, because every subset of terms from the underly-
ing query is permitted to influence the final score. That is, multiple
related queries of the form considered by Sadakane and Imai must
be evaluated as part of scoring each document of the collection in a
ranked retrieval environment. These considerations lead us to two
research questions.
RQ 1 Do inverted lists consistently offer advantages for computing
proximity statistics when compared to direct files?
RQ 2 Is it possible to compute multiple related proximity statistics
within a single evaluation?

In this paper we present a new approach in which a suite of related
general proximity queries can be computed in a single pass, gener-
ating significant execution time savings compared to the alternative
of evaluating each subset of the terms independently. By exploit-
ing a key insight in the way optimal subquery intervals must be
formed, we show how to dramatically reduce the cost of comput-
ing all of the intervals for all query term combinations. We show
that FDM-like scoring can be carried out holistically in time that is
much less than would be the case with independent subquery eval-
uations, thereby answering the second question in the affirmative.
The experimental study we have undertaken also provides evidence
that while inverted lists are often superior to direct files, this is not
always the case.

2. BACKGROUND

Phrases and proximity in IR Many of the recent ranking models
in information retrieval include proximity features, such as term-
pairs, phrases or unordered windows. Early models such as IN-
QUERY [6] considered both phrases and proximity features, and a
number of studies have been carried out to better understand their
relative contributions. For example, Hawking and Thistlewaite [10]
investigated the value of phrase-only queries and showed that doc-
uments that score higher using only phrase features may in fact be
less relevant, and that phrase features may not be sufficient to re-
liably increase effectiveness. Tao and Zhai [20] compare several
different term proximity models to determine which combination
of k-term proximities can best improve query effectiveness. Af-
ter comparing all possible proximity feature mappings in a BM25
ranking model, they conclude that term-pair proximity is sufficient
to obtain a statistically significant improvement in effectiveness.

The common thread in using either phrases or proximity is that
effectiveness can be improved some of the time, but predicting
which method works best is difficult. Based on this insight, Met-
zler and Croft [16] proposed a Markov Random Field (MRF) model
that incorporates both types of dependency relations into a single
weighted model. Term dependencies in the SDM (Sequential De-
pendency Model) and FDM (Full Dependency Model) are repre-
sented as matches against ordered or unordered windows, using the
Indri1 operators #owλ and #uwλ. The basic MRF model improves
effectiveness over a bag-of-words model, especially on large col-
lections and long queries [14]. Effectiveness can be further im-
proved by using a Weighted Sequential Dependency Model where
concept weightings are determined in a supervised manner instead
of using a fixed configuration [2, 13]. Huston and Croft [13] found
that k-term proximity improves effectiveness for some queries, but
not all. The exact interaction of term-pair versus k-term concept
weightings remains inconclusive and an interesting area of further
study.

Computing proximity features Extracting all proximity features
is a computationally expensive task. As a consequence, most effi-
ciency studies consider only term-pair proximity, since term co-
occurrences can easily be computed on the fly, or pre-indexed.
Asadi and Lin [1] show that extracting BM25 and all two-term
dependency features requires longer (20.6 microseconds per doc-
ument) than only considering unigram BM25 features (14.6 mi-
croseconds per document). Term co-occurrences can also be pre-
computed without the size of the index increasing too much. Based
on ranking models proposed by Büttcher et al. [4], Broschart and
Schenkel [3] designed a combined index structure for both terms
and term-pairs. Their index can be tuned to balance efficiency and
effectiveness. Yan et al. [22] also index term co-occurrences, but
use a different ranking model and consider only term-pairs within a
fixed distance. They also incorporated early termination techniques
to improve efficiency when scoring documents. Rather than keep-
ing exact position information in the index, Elsayed et al. [9] only
store approximated counts for various term-pair features. They seg-
ment documents into different buckets and use a membership query
to determine if two query terms appear in adjacent buckets. El-
sayed et al. also examine several different strategies to partition
documents, and different encodings to reduce the total index size.

Relatively few methods have been described for computing k-
word proximity features when k is larger than two. Asadi and Lin
[1] suggest that the problem of matching #owλ and #uwλ can be for-
1http://www.lemurproject.org/indri.php

1 2 3 4 5 6 7 8 9 10 11 12

A E B C E E E B A C B ED :

Figure 1: For documentD and queryQ = {A,B,C} there are four
optimal 3-intervals: 1. . .4, 4. . .9, 8. . .10 and 9. . .11. The interval
3. . .9 is not optimal because it has 4. . .9 as a proper subset.

mulated as a set intersection and evaluated using the small adaptive
algorithm, but then mainly focus on extracting term co-occurrence
features. Two O(N logN) approaches for finding optimal inter-
vals in an N -word document that include a set of k query terms
were proposed by Sadakane and Imai [18]: a method that they de-
noted as plane-sweep; and a method that they categorized as divide-
and-conquer. Experiments conducted on data indexed using both
suffix arrays and inverted files showed that unless one query term
has a much lower term frequency (TF), plane-sweep is the best ap-
proach. Sadakane and Imai suggest that performance could be im-
proved by selectively choosing plane-sweep or divide-and-conquer
based on the relative term frequency, but do not explore this option
in detail.

Contribution We focus on how to efficiently compute term prox-
imity features for queries of k ≥ 3 terms, assuming a context in
which the 2k − k − 1 non-empty subsets of those terms must all
be treated as subqueries for which term statistics are to be com-
puted. This point of view allows us to develop efficient approaches
to the holistic generation of sets of data for use in ranking compu-
tations, covering all of the requirements of an overarching k-term
query. As is demonstrated in the development below, that point of
view provides more efficient document scoring than is possible if
standard interval-finding techniques are used in an iterative manner,
processing each subquery separately.

We first revisit the problem of calculating k-word proximity by
formalizing the problem. We next review current solutions accord-
ing to their corresponding input structure – inverted indexes, or di-
rect files. In the new work, we then discuss how to compute all
k-intervals using a single-pass strategy in Section 4; and demon-
strate the efficacy of those methods in Section 5.

Definitions First we define what is meant by an optimal k-word
proximity interval, relative to a query Q = {q1, q2, . . . , qk} with
k query terms, and relative to a document D[1. . .N] containing a
sequence of N words:

DEFINITION 1 (OPTIMAL k-INTERVAL). An interval pl. . .pr
bounded by left position pl and right position pr is optimal if all k
terms in Q appear in D[pl. . .pr], and there is no proper subset of
D[pl. . .pr] with the same property.

Figure 1 shows an example document, and lists the four optimal
3-intervals induced by the query {A,B,C}.

Markov Random Field term dependency implementations use
the operator #uwλ to match windows containing all specified query
terms within a distance λ [15]. In these models, all non-empty
subqueries of Q are formed, and proximity statistics computed for
each subquery. For example, the query Q = {A,B,C,D} gives
rise to one 4-item subquery; four 3-item subqueries; and six 2-item
subqueries. The total number of subqueries induced by a k-term
query is given by 2k − k − 1. The rapid growth as a function of k
means that methods that compute intervals for all proximity statis-
tics in a single pass are of interest, and gives rise to the challenge
we consider:

A1 A2

B1 B2 B3

C1 C2

l

Figure 2: The plane-sweep algorithm checks whether the interval
formed by the current leftmost representative and its next appear-
ance encloses all the representatives. A virtual line l sweeps from
left to right, with term positions determined using position offsets
from an inverted file, or by sequentially processing a direct file.

PROBLEM 1 (OPTIMAL k-INTERVAL ENUMERATION). For
document D[1 . . . N] and query Q = {q1, q2 . . . , qk}, find all op-
timal |Q′|-intervals in D for all non-empty subqueries Q′ ⊆ Q in
which |Q′| ≥ 2.

For example, for the query Q = {A,B,C} shown in Figure 1,
the complete set of answer intervals required consists of optimal
2-intervals for {A,B}, {A,C}, and {B,C}, plus the optimal 3-
intervals for {A,B,C} that have already been described.

Our goal in this paper is to compute the intervals for all of the
subqueries in a single pass over the input structures, rather than
require one pass per subquery.

3. SINGLE-QUERY INTERVAL FINDING
As a prelude to considering Problem 1, we describe methods for

computing optimal k-intervals for one-off sets of terms.

Input representations Two alternative representations of posi-
tional information are used in IR systems. In a direct file, a sur-
rogate for each document is maintained, with terms represented in
document appearance order by their mapped identifiers. Each doc-
ument in the collection has a contiguous section of the direct file
allocated to it; and for each document that is to be scored in re-
sponse to a query, that segment is identified and processed. The
other option is to make use of a positional inverted index, which
contains a postings list for each term in the collection. In this rep-
resentation, the position offsets for each term are stored relative to
either the start of the collection, or relative to the start of the enclos-
ing document. Query processing is done via the postings lists, and
only when a set of documents comprising the query’s answer has
been determined is it necessary to access documents or their parsed
surrogates. Both representations can be used to support phrase and
proximity operations. For example, Terrier2 uses a direct file to sup-
port operators beyond bag-of-words computations, while Indri uses
a merge operation over position offsets stored in an inverted file to
support similar operations.

Despite considerable early work on the role of proximity in ef-
fectiveness computations [7, 10, 11], few studies have explored ef-
ficient computation techniques, and those that do mostly focus on
the case where k is 2 or 3 [5, 8]. Sadakane and Imai [18] con-
sidered k in the unbounded case, and compared the efficiency of
several different methods. One of the approaches they evaluated is
the plane-sweep algorithm; if the input is assumed to be provided
as postings lists, then plane-sweep outperformed the alternative di-
vide and conquer approach.

Eager Plane Sweep (EPS) The plane-sweep approach processes
terms in document order, checking whether the interval formed by
2http://terrier.org/

the current leftmost term encloses all of the other endpoints. For
example, consider the scenario shown in Figure 2. The interval
A1. . .A2 containsB1 andC1. Therefore,A1. . .C1 is an optimal 3-
interval. The leftmost term (in the example, A1) is then discarded,
andB1 becomes the leftmost term. Now the intervalB1. . .B2 does
not contain both of the remaining terms, so B1 is discarded, and
C1 becomes the leftmost term. As it turns out, this is the left-hand
anchor point of another optimal 3-interval, through to A2.

The plane-sweep approach can be visualized as sweeping a line
from left to right across term positions in the document, hence the
name. If the positions are represented using positional postings
lists, then next-leftmost representatives are easily selected as are
their successors, and all of the required information can be kept up
to date with relatively little effort. We call this the eager version of
plane-sweep; Algorithm 1 presents it in detail.

Algorithm 1 Eager Plane Sweep, Single Interval (EPS-IF-S)

Input: A query Q of k terms, and sorted position lists of all terms
{P1, P2, . . . , Pk}

Output: A set of intervals I
I ←{}
for i← 1 to k do

curr_occ[i]←FIRST(Pi)
end for

5: while (max1≤i≤k curr_occ[i]) <∞ do
lsym←argmin1≤i≤k{curr_occ[i]}
rsym←argmax1≤i≤k{curr_occ[i]}
lpos←NEXT(Plsym) // returns∞ if Plsym is exhausted
if lpos > curr_occ[rsym] then

10: I ←I ∪ 〈Q, curr_occ[lsym]. . .curr_occ[rsym]〉
end if
curr_occ[lsym]←lpos

end while
return I

The inverted index is presumed to support the two usual access
operations: FIRST and NEXT. Both return the position of a term
in the current document being processed. The k-element array
curr_occ is used to track the current positions of all terms in the
query. In addition, lpos maintains the next position of lsym. If lpos
is greater than curr_occ[rsym], the current interval is emitted. Fi-
nally in each iteration, curr_occ[lsym] is updated to the new most
recent position, lpos. When any of the position lists is exhausted,
the algorithm terminates. Figure 3 gives a concrete example of this
process, matching the schematic shown in Figure 2. As already de-
scribed, an interval is identified in the first iteration, but not in the
second iteration.

Since each of the postings lists in the inverted index is already
sorted by term positions, Algorithm 1 requires O(log k) time per
iteration, using two heaps of k items to identify maximal and min-
imal representatives at steps 6 and 7 respectively. All other opera-
tions require O(1) time each. Hence, over the k terms, there is a
total of TQ,D =

∑k
i=1 |Pi| ≤ N postings to be processed, and the

total execution time is O(TQ,D log k) = O(N logN) [18].

Lazy Plane Sweep (LPS) In the EPS approach, the leftmost posi-
tion is used as a pivot, and the next occurrence of that term is used
to determine if the pivot is the leftmost end of an interval. How-
ever if the input format is a direct file, the NEXT operation cannot
be carried out in O(1) time per call, making the eager updating of
curr_occ possibly costly.

Instead, in the Lazy Plane Sweep approach the direct file is se-
quentially scanned, and intervals are formed as their right-hand ex-

A

B

C

curr occ

∞

9

9

8 11

10

1

3

4

A

B

C

A

B

C

optimal

3-interval
(1..4)

lpos
lsym

rsym

A

B

C

curr occ

8 11

10

3

4

lposlsym

rsym
lpos < 9

not optimal

Figure 3: An example of Eager Plane Sweep. The array curr_occ
records the current representative of each postings list. When
lpos > curr_occ[rsym], as shown in the first configuration, an op-
timal 3-interval has been identified. The lower half then shows the
following configuration, which does not generate an interval.

trema is processed. As with the EPS implementation, the most re-
cent occurrence of each term is tracked in curr_occ. A sentinel
value of −∞ is used to indicate the absence of a term, and an in-
terval can be formed only when a usable occurrence of each term is
defined within the scope. That is, intervals are identified and emit-
ted when the right-hand end of the interval is reached. If an interval
is identified, the smallest of the values in curr_occ is then voided,
as a signal that the next interval must contain a new instance of that
term.

Algorithm 2 Lazy Plane Sweep, Single Interval (LPS-DF-S)

Input: A query Q of k terms, and a direct file D[1 . . . N]
Output: A set of intervals I
I ←{}
for i← 1 to k do

curr_occ[i]←−∞
end for

5: for rpos←1 to N do
curr_occ[term_map(D[rpos])]←rpos
lsym←argmin1≤i≤k{curr_occ[i]}
if curr_occ[lsym] > −∞ then
I ←I ∪ 〈Q, curr_occ[lsym]. . .rpos〉

10: curr_occ[lsym]←−∞
end if

end for
return I

Algorithm 2 provides details. Now it is theN values in the direct
file corresponding to the document that are processed. At each iter-
ation the next term (or non-term) D[rpos] is considered (step 6). A
mapping to query terms (denoted term_map() in the pseudo-code)
is used to convert raw term numbers across the whole collection
to restricted values pertinent to this query, with instances of the k
query terms being converted (uniquely) to values in 1 . . . k, and in-
stances of non-query terms being converted to (say) k+1. At each
cycle, if inclusion of the symbol in D[rpos] means that all of the k
positions in curr_occ have positive values, then the right-hand end
of an interval has been located. If that happens, the interval is saved,
and then the left-hand symbol of it interval is voided (step 10), since
it cannot take part in any further intervals.

1 2 3 4 5 6 7 8 9 10 11 12

A E B C E E E B A C B ED :

curr occ:

at position: 1

1 −∞ −∞

A B C

at position: 4

1 3 4

A B C

(1..4)
optimal 3-interval

at position: 8

... −∞ 8 4

A B C

Figure 4: The LPS approach. Array last_occ of size k tracks the
last position of each query term. When the minimum value in
last_occ is −∞, an optimal k-interval has not yet been formed.
In the bottom array, an optimal k-interval has been formed, so the
interval can be added into the result set based on the two endpoints.

Condensed
Direct File

Inverted File

Direct File

Lazy Plane-Sweep Eager Plane-Sweep

Figure 5: Input representations. A condensed direct file is a direct
file restricted to the terms that appear in the query; it can be derived
from a direct file in O(N) time, or from an inverted file contain-
ing term positions in O(TQ,D log k) time, where TQ,D is the total
number of occurrences of query terms from Q in document D.

Step 7 in Algorithm 2 makes use of an “argmin” operator over
k values, and is presented this way in order to draw out the sym-
metry between the EPS and LPS implementations. Step 7 does not,
however, require a heap andO(log k) time per execution. That cost
can be avoided by maintaining an lpos index into D, and advanc-
ing it to the right (at step 7) when necessary, bypassing any non-
query terms. Each time lsym is required, it can then be computed
as term_map(D[lpos]). In total, over the whole of Algorithm 2,
advancing lpos can require at most O(N) time, and hence in an
amortized sense, it is O(1) time per loop iteration. The only other
possible concern in Algorithm 2 is the cost of the term mapping
term_map(); but it can be implemented as a hash-table lookup with
expected time O(1) per call. Hence, Algorithm 2 requires O(N)
time. Its correctness follows directly from the correctness of the
eager plane-sweep approach [18].

Comparing Input Structures As has been noted, the two most
common input representations are direct files and inverted indexes.
Input via an inverted index is the “natural” arrangement for the
eager plane-sweep process; conversely, the lazy plane-sweep ap-
proach was presented assuming input from a direct file. But the
lazy mechanism can also be coupled with an inverted file – all that
is required is to merge the postings lists for the query terms, and
construct an intermediate form we call a condensed direct file, as
shown in Figure 5. For query Q of k terms, and postings lists P1 to
Pk, the cost of doing the merge is given by O(TQ,D log k), where
TQ,D =

∑k
i=1 |Pk| is the sum of the lengths of the postings lists

for D. So, the cost of generating the condensed direct file is the
same as the cost of running EPS (Algorithm 1) starting with an in-

verted file. Note that the condensed direct file is query specific, and
for that reason cannot be precomputed and stored.

Starting with a direct file, the specific condensed direct file for
a query Q can be constructed in O(N) time. Then, once the con-
densed direct file has been constructed, the EPS mechanism (Algo-
rithm 2) can be executed in O(TQ,D) time. Which of these various
computation pathways should be chosen depends in no small part
on the relative scale of TQ,D , k, andN . For example, a short query
of rare terms against a long document will favor the use of an in-
verted file/EPS approach; whereas a long query that includes one
or more frequent terms is likely to execute more quickly using the
direct file/LPS approach.

Either way, in the case of proximity queries in the context of
FDM and similar retrieval models, multiple related subqueries must
be evaluated. This need brings further tradeoffs, because it means
that the cost of generating a condensed direct file can be amortized
over the subqueries. This is one of the themes that is addressed in
the next section.

4. EXTRACTING MULTIPLE INTERVALS
We now turn our attention to Problem 1, the larger task of com-

puting interval statistics for a query Q and all of its subqueries Q′,
where Q′ ⊆ Q and |Q′| ≥ 2.

Repeated Computation If a query has k terms, then there are
2k − k − 1 non-empty non-singleton term subsets possible: four,
for a 3-term query; eleven, for a 4-term query, and so on. Hence,
one obvious way of computing an all-subqueries solution is to iter-
ate over the subsets, applying either Algorithm 1 or Algorithm 2 the
requisite number of times. But this approach has the potential to be
very expensive, and it would be better if the running time for gen-
erating a solution was dominated by polynomial functions of k and
N , rather than being exponential in k. Moreover, in an ideal situ-
ation the size of the computed output set I should also be a factor
that bounds the cost of the computation. That is, a useful algorithm
is one that does the amount of work necessary to generate the re-
quired output, in this case |I|, with an overhead cost as a function
of N (or TQ,D) and k that is additive rather than multiplicative.

One way in which time can be saved when multiple related sub-
queriesQ′ are being evaluated against the same documentD has al-
ready been noted at the end of Section 3 – the formation of a query-
specific condensed direct file (CDF) which retains only (and ex-
actly) the positions of the terms in Q that appear in D. The cost of
constructing the CDF is the same as running a single-query interval
finding mechanism: O(TQ,D log k) time if the input is an inverted
file, or O(N) time if the starting point is a direct file of length N ,
meaning that there is little point to the conversion operation for the
single-interval task. On the other hand, the conversion cost can be
amortized over multiple executions for the all-subqueries task, and
allows a more flexible range of options. Hence, we can consider
two relatively obvious baseline mechanisms for Problem 1, based
on the two methods presented in Section 3:

• EPS-IF-S*: starting with an inverted file, apply Algorithm 1
a total of 2k − k − 1 times, reinitializing the postings list
pointers and starting a fresh computation at each iteration.

• LPS-CDF-S*: starting with an inverted file or a direct file,
construct a condensed direct file; then, using the CDF, apply
Algorithm 2 a total of 2k − k − 1 times.

Both of these methods are used as reference points in the experi-
mentation reported in Section 5 .

A Critical Observation Consider again the arrangement shown
in Figure 2, and the occurrences of term B, marked by B1, B2,
and B3. Focusing on B2, consider its relationship to the other two
terms, A and C. Because there are no instances of term A that ap-
pear between B1 and B2, occurrence B2 cannot be the right-hand
end of an {A,B} interval. On the other hand, the appearance of C1

between B1 and B2 means that B2 is the right-hand endpoint of a
{B,C} interval, spanning C1. . .B2.

Similarly, consider A2, the next possible right-hand point for in-
tervals encountered during the plane-sweep process. The previous
occurrence of A is at A1. There is no possible benefit from con-
sidering B1 as a possible left-hand partner for A1, because there is
another instance of B between A1 and A2 that “shadows” it. Only
the most recent instance of each symbol needs to be regarded as
“interesting”; and B2 is the instance of B that fits this definition,
and defines the left-hand end of an {A,B} interval. Position C1

is also interesting, because it is the rightmost C prior to A2, and
hence can potentially be pinned at the left-hand end of intervals
stretching through to A2. Once that range C1. . .A2 is established
as a viable one, all subsets of the set of distinct items strictly con-
tained within that range need to be used to create intervals. In the
example, B2 lies between C1 andA2, and hence there are two sub-
sets to be considered, { } and {B2}, and thus two intervals that
span C1. . .A2: {A,C} and {A,B,C} respectively. In total, three
intervals are identified while the focus is on A2.

Shifting the focus to the next point in the sweep, C2, then opens
up A2 and B2 as potential left-hand partners. The interval {A,C}
is first identified while A2 is being evaluated as a left-hand partner;
and then {B,C} and {A,B,C} both emerge when it is B2 that is
being considered as a left-hand partner for C2, covering B2. . .C2.

Lazy All Interval Querying, LPS-IF-A More generally, each
time an item rsym at position rpos becomes the right-hand focus of
the sweep, all right-most instances of other terms that lie between
rpos and the prior occurrence of rsym can be used as the left-hand
partners for intervals that terminate at rpos. The endpoints of that
range define an interval over two terms; other intervals using the
same range get added as a result of the need to include not just
the endpoint items, but every combination of other terms that lies
between them. Algorithm 3 captures these ideas.

The main loop in Algorithm 3 iterates over potential interval
right-hand ends in variable rpos, drawing them out of a merging
process on the terms’ posting lists, as was also the case in Al-
gorithm 1. The term identifier that matches this right-hand pivot
value is stored as rsym. For any particular right-hand pivot point
at rpos, there are at most k − 1 corresponding left-hand partners
to be considered; moreover, to be interesting, the most recent oc-
currence of the candidate must fall between rpos and the previous
appearance of rsym. That “last occurrence” location for each sym-
bol in the query is maintained throughout the computation in the
array curr_occ[rsym], with all values initialized to −∞. If such an
intervening symbol lsym is found, then its position lpos forms an
interval with rpos, and a two-element interval can be emitted. Once
a two-element interval has been identified, every distinct item that
occurs between lpos and rpos can also be (or not be) a member of
an interval with the same bounding endpoints. To accommodate
that requirement, the set of in-between items is accumulated in S,
and then every subsets s ⊆ S is combined with the fixed endpoints
lpos and rpos to create valid intervals. The whole process com-
pletes when all occurrences of all terms have been consumed out
of the postings lists. This occurs when every next_occ[i] value is
+∞. Note that the pseudo-code shows all output information be-

Algorithm 3 Lazy Plane Sweep, All Intervals (LPS-IF-A)

Input: A query Q of k terms, and sorted position lists of all terms
{P1, P2, . . . , Pk}

Output: A set of intervals I for Q and all subqueries of Q
I ← {}
for i← 1 to k do

curr_occ[i]← −∞
next_occ[i]← FIRST(Pi)

5: end for
while (min1≤i≤k next_occ[i]) <∞ do

rsym← argmin1≤i≤k{next_occ[i]}
rpos← next_occ[rsym]
for lsym←1 to k do

10: if curr_occ[lsym] > curr_occ[rsym] then
// lpos can be LH end of intervals ending at rpos
lpos← curr_occ[lsym]
S ← {i | 1 ≤ i ≤ k and lpos < curr_occ[i]}
for all subsets s of S, including the empty set do

15: elems← s ∪ {lsym, rsym}
I ← I ∪ 〈elems, lpos. . .rpos〉

end for
end if

end for
20: curr_occ[rsym]← rpos

next_occ[rsym]← NEXT(Prsym)
end while

ing accumulated into one stream I, but that separate streams can
also be generated if required, one per occurring subquery.

Eager All Interval Querying, EPS-CDF-A Algorithm 3 is a “lazy”
implementation of the new approach; Algorithm 4 shows that the
same idea can also be implemented in an eager manner using a
condensed direct file. Now the primary loop iterates over poten-
tial left-hand positions, via variable lpos. For each value of lpos
a forward scan is made using rpos, and rsym, building intervals
of increasing size until lsym = rsym and the bounding range for
intervals whose left-hand end is at lpos has been found. The re-
mainder of the process is similar between the two implementations
– within the range lpos. . .rpos, all possible subsets of intervening
items are used to form intervals. One important difference is that in
Algorithm 4 terms are considered in position order, and the use of
bitvector seen allows set S to be implemented as a stack when the
pseudocode is translated into an actual program. On the other hand,
in Algorithm 3, set S is rebuilt each time it is required by iterating
over k possibilities, a factor that influences the relative execution
times of the two methods in some situations.

Finally, note that while Algorithm 4 is presented assuming that
an inverted file data structure is being used, it can also readily be
executed starting with a direct file.

Correctness The discussion above already introduced the key no-
tion that ensures that the two new algorithms are correct: any op-
timal interval l. . .r that ends with some symbol x cannot contain
any other instances of x. To see the truth of this claim, suppose
that some v exists such that l < v < r and (making use of the
notation employed for the direct file) D[v] = x. Now consider the
interval l. . .r − 1. Only one symbol, D[r] = x, has been excluded
relative to the original interval, l. . .r, and hence x is the only term
that could possibly not also appear in l. . .r − 1. But there is an-
other location v with l < v ≤ r − 1 for which D[v] = x. Hence,
l. . .r − 1 must be optimal for the same subset of terms as l. . .r,

Algorithm 4 Eager Plane Sweep, All Intervals (EPS-CDF-A)

Input: A query Q of k terms, and sorted position lists of all terms
{P1, P2, . . . , Pk}

Output: A set of intervals I for Q and all subqueries of Q
(D′, TQ,D)← BUILD_CDF({P1, P2, . . . , Pk})
I ← {}
for i←1 to k do

seen[i]← 0
5: end for

for lpos←1 to TQ,D − 1 do
lsym← D′[lpos]
rpos← lpos + 1 with lsym at left-hand end
rsym← D′[rpos]

10: while rpos ≤ TQ,D and lsym 6= rsym do
if seen[rsym] = 0 then

// rpos can be RH end of intervals starting at lpos
S ← {i | 1 ≤ i ≤ k and seen[i] = 1}
for all subsets s of S, including the empty set do

15: elems← s ∪ {lsym, rsym}
I ← I ∪ 〈elems, lpos. . .rpos〉

end for
seen[rsym] = 1

end if
20: rpos← rpos + 1

rsym← D′[rpos]
end while
// reset seen to previous state
for i← lpos to rpos do

25: seen[D′[i]]← 0
end for

end for

contradicting the assumption that l. . .r is optimal. A similar argu-
ment shows that ifD[l] = x, and l. . .r is optimal, then there cannot
be any occurrence of x in D[l + 1. . .r].

In both Algorithms 3 and 4 all possible intervals that do not vi-
olate this requirement are identified, and all possible subsets of in-
tervening items within such intervals are considered. Hence both
algorithms correctly generate all optimal intervals for the query Q
and all of its subqueries Q′ ⊆ Q for which |Q′| ≥ 2.

Analysis We consider Algorithm 4 first. The main loop at step 6
iterates TQ,D times, where TQ,D is the size of the CDF D′, and is
equal to the sum of the lengths of the terms’ postings lists. The in-
ner loop at step 10 then iterates a variable number of times, hunting
forwards through D′ for the next occurrence of lsym, the symbol at
D′[lpos]. In total, for each of the query terms, the loop at step 10
iterates at most TQ,D times, since each rightward scan starts at one
occurrence of lsym, and stops when it reaches the next, forming a
telescoping sum. In aggregate, step 11 is executed at most k ·TQ,D

times over all values of lpos.
As already noted, S need not be re-evaluated each time step 13

is reached, because intervening symbols are added to it and never
removed, allowing it to be stored compactly in a k-element ar-
ray. Once S is formed, each iteration of the inner loop at step 14
takes O(1) time, and adds one item to I. Over all iterations of all
loops, the total time spent in the loop commencing at step 14 is thus
O(|I|).

The only other cost is at step 1; as already discussed, this requires
O(TQ,D log k) time if a heap is used to convert a set of postings
lists to a CDF, or O(N) time if the input is from a direct file. Note
that in a pragmatic implementation, with k unlikely to be larger

Queries Description

Set A 500 queries sampled from the 2007–2008
MQT logs, with exactly 100 queries for each
length k = 3, 5, 7, 8, and 10

Set B 1,000 queries sampled from the 2007 MQT
log, with a natural distribution of query lengths
3 ≤ k ≤ 12

Table 1: Summary of the two sampled query sets generated from
the TREC 2007–2008 Million Query Track topics and the TREC
GOV2 document collection.

0

100

200

300

3 4 5 6 7 8 9 10 11 12

Query Length

F
re

qu
en

cy

Figure 6: Length distribution for query Set B.

than around 10 or 15, an array (rather than a heap) is also a plausi-
ble choice for use during the IF to CDF conversion process, taking
O(TQ,Dk) time.

Summed over all components, the execution time of Algorithm 4
is thus O(TQ,Dk + |I|) when the input is provided as an inverted
file, and O(TQ,Dk + |I|+N) if the input is a direct file.

Algorithm 3 is harder to analyze. The loop at step 6 iterates
TQ,D times, with O(TQ,Dk) or O(TQ,D log k) time spent merg-
ing postings pointers, depending on the data structure used. For
each iteration the loop at step 9 executes exactly k times and some
number – possibly as many as all – of those executions makes it
past the test at step 10, to execute the block of statements starting
at step 11. At step 11, the process of constructing S requires O(k)
time, because curr_occ is not ordered. Finally, step 14 requires
O(1) time per interval that is generated, as was also the case with
Algorithm 4. Putting all of these parts together, it is possible that
on some inputs Algorithm 3 requires as much as O(TQ,Dk

2) time.
That worst-case bound could be reduced by maintaining curr_occ
in sorted order via a permutation vector, paying an overhead cost
to rearrange it every time it changes. As is shown below, for typi-
cal inputs the extra expense of that rearrangement is not warranted
in terms of average case performance, but not doing it does indeed
introduce the risk of more costly behavior on some queries.

5. EXPERIMENTS

Experimental Setup All experiments are performed on a machine
using an Intel Xeon E5 CPU with 256GB RAM running RHEL-
v6.3 Linux, implemented in C++, and compiled using GCC 4.8.1
with –O2 optimization enabled, with execution times measured in
milliseconds (msec) per document. All experiments use the TREC
GOV2 collection. We also performed a similar series of experi-

●

●

●

●●●●●●●●●●●●●●●●●●
●

●

●●

●

●

●●●
●
●●

●

●●●
●

●●●

●●

●●●
●●
●●●

●●●●●

●

●

●●●●●

●

●●●

●

●

●
●
●
●

●

●

●

●●
●●
●

●
●

●●●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●
●●●
●
●

●●●●●

●●

●
●●●●
●

●●●
●
●
●
●

●●

●

●●
●

●●

●●

●
●
●●
●

●
●
●

●

●●

●

●

●●●

●

●

●

●

●●●●

●

●

●

●
●
●●

●

●●
●

●

●

●

●

●

●●

●●
●

●

●●

●

●
●

●●
●
●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●●●●●
●●●●●●
●●●●

●

●
●●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●

●●

●●

●

●●●●●

●
●

●

●●

●●●
●
●●
●
●●
●
●
●
●●
●
●
●
●
●●
●●
●●●
●

●

●
●
●
●●●●●●
●
●●●●
●
●
●●
●●●●●●
●●
●●

●●

●

●

●

●●
●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●●

●
●

●●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●●

●
●

●
●●

●
●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●
●

●●
●

●

●
●
●●
●

●

●●●●●

●●●●

●●

●●

●

●

●

●●

●
●

●

●

●

●●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●●
●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●●

●

●

●

●●

●

●●

●

●●

●

●●

●
●●●
●

●

●

●
●
●●●●
●
●

●

●

●

●

●
●
●●●

●

●
●●
●

●

●

●●
●
●

●●

●

●●●
●
●

●

●

●●
●
●●●●●●

●

●

●

●

●
●●●
●●

●
●●

●
●

●●

●

●
●
●
●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●●●

●
●●
●
●
●●●

●●●●●●

●
●

●

●●

●
●●●

●

●●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●●●●●
●

●

●

●●●●

●

●

●

●
●

●
●

●●●

●

●●
●

●
●
●●

●

●
●

●
●
●
●●●
●
●●●
●
●●
●●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●●

●

●
●●

●
●

●

●

●●
●●

●

●●●●

●●●

●

●

●●

●●
●

●●
●●

●●●●
●●●●
●

●

●●●

●

●

●

●

●

●

●
●

●●

●●

●

●

●●

●
●
●
●
●●
●

●
●
●

●●●●●●●
●●
●

●

●●
●

●

●●
●
●
●
●
●
●
●●
●●

●

●●●●

●●
●●●

●

●

●
●

●●

●
●

●●

●

●

●

●●

●●

●●
●

●●●
●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●

●●

●

●●●
●

●

●●

●●

●

●

●

●

●●

●●

●
●●
●

●●

●

●

●

●

●

●●

●

●●
●
●
●

●●●

●

●

●
●●
●●●●●●●●

●●●

●

●

●
●

●●

●

●

●

●

●●
●
●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●●

●
●
●

●
●●

●

●●

●

●

●
●
●

●●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●
●

●

●●

●
●

●●
●
●
●●
●●●
●

●
●
●
●
●

●

●
●

●

●

●

●

●

●●
●●
●●

●

●●●

●
●

●
●●●●
●

●
●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

1e−05

1e−04

0.001

0.01

0.1

1

3 5 7 8 10

Query Length

R
Q

,D

Figure 7: Distribution of RQ,D for Set A as a function of k.

ments using the TREC ClueWeb09A data collection and obtained
consistent results. Since our experiments focus on the set of top-
ranked retrieved documents for each query, the results are influ-
enced primarily by the nature of the documents retrieved, and ag-
nostic to the overall collection composition.

The primary prerequisite to performing accurate comparisons of
the algorithms we present is that a range of query lengths and docu-
ment lengths be employed. To that end, two different query samples
were created using the topics from the 2007–2008 Million Query
Track (MQT) tasks. Table 1 summarizes the composition of the
two query sets. Set A was developed in order to compare perfor-
mance characteristics as a function of query length, with a focus on
longer queries, and a minimum of 100 queries of each length. The
MQT did not contain 100 queries of length 9. We also generated a
second query set containing 1,000 randomly selected queries with
3 ≤ k ≤ 12, in order to capture the query distribution in a real
query stream. Longer queries exist in the MQT log, but did not
emerge as part of our sample. We refer to this second set as Set B,
and use it to compare performance characteristics when the sam-
ple distribution is representative of a real query stream, with short
queries more probable than longer ones. The distribution of lengths
in Set B is shown in Figure 6.

Each query in each set was then evaluated against GOV2 using
Indri 4.7 with Krovetz stemming and a simple bag-of-words lan-
guage model ranking, an out-of-the-box configuration, with stop
words retained in the index. The 100 top-ranked documents for
each query were retrieved, and used in conjunction with it as a
query-specific pool of 100 documents against which the interval-
finding algorithms might be plausibly applied in an operational set-
ting, and against which execution times could be measured.

As discussed in Section 3, proximity evaluation depends on two
key problem parameters – the length of the document, N , and the
number of postings that must be processed, TQ,D =

∑k
i=1 |Pi|.

The term density ratio for a document D in respect of a query Q,
defined as RQ,D = TQ,D/N , captures the relationship between
these quantities. The direct file-based approaches are likely to be
most useful when TQ,D is high, and many of the terms in a docu-
ment are also in the query. The RQ,D distributions of the 50,000
documents extracted from GOV2 using Set A are shown in Fig-
ure 7. There is a slight trend for longer queries to be denser across
the documents that they retrieve.

Single-Query Interval Finding We first compare the cost of di-
rect files and inverted files. As previously discussed, EPS is most
amenable to an inverted file input, and LPS to direct file input. But
LPS can also be coupled with IF input – a condensed direct file can

k
LPS-DF-S EPS-IF-S LPS-IF-S

med. max. med. max. med. max.

3 0.019 0.611 0.003 2.335 0.002 2.304
5 0.033 0.765 0.004 2.263 0.004 3.147
7 0.055 1.224 0.008 5.428 0.013 5.869
8 0.066 1.054 0.011 9.350 0.020 9.626

10 0.085 1.139 0.014 6.628 0.029 7.778

Table 2: Median and maximum time (msec/doc) spent finding op-
timal k-intervals using Set A.

●

●
●

●
●●
●●

●

●

●

●

●
●

●●●
●

●
●

●
●●●●●●●
●●●●

●

●●
●
●●
●●●●
●●●
●

●

●●
●
●
●●●
●●
●

●

●

●●●●●●●●

●●

●

●

●

●●

●
●●
●

●

●

●

●
●

●

●
●
●●

●

●

●
●●
●

●

●

●
●
●
●●●●●
●

●●

●
●●

●●

●

●

●

●

●

●
●
●●●●●●

●●
●

●

●

●

●

●

●●
●
●

●
●

●●

●●

●
●

●

●●●

●

●

●
●

●●●

●

●
●

●

●

●●
●●
●

●
●

●

●

●

●

●

●
●●
●●
●

●

●

●●

●
●●
●
●
●
●●
●

●
●

●

●●●
●●
●

●●●

●
●
●

●
●
●

●●
●
●
●
●●

●

●

●●
●
●●●●●
●
●●●
●●●●●
●●●
●

●●

●●
●●●

●●

●

●●
●

●

●

●

●

●
●

●
●

●●
●
●
●
●●
●

●●

●
●

●

●
●

●

●●

●●

●

●

●

●●

●

●

●

●●

●●
●

●●

●

●

●●
●

●

●

●

●
●

●

●

●

●●
●

●
●●●
●
●●
●

●
●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●●

●
●
●
●

●
●●●
●

●●●●
●
●
●●●

●

●●●●

●

●●●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●
●
●
●
●●

●
●
●

●●

●

●

1e−04

0.001

0.01

0.1

1

10

40

< 0.05 < 0.15 < 0.25 < 0.35 < 0.45 < 0.55 < 0.75

RQ,D

T
im

e
S

pe
nt

 P
er

 D
oc

um
en

t (
m

s)

Representation
IF DF

Figure 8: Time spent (msec/doc) constructing the condensed direct
file, starting with an IF or a DF, using the Set A documents. There
were no queries in the 0.55 ≤ RQ,D < 0.65 range.

be implicitly constructed from position lists without affecting the
asymptotic cost of the interval-finding task, allowing an LPS-IF-S
combination to also be tested.

Table 2 lists optimal k-interval finding for the Set A queries for
these three methods, with the -S suffix used to denote standard
queries, without subquery intervals also being generated. The two
IF-based methods exhibit similar behavior, but with EPS-IF-S con-
sistently a little faster than LPS-IF-S. Both IF-based methods are
faster than LPS-DF-S for most queries. However, LPS-DF-S is bet-
ter in the worst case than both IF-based approaches, at all query
lengths – situations in which RQ,D is high. When this happens, lo-
cality of access in the DF works better than iterating across several
postings lists. Conversely, when RQ,D is small, the skips induced
from the postings lists outperform a sequential scan of the direct
file for most query-document combinations.

Consider two queries, as a concrete examples. In the three word
query: “mental health counselors”, all three terms tend to
have a similar within-document term frequencies (around 200), and
all of the optimal k-intervals appear close to each other. In this case,
EPS-IF-S performs unnecessary comparisons and exchanges when
trying to identify the rightmost position in the interval. However,
in longer queries, such as “what were the roles of african
males in africa 1700s” (recall that stop words are included)
method LPS-IF-S performs poorly (7.64 msec). The same query
on the same document is much faster with LPS-DF-S, taking 1.10
msec, with RQ,D = 0.16.

Figure 8 captures these tensions, plotting the relative cost of con-
structing a condensed inverted file as a function ofRQ,D for Set A.
As expected, when RQ,D is small, it is much faster to start with an
IF representation, whereas when RQ,D is large, the condensed file
format can be created more efficiently starting with the DF format.

1e−04

0.001

0.01

0.1

1

10

1e−05 1e−04 0.001 0.01 0.1 1

RQ,D

T
im

e
S

pe
nt

 p
er

 D
oc

um
en

t (
m

s) Method
LPS−DF−S
EPS−IF−S
LPS−IF−S

1e−04

0.001

0.01

0.1

1

10

1e−05 1e−04 0.001 0.01 0.1 1

RQ,D
T

im
e

S
pe

nt
 p

er
 D

oc
um

en
t (

m
s) Method

LPS−DF−S
EPS−IF−S
LPS−IF−S

Figure 9: Time (msec/doc), as a function of RQ,D for Set A. The
dashed blue regression line represents the LPS-DF-S method. The
top figure shows results for k = 3 term queries, and the bottom
one shows the results for k = 10 word queries. The plotted points
represent a sample of 5% of the total data in each graph.

So, it seems conceivable that a query-sensitive mechanism might
be devised to determine which input modality to use on a per-query
basis if both formats were available at query time.

We now turn our attention to the performance of the interval-
finding algorithms relative to RQ,D and query length. Figure 9
plots interval-finding time as a function of RQ,D for queries of
length k = 3 (top) and k = 10 (bottom). The trend line for
LPS-DF-S shows that query evaluation cost tends to decrease as
RQ,D increases; whereas for EPS-IF-S and LPS-IF-S the trend is
for cost to increase. For example, the three term query “effingham
county ga” with RQ,D = 0.35 performs poorly with both LPS-
IF-S and EPS-IF-S, and is much more efficient with LPS-DF-S. The
ten word query “what was the population of the united
states in 2000” with RQ,D = 0.19 exhibits similar behavior.
Comparing the top panel to the bottom one, it can be seen that the
“cloud” of points is shifted to the right in the k = 10 diagram,
confirming that the LPS-DF-S approach is more likely to become
superior as query lengths increase.

In general, our experiments for single-query interval finding show
that an inverted file with position offsets is a better choice than a
direct file representation. However, the worst case, while rare, is
worth careful consideration. We will see shortly that the worst case
costs are additive, and can have a significant impact when multiple
interval computations are needed.

Computing All intervals for a Query The results in the previous
experiments suggest that a direct file input representation is better

in a limited set of cases, but that the majority of the time, an inverted
file starting point is most efficient. However, the potential for an
additive worst case means we should proceed with care.

As shown in Section 4, the problem of enumerating optimal k-
intervals for all possible subqueries can be solved in a single pass
using either a Lazy or Eager evaluation strategy. In addition, there
are a couple of other confounding factors. It is possible to create
a condensed direct file representation once, and amortize the cost
of the merge from an inverted file across multiple “single-interval
query” computations.

In Table 3, two different approaches are considered when enu-
merating all of the possible 2k − k − 1 term patterns. The first
approach is what systems currently do, compute each interval sepa-
rately. Method LPS-IF-S* runs Algorithm 1 multiple times, starting
each time with the postings lists, with the -S* suffix intended to in-
dicate that the single-query process is run multiple times. Method
LPS-CDF-S* takes a different approach. It first creates a CDF by
merging the position offsets from the inverted files. The CDF is
then processed 2k − k − 1 times, each pass making use of Al-
gorithm 2 to compute the intervals for one of the possible sub-
queries. The contrast between these two algorithms is captured
by comparing the median execution time, and the worst-case ex-
ecution time. For most query-document combinations EPS-IF-S*
is the best choice. However, the additive worst case is very bad,
taking a full 3 seconds for one of the 10 word queries on a single
document. The one-off cost of computing the CDF dramatically
decreases the worst-case performance, but it can still be inefficient.

We can greatly boost the overall performance in both cases by
computing all 2k − k− 1 possible subquery results in a single pass
using either Lazy or Eager evaluation as described by Algorithms 3
and 4 in Section 4. The LPS-IF-A algorithm makes a single traversal
using an inverted file as the initial input, with suffix -A indicating
that all subquery intervals are found in a single pass. The EPS-
CDF-A algorithm computes the CDF once by merging the position
offsets from the inverted file. The CDF is then used to make a
single pass using eager evaluation.

An important point to note about input representations with LPS
and EPS based single pass algorithms is that either can benefit from
computing the CDF. For a single-query interval, we demonstrated
that the eager processing strategy is best suited for IF-structured
input. However, this is not true when enumerating all intervals,
because the corner case of having a huge gap between the current
and next position for a term is offset by the fact that it is very likely
that several of the subquery intervals will be formed even if the
k-term interval has not formed yet. The extra work in resetting
the left interval boundary often results in a subquery interval being
emitted. In practical terms, this means that the performance profile
for EPS-CDF-S* and LPS-CDF-S* is almost identical.

The key message in Table 3 is that performing the optimal k-
interval enumeration process in a single pass is dramatically more
efficient than either of the two multi-pass strategies, and, as ex-
pected, the gap becomes more pronounced as the query length in-
creases. Although there are some small differences, the two -A
plane-sweep approaches exhibit similar average performance when
generating intervals for all subqueries. The key difference is again
related to the worst-case. The tension between amortizing the cre-
ation of the CDF once and benefiting from locality of access, versus
the cost of hitting a rare long document with many occurrences of
the terms, separates the two approaches in the worst case.

Figure 10 shows the relative performance of multiple-pass and
single-pass approaches. Note the use of a log scale. The upper
panel shows the average performance for all 10,000 document-
query combinations in Set B. Each boxplot summarizes the time

●●●

●●

●●

●●●●

●

●

●

●

●

●

●●

●●

●●

●
●

●

●●

●●

●

●
●●
●

●
●
●

●
●

●

●

●

●
●

●

●●

●●

●

●

●●
●

●

●●
●●

●●

●●●
●
●●

●
●

●
●

●

●●
●

●
●
●●

●

●
●

●

●●

●●
●
●

●

●

●

●●

●
●●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●
●
●●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●
●●
●●●●
●

●

●

●

●●
●
●●
●●

●

●

●

●
●

●●●

●
●

●
●●
●

●
●

●

●●●
●
●

●●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●●
●
●

●●

●

●●

●

●
●

●●

●

●

●●●

●●

●

●

●

●

●

●

●

●●
●
●

●●

●●
●
●●●●
●
●

●●
●●
●●
●●●
●

●

●

●●

●
●●

●
●

●●●

●
●
●●●
●

●●●●●●

●

●

●
●

●●

●

●

●●
●

●

●

●
●●

●●●

●

●

●
●●

●●
●

●

●

●●

●

●

●●

●

●●
●

●

●

●
●●●

●

●●

●
●●
●

●

●

●●

●●●●

●
●

●

●

●

●

●

●

●●●
●
●

●

●●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●●●

●
●
●
●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●●

●●●●
●
●

●●●●

●●
●●
●

●

●

●●
●

●

●

●

●●

●

●

●
●

●

●

●●

●

●●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●

●●

●

●●
●

●

●●

●

●

●●●
●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●●●●●●

●

●●●

●
●

●
●
●●●
●

●●●

●●

●●
●
●
●

●●●

●●

●
●
●●

●

●●

●

●●●

●●●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●●●●●●●●

●

●

●
●●

●

●

●

●●●

●

●

●

●
●●

●

●

●
●
●
●

●

●
●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●●

●

●

●●

●●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●

●
●

●

●

●●

●●
●

●

●
●

●

●

●

●

●
●●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●●●
●

●●
●
●

●

●●

●●

●

●

●

●●

●

●

●

●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●
●
●

●●
●

●

●

●
●

●
●
●

●

●
●

●

●
●
●
●
●
●●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●
●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●
●
●

●●

●

●

●

●●●●
●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●●
●
●

●
●●●

●●●
●

●●

●●●

●●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●●

●●

●
●

●

●

●

●●

●

●

●
●●
●
●●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●
●
●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●●
●
●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●●●

●
●●
●

●●

●

●

●

●

●●●

●

●

●
●
●

●
●

●●

●

●

●●●

●

●●●

●

●

●

●

●

●●●●
●

●

●

●●
●

●

●
●
●●●●

●

●●
●●

●

●●●

●●

●

●●●
●
●

●●

●

●
●

●
●
●●
●
●
●●
●
●

●

●
●●
●
●
●

●

●
●●●
●

●●●
●
●●●

●
●
●●●
●●●

●
●

●

●●

●

●
●

●●
●●

●

●

●●●●●●●●●●●●●●
●●●●●●●●
●●
●

●

●●●●●●
●
●

●●●

●

●
●
●●

●

●

●
●

●●
●●

●

●
●

●

●●

●●

●

●●
●●●

●

●

●

●
●

●

●●●●●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●

●

●

●●

●

●

●
●

●●

●
●

●
●●●

●
●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●
●
●
●
●

●

●

●●
●

●

●●

●

●●
●

●

●●
●
●

●

●

●●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●●

●●

●

●

●
●

●●

●●

●
●

●●

●

●

●

●

●
●

●

●

●●
●
●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●●●●
●●

●

●●●
●●
●●

●●●
●●

●
●●●●●●●●●●●●
●

●

●

●
●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●●●

●●

●
●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●
●
●

●

●●

●
●●●
●
●
●

●●

●

●●●
●●●
●

●

●●

●

●

●

●

●

●
●

●
●
●
●●

●

●●
●
●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●
●
●

●●

●●●

●

●
●
●

●

●

●

●●
●
●●

●●

●

●●●

●
●●

●

●

●
●

●

●
●
●

●●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●
●●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●●●●
●

●

●

●
●
●●●
●●●

●
●

●

●
●●
●

●●

●

●
●

●●

●
●
●●●

●
●

●

●●

●
●●

●
●
●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●●●●
●
●

●
●

●

●
●
●
●

●

●

●

●●
●
●●●

●

●●

●●
●●●●

●

●

●●
●
●●●●

●

●
●●

●
●
●

●

●
●
●●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●●
●●●

●

●●●●

●

●

●●●

●

●

●

●●

●

●

●
●

●

●●●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●
●
●
●

●

●

●
●

●
●

●●
●●●●
●

●●

●

●
●

●

●●
●●
●●
●●●●
●

●
●
●

●

●
●

●
●●

●

●

●

●●●●
●●

●
●

●

●

●●

●●●
●
●
●●
●
●

●●●
●
●●
●

●
●●

●

●
●
●

●
●

●●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●●
●
●
●●
●
●
●●●
●●●●

●
●
●●
●●
●
●●●●●●
●

●

●

●

●

●

●
●

●
●

●

●●●

●

●●●●●●●
●●●●
●

●●●●
●●

●
●

●

●●

●●●
●

●

●●

●

●●●
●

●

●●●●
●

●●
●
●●●●●
●
●
●●●●
●●
●
●●

●

●

●
●
●
●●●
●●
●

●

●

●

●

●
●
●
●
●●
●

●

●
●
●

●●

●

●
●
●
●
●
●
●

●
●
●
●●●●
●●●●
●●
●●●
●●●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●●●
●
●●
●

●

●

●
●●

●

●●●

●

●

●●●●
●●●●●
●
●

●●●

●
●

●
●●●

●

●
●

●●

●
●

●

●●
●
●

●

●
●

●●
●

●

●●
●
●
●●●●
●●●●
●
●●

●
●
●●●●●
●

●
●

●

●
●

●

●●
●●
●●●

●

●●
●
●●●●●

●

●●●●
●

●●

●●
●
●

●

●●
●

●

●

●

●●

●
●●

●
●●●●●●●
●●

●

●
●

●

●
●●

●

●

●

●●●●

●

●

●
●●
●

●

●●
●

●

●
●
●
●

●

●

●●●

●

●

●
●●

●

●

●

●●

●
●

●

●

●●

●

●

●●

●
●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●
●●●●●

●

●

●
●

●
●

●

●

●
●

●●

●●

●

●●

●

●

●

●

●
●●

●●●●

●

●

●

●●●
●

●●●
●

●

●●

●●

●
●

●
●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●
●●

●
●●

●

●

●●
●

●●

●

●
●
●
●●

●
●

●

●

●

●

●
●

●●

●●

●
●●

●●●

●●

●
●●

●●
●

●

●
●
●
●
●
●●
●
●●
●●

●●●
●
●
●
●
●
●●
●
●●●
●
●●
●
●
●

●●●●●●

●

●

●

●
●

●

●
●
●

●●●●●
●●
●●●●

●
●

●●

●

●●

●

●●●
●●●
●●●●●●●●●●●●
●●●
●
●
●

●●●

●
●●
●
●

●●

●

●
●
●●
●
●
●●
●●

●●●

●●
●

●●

●
●

●

●

●

●●●
●

●
●

●

●
●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●●
●
●

●

●
●●

●
●
●●

●

●●
●

●

●●
●
●
●●●
●
●●●

●●

●

●

●

●

●

●
●

●

●
●

●

●●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●●
●●

●●

●

●●

●

●
●

●
●●
●

●●

●●

●

●

●

●

●

●

●●

●

●

●●●●

●●
●

●

●

●
●

●
●●●●
●●●
●●●

●

●

●

●
●

●

●●
●●●●●●●

●
●

●

●
●●●●●
●●●●●●●

●
●
●
●●●●●
●
●●
●

●●
●
●●●
●●

●●

●

●●●

●●

●
●●
●●●●
●

●●●●
●
●●●●
●●●
●

●

●
●●●
●●

●

●●
●●
●●●

●

●
●
●
●

●●●●

●

●●●
●
●●

●

●
●

●

●

●
●

●

●●●
●
●

●
●
●

●

●

●

●
●

●●

●
●

●
●
●

●●
●●
●
●

●
●●●●●

●

●

●

●●

●●

●
●
●
●

●

●
●●●●
●

●

●
●●
●●●●●●
●
●●

●●
●
●●●●
●
●●●
●●

●●●●●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●●●

●

●●●

●
●

●

●

●
●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●●

●●

●●●●●●
●●●
●
●

●

●
●

●

●●●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●
●●

●●

●

●

●
●
●
●

●

●

●●
●

●●

●●●

●
●

●

●

●

●

●
●

●

●●

●●

●●
●●

●
●
●

●●

●
●
●●

●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●
●

●

●

●
●
●

●
●●
●

●

●
●
●

●

●●
●
●●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●
●
●
●

●
●●
●●●

●●
●
●●●
●
●
●
●●●
●●●

●

●

●
●●

●

●●
●●
●

●
●

●●●

●
●

●
●●
●●

●
●

●

●

●

●
●

●●

●●
●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●●
●
●●●●

●

●

●

●

●
●
●

●
●●●●●●
●●●●
●●
●
●●
●●
●

●
●

●

●

●

●●

●●
●●

●●
●

●●

●●●●

●

●●

●
●
●●●
●●

●

●
●

●

●

●

●●

●

●●●

●

●
●●

●●

●
●●

●

●

●

●●
●●

●●

●●●

●

●●

●

●

●●

●●

●

●
●●
●●●●
●
●●

●●●
●
●●
●
●●

●

●

●●●
●
●●
●●●●●
●
●
●●
●

●●
●●

●

●●●●
●
●●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●●●●●

●●
●

●●●
●
●
●●

●

●●

●●●

●

●

●
●●

●

●

●●
●
●●
●
●●

●
●

●●●●

●
●

●

●●

●

●

●

●

●

●
●
●

●●
●

●

●
●

●

●
●

●

●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●
●
●

●●

●
●

●
●
●●
●

●
●●
●

●
●

●●

●
●●

●

●

●

●

●
●●

●●

●

●
●

●

●

●
●●

●●

●

●
●

●●●●
●●●●

●

●
●

●
●
●
●
●

●

●●

●

●

●●●
●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●●

●

●

●●●●

●

●●

●●●

●

●
●
●

●
●●
●

●

●

●

●

●
●
●

●●

●

●

●
●
●
●

●

●

●●

●

●●
●
●●

●

●

●

●

●

●

●

●

●

●●

●
●●●

●

●●
●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●
●

●

●

●●

●●

●

●

●
●
●

●

●

●●

●
●
●
●

●

●●●●●

●

●●

●

●●●

●

●●●●

●●

●

●

●
●

●

●●

●

●

●

●

●
●
●

●●
●●
●

●

●

●

●●

●●
●

●
●
●

●

●
●

●●
●

●

●
●

●
●●
●
●

●
●●
●

●

●●●

●●

●●●

●●

●
●●●

●
●
●●●●
●●
●●
●

●

●

●

●

●

●

●

●
●
●

●●
●●●

●●
●●
●
●

●●
●

●

●

●

●

●
●●●

●

●●

●

●●

●●●
●
●
●
●●●●●●

●
●

●

●
●
●

●
●●

●

●
●

●●

●●

●●

●

●

●●●

●
●
●

●●

●
●
●

●

●

●●●●

●

●
●
●

●
●

●●

●●●
●

●

●

●

●
●

●

●
●●

●
●
●

●●

●

●

●●

●

●

●●

●

●●

●

●
●●

●●

●

●

●●
●

●●

●

●

●
●●
●●●

●

●
●

●●
●
●
●●
●
●●
●

●
●
●

●●

●

●●●
●
●●●
●

●●
●

●

●●
●
●●
●
●●●

●

●●
●

●
●

●

●

●

●
●
●

●
●

●

●●

●
●●●●

●

●

●

●

●

●

●
●●●
●

●●

●

●●

●

●●

●
●●
●
●

●

●

●

●●
●
●
●

●●
●

●
●●●●●●
●●●●

●

●

●

●
●●

●●

●●

●●
●
●
●●

●

●●●●●
●●●●
●
●
●
●
●

●●●●●●●

●
●

●●●●

●
●

●●●●●●●●●
●
●●
●●●●●●●●
●
●
●

●

●
●●
●●●●
●

●

●●

●●

●
●
●

●

●
●
●●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●●●

●

●
●●●
●
●●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●●

●

●

●

●

●
●●●●
●
●●●

●

●

●

●●●●

●

●
●
●

●
●

●●
●

●●
●
●
●
●●●
●●

●

●

●
●
●

●

●
●●●●

●
●●●●●●●●●●●●

●
●●●
●
●
●●

●

●

●
●

●
●●

●

●

●

●
●
●

●

●

●

●

●●●
●●●●●
●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●
●●●

●

●
●

●

●●

●

●
●●
●●

●

●
●●
●

●
●●●
●
●
●

●
●●
●
●

●

●

●

●
●
●

●●
●●●

●●●●
●

●
●

●●●
●
●
●●●

●
●●
●
●●●●

●

●
●●

●
●
●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●●●●●●
●●●●●●
●
●
●●
●

●

●
●●
●
●●

●

●

●

●
●
●
●
●

●
●●●●
●●●●
●
●●●
●●
●●
●

●●

●●●
●

●

●

●●

●

●●●●

●●

●
●●
●●

●

●●

●
●
●

●

●●
●
●●
●
●●
●
●

●

●●●
●●

●
●●●●
●●

●
●●●
●●●●●●

●

●
●

●

●●●

●●●
●●●
●●●
●
●●

●●

●●●●
●●●●●

●●●●●
●●●●●
●
●
●
●●●●●●●●●●●

●

●●●●●●●
●
●●●
●
●

●

0.001

0.01

0.1

1

10

100

1000

10000

LPS−CDF−S*EPS−IF−S* EPS−CDF−ALPS−IF−A

Method

T
im

e
S

pe
nt

 p
er

 D
oc

um
en

t (
m

s)

●
●

●
●

● ●

● ●

● ●

0.001

0.01

0.1

1

10

100

1000

10000

3 6 9 12

Query Length
T

im
e

S
pe

nt
 p

er
 D

oc
um

en
t (

m
s) Method

● EPS−IF−S*
LPS−CDF−S*

LPS−IF−A
EPS−CDF−A

Figure 10: Time (msec/doc) to extract the optimal k-intervals for all
subqueries using Set B. The top panel gives an overview of the per-
query variation, incorporating all of the queries; the bottom panel
shows the average time cost for each method broken down by query
length. Note the log vertical scale on both graphs.

values as follows: the solid horizontal line indicates the median; the
box shows the 25th and 75th percentiles; and the whiskers show the
range, up to a maximum of 1.5 times the interquartile range, with
outliers beyond this shown as separate points. In the overall per-
formance comparison for all Set B queries, the LPS-IF-A algorithm
appears to be slightly better than EPS-CDF-A, but a t-test shows
that EPS-CDF-A is in fact significantly better with p = 0.01. This
is largely due to the fact that the variance in query performance
is more tightly bound for EPS-CDF-A than for LPS-IF-A. The bot-
tom panel in Figure 10 shows the average (mean) processing cost
in milliseconds per document as a function of query length. The
two single-pass methods enjoy a near two-fold performance im-
provement for queries of length k = 3, and a more than 1000-fold
improvement when k = 12.

The experiments we have described in this section leave abso-
lutely no room for ambiguity. All-subqueries interval-finding is
greatly accelerated by our two new methods, even when queries
have as few as k = 3 terms in them.

6. CONCLUSION AND FUTURE WORK
We have explored two different questions. First, we consid-

ered two different approaches to efficiently compute an optimal
k-interval based on input representation. We found that in most
cases, starting with position offsets in an inverted file is more ef-
ficient than using a direct file. However, some query-document
combinations can induce very bad behavior in k-interval computa-

k
EPS-IF-S* LPS-CDF-S* LPS-IF-A EPS-CDF-A

med. max. med. max. med. max. med. max.

3 0.011 7.300 0.011 1.307 0.006 2.821 0.007 0.986
5 0.089 37.770 0.104 8.757 0.018 3.758 0.024 1.790
7 0.778 344.800 1.113 59.060 0.060 7.037 0.071 3.282
8 2.104 1303.000 3.102 142.600 0.098 18.640 0.108 5.016

10 9.315 3397.000 17.160 801.600 0.175 46.350 0.191 9.222

Table 3: Median and maximum time (msec/doc) to find the optimal k-intervals for all subqueries for each query in Set A.

tions. By exploring the efficiency of the algorithms as a function
of the term density ratio, we were able to isolate exactly when each
evaluation strategy and input format is preferable.

In our second research question, we explored novel approaches
to computing all term combination intervals in a single-pass. By ex-
ploiting a key insight in to the way intervals must be formed in sub-
queries, we showed how to significantly increase the performance
of proximity computations. The performance gap between current
approaches and our approach increases as query length increases,
making it a viable tool in real search engines wishing to incorporate
proximity computations into current ranking functions.

In future work, we will explore the impact on various inter-
pretations of how intervals should be defined in IR ranking func-
tions. Our current approach is more general than current FDM-
and SDM-based ranking functions, which employed fixed-width
window sizes, rather than optimal intervals. But note that the al-
gorithms described in this paper can be adapted to also support
fixed window sizes by counting only intervals that are less that a
particular threshold.

Acknowledgment This work was supported by the Australian Re-
search Council’s Discovery Projects Scheme (DP140101587 and
DP140103256). Shane Culpepper is the recipient of an Australian
Research Council DECRA Research Fellowship (DE140100275).

References
[1] N. Asadi and J. Lin. Document vector representations for feature ex-

traction in multi-stage document ranking. Inf. Retr., 16(6):747–768,
2013.

[2] M. Bendersky, D. Metzler, and W. B. Croft. Parameterized concept
weighting in verbose queries. In Proc. SIGIR, pages 605–614, 2011.

[3] A. Broschart and R. Schenkel. High-performance processing of text
queries with tunable pruned term and term pair indexes. ACM Trans.
Information Systems, 30(1):1–32, 2012.

[4] S. Büttcher, C. L. A. Clarke, and B. Lushman. Term proximity scoring
for ad-hoc retrieval on very large text collections. In Proc. SIGIR,
pages 621–622, 2006.

[5] S. Büttcher, C. L. A. Clarke, and G. V. Cormack. Information Re-
trieval: Implementing and Evaluating Search Engines. MIT Press,
2010.

[6] J. P. Callan, W. B. Croft, and S. M. Harding. The INQUERY retrieval
system. In Database and Expert Systems Applications, pages 78–83.
Springer, 1992.

[7] C. L. A. Clarke, G. Cormack, and F. J. Burkowski. Shortest substring
ranking (multitext experiments for TREC-4). In Proc. TREC, pages
295–304, 1995.

[8] C. L. A. Clarke, G. V. Cormack, and E. A. Tudhope. Relevance rank-
ing for one to three term queries. Inf. Proc. & Man., 36(2):291–311,
2000.

[9] T. Elsayed, J. Lin, and D. Metzler. When close enough is good
enough: approximate positional indexes for efficient ranked retrieval.
In Proc. CIKM, pages 1993–1996, 2011.

[10] D. Hawking and P. Thistlewaite. Proximity operators-so near and yet
so far. In Proc. TREC, pages 131–143, 1995.

[11] D. Hawking and P. Thistlewaite. Relevance weighting using distance
between term occurrences. Technical Report TR-CS-96-08, Depart-
ment of Computer Science, The Australian National University, 1996.

[12] S. Huston. Indexing Proximity-Based Dependencies for Information
Retrieval. PhD thesis, University of Massachusetts, Amherst, 2014.

[13] S. Huston and W. B. Croft. A comparison of retrieval models using
term dependencies. In Proc. CIKM, pages 111–120, 2014.

[14] D. Metzler. Beyond Bags of Words: Effectively Modeling Dependence
and Features in Information Retrieval. PhD thesis, University of Mas-
sachusetts, Amherst, 2007.

[15] D. Metzler and W. B. Croft. Combining the language model and in-
ference network approaches to retrieval. Inf. Proc. & Man., 40(5):
735–750, 2004.

[16] D. Metzler and W. B. Croft. A Markov random field model for term
dependencies. In Proc. SIGIR, pages 472–479, 2005.

[17] J. Peng, C. Macdonald, B. He, V. Plachouras, and I. Ounis. Incorpo-
rating term dependency in the DFR framework. In Proc. SIGIR, pages
843–844, 2007.

[18] K. Sadakane and H. Imai. Text retrieval by using k-word proximity
search. In Proc. Symp. Database Appl. Non-Trad. Envs., pages 183–
188, 1999.

[19] R. Schenkel, A. Broschart, S. Hwang, M. Theobald, and G. Weikum.
Efficient text proximity search. In Proc. SPIRE, pages 287–299, 2007.

[20] T. Tao and C. Zhai. An exploration of proximity measures in informa-
tion retrieval. In Proc. SIGIR, pages 295–302, 2007.

[21] J. B. P. Vuurens and A. P. de Vries. Distance matters! Cumulative
proximity expansions for ranking documents. Inf. Retr., 17(4):380–
406, 2014.

[22] H. Yan, S. Shi, F. Zhang, T. Suel, and J.-R. Wen. Efficient term prox-
imity search with term-pair indexes. In Proc. CIKM, pages 1229–
1238, 2010.

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Lu, X;Moffat, A;Culpepper, JS

Title:
On the Cost of Extracting Proximity Features for Term-Dependency Models

Date:
2015

Citation:
Lu, X., Moffat, A. & Culpepper, J. S. (2015). On the Cost of Extracting Proximity Features for
Term-Dependency Models. Bailey, J (Ed.) Moffat, A (Ed.) Aggarwal, CC (Ed.) Rijke, MD (Ed.)
Kumar, R (Ed.) Murdock, V (Ed.) Sellis, T (Ed.) Yu, JX (Ed.) Proc. 24th ACM CIKM Int. Conf.
on Information and Knowledge Management, 19-23-Oct-2015, pp.293-302. ACM. https://
doi.org/10.1145/2806416.2806467.

Persistent Link:
http://hdl.handle.net/11343/58271

http://hdl.handle.net/11343/58271

