
Codeopticon: Real-Time, One-To-Many Human Tutoring for

Computer Programming

Philip J. Guo
University of Rochester

Rochester, New York, USA
pg@cs.rochester.edu

ABSTRACT
One-on-one tutoring from a human expert is an effective way
for novices to overcome learning barriers in complex domains
such as computer programming. But there are usually far
fewer experts than learners. To enable a single expert to help
more learners at once, we built Codeopticon, an interface that
enables a programming tutor to monitor and chat with dozens
of learners in real time. Each learner codes in a workspace
that consists of an editor, compiler, and visual debugger. The
tutor sees a real-time view of each learner’s actions on a dash
board, with each learner’s workspace summarized in a tile.
At a glance, the tutor can see how learners are editing and
debugging their code, and what errors they are encountering.
The dashboard automatically reshuffles tiles so that the most
active learners are always in the tutor’s main field of view.
When the tutor sees that a particular learner needs help, they
can open an embedded chat window to start a one-on-one
conversation. A user study showed that 8 first-time Codeop
ticon users successfully tutored anonymous learners from 54
countries in a naturalistic online setting. On average, in a 30
minute session, each tutor monitored 226 learners, started 12
conversations, exchanged 47 chats, and helped 2.4 learners.

Author Keywords
learning at scale; computer programming; remote tutoring

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
Decades of computing education research has shown that pro
gramming is hard to learn alone [11, 19]. Novices often strug
gle to develop robust mental models of code execution and
are thus susceptible to hundreds of common misconceptions
about how their code works [19]. One-on-one tutoring from
a human expert is one of the most effective ways for novices
to overcome these common learning barriers [3]. This format

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UIST ’15, November 08–11, 2015, Charlotte, NC, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3779-3/15/11...$15.00
DOI: http://dx.doi.org/10.1145/2807442.2807469

is powerful because a tutor can sit beside a learner who is de
bugging their code, observe their actions firsthand, and then
provide timely, targeted, and proactive help when needed [3].

However, this kind of high-touch interaction does not scale,
since there are far fewer tutors than learners. MOOCs en
roll up to tens of thousands of learners, and many university
courses are also growing large. For instance, introductory
computer science courses at UC Berkeley and the University
of Washington enroll over one thousand students per term [1].
Even with dozens of teaching assistants (TAs), there is still at
least an order of magnitude more students than course staff.

One practical way to amplify human expertise in these set
tings is via asynchronous interfaces such as discussion fo
rums, mailing lists, and Q&A sites. Although these interfaces
are scalable and easy to deploy, they have some limitations:
Novices often have a hard time phrasing their questions prop
erly and thus may not get any useful responses [2], lose men
tal context while waiting for responses to arrive [12], and may
not know when to step back and even ask a question when
they are fixated on debugging a specific code error [21].

Instead, what if an expert could remotely monitor multiple
learners as they are coding, see who seems to be struggling,
and then jump in to offer timely, targeted, and proactive help?

In this paper, we present Codeopticon, a prototype real-time,
one-to-many tutoring interface that explores this question.
Codeopticon embodies a novel synchronous approach to pro
viding expert help for computer programming, which com
plements existing asynchronous approaches such as discus
sion forums. Figure 1 shows its main features:

•	 Each learner works in an online workspace that consists of
a code editor, compiler, and visual debugger. These sorts
of coding workspaces are common in online learning envi
ronments such as MOOCs and Khan Academy.
•	 The tutor sees a real-time view of each learner’s actions

on a dashboard, with each learner’s workspace state repre
sented in a tile. At a glance, the tutor can see how learners
are editing and debugging their code, and what errors they
are encountering. The dashboard automatically reshuffles
tiles based on levels of learner activity so that the most ac
tive learners are always in the tutor’s main field of view.
•	 When the tutor sees that a learner needs help, they can open

an embedded chat window in the appropriate tile to start a
one-on-one, text-based chat with that learner.

599

http://dx.doi.org/10.1145/2807442.2807469
mailto:Permissions@acm.org
mailto:pg@cs.rochester.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2807442.2807469&domain=pdf&date_stamp=2015-11-05

Figure 1. The Codeopticon interface consists of an array of tiles (10 shown here), each displaying one particular learner’s code editing and execution
actions in real time. Code edits are shown as diffs with a.) insertions in green and b.) deletions in red. c.) Arrows point to the current and next lines
when the learner is stepping through executed code in a debugger. d.) Error messages are shown in red. e.) Each tile contains an embedded chat box.

Codeopticon’s design is inspired both by formative observa
tions of tutors working in a university computer lab and by
analysis of log data from over 65,000 learners using a pop
ular online coding workspace [10]. The central design chal
lenge is to create an interface that enables a single tutor to
effectively monitor and help as many learners as possible in
real time. It must also handle a heterogeneous population
that is common in online environments, with up to dozens of
learners each working at their own pace on different pieces of
code, and entering and exiting the workspace at unpredictable
times. To address this challenge, we developed two novel in
terface elements for Codeopticon: a real-time text diff visu
alization to display learner behavior, and dynamic tile reshuf
fling to hone the tutor’s attention to the most active learners.

The main idea behind Codeopticon is that building a one
to-many remote monitoring and chat interface will enable
instructors to provide one-on-one tutoring services to more
learners than they could feasibly handle in person. Although
Codeopticon is made for computer programming, some of its
ideas could be adapted for scaling up tutoring in other educa
tional domains such as writing or engineering design.

To validate this idea, we ran a user study where 8 teaching
staff (1 instructor and 7 TAs) from an introductory program
ming course used Codeopticon to tutor anonymous learners
who visited the Online Python Tutor [10] coding workspace.

Throughout a 30-minute session, on average each subject saw
226 learners, initiated 12 chat conversations, exchanged 47
messages, and helped 2.4 learners resolve their problems.
Despite not knowing anything beforehand about who these
learners were or what code they were writing, the subjects
were still able to successfully tutor people in this naturalis
tic online setting. All subjects said that they found Codeopti
con to be an authentic and compelling alternative to in-person
tutoring in the computer lab, with advantages such as being
able to gauge the collective progress of an entire class, to tu
tor multiple learners at once while controlling their own pace,
and to discreetly and proactively reach out to shy learners.

The contributions of this paper are:

•	 The idea of building a one-to-many remote monitoring and
chat interface, which enables instructors to provide valu
able one-on-one tutoring services to more learners than
they could feasibly handle in person.

•	 The Codeopticon system that embodies this idea for teach
ing computer programming, which incorporates novel in
terface elements such as real-time text diff visualization
and dynamic tile reshuffling.

•	 Findings from a user study that demonstrates how Python
instructors can use Codeopticon to successfully tutor
anonymous learners in a naturalistic online setting.

600

RELATED WORK
Situational awareness tools provide an operator with a real-
time view of a complex situation containing multiple actors
and moving parts so that they can make informed decisions
about it [18]. Examples include monitoring dashboards for air
traffic controllers, military commanders, power plant opera
tors, and emergency responders [20], and also collaborative
workplace tools in domains such as writing [7]. Codeopti
con strives to maximize a tutor’s situational awareness when
monitoring dozens of learners as they are coding. It borrows
relevant techniques from prior work such as displaying the
most salient data in the main field of view to minimize cogni
tive load, and providing a history slider to show past events.

CrowdScape [17] is an interactive visualization that allows
requesters on Mechanical Turk to monitor crowd workers’
activities to gauge the quality of their output. The motivating
insight behind CrowdScape is that human judgment is needed
to determine the quality of crowd work on open-ended, cre
ative, and subjective sorts of tasks. Similarly, determining
when a learner is struggling is an inherently subjective call
that cannot easily be automated, so we designed Codeopticon
to provide a tutor with the proper situational awareness to rec
ognize when to intervene using their own best judgment.

In the educational domain, the two most closely related sit
uational awareness tools are RIMES [13] and OverCode [8].
RIMES allows an instructor to embed interactive assignments
within lecture videos. It aggregates all students’ responses to
each assignment in a dashboard for the instructor to give feed
back and identify trends. OverCode aggregates thousands of
student responses to a single computer programming assign
ment, clustering batches of similar code into virtual stacks.
The instructor can grade and give feedback to an entire cluster
at a time. Codeopticon was inspired by the idea of aggregat
ing the activities of many learners into a compact dashboard.
But neither RIMES nor OverCode are meant for providing
real-time tutoring; instructors use them to view and comment
on work offline. Also, they cluster multiple solutions to a sin
gle assignment, whereas Codeopticon enables a tutor to mon
itor learners working on their own independent assignments.

Researchers have also recently focused on social aspects of
online education. As a complement to discussion forums,
real-time chat improves motivation for learners in online set
tings by making them feel more connected to their peers [12].
However, Coetzee et al. found that generic chat rooms in
MOOCs had low activity [5] and subsequently designed
structured chat rooms where peers collaborated to solve spe
cific exercises [6]. Talkabout [15] uses Google Hangouts to
coordinate small-group peer video chats in MOOCs to dis
cuss course material. Codeopticon was similarly inspired by
the goal of humanizing online education by connecting peo
ple remotely via chat, but it uses chat for one-on-one tutoring
rather than for group-based peer learning.

Finally, shared coding workspaces such as Collabode [9],
CrowdCode [16], Cloud9 (c9.io), or even Google Docs en
able people to write code together while text chatting. While
these tools are meant for multiple people working on a single
piece of code, Codeopticon is made for a single tutor to mon-

Figure 2. Number of learners concurrently online in the Online Python
Tutor [10] coding workspace in Feb. and March 2015 (mean=61, σ=25)

itor multiple learners each writing their own unique pieces of
code. We chose not to include a shared text editor since we
did not want the tutor writing code on behalf of learners.

To our knowledge, Codeopticon is the first attempt at a real-
time, one-to-many monitoring and chat interface for scaling
up human tutoring in the domain of computer programming.

FORMATIVE OBSERVATIONS AND DESIGN GOALS
To formulate design goals for Codeopticon, we observed
teaching assistants (TAs) in our university’s introductory pro
gramming course as they helped students in the computer lab.
Each TA holds lab hours where they sit in the lab along with
anywhere from ten to fifty students who are working on their
coding assignments. When we interviewed seven TAs, they
all expressed a strong desire to help more students at once
without needing to physically run around the computer lab,
which gets exhausting. Currently the only way to multiplex
is to tell a student to try something, walk over to help another
student, and then come back later to check on the first stu
dent. Also, some TAs were unsure of what to do when the lab
was nearly silent, since they could not see what everyone was
working on; maybe students were making steady progress, or
maybe some were stuck and just reluctant to ask for help.

Although Codeopticon can be used in the classroom, our pri
mary use case is in large-scale online education settings such
as MOOCs, which contain a much larger and more heteroge
neous learner population [14]. To quantify this heterogeneity,
we analyzed two months of log data from Online Python Tu
tor, a Web-based coding workspace used by many MOOC
participants and self-directed learners [10]. During Feb. and
March 2015, ∼67,520 learners from ∼165 countries wrote
and debugged their code in this workspace. Figure 2 shows
that, on average, 61 learners were concurrently online at any
moment, which means that Codeopticon must be able to mon
itor several dozen learners to be effective. There was also
very high turnover, with a mean of 269 new learners arriving
at (and leaving) the workspace each hour, and most sessions
(site visits) being short: out of 447,608 sessions, 90% lasted
for less than 10 minutes, 84% for less than 5 minutes, and
72% for less than 1 minute. Thus, Codeopticon must handle
high variability in learner activity. Our three design goals are:

D1: Scale – A tutor should be able to remotely monitor up
to several dozen learners at once. Since novices often have
a hard time asking for help when fixated on a debugging
task [21], the interface should enable the tutor to quickly rec

601

c9.io

ognize when a particular learner is stuck or thrashing, so that
they can step in to offer proactive help via text chat.

D2: Multiplexing – A tutor should be able to help multiple
learners at once without losing context, taking advantage of
natural pauses in tutoring interactions when a learner is edit
ing or executing code in response to the tutor’s suggestions.

D3: Heterogeneity – Learners arrive and leave at unpre
dictable times, each work on their own independent pieces of
code at their own pace, and have varying levels of expertise.
Thus, Codeopticon cannot assume that all learners are pro
gressing in lock step on a single programming assignment.

CODEOPTICON DESIGN AND IMPLEMENTATION
Codeopticon is a standard Web application that runs in any
modern browser. It consists of two parts: 1.) augmenting
an existing coding workspace with monitoring and embedded
chat, and 2.) the main Codeopticon interface that a tutor uses.

Augmenting an Online Coding Workspace
To create Codeopticon, we first augmented an online coding
workspace to log the learner’s behavior. These workspaces
consist of a Web-based code editor, compiler, and runtime
system that executes the learner’s code to produce outputs and
error messages. Since they allow learners to write and debug
code directly in the browser, coding workspaces have become
a key part of computer programming MOOCs and courses
from organizations such as Khan Academy and Codecademy.

We augmented Online Python Tutor (pythontutor.com), a
standard workspace with one unique feature: a visual de
bugger that enables the learner to step forwards and back
wards through execution and see a visualization of runtime
state. Online Python Tutor (despite its name) supports five
languages – Python, Java, JavaScript, TypeScript, and Ruby
– and is widely used in MOOCs and university courses [10].

We added detailed logging and an embedded chat interface to
Online Python Tutor. The left pane of Figure 3 walks through
a typical learner interaction on the pythontutor.com website:

•	 Figure 3a. – Pick the language and write code. All code
edits are logged as diffs and sent to the Codeopticon server.
•	 Figure 3b. – Compile the code and then use a slider or

buttons to step forwards and backwards through execution
points. All compilation and navigation actions are logged.
•	 Figure 3c. – Just like in a debugger, the current and next

lines of code to execute are shown as arrows in the editor.
•	 Figure 3d. – See a visualization of stack frames, variables,

objects, and pointers at the current execution point.
•	 Figure 3e. – See the program’s print statement output.
•	 Figure 3f. – Chat with a tutor via a text-based chat widget.

The additions we made for Codeopticon are lightweight and
can be easily implemented for other coding workspaces such
as those in MOOCs, Khan Academy, or Codecademy.

In our current prototype, the learner cannot summon a tutor.
However, if Codeopticon were integrated into, say, a MOOC
platform, then the coding workspace could be augmented to
show which TAs are currently holding virtual office hours.

Codeopticon Tutor Interface and Usage Scenario
The Codeopticon user interface (Figure 1) enables a tutor to
simultaneously monitor and chat with multiple learners. It
was implemented in HTML5, with real-time status updates
and chat powered by WebSockets with socket.io.

Here is an example usage scenario: Alice is a teaching as
sistant (TA) for a computer programming MOOC. Before
Codeopticon, the only practical way she could help learners
was to monitor and reply to questions on the course discus
sion forum. She had no way of providing timely, targeted,
and proactive help, and did not know how many learners were
silently stuck without even knowing what to ask on the forum.

Using Codeopticon, Alice can sign on to see a dashboard of
tiles (Figure 1), each visualizing one learner’s actions. The
right of Figure 3 zooms in on a single tile, which shows a real-
time view of a learner’s code editor (Figure 3a.), execution
step arrows (Figure 3c.), and chat widget (Figure 3f.).

Alice cannot directly edit or execute anyone’s code; she
can only text chat with them. This interaction emulates the
commonly-observed best practice of an in-person tutor sitting
beside a learner and letting the learner do all of the typing.

Whenever a learner’s code triggers a compile- or run-time er
ror, a red X indicator appears next to the offending line, and
the error message displays in bright red at the bottom of their
tile (Figure 1d.). This visual saliency helps direct Alice’s at
tention to learners who are struggling with code errors so that
she can intervene to help right when the learner needs it most.

Even if a learner does not trigger an error, if Alice sees
them thrashing back and forth executing similar pieces of
code, then she might ping them to ask if they have ques
tions. This proactive behavior mimics what conscientious
TAs in the computer lab would do as they look over students’
shoulders. Note that Codeopticon cannot automatically de
tect learner struggle; rather, it provides a means for a tutor
to concurrently monitor many learners and use their own best
judgment to determine who is possibly struggling.

Real-time Text Diff Visualization
The main purpose of Codeopticon is to enable a tutor to re
motely monitor a group of learners while they are coding.
If the tutor were monitoring only one learner, then this task
would be trivial: display a live view of the learner’s code, so
that the tutor can see how it evolves as though they were sit
ting next to the learner in person. However, when the tutor
needs to monitor several learners at once (design goal D2),
they cannot keep up with everyone’s code edits in real time.

To help the tutor follow everyone’s edits, we have developed
a novel real-time text diff visualization. Text diffs are a clas
sic idea where the differences between two textual documents
are compactly represented as blocks of character insertions
and deletions. Code review and version control systems such
as the GitHub Web interface allow users to visually compare
multiple pieces of code by showing diffs, usually with inser
tions in green and deletions in red. However, to our knowl
edge, all existing diff tools are static – comparing two pre
set pieces of text, not text that is being actively edited while

602

pythontutor.com
pythontutor.com
socket.io

Figure 3. Each learner works in their own Online Python Tutor workspace (left). Codeopticon augments it with an embedded chat window (f.). The
tutor sees each learner’s actions in a tile within Codeopticon (right), with a real-time view of the a.) code editor, c.) currently executing line, and f.) chat.

If the learner now decides to erase the num argument, the
display alternates between showing the deleted text in red
and eliminating it entirely, changing every 0.75 seconds:

Figure 4. Within each tile, a.) code insertions are shown in green, and
b.) deletions are shown in red (gutter highlights are useful here since the
tutor needs to scroll to the right to see the actual diff). c.) A slider scrubs
through each learner’s full activity history. The chat box is minimized.

someone is watching. We created the following dynamic ap
proach to visualizing text diffs within each tile (Figure 4):

•	 Debouncing Diffs – We compute diffs using Google’s diff
match-patch library, which implements Myers’ diff algo
rithm1 . A naive approach would compute an insertion or
deletion diff whenever the learner types or erases each indi
vidual character, respectively. To provide more meaningful
diffs, we apply debouncing by computing a diff only after
the learner stops typing for at least 1 second. In practice,
this creates diffs consisting of entire tokens or phrases.

•	 Visualizing Insertions and Deletions – After debouncing,
every diff shows up in real time within its tile, with in
sertions in green and deletions in red. For example, as a
learner types out a function definition in Python, the tutor
sees the following (debounced) insertions in green:

It is important to show the state of the code both before and
after the deletion, since if the tutor sees only the code after
the deletion, they do not know what has been deleted.
•	 Gutter Highlights – Since diffs are sometimes tiny (a few

characters) and can appear anywhere within the line, it can
be hard to see them at a glance without first knowing which
lines to look at. To focus the tutor’s attention, the gutter
to the left of each line of code turns green or red when
text in that line has been inserted or deleted, respectively
(Figure 4). When both insertions and deletions occur on
the same line, the gutter shows red-and-green stripes.
•	 Auto-Scrolling – Each tile has space to show only around

20 lines of code. When an edit occurs, the tile automat
ically scrolls vertically to center around the changed line.
Without auto-scrolling, the tutor cannot immediately see
edits made to lines that are outside of the current viewport.
Codeopticon is designed to show small pieces of pedagog
ical code that fit in a single file, not multi-file projects. Of
the 2,697 total pieces of executed code in our user study,
the median length was 37 lines (mean=64). Since each tile
shows 20 lines and auto-scrolls, it is reasonably-sized for

1code.google.com/p/google-diff-match-patch/ displaying typical learner-written code.

603

code.google.com/p/google-diff-match-patch/

•	 History Slider – The tutor can see all past activity for a
learner by dragging the slider at the bottom of their tile
(Figure 4c), and the display will update to show past states.
This navigation feature is analogous to a scrubber on a
video player. Each learner’s history includes not only their
code diffs, but also their execution attempts, errors, and
stepping through execution points in the visual debugger.

Taken together, these features enable a tutor to see how mul
tiple learners edit their own independent pieces of code.

Dynamic Tile Reshuffling
Codeopticon comfortably fits 10 tiles on a laptop screen (e.g.,
Figure 1) and 15 tiles on a 30-inch monitor. This default setup
works well as long as there are ≤ 15 learners. But an online
coding workspace or MOOC can have dozens or hundreds of
learners signed on at once (Figure 2), and even the TAs we
observed had up to fifty students in each physical lab session.
Thus, for Codeopticon to be useful in realistic settings, we
need a more scalable way to manage tiles (design goal D1).

We iterated on several designs while testing on live data from
the Online Python Tutor website, starting with the most naive
approach of simply adding more rows of tiles to the bottom
as new learners sign on. The downside of this first approach
is that the tutor needs to scroll down to the bottom to see the
newest learners, and then scroll back up to see older learners.
Scrolling is disorienting since the tutor cannot rely on spatial
memory to recall an absolute position for each learner.

Fragmentation was another problem we encountered. Since
learners arrive and leave at unpredictable times and vary
greatly in their levels of activity (design goal D3), some tiles
would be bustling with activity, while others would be inac
tive or even empty. Since only a small percentage of learn
ers are active at any given time, the tutor must scroll through
dozens of stale tiles to find the few active ones.

To minimize scrolling and fragmentation, our next design
grouped the most active learners together in the first few
rows so that a tutor always sees the most active tiles with
out scrolling. It periodically sorted all tiles by decreasing
levels of activity. However, this sorting approach created a
new problem: tiles moved around in unpredictable ways, so
the tutor would often lose track of learners they were track
ing. We wanted Codeopticon to minimize unnecessary tile
movement so that the tutor can make better use of their spa
tial memory. Figure 5 shows an overview of its final dynamic
tile reshuffling algorithm, which we now describe in detail:

The main table is configured to fit comfortably on the tutor’s
monitor (15 tiles shown in Figure 5). It always displays the
most active learners’ tiles. If the tutor never scrolls, they will
always be observing the 15 currently most active learners.

Each overflow row appears below the main table, numbered
O1, O2, O3, O4, etc. Each row displays learners of decreas
ing levels of activity. For instance, learners in O1 are less
active than those in the main table, learners in O2 are less
active than those in O1, and O3 less than O2. Thus, when
a tutor gradually scrolls downward, they will start observing
learners in overflow rows, starting with the most active (O1).

Figure 5. Codeopticon reshuffles tiles so that the most active learners are
always in the main table, which the tutor can monitor without scrolling.

We need an activity metric to compare learners. The simplest
is events per second, where an event is a code edit, execution,
or debugger step. But we want to prioritize learners with more
recent activity, so we use an exponentially-weighted average:
When computing (weighted) events per second, each event
receives a weight of e−λΔ, where λ is how much to penalize
older events (default of 0.1) and Δ is how many seconds ago
this event occurred. If two learners have the same number of
events, the one with more recent activity will be considered
more active. Then periodically, every 10 seconds, the follow
ing algorithm runs to reshuffle tiles by relative activity levels:

•	 Figures 5a. and b. – If any learner in an overflow row is now
more active than some learner in the main table (accord
ing to the exponentially-weighted average events metric),
then swap their tiles. To minimize back-and-forth jitter and
make the main table more stable, we give an additional in
cumbent advantage to learners who are already in the main
table. To kick a tile out of the main table, a learner in an
overflow row tile must be at least 1.3 times more active.

•	 Figure 5c. – If a learner cannot move to the main table, it
moves up to the most active overflow row. Here a learner L
in O4 moves up to O2. Note that L is also more active than
everyone in O3, but our algorithm tries to move it up as far
as possible, so it moves to O2. However, L cannot move to
O1 or to the main table since it is not active enough.

•	 To minimize movement, no tiles within the main table ever
swap places with one another, and neither do tiles within
each overflow row; swaps occur only across overflow rows
or between an overflow row and the main table. Thus, once
a tile is in, say, the main table, it will not move unless
kicked out by a more active tile from an overflow row or
by a newly-arriving learner (see below).

604

Learners Arriving: So far we have described steady-state be
havior, but what about when new learners sign on? Since
most learners are low-activity, if they are added to the main
table, they will quickly be demoted to an overflow row, which
causes unnecessary jitter. Thus, each new learner gets a 15
second probationary period. If they have enough activity in
the first 15 seconds (e.g., more than 4 events), then their tile
moves to the main table (Figure 5d.); otherwise they get sent
to the first overflow row where there is a free spot (Figure 5e.),
or to a newly-created row if no more spots are free.

Learners Leaving: When a learner closes their Online Python
Tutor browser window, their corresponding Codeopticon tile
gets destroyed immediately. To minimize movement, all
other tiles remain in the same place, so a hole is left in its
wake (Figure 5f.). Holes serve as free spots for new learn
ers to enter without needing to swap out someone else’s tile,
which further reduces movement and fragmentation.

Tile Locking: What if the tutor does not want a tile to move
because they are closely monitoring that learner? They can
click on any tile’s border to lock it, which highlights it with
a red border (Figure 5g. and Figure 1d.). Locked tiles are
ignored by the reshuffling algorithm, so they will never move
anywhere. Whenever a chat box is open, that tile auto-locks.
Clicking on a tile again unlocks it and restores its default gray
border, and clicking on the “untrack” button destroys it.

Grace Period: Unless a tutor locks all tiles they are observ
ing, they can be glancing at a tile and then suddenly it gets
swapped out without warning, making them lose track of the
learner they were watching. To eliminate this jarring feeling,
when a pair of tiles is scheduled to be swapped, both are tem
porarily highlighted in green for 5 seconds before the swap
occurs (see Figures 5a., b., and c.). During this grace period,
the tutor can click on a tile to lock it and cancel the swap.

USER STUDY OF NATURALISTIC ONLINE TUTORING
To see whether tutors can use Codeopticon to help learners in
a naturalistic online setting, we conducted a user study where
each subject spent 30 minutes tutoring learners on the Online
Python Tutor website and then reflected on their experience.

Methodology
Since Codeopticon can be used in diverse settings ranging
from a residential course to a MOOC to a paid online tu
toring service, we considered several methodologies: A con
trolled lab study would provide the highest-fidelity data from
in-person observations. However, this setup would not cap
ture the scale and heterogeneity of a naturalistic online learner
population that Codeopticon was designed to handle, with
hundreds of learners signing on and off at unpredictable times
and each exhibiting wildly varying activity levels. Deploying
Codeopticon in a MOOC would capture that scale and hetero
geneity, but such deployment is logistically difficult and does
not allow us to directly observe the tutors working in-person.

We adopted a hybrid approach by bringing 8 subjects into
our lab and having each spend 30 minutes anonymously tu
toring learners who visited the Online Python Tutor website.
That way, we could directly observe tutors at work while

also capturing the diversity of a typical online learner pop
ulation. Over 30,000 unique learners visit pythontutor.com
each month to write and debug code, dozens are online at
once, and hundreds arrive and leave per hour (Figure 2).

Subjects: We recruited 8 subjects (6 male, 2 female) from our
university’s Python-based introductory computer program
ming course: the instructor and 7 undergraduate lab TAs.
Each subject received a $15 gift certificate for a 1-hour study.

Setup: Each subject used Codeopticon in Google Chrome on
a 2014 Mac Mini desktop computer with a 30-inch monitor at
2560x1600 resolution, with 15 tiles in the main table (3x5).

Task: We gave each subject a 10-minute tutorial on Codeop
ticon, since none had seen it before. Then we instructed:
“Spend the next 30 minutes helping as many learners as you
can in whatever way you feel most comfortable.” We encour
aged them to think aloud. We did not know who would be
visiting the Online Python Tutor website at that time, or what
code they would be writing. Although learners were informed
that their actions were being monitored for research, they did
not know when (or if) a tutor would start a chat with them.
Thus, this interaction resembles a visitor on a shopping web
site seeing a pop-up chat box from a customer service rep
resentative offering live help. To focus our study on tutor-
initiated actions, learners cannot summon a tutor for help.

Post-Task Interview: The final 15 minutes of each session
was a semi-structured interview where we asked the subject to
discuss the rationale behind some of the specific interactions
that we observed (e.g., “why did you keep scrolling back and
forth between the overflow rows and main table?”). We also
asked three open-ended questions to seed further discussion:
1.) How is Codeopticon better than your in-person Python
tutoring experiences? 2.) How is it worse than in-person tu
toring? 3.) How would you adapt Codeopticon to deploy in a
residential or online course that you teach in the future?

Quantitative Results
Since the goal of our study was to observe how tutors used
Codeopticon in a naturalistic setting, we did not run con
trolled trials to compare different user interface conditions
or give monetary incentives for, say, helping more learners.
Thus, these quantitative results represent an informal, holistic
view of Codeopticon usage, not claims about the efficacy of
specific features. Table 1 summarizes the sessions.

The 8 subjects are sorted by years of self-reported Python ex
perience, with TA1 and TA2 having only .25 years and the
instructor (INS) with 12 years. During their 30-minute ses
sion, each subject saw a mean of 226 different learners writ
ing code on the Online Python Tutor website, with 52 online
at any given moment. Since each subject participated in the
study at a different time, they likely saw a completely differ
ent set of learners. We had no control over who was online in
each session, or how receptive they were to unsolicited help.

The numbers in the “# Chat Conversations Initiated” columns
represent each subject’s intent to help specific learners. Each
subject initiated, on average, 12 conversations. As we ob
served from think-aloud and post-task interviews, all subjects

605

pythontutor.com

Name Years of Python # Learners Seen # Chat Conversations Initiated Confirm # Chat Msgs.
Experience Total Avg. Online All w/ Generic Hello w/ Proactive Help Helped Sent Received

TA1 .25 241 57 7 7 0 0 7 1
TA2 .25 220 50 37 37 0 5 89 50
TA3 .5 201 50 9 1 8 2 17 6
TA4 1 258 62 7 0 7 1 18 24
TA5 1 181 46 6 0 6 2 17 9
TA6 2 200 41 10 3 7 3 42 18
TA7 3 223 51 10 0 10 1 14 1
INS 12 283 58 8 0 8 5 31 37

Average 2.5 226 52 12 6 6 2.4 29 18
Table 1. Results from a user study where eight subjects each spent 30 minutes using Codeopticon to tutor learners on the Online Python Tutor website.

Figure 6. Number of concurrent chat conversations during each session.

(except for TA2) carefully studied a learner’s actions in their
respective tile and only initiated a chat when they were sure
that they knew the problem the learner was facing. They were
reluctant to disturb learners unless they felt like they could
genuinely help. TA2 was the notable exception, aggressively
initiating chats with most learners in the main table using the
same generic greeting: “Would you like some help?”

The least experienced subjects (TA1 and TA2) initiated chats
with generic hello messages. Others initiated most chats with
a proactive help message. For instance, INS noticed that a
learner was getting a hard-to-debug syntax error since a string
value was incorrectly quoted using curly quotes (“foo”)
rather than plain quotes ("foo"), so they started a chat with:
“Hi! If you pasted this [code] in, you are using ‘curly quotes’
or ‘smart quotes.’ Try deleting those quotes and try again.”
TA6 started off with generic hello messages but then switched
to proactive help, mentioning during the post-task interview
that, “I’m pretty sure learners thought I was a bot when I
greeted them with a generic hello, so that’s why I wanted to
craft specific help messages to show that I was a human.”

Figure 6 shows the number of concurrent chat conversations
throughout each subject’s session. Each conversation ends
whenever either the subject or the learner closes the chat win
dow, or when the learner signs off. Several subjects went a
few minutes over their 30-minute time limit since they were
busy wrapping up conversations. Most subjects had two to
five chat windows open at once, except for TA2, who took
the aggressive approach of messaging many learners at once.

These numbers show that first-time Codeopticon users are
able to sustain multiple concurrent chats and help learners in
a naturalistic online setting, despite the learners not expecting
to receive help. Online learners might be reluctant to respond
to unsolicited pop-up chat messages. They might also not
know English, since IP addresses indicated that they came
from 54 countries. If Codeopticon were deployed in a for
mal course where TAs and students knew about this system
beforehand, we expect help confirmation rates to be higher.

Indicators of Learning
The “Confirm Helped” column of Table 1 shows that 19 total
learners confirmed that they got helped, usually by fixing a
bug and then replying with a thank-you note. One enthusias
tic learner ended their chat with: “thank you so much. We are
pretty understaffed on TA’s for our class size so I really like
that you have this [service] available.” Those who received
help seemed engaged: 4 of 19 asked follow-up questions, and
two others even asked the tutor how they could request their
help later. In addition, several more appeared to take the tu
tor’s proactive help by editing their code, but we did not count
those cases in Table 1 since they did not reply to confirm.

We read all 19 confirmed help instances in the chat logs and
coded for indicators of learning. However, we cannot make
any claims about true learning since we did not run any formal
assessments. And since learners were anonymous, we did not
interview them to get firsthand accounts of their impressions.

All learning instances were at the lowest two levels of
Bloom’s taxonomy [4]: remembering and understanding.
This finding was unsurprising because we did not expect
these brief, low-bandwidth chat sessions to contain substan
tive learning at the higher levels of Bloom’s taxonomy: apply
ing, analyzing, evaluating, and creating. In sum, Codeopticon
was good for tutors to help learners debug their code and get
momentarily unstuck, but not for facilitating deep pedagogy.

606

9 of 19 help instances involved helping the learner remember
a piece of Python syntax. Tutors were effective at translating
Python’s default unhelpful error messages (e.g., “SyntaxEr
ror: invalid syntax”) into more meaningful ones, especially
when the true error was on a different line than indicated.
One tutor helped a learner clarify brackets and parenthesis
usage: “Hi there! It looks like you’re trying to use the range
function, which doesn’t use square brackets. Try range(...)”

10 of 19 help instances involved understanding Python run
time semantics. Example concepts that tutors successfully
conveyed include global versus local variable scoping, type
mismatch errors, off-by-one error in iteration, mutable versus
immutable sequences (i.e., list versus tuple in Python), using
list comprehensions instead of a for-loop, and basic recursion.

Tutors’ Qualitative Impressions of Codeopticon Interface
From our observations, think aloud, and post-task interviews,
all subjects appeared to find Codeopticon intuitive to use. It
was easy for them to understand the metaphor of each tile be
ing a virtual window into a learner’s workspace, and everyone
was already familiar with the idea of embedded chat.

After an initial period of lurking, subjects spent most of their
session focused on chatting with learners (Figure 6). As ex
pected, subjects spent most time on the main table (Figure 5),
but occasionally they scrolled down to the overflow rows dur
ing pauses in the current chat conversations to see if any
learners there had triggered error messages.

Several subjects expressed a strong urge to directly edit the
learner’s code within each tile in addition to making sugges
tions via chat. However, during post-task discussion, they ac
knowledged that it would be disconcerting for a learner to see
someone else edit their code, akin to an in-person tutor rudely
taking the keyboard from them and saying “no, let me show
you how to do it!” Instead, subjects proposed either being
able to highlight a learner’s code to direct their attention, or
turning edits into suggestions that a learner can either accept
or reject (like the Track Changes mode in Microsoft Word).

Several subjects wanted to enlarge a learner’s tile when they
were chatting, so that they could see more lines of code and
not get distracted by other tiles. They suggested a zoomed-in
mode where only tiles with active chats are shown. INS men
tioned that such a focused view would “ameliorate my guilt a
bit [at not being able to help everyone I saw]. Out of sight, out
of mind.” However, other subjects liked being able to browse
around all of the tiles during lulls in chat conversations.

Attention: Although we did not formally measure attention,
it appeared like each subject could sustain at most three real
tutoring interactions at once. (They sometimes had more chat
windows open but were waiting for learner responses.) This is
unsurprising, since tutoring requires high concentration, and
Codeopticon does not somehow enhance this mental capac
ity. Rather, Codeopticon’s strength is in directing the tutor’s
attention to the learners who might need help at the moment.

Fatigue: We did not run a formal stress or endurance test, but
nobody appeared fatigued after 30 minutes of using Codeop
ticon at their own natural pace. In fact, Figure 6 shows that

all subjects except for TA1 and TA5 voluntarily went over the
30-minute limit to continue chatting with learners.

Authenticity and Immersion: Even though subjects knew
they were chatting with anonymous strangers for a user study,
they appeared to be immersed in the task as though they were
tutoring in real life, with their own personal styles showing
through in conversations. They showed pride upon receiving
thank-you messages from learners, frustration when someone
was not following their suggestions, and hesitation when un
sure of whether they should interrupt a learner at work. For
instance, TA2 adopted a highly proactive style of chatting
with lots of learners; when asked about their rationale for do
ing so, they replied that this was exactly the sort of energetic
approach they took in lab. In contrast, TA1 started no chats
for almost 15 minutes, and then only said a few generic hel
los; that reflected their style of waiting for learners to come to
them in lab rather than risk disturbing anyone in the midst of
working. INS (the course instructor) was used to lecturing, so
they turned some conversations into impromptu mini-lectures
on topics such as list versus tuple data structures in Python.

Advantages of Codeopticon Over In-Person Tutoring
During the post-task interviews, subjects pointed to several
advantages of Codeopticon over in-person tutoring. Most
importantly, it allows the tutor to monitor and reach out to
shy learners. In contrast, it is awkward to be peering over
someone’s shoulder in a computer lab. Several subjects men
tioned how they wish they could use this in their own lab
sessions with everyone identified by their real names, since
they suspected that some of their students would benefit from
their help but were reluctant to ask in person. But other sub
jects felt that remaining anonymous would actually encour
age more questions, since “it can be terrifying to ask a super-
basic question to an experienced programmer.”

Codeopticon also enables a tutor to control their own pace,
chatting with as many or as few learners as they wish. A sin
gle overly-demanding learner cannot easily monopolize the
tutor’s time, as they sometimes do in a computer lab. Simi
larly, it also enables learners to keep working while waiting
for the tutor to respond to chats; it can be hard for some learn
ers to code while a tutor is sitting beside them in person.

Subjects also liked using the history slider (Figure 4c) to see
how a learner’s prior actions led to the current state, so that
they know what alternatives the learner attempted. Doing this
in-person is impossible or at least disruptive, since it requires
the learner to stop coding and undo edits in their code editor.

Subjects mentioned how they could use Codeopticon to
schedule virtual lab hours, and how they could privately
search the Web for extra help without fear of embarrassment.
INS said, “one of my main problems with a big class is that
I can’t work one-on-one with students, but with this [tool], I
can sit in the comfort of my own office or even at home and
work one-on-one with students who are in lab.”

Finally, subjects felt that being able to see dozens of learners
at once (essentially an entire classroom or lab section) was
very powerful, not only for helping individual learners, but

607

also for seeing whether everyone was on track and making
steady progress toward their given assignments.

Limitations of Codeopticon
The main limitation subjects mentioned was that text-based
chat was far lower bandwidth than face-to-face conversation.
It was hard to provide detailed conceptual explanations, espe
cially those that required sketching diagrams. One improve
ment would be to connect tutors with learners on Google
Hangouts (like Talkabout [15]) or a shared drawing canvas.

Subjects also cited a tradeoff between quantity and quality of
tutoring: Codeopticon allows a tutor to help more learners
in a somewhat superficial way via text chats, but in-person
tutoring allows deeper focus on fewer learners. INS said that
with Codeopticon it was hard to focus on just one learner,
since “my good nature wanted to come out. [Upon seeing
someone else’s activity ...] ohhh I want to help you too!”

Another limitation is that the tile reshuffling algorithm biases
the tutor toward learners with greater edit activity. Perhaps
some learners are stuck and staring blankly at their screens;
but Codeopticon cannot tell whether those idle learners ac
tually need help or are simply browsing the Web. One way
to ameliorate is to enable a learner to summon the tutor for
help, which will move their tile up to the main table. Also,
the algorithm could prioritize learners who are excessively
scrolling, focusing and unfocusing windows, or whose activ
ity level suddenly drops, which could indicate frustration.

CONCLUSION
Codeopticon is a prototype system that enables a single tutor
to monitor and chat with dozens of learners who are coding
in an online workspace. A study demonstrated that first-time
users can successfully tutor a variety of anonymous learners
in a naturalistic online setting. If this kind of system were
integrated into a MOOC or in-person course, then TAs could
schedule virtual office hours to provide timely, targeted, and
proactive help at a greater scale than is currently feasible.

ACKNOWLEDGMENTS
Thanks to Parmit Chilana, Logan Gittelson, Mitchell Gordon,
Juho Kim, and Chris Parnin for their feedback. This work was
supported in part by the National Science Foundation under
grant NSF CRII IIS-1463864.

REFERENCES
1. 2013. How big is UC Berkeley’s biggest class? The

Daily Californian (Sept. 2013).

2. 2015. The XY Problem. (April 2015). xyproblem.info

3. Susan A. Ambrose, Michael W. Bridges, Michele

DiPietro, Marsha C. Lovett, and Marie K. Norman.

2010. How Learning Works: Seven Research-Based

Principles for Smart Teaching (1 ed.). Jossey-Bass.

4. Lorin W. Anderson and David R. Krathwohl (Eds.).
2000. A taxonomy for learning, teaching, and assessing:
A revision of Bloom’s taxonomy of educational
objectives. Allyn & Bacon.

5. Derrick Coetzee, Armando Fox, Marti A. Hearst, and
Bj ̈orn Hartmann. 2014. Chatrooms in MOOCs: All Talk
and No Action (L@S ’14). 127–136.

6. Derrick Coetzee, Seongtaek Lim, Armando Fox, Bj ̈orn
Hartmann, and Marti Hearst. Structuring Interactions for
Large-Scale Synchronous Peer Learning (CSCW ’15).

7. Paul Dourish and Victoria Bellotti. 1992. Awareness and
Coordination in Shared Workspaces (CSCW ’92).

8. Elena L. Glassman, Jeremy Scott, Rishabh Singh,
Philip J. Guo, and Robert C. Miller. 2015. OverCode:
Visualizing Variation in Student Solutions to
Programming Problems at Scale. TOCHI 22, 2 (2015).

9. Max Goldman, Greg Little, and Robert C. Miller.

Real-time Collaborative Coding in a Web IDE (UIST

’11).

10. Philip J. Guo. 2013. Online Python Tutor: Embeddable
Web-based Program Visualization for CS Education
(SIGCSE ’13). ACM, 579–584.

11. Mark Guzdial. 2014. Limitations of MOOCs for
Computing Education - Addressing Our Needs: MOOCs
and Technology to Advance Learning and Learning
Research (Ubiquity Symposium). Ubiquity (2014).

12. R. A. Hines and C. E. Pearl. 2004. Increasing interaction
in web-based instruction: Using synchronous chats and
asynchronous discussions. Rural Special Education
Quarterly 23, 2 (March 2004).

13. Juho Kim, Elena L. Glassman, Andrés
Monroy-Hernández, and Meredith Ringel Morris. 2015.
RIMES: Embedding Interactive Multimedia Exercises in
Lecture Videos (CHI ’15).

14. Ren ́e F. Kizilcec, Chris Piech, and Emily Schneider.
2013. Deconstructing Disengagement: Analyzing
Learner Subpopulations in Massive Open Online
Courses (LAK ’13). 170–179.

15. Chinmay Kulkarni, Julia Cambre, Yasmine Kotturi,
Michael S. Bernstein, and Scott R. Klemmer. 2015.
Talkabout: Making distance matter with small groups in
massive classes (CSCW ’15).

16. Thomas D. LaToza, Ben Towne, Christian M. Adriano,
and André van der Hoek. Microtask Programming:
Building Software with a Crowd (UIST ’14).

17. Jeffrey Rzeszotarski and Aniket Kittur. 2012.
CrowdScape: Interactively Visualizing User Behavior
and Output (UIST ’12). ACM, 55–62.

18. N. B. Sarter and D. D. Woods. 1991. Situation
awareness: A critical but ill-defined phenomenon. Int.
Jour. Aviation Psychology 1, 1 (1991), 45–57.

19. Juha Sorva. 2012. Visual Program Simulation in
Introductory Programming Education. Ph.D.
Dissertation. Aalto University.

20. Sarah Vieweg, Amanda L. Hughes, Kate Starbird, and
Leysia Palen. 2010. Microblogging During Two Natural
Hazards Events: What Twitter May Contribute to
Situational Awareness (CHI ’10). 1079–1088.

21. Andreas Zeller. 2005. Why Programs Fail: A Guide to
Systematic Debugging. Morgan Kaufmann Publishers.

608

xyproblem.info

	Introduction
	Related Work
	Formative Observations and Design Goals
	Codeopticon Design and Implementation
	Augmenting an Online Coding Workspace
	Codeopticon Tutor Interface and Usage Scenario
	Real-time Text Diff Visualization
	Dynamic Tile Reshuffling

	User Study of Naturalistic Online Tutoring
	Methodology
	Quantitative Results
	Indicators of Learning
	Tutors' Qualitative Impressions of Codeopticon Interface
	Advantages of Codeopticon Over In-Person Tutoring
	Limitations of Codeopticon

	Conclusion
	Acknowledgments
	REFERENCES

