skip to main content
10.1145/2807442.2807472acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

uniMorph: Fabricating Thin Film Composites for Shape-Changing Interfaces

Authors Info & Claims
Published:05 November 2015Publication History

ABSTRACT

Researchers have been investigating shape-changing interfaces, however technologies for thin, reversible shape change remain complicated to fabricate. uniMorph is an enabling technology for rapid digital fabrication of customized thin-film shape-changing interfaces. By combining the thermoelectric characteristics of copper with the high thermal expansion rate of ultra-high molecular weight polyethylene, we are able to actuate the shape of flexible circuit composites directly. The shape-changing actuation is enabled by a temperature driven mechanism and reduces the complexity of fabrication for thin shape-changing interfaces. In this paper we describe how to design and fabricate thin uniMorph composites. We present composites that are actuated by either environmental temperature changes or active heating of embedded structures and provide a systematic overview of shape-changing primitives. Finally, we present different sensing techniques that leverage the existing copper structures or can be seamlessly embedded into the uniMorph composite. To demonstrate the wide applicability of uniMorph, we present several applications in ubiquitous and mobile computing.

Skip Supplemental Material Section

Supplemental Material

p233.mp4

mp4

77.4 MB

References

  1. Balakrishnan, R., Fitzmaurice, G., Kurtenbach, G., and Singh, K. Exploring interactive curve and surface manipulation using a bend and twist sensitive input strip. In I3D '99, ACM (NYC, USA, Apr. 1999), 111--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Coelho, M., and Zigelbaum, J. Shape-changing interfaces. Personal and Ubiquitous Computing 15, 2 (2011), 161--173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. 3. Felton, S. M., Tolley, M. T., Onal, C. D., Rus, D., and Wood, R. J. Robot self-assembly by folding: A printed inchworm robot. ICRA'13 (2013), 277--282.Google ScholarGoogle ScholarCross RefCross Ref
  4. Felton, S., T. M. S. B. O. C. D. E. R. D., and Wood, R. Self-folding with shape memory composites. Soft Matter 9, 32 (2013), 7688--7694.Google ScholarGoogle ScholarCross RefCross Ref
  5. Follmer, S., Leithinger, D., Olwal, A., Cheng, N., and Ishii, H. Jamming user interfaces: programmable particle stiffness and sensing for malleable and shape-changing devices. ACM, NYC, USA, Oct. 2012.Google ScholarGoogle Scholar
  6. Geller, T. The promise of flexible displays. Communications of the ACM 54, 6 (June 2011), 16--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Gioberto, G., Coughlin, J., Bibeau, K., and Dunne, L. E. Detecting bends and fabric folds using stitched sensors. In ISWC'13, ACM (NYC, USA, Sept. 2013), 53--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Girouard, A., Vertegaal, R., and Poupyrev, I. Second international workshop on organic user interfaces. ACM, NYC, USA, Jan. 2011.Google ScholarGoogle Scholar
  9. Gomes, A., Nesbitt, A., and Vertegaal, R. MorePhone: a study of actuated shape deformations for flexible thin-film smartphone notifications. In CHI'13, ACM (NYC, USA, Apr. 2013), 583--592. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gomes, A., and Vertegaal, R. PaperFold: Evaluating Shape Changes for Viewport Transformations in Foldable Thin-Film Display Devices. In TEI '15, ACM (NYC, USA, Jan. 2015), 153--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gong, N.W., S. J. O. S. H. S. G. N. K. Y., and Paradiso, J. PrintSense: a versatile sensing technique to support multimodal flexible surface interaction. In CHI '14, ACM (NYC, USA, Apr. 2014), 1407--1410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hashin, Z., Rosen, B. W., Pipes, R. B., Office, U. S. N. A., Scientific, S. A., and Information, T. Nonlinear effects on composite laminate thermal expansion, 1979.Google ScholarGoogle Scholar
  13. Hawkes, E., A. B. B. N. T. H. K. S. D. E. R. D., and Wood, R. Programmable matter by folding. Proceedings of the National Academy of Sciences 107, 28 (July 2010), 12441--12445.Google ScholarGoogle ScholarCross RefCross Ref
  14. Howes, P., and Laughlin, Z. Material Matters. New Materials in Design. Black Dog Pub Limited, 2012.Google ScholarGoogle Scholar
  15. Instructables. DIY Flexible Printed Circuit. By chkarnett. In http://www.instructables.com/id/DIYFlexible-Printed-Circuits/ (last accessed 07/20/2015).Google ScholarGoogle Scholar
  16. Instructables. Toner transfer no-soak, high-quality, double sided PCBs at home. By dustinandrews. In http://www.instructables.com/id/Toner-transfer-no-soakhigh-quality-double-sided/ (last accessed 07/20/2015).Google ScholarGoogle Scholar
  17. Ishii, H., Lakatos, D., Bonanni, L., and Labrune, J.-B. Radical atoms: beyond tangible bits, toward transformable materials. interactions 19, 1 (Jan. 2012), 38--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kaihou, T., and Wakita, A. Electronic origami with the color-changing function. In SMI '13, ACM (NYC, USA, Dec. 2013), 7--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kawahara, Y., H. S. C. B. Z. C., and Abowd, G. Instant inkjet circuits: lab-based inkjet printing to support rapid prototyping of UbiComp devices. In UbiComp'13, ACM (NYC, USA, Sept. 2013), 363--372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Khoo, C., and Salim, F. Lumina: a soft kinetic material for morphing architectural skins and organic user interfaces. In UbiComp'13, ACM (NYC, USA, Sept. 2013), 53--62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kramer, R. K., Majidi, C., and Wood, R. J. Wearable tactile keypad with stretchable artificial skin. In ICRA'11, IEEE (2011), 1103--1107.Google ScholarGoogle ScholarCross RefCross Ref
  22. Lahey, B., G. A. B. W., and Vertegaal, R. PaperPhone: understanding the use of bend gestures in mobile devices with flexible electronic paper displays. ACM, NYC, USA, May 2011.Google ScholarGoogle Scholar
  23. Liu, Y., B. J. G. J., and Dickey, M. Self-folding of polymer sheets using local light absorption . Soft Matter 8, 6 (2012), 1764--1769.Google ScholarGoogle Scholar
  24. Lylykangas, J., Surakka, V., Salminen, K., Raisamo, J., Laitinen, P., Rönning, K., and Raisamo, R. Designing tactile feedback for piezo buttons. In CHI '11, ACM (NYC, USA, May 2011), 3281--3284. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Mistry, P., and Maes, P. Intelligent sticky notes that can be searched, located and can send reminders and messages. In IUI '08, ACM (NYC, USA, Jan. 2008), 425--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Na, J. H., Evans, A. A., Bae, J., Chiappelli, M. C., Santangelo, C. D., Lang, R. J., Hull, T. C., and Hayward, R. C. Programming Reversibly Self-Folding Origami with Micropatterned Photo-Crosslinkable Polymer Trilayers. Advanced Materials 27, 1 (Jan. 2015), 79--85.Google ScholarGoogle ScholarCross RefCross Ref
  27. Okuzaki, H., Saido, T., Suzuki, H., Hara, Y., and Yan, H. A biomorphic origami actuator fabricated by folding a conducting paper. Journal of Physics: Conference Series 127, 1 (Oct. 2008), 012001.Google ScholarGoogle ScholarCross RefCross Ref
  28. Olberding, S., Wessely, M., and Steimle, J. PrintScreen: fabricating highly customizable thin-film touch-displays. In UIST '14, ACM (NYC, USA, Oct. 2014), 281--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Ou, J., Yao, L., Tauber, D., Steimle, J., Niiyama, R., and Ishii, H. jamSheets: thin interfaces with tunable stiffness enabled by layer jamming. In TEI '14, ACM (NYC, USA, Feb. 2014), 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Probst, K., Haller, M., Yasu, K., Sugimoto, M., and Inami, M. Move-it sticky notes providing active physical feedback through motion. In TEI '14, ACM (NYC, USA, Feb. 2014), 29--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Rekimoto, J. SmartSkin: an infrastructure for freehand manipulation on interactive surfaces. In CHI '02, ACM (New York, USA, Apr. 2002), 113--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Roudaut, A., K. A. L. M., and Subramanian, S. Morphees: toward high "shape resolution" in self-actuated flexible mobile devices. In CHI'13, ACM (NYC, USA, Apr. 2013), 593--602. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Schwesig, C., P. I., and Mori, E. Gummi: a bendable computer. In CHI '04, ACM (NYC, USA, Apr. 2004), 263--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Shin, B., Felton, S. M., Tolley, M. T., and Wood, R. J. Self-assembling sensors for printable machines. ICRA'14 (2014), 4417--4422.Google ScholarGoogle ScholarCross RefCross Ref
  35. Tarun, A., and Wang, P. Designing and building inexpensive flexible circuits. In TEI'12, ACM (NYC, USA, Feb. 2012), 375--377. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Tarun, A. P., Lahey, B., Girouard, A., Burleson, W., and Vertegaal, R. Snaplet: using body shape to inform function in mobile flexible display devices. CHI '11 (May 2011), 329--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Vallgrda, A., and Redström, J. Computational composites. In CHI'07, ACM (NYC, USA, Apr. 2007), 513--522. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wightman, D., Ginn, T., and Vertegaal, R. Bendflip: examining input techniques for electronic book readers with flexible form factors. In INTERACT'11, Springer-Verlag (Sept. 2011), 117--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Yao, L., Niiyama, R., Ou, J., Follmer, S., Della Silva, C., and Ishii, H. PneUI: pneumatically actuated soft composite materials for shape changing interfaces. In UIST'13, ACM (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. uniMorph: Fabricating Thin Film Composites for Shape-Changing Interfaces

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader