
Scaling Iterative Graph Computations with GraphMap

Kisung Lee ¶, Ling Liu †, Karsten Schwan †, Calton Pu †, Qi Zhang †, Yang Zhou †,
Emre Yigitoglu †, Pingpeng Yuan ‡

¶Louisiana State University
†Georgia Institute of Technology

‡Huazhong University of Science & Technology

ABSTRACT
In recent years, systems researchers have devoted consider-
able effort to the study of large-scale graph processing. Ex-
isting distributed graph processing systems such as Pregel,
based solely on distributed memory for their computations,
fail to provide seamless scalability when the graph data
and their intermediate computational results no longer fit
into the memory; and most distributed approaches for itera-
tive graph computations do not consider utilizing secondary
storage a viable solution. This paper presents GraphMap,
a distributed iterative graph computation framework that
maximizes access locality and speeds up distributed itera-
tive graph computations by effectively utilizing secondary
storage. GraphMap has three salient features: (1) It distin-
guishes data states that are mutable during iterative compu-
tations from those that are read-only in all iterations to max-
imize sequential access and minimize random access. (2) It
entails a two-level graph partitioning algorithm that enables
balanced workloads and locality-optimized data placement.
(3) It contains a proposed suite of locality-based optimiza-
tions that improve computational efficiency. Extensive ex-
periments on several real-world graphs show that GraphMap
outperforms existing distributed memory-based systems for
various iterative graph algorithms.

Keywords
graph data processing, distributed computing

1. INTRODUCTION
Graphs are pervasively used for modeling information net-

works of real-world entities with sophisticated relationships.
Many applications from science and engineering to business
domains use iterative graph computations to analyze large
graphs and derive deep insight from a huge number of ex-
plicit and implicit relationships among entities. Consider-
able research effort on scaling large graph computations has
been devoted to two different directions: One is to deploy
a super powerful many-core computer with memory capac-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SC ’15, November 15-20, 2015, Austin, TX, USA
c© 2015 ACM. ISBN 978-1-4503-3723-6/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2807591.2807604

ity of hundreds or thousands of gigabytes [19] and another
is to explore the feasibility of using a cluster of distributed
commodity servers.

Most of research effort on deploying a supercomputer for
fast iterative graph computations assumes considerable com-
puting resources and thus focuses primarily on parallel op-
timization techniques that can maximize parallelism among
many cores and tasks performed on the cores. A big research
challenge for efficient many-core computing is the tradeoff
between the opportunities for massive parallel computing
and the cost of massive synchronization for multiple itera-
tions, which tends to make the overall performance of paral-
lel processing significantly less optimal at the high ownership
cost of supercomputers.

As commodity computers become pervasive for many sci-
entists and small and medium-sized enterprise organizations,
we witness a rapidly growing demand for distributed itera-
tive graph computations on a cluster of commodity servers.
Google’s Pregel [17] and its open source implementations
− Apache Giraph [1] and Hama [2] − have shown remark-
able initial success. However, existing distributed graph pro-
cessing systems, represented by Pregel, heavily rely on dis-
tributed memory-based computation model. Concretely, a
large graph is first distributed using random or hash parti-
tioning to achieve data-level load balance. Next, each com-
pute node of the cluster needs to not only load the entire
local graph in memory but also store both the intermediate
results of iterative computations and all the communication
messages it needs to send to and receive from every other
node of the cluster. Therefore, existing approaches suffer
from poor scalability when any compute node in the clus-
ter fails to hold the local graph and all the intermediate
(computation and communication) results in memory. The
dilemma lies in the fact that simply increasing the size of
the compute cluster often fails for iterative computations
on large graphs. This is because, with a larger cluster, one
can reduce the size of the graph that needs to be held in
memory at the price of a significantly increased amount of
distributed messages each node needs to send to and receive
from a larger number of nodes in the cluster. For exam-
ple, a recent study [23] shows that computing five iterations
of PageRank on the twitter 2010 dataset with 42 millions
of vertices and 1.5 billions of edges takes 487 seconds on a
Spark [29] cluster with 50 nodes and 100 CPUs. Another
study [24] shows that counting triangles on the twitter 2010
dataset takes 423 minutes on a large Hadoop cluster with
1636 nodes. Surprisingly, most of the existing approaches
for iterative graph computations on a cluster of servers do

not explore the option of integrating secondary storage as
a viable solution because of a potentially large number of
random disk accesses.

In this paper we argue that secondary storage can play
an important role in maximizing both in-memory and on-
disk access locality for running iterative graph algorithms
on large graphs. By combining it with efficient processing
at each local node of a compute cluster, one can perform
iterative graph computations more efficiently than the dis-
tributed memory-based model in many cases. The ability
to intelligently integrate secondary storage into the clus-
ter computing infrastructure for memory intensive iterative
graph computations can be beneficial from multiple dimen-
sions: (i) With efficient management of in-memory and on-
disk data, one can not only reduce the size of the graph par-
titions to be held at each node of the cluster but also match
the performance of the distributed memory-based system.
(ii) One can carry out expensive iterative graph computa-
tions on large graphs using a much smaller and affordable
cluster (tens of nodes), instead of relying on the availability
of a large cluster with hundreds or thousands of compute
nodes, which is still costly even with pay-as-you-go elastic
cloud computing pricing model.

With these problems and design objectives in mind, we de-
velop GraphMap, a distributed iterative graph computation
framework, which can effectively utilize secondary storage
for memory-intensive iterative graph computations by max-
imizing in-memory and on-disk access locality. GrapMap
by design has three salient features. First, we distinguish
those data states that are mutable during iterative computa-
tions from those that are read-only during iterative compu-
tations to maximize sequential accesses and minimize ran-
dom accesses. We show that by keeping mutable data in
memory and read-only data on secondary storage, we can
significantly improve disk IO performance by minimizing
random disk IOs. Second, we support three types of ver-
tex blocks (VBs) for each vertex: in-VB for in-edges of a
vertex, out-VB for out-edges of a vertex, and bi-VB for all
edges of a vertex. We also devise a two-level graph partition-
ing algorithm that enables balanced workloads and locality-
optimized data placement. Concretely, we use hash par-
titioning to distribute vertices and their vertex blocks to
different compute nodes and then use range partitioning to
group the vertices and their vertex blocks within each hash
partition into storage chunks of fixed size. Last but not the
least, we propose a suite of locality-based optimizations to
improve computation efficiency, including progressive prun-
ing of non-active vertices and edges to reduce the unneces-
sary memory and CPU consumption, partition-aware iden-
tifier assignment, partition-aware message batching and lo-
cal merge of partial updates. These design features enable
GraphMap to achieve two objectives at the same time: (1) to
minimize non-sequential disk IOs and significantly improve
the secondary storage performance, making the integration
of external storage a viable solution for distributed process-
ing of large graphs and (2) to minimize the communication
cost among different graph partitions and improve the over-
all computation efficiency of iterative graph algorithms. We
evaluate GraphMap on a number of real graph datasets us-
ing several graph algorithms by comparing with existing rep-
resentative distributed memory-based graph processing sys-
tems, such as Apache Hama. Our experimental results show
that GraphMap outperforms existing distributed graph sys-

tems for various iterative graph algorithms.

2. GRAPHMAP OVERVIEW
In this section, we first define some basic concepts used

in GraphMap and then provide an overview of GraphMap
including its partitioning technique, programming API, and
system architecture.

2.1 Basic Concepts
GraphMap models all information networks as directed

graphs. For an undirected graph, we convert each undirected
edge into two directed edges.

Definition 1. (Graph) A graph is denoted by G =
(V,E) where V is a set of vertices and E is a set of di-
rected edges (i.e., E ⊆ V × V). For an edge e such that
{e = (u, v) ∈ E, u, v ∈ V }, we call u and v the source vertex
and destination vertex of e respectively. e is an in-edge of
vertex v and an out-edge of vertex u. |V | and |E| denote
the number of vertices and edges respectively.

A unique vertex identifier is assigned to each vertex, and
a vertex may be associated with a set of attributes describ-
ing the properties of the entity represented by the vertex.
For presentation convenience, we interchangeably use the
terms “vertex attribute” and “vertex state” throughout this
paper. For a weighted graph where each edge has its modi-
fiable, user-defined value, we model each edge weight as an
attribute of its source vertex. This allows us to treat all ver-
tices as mutable data and edges as immutable data during
iterative graph computations. For instance, when a graph
is loaded for PageRank computations and vertex u has its
out-edge degree d(u), the graph topology does not change
and each of u’s out-edges contributes the fixed portion (i.e.,
1/d(u)) to the next round of PageRank values during all
the iterations. Thus, we can consider edges immutable for
PageRank computations. Similarly for SSSP (Single-Source
Shortest Path) computations, the edge weight usually de-
notes the distance of a road segment and thus is immutable
during the computations. This separation between mutable
and immutable data by design provides GraphMap an op-
portunity to employ compact and locality-aware graph stor-
age structure for both in-memory and on-disk placement.
Furthermore, since most of large graphs have at least tens
or hundreds times more edges than vertices, we can signifi-
cantly reduce the memory requirement for loading and pro-
cessing large graphs. We will show in the subsequent sec-
tions that by utilizing such a clean separation between mu-
table and immutable data components in a graph, we can
significantly reduce the amount of non-sequential accesses in
each iteration for many iterative graph algorithms.

In order to provide access locality-optimized grouping of
edges in GraphMap, we categorize all edges connected to a
vertex into three groups based on their direction: out-edges,
in-edges, and bi-edges.

Definition 2. (Out-edges, In-edges, and Bi-edges)
Given a graph G = (V,E), the set of out-edges of ver-
tex v ∈ V is denoted by Eout

v = {(v, v′)|(v, v′) ∈ E}.
Conversely, the set of in-edges of v is denoted by
Ein

v = {(v′, v)|(v′, v) ∈ E}. We also define bi-edges
of v as the union of its out-edges and in-edges, denoted by
Ebi

v = Eout
v ∪ Ein

v .

For each graph to be processed by GraphMap, we build a
vertex block (VB) for each vertex. A vertex block consists
of an anchor vertex and its directly connected edges and
vertices. Since different graph algorithms may have differ-
ent computation characteristics, in GraphMap, we support
three different types of vertex blocks based on the edge direc-
tion from the anchor vertex: (1) out-edge vertex block (out-
VB), (2) in-edge vertex block (in-VB), and (3) bi-edge vertex
block (bi-VB). One may view an out-edge vertex block as a
source vertex and its adjacency list via out-edges (i.e., the
list of destination vertex IDs connected to the same source
vertex via its out-edges). Similarly, an in-edge vertex block
can be viewed as a destination vertex and its adjacency list
via its in-edges (i.e., the list of source vertex IDs connected
to the same destination vertex via its in-edges). We formally
define the vertex block as follows.

Definition 3. (Vertex block) Given a graph G = (V,E)
and vertex v ∈ V , the out-edge vertex block of vertex v is
a subgraph of G, which consists of v as its anchor vertex and
all of its out-edges, denoted by V Bout

v = (V out
v , Eout

v) such
that V out

v = {v} ∪ {vout|vout ∈ V, (v, vout) ∈ Eout
v }. Simi-

larly, the in-edge vertex block of v is defined as V Bin
v =

(V in
v , Ein

v) such that V in
v = {v} ∪ {vin|vin ∈ V, (vin, v) ∈

Ein
v }. We define the bi-edge vertex block of v as V Bbi

v =
(V bi

v , Ebi
v) such that V bi

v = V in
v ∪ V out

v .

In the subsequent sections we will describe several high-
lights of the GraphMap design.

2.2 Two-Phase Graph Partitioning
We design a two-phase graph partitioning algorithm,

which performs global hash partitioning followed by local
range partitioning at each of the n worker machines in
a compute cluster. Hash partitioning on vertex IDs first
divides a large graph into a set of vertex blocks (VBs) and
then assigns each VB to one worker machine. By using the
lightweight global hash partitioning, a large graph can be
rapidly distributed across the cluster of n worker machines
while ensuring data-level load balance. In order to reduce
non-sequential disk accesses at each worker machine, we
sort all VBs assigned to each worker machine in the lexical
order of their anchor vertex IDs and further partition the set
of VBs at each worker machine into r chunks such that VBs
are clustered physically by their chunk ID. The parameter r
is chosen such that each range partition (chunk) can fit into
the working memory available at the worker machine. The
range partitioning is performed in parallel at all the worker
machines.

Definition 4. (Hash partitioning) Let G = (V,E) de-
note an input graph. Let hash(v) be a hash function for
partitioning and V B(v) denote the vertex block anchored
at vertex v. The hash partitioning P of G is represented
by a set of n partitions, denoted by {P1, P2, . . . , Pn} where
each partition Pi (1 ≤ i ≤ n) consists of a set of vertices Vi

and a set of VBs Bi such that Vi = {v|hash(v) = i, v ∈ V },
Bi = {V B(v)|v ∈ Vi} and

⋃
i Vi = V , Vi

⋂
Vj = ∅ for

1 ≤ i, j ≤ n, i 6= j.

In the first prototype implementation of GraphMap, given
a cluster of n worker machines, we physically store a graph
at n worker machines by hash partitioning and then divide
the set of VBs assigned to each of the n worker machines

into r range partitions. GraphMap uses the hash partition-
ing by default for global graph partitioning across the cluster
of n worker machines because it is super fast and we do not
need to keep any additional data structure to record the
partition assignment for each vertex. However, GraphMap
can be easily extended to support any other partitioning
techniques because its in-memory and on-disk representa-
tion is designed to store partition assignments generated by
any partitioning techniques, such as Metis [10], ParMetis [6],
and SHAPE [14].

2.3 Supporting Vertex-Centric API
Most iterative graph processing systems adopt the “think

like a vertex” vertex-centric programming model [17, 7, 16].
To implement an iterative graph algorithm based on the
vertex-centric model, users write a vertex-centric program,
which defines what each vertex does for each iteration of the
user-defined iterative graph algorithm, such as PageRank,
SSSP, and Triangle Counting. In each iteration, vertices of
the input graph execute the same vertex program in paral-
lel. A typical vertex program consists of three steps in each
iteration: (1) A vertex reads its current value and gathers its
neighboring vertices’ values, usually along its in-edges. (2)
The vertex may update its value based on its current value
and gathered values. (3) If updated, the vertex propagates
its updated value to its neighboring vertices, usually along
its out-edges.

Each vertex has its transition state flag with either ac-
tive or inactive. In each iteration, only active vertices run
the vertex program. For some algorithms such as PageR-
ank and Connected Component (CC), every vertex is active
in the first iteration and thus all vertices participate in the
computation. On the other hand, for some algorithms such
as SSSP, only one vertex is active in the first iteration and
some vertices may be inactive during all the iterations. A
vertex can deactivate itself, usually at the end of an iter-
ation, and can also be reactivated by other vertices. The
iterative graph algorithm terminates if all vertices are in-
active or a user-defined convergence condition, such as the
number of iterations, is satisfied.

Existing distributed iterative graph processing systems
provide a mechanism for interaction among vertices, mostly
along edges. Pregel [17] employs a pure message passing
model in which vertices interact by sending messages along
their outgoing edges and, in the current iteration, each ver-
tex receives messages sent by other vertices in the previ-
ous iteration. In GraphLab/PowerGraph [7, 16], vertices di-
rectly read their neighboring vertices’ data through shared
state.

One representative category of existing distributed graph
processing systems is based on the Bulk Synchronous Par-
allel (BSP) [26] computation model and the shared-nothing
architecture. A typical graph application based on the BSP
model starts with an initialization step in which the input
graph is read and partitioned/distributed across the worker
machines in the cloud. In subsequent iterations, the worker
machines compute independently in parallel in each iteration
and the iterations are separated by global synchronization
barriers in which the worker machines communicate each
other to integrate the results from distributed computations
performed at different workers. Finally, the graph applica-
tion finishes by writing down its results.

Algorithm 1 shows an example of the Single-Source

Algorithm 1 SSSP in Apache Hama

compute(messages)
1: if getSuperstepCount() == 0 then
2: setValue(INFINITY);
3: end if
4: int minDist = isStartVertex() ? 0 : INFINITY ;
5: for int msg : messages do
6: minDist = min(minDist, msg);
7: end for
8: if minDist < getValue() then
9: setValue(minDist);
10: for Edge e : getEdges() do
11: sendMessage(e, minDist+e.getValue())
12: end for
13: end if
14: voteToHalt();

combine(messages)
15: return min(messages)

Shortest Path (SSSP) algorithm, based on the vertex-
centric model and the BSP model, implemented in Apache
Hama’s graph package, an open-source implementation of
Pregel. In iteration (or superstep) 0, each vertex sets its
vertex value as infinity (line 2). In subsequent iterations,
each vertex picks the smallest distance among the received
messages (line 5-7) and, if the distance is smaller than its
current vertex value, the vertex updates its vertex value
using the smallest distance (line 9) and propagates the up-
dated distance to all its neighboring vertices along out-edges
(line 10-12). At the end of each iteration, it changes its sta-
tus to inactive (line 14). If the vertex receives any message,
it will be reactivated in the next iteration and then run the
vertex program again. To reduce the number of messages
over the network, users can define a combiner, which finds
the minimum value of messages for each destination vertex
(line 15).

2.4 GraphMap Programming API
GraphMap supports two basic programing abstrac-

tions at API level: the vertex-centric model, similar to
Pregel-like systems, and the VB partition-centric model.
Given a vertex-centric program, such as SSSP in Algo-
rithm 1, GraphMap converts it into a GraphMap program,
which utilizes the in-memory and on-disk representation of
GraphMap and the performance optimizations enabled by
GraphMap in terms of access locality and efficient memory
consumption (See the next sections for detail).

The VB partition-centric API is provided by GraphMap
for advanced users who are familiar with GraphMap’s ad-
vanced features and the BSP model. Note that, unlike the
vertex-centric model, a VB partition-centric program de-
fines what each VB partition (a set of VBs) does for each
iteration. Table 1 shows some core methods provided by
GraphMap. Algorithm 2 demonstrates how SSSP is imple-
mented using the VB partition-centric API. We emphasize
that we are not claiming that the VB partition-centric API
is more concise than the vertex-centric API. Our main goal
of the VB partition-centric API is to expose partition-level
methods and thus provide more optimization opportunities
for advanced users. Recall that users can run their vertex-
centric programs in GraphMap as they are without the need
to learn the VB partition-centric API. Because of the space
constraint, we here omit the further detail on this advanced
API design.

2.5 System Architecture
Fig. 1 shows the system architecture of GraphMap. Sim-

method description

setValue(vertex, value) update the value of the vertex
getValue(vertex) return the value of the vertex
readAllVertices() return an iterator for all

vertices of this partition
readActiveVertices() return an iterator for

all active vertices of this partition
setActive(vertex) set the vertex as active

createMessage(vertex, value) create a message including
the destination vertex and value

sendMessage(worker, msg) send the message to the worker
getWorker(vertex) return the worker, which

is in charge of the vertex
deactivateAll() deactivate all

vertices of this partition

Table 1: GraphMap Core Methods

Algorithm 2 SSSP in GraphMap

compute(messages)
1: if getSuperstepCount() == 0 then
2: for Vertex v : readAllVertices() do
3: if v.isStartVertex() then
4: setValue(v, 0);
5: setActive(v);
6: else
7: setValue(v, INFINITY);
8: end if
9: end for
10: end if
11: for Message msg : messages do
12: if msg.value < getValue(msg.target) then
13: setValue(msg.target, msg.value);
14: setActive(msg.target);
15: end if
16: end for
17: for Vertex v : readActiveVertices() do
18: for Edge e : v.getEdges() do
19: msg = createMessage(e.destination,

getValue(v)+e.getValue());
20: sendMessage(getWorker(e.destination), msg);
21: end for
22: end for
23: deactivateAll();

ilar to Pregel-like systems, GraphMap supports the BSP
model and the message passing model for iterative graph
computations. GraphMap consists of a master machine and
a set of worker machines. The master accepts graph analy-
sis requests from users and coordinates the worker machines
to run the graph algorithms on the input graph datasets.
For large graphs, the two-phase graph partitioning task is
also distributed by the master to its worker machines. The
worker machines execute the graph programs by interacting
with each other through messages.

Each worker machine can define a set of worker slots for
task-level parallelism and each worker is in charge of a sin-
gle partition. Each worker task keeps the mutable data of
its assigned partition in memory (the set of vertices) and in
each iteration, it reads the invariant data of the partition
from disk (VB blocks) for graph computations and updat-
ing the mutable data. In addition, each worker task receives
messages from and sends messages to other workers using
the messaging engine and enters the global synchronization
barrier of the BSP model at the end of each iteration us-
ing the BSP engine. We categorize the messages into two
types based on the use of the network: intra-machine mes-
sages between two workers in the same worker machine and
inter-machine messages between two workers in the differ-
ent worker machines. In GraphMap, we bundle a set of
messages to be transferred to the same worker at the end of

Master

Worker Machine

Worker Machine Worker Machine

Worker Machine

Worker i

Disk Partition i
(invariant)

Partition j
(invariant)

Partition i
(changeable)

BSP Engine Messaging
engine

Graph
Processing

Engine

Worker j

Partition j
(changeable)

BSP Engine Messaging
Engine

Graph
Processing

Engine

Figure 1: GraphMap System Architecture

each iteration for batch transmission across workers.

3. LOCALITY-BASED DATA PLACEMENT
In this section, we introduce our locality-based storage

structure for GraphMap. We provide an example to illus-
trate our in-memory and on-disk representation of graph
partitions. In the next section we describe how GraphMap
can benefit from the locality-optimized data partitions and
data placements to speed up iterative graph computations.

We have mentioned earlier that in most iterative graph
algorithms, only vertex data are mutable while edge data
are invariant during the entire iterative computations. By
cleanly separating graph data into mutable and invariant
(or read-only) data, we can store most or all of the mutable
data in memory and access invariant data from disk by min-
imizing non-sequential IOs. In contrast to existing Pregel-
like distributed graph processing systems where each worker
machine needs to hold not only the graph data but also its in-
termediate results and messages in memory, the GraphMap
approach promotes the locality-aware integration of external
storage with memory-intensive graph computations. The
GraphMap design offers two significant advantages: (1) We
can considerably reduce the memory requirement for run-
ning iterative graph applications by keeping only mutable
data in memory and thus enable many more graphs and
algorithms to run on GraphMap with respectable perfor-
mance. (2) By designing a locality-aware data placement
strategy such that vertex blocks belonging to the same par-
tition will be stored contiguously on disk, we can speed up
the access to the graph data stored on disk through sequen-
tial disk IOs for each iteration of the graph computations.
For example, we keep all vertices and their values belong-
ing to one partition in memory while keeping all the edges
associated with these vertices and the edge property values,
if any, on disk. In other words, in the context of vertex
blocks in a partition, we maintain only anchor vertices and
their values in memory and store all the corresponding ver-
tex blocks contiguously on disk. In each iteration, for each
active anchor vertex, we read its vertex block from disk and
execute the graph computation in three steps as outlined in
Section 2.3. For those graphs in which the number of edges
is much larger than the number of vertices (e.g., more than
two orders of magnitude larger in some real-world graphs),

Memory

Vertex Data Map

Vertex ID Data

1 3

6 2

11 7

Disk

Message Queues

Worker 1 Worker 2 Worker n …

target msg

2 3

7 5

target msg target msg

… …

3 4 4 3

9 7

Data Blocks
Index Block B0 B1 B2

VB1

VB6

VB11

VB16

VB26

VB36

VB51

B1 1

VB31

B2 16

B3 36

Figure 2: Graph Representation in GraphMap (sin-
gle worker)

this design can considerably reduce the memory requirement
for iterative graph computations even in the presence of long
radius and skewed vertex degree distribution, because we do
not require keeping edges in memory.

For anchor vertex values, which may be read and updated
over the course of the iterative computations, such as the
current shortest distance in SSSP and the current PageRank
value, we maintain a mapping table that stores the vertex
value for each anchor vertex in memory. Since each worker
is in charge of one partition in GraphMap, only anchor ver-
tices of its assigned partition are loaded in memory on each
worker. For read-only edge data (i.e., vertex blocks of the
anchor vertices), we need to carefully design its disk repre-
sentation because otherwise it would be too costly to load
vertex blocks from disk in each iteration. To tackle this
challenge, we consider two types of access locality in graph
algorithms: 1) edge access locality and 2) vertex access lo-
cality. By the edge access locality, we mean that all edges
(out-edges, in-edges or bi-edges) of an anchor vertex are ac-
cessed together to update its vertex value. By using the
vertex blocks as our building blocks for storage on disk, we
can utilize the edge access locality because all edges of an
anchor vertex are placed together. By the vertex access lo-
cality, we mean that the anchor vertices (and their vertex
blocks) of a partition are accessed by the same worker in ev-
ery iteration. To utilize the vertex access locality, for each
partition, we store its all vertex blocks into contiguous disk
blocks to utilize sequential disk accesses when we read the
vertex blocks from disk in each iteration. In addition to the
sequential disk accesses, in order to support efficient random
accesses for reading the vertex block of a specific vertex, we
store the vertex blocks in sorted order by their anchor ver-
tex identifiers and create an index block that stores the start
vertex identifier for each data block. In other words, we use
range partitioning in which each data block stores vertex
blocks of a specific range.

Fig. 2 shows an example of the in-memory and on-disk
graph data representation for a partition held by a worker
in GraphMap. All anchor vertices of the partition and their
current vertex data are stored in a mapping table in mem-
ory. Since GraphMap employs the BSP model based on
messaging, we keep an incoming message queue that stores
all messages sent to this worker and an outgoing message
queue for each worker in memory. On disk, eight vertex

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9

#
 a

ct
iv

e
v

er
ti

ce
s

(x
1

0
0

0
)

Iteration

SSSP CC PageRank

Figure 3: The number of active vertices per iteration

blocks are stored in three data blocks and one index block
is created to store the start vertex for each data block.

4. LOCALITY-BASED OPTIMIZATIONS
In GraphMap, two levels of parallel computations can be

provided: (1) Workers can process graph partitions in par-
allel. (2) Within each partition, we can compute multiple
vertex blocks concurrently using multi-threading. By com-
bining the graph parallel computations with our locality-
based data placement, each parallel task can run indepen-
dently with minimal non-sequential disk IOs. Since the ver-
tex blocks belonging to the same partition are accessed by
the same worker and stored in contiguous disk blocks, we
can speed up graph computations in each iteration by com-
bining parallelism with the sequential disk IOs for reading
the vertex blocks.

It is interesting to note that different iterative graph algo-
rithms may have different computation patterns and sequen-
tial disk accesses are not efficient for all types of graph com-
putation patterns. For example, Fig. 3 shows the number
of active vertices per iteration of a worker for three differ-
ent iterative graph algorithms, Single-Source Shortest Path
(SSSP), Connected Components (CC), and PageRank, on
the orkut graph [18]. In PageRank, since all vertices are
always active during all iterations and thus all vertex blocks
of the anchor vertices are required in each iteration, our se-
quential disk accesses would be always efficient for reading
the vertex blocks. On the other hand, in SSSP and CC, the
number of active vertices is different for different iterations.
When the number of active vertices is small, using the se-
quential accesses and reading the vertex blocks of all anchor
vertices would be far from optimal because we do not need
to evaluate the vertex blocks of most anchor vertices.

Based on this observation, we develop another locality-
based optimization in GraphMap, which can dynamically
choose between the sequential disk accesses and the ran-
dom disk accesses based on the computation loads of the
current iteration for each worker. This dynamic locality-
based adaptation enables us not only to progressively filter
out non-active vertices in each of the iterations for the itera-
tive graph algorithms but also to avoid unnecessary and thus
wasteful sequential disk IOs as early as possible. Recall that
we store the vertex blocks of a partition in sorted order by
their vertex identifiers and create an index block to support
efficient random accesses. Given a query vertex, we need
one (when the index block resides in memory) or two (when
the index block is not in memory) disk accesses to read its
vertex block. Specifically, in each iteration of a worker, if
the number of active vertices is less than a system-defined

GraphMap Cluster

Master

Worker

Machine 1

Worker

Machine 2

Worker

Machine 3

Worker

Machine 4

Worker

Machine 5

Worker

Machine 6

Worker

Machine 7

Worker

Machine 8

Worker

Machine 9

Worker

Machine 1

Partition

1

Partition

2

Partition

3

Partition

4

Partition

5

Partition

6

Partition

1

Data Block

1

Data Block

2

Data Block

3

Data Block

4

Data Block

5

Data Block

6

Data Block

1

Vertex

Block 1

Vertex

Block 11

Vertex

Block 16

Vertex

Block 26

Vertex

Block 31

Vertex

Block 41

Vertex Block 41 Anchor Vertex

ID (int)

Edges length

(int)
Edges (bytes)

Figure 4: Hierarchical Disk Representation in
GraphMap

(and user-modifiable) threshold θ, we choose the random
disk accesses as our access method and read the index block
from disk first, if not in memory. Based on the block in-
formation (i.e., start vertex for each data block) stored in
the index block, we select and read only those data blocks
that include the vertex block of active vertices. If the num-
ber of active vertices is equal to or larger than θ, we choose
the sequential disk accesses and read the vertex blocks of all
anchor vertices regardless of the current active vertices.

Because different clusters and different worker machines
have different disk access performance, we also dynamically
change the value of θ for each worker machine. Conceptually,
by monitoring the current processing time of each random
disk access and one full scan (i.e., sequential disk accesses
for reading all vertex blocks), we calculate the break-even
point, in which one full scan time is equal to the time of r
random disk accesses, and use r as the value of θ.

The algorithm of updating the value of θ is formally de-
fined as follows. Let θiw, siw, riw, and aiw denote the thresh-
old, one full scan time, total random disk access time, and
the number of active vertices in iteration i on worker w re-
spectively. If the full scan (or random disk access) is not
used in iteration i on worker w, siw (or riw) is not defined
(i.e., not a valid number). We use m and n, initially having
0 (zero), to denote the IDs of the last iteration where the full
scan and random disk access was used respectively. θ0w is
the initial threshold on worker w and calculated empirically
(e.g., random disk access time for 2% of all anchor vertices
is similar to sequential disk access time for all anchor ver-
tices on worker w). In iteration i (i > 0), before running the
vertex program for each active vertex, we calculate the new
threshold as follows:

θiw =

{
θ(i−1)w, if m = 0 or n = 0

smw
anw
rnw

, otherwise.

In addition, when we store the vertex block of each anchor
vertex in a data block, we bundle all out-edges (or in-edges
or bi-edges) of the anchor vertex and store them together,
as shown in Fig. 4, to utilize the edge access locality.

5. EXPERIMENTAL EVALUATION
In this section, we report the experimental evaluation re-

sults of the first prototype of GraphMap for various real-
world graphs and iterative graph algorithms. We first ex-
plain the characteristics of graphs we used for our evaluation

and the experimental settings. We categorize the experimen-
tal results into four sets: 1) We show the execution time of
various iterative graph algorithms in GraphMap and com-
pare it with that of an Pregel-like system. 2) We present
the effects of our dynamic access methods for various graph
datasets. 3) We evaluate the scalability of GraphMap by
increasing the number of workers in the cluster. 4) We com-
pare GraphMap with other state-of-the-art graph systems.

5.1 Datasets and Graph Algorithms
We evaluate the performance of GraphMap using real-

world graphs of different sizes and different characteristics
for three types of iterative graph algorithms. Table 2 gives
a summary of the datasets used for our evaluation. The
first type of graph algorithms is represented by PageRank.
In these algorithms, all vertices are always active during all
iterations. The second type of graph algorithms is repre-
sented by Connected Components (CC), in which all ver-
tices of the graph are active in the first iteration and then
the number of active vertices starts to decrease as the com-
putation progresses towards convergence. The third type of
graph algorithms is represented by Single-Source Shortest
Path (SSSP), where only the start vertex is active in the
first iteration and the number of active vertices increases in
early iterations and decreases in later iterations. We choose
these three types of graph applications because they display
different computation characteristics as we have shown ear-
lier in Fig. 3.

Dataset #vertices #edges

hollywood-2011 [4] 2.2M 229M
orkut [18] 3.1M 224M

cit-Patents [15] 3.8M 16.5M
soc-LiveJournal1 [3] 4.8M 69M

uk-2005 [4] 39M 936M
twitter [12] 42M 1.5B

Table 2: Datasets

5.2 Setup and Implementation
We use a cluster of 21 machines (one master and 20 worker

machines) on Emulab [27]: each node is equipped with 12GB
RAM, one quad-core Intel Xeon E5530 processor, and two
7200 rpm SATA disks (500GB and 250GB), running CentOS
5.5. They are connected via a 1 GigE network. We run three
workers on each worker machine and each worker is a JVM
process with a maximum heap size of 3GB, unless otherwise
noted. When we measure the computation time, we perform
five runs under the same setting and show the fastest time
to remove any possible bias posed by OS and/or network
activity.

In order to compare with distributed memory-based
graph systems, we use Apache Hama (Version 0.6.3), an
open source implementation of Pregel. Another reason we
choose Hama is that we implement the BSP engine and the
messaging engine of GraphMap workers by adapting the
BSP module and the messaging module of Apache Hama for
the first prototype of GraphMap. This allows us to compare
GraphMap with Hama’s graph package more fairly.

To implement our vertex block-based data representation
on disk, we utilize Apache HBase (Version 0.96), an open
source wide column store (or two-dimensional key-value
store), on top of Hadoop Distributed File System (HDFS)
of Hadoop (Version 1.0.4). We choose HBase for the first
prototype of GraphMap because it has several advantages.

First, it provides a fault-tolerant way of storing graph data
in the cloud. Since HBase utilizes the data replication
of HDFS for fault-tolerance, GraphMap will continue to
work even though some worker machines fail to perform
correctly. Second, since HBase row keys are in sorted order
and adjacent rows are usually stored in the same HDFS
block (a single file in the file system), we can directly
utilize HBase’s range scans for implementing sequential
disk accesses. Third, we can place all the vertex blocks
of a partition in the same worker machine (called a region
server) by using the HBase regions and renaming vertex
identifiers. Specifically, we first pre-split the HBase table
for the input graph into a set of regions in which each region
is in charge of one hash partition. Next, we rename each
vertex identifier by adding its partition identifier as a prefix
of its new vertex identifier, such as “11-341” in which “11”
and “341” represent the partition identifier and the original
vertex identifier respectively. Thus all vertex blocks of a
partition are stored in the same region. In other words,
our hash partitioning is implemented by renaming vertex
identifiers and using the pre-split regions and our range
partitioning on each partition is implemented by HBase,
which stores rows in sorted order by their identifier. Fourth,
to implement our edge access locality-based approach, we
bundle all edges of a vertex block and store the bundled
data in a single column because the data is stored together
on disk. Another possible technique is to use a column for
each edge of a vertex block using the same column family
because all column family members are stored together
on disk by HBase. However, to eliminate the overhead of
handling many columns, we implement the former technique
for our edge access locality-based approach.

5.3 Iterative Graph Computations
We first compare the total execution time of GraphMap

with that of Hama’s graph package for the three iterative
graph algorithms. Table 3 shows the results for different
real-world graphs. For SSSP, we report the execution time
when we choose the vertex having the largest number of out-
edges as the start vertex except the uk-2005 graph in which
we choose the vertex having the third largest number of
out-edges because only about 0.01% vertices are reachable
from each of the top two vertices. For PageRank, we re-
port the execution time of 10 iterations. The result clearly
shows that GraphMap outperforms Hama significantly on
all datasets for all algorithms (PageRank, SSSP, and CC).
For large graphs such as uk-2005 and twitter, GraphMap
considerably reduces the memory requirement for iterative
graph algorithms. However, Hama fails for all algorithms
because it needs not only to load all vertices and edges of
the input graph but also to hold all intermediate results and
messages in memory. Thus Hama cannot handle those large
graphs, such as uk-2005 (936M edges) and twitter (1.5B
edges) datasets, where the number of edges is approaching
or exceeding one billion.

GraphMap not only reduces the memory requirement for
iterative graph algorithms but also significantly improves
the iterative graph computation performance compared to
Hama. For SSSP, CC, and PageRank, GraphMap is 2x-
6x, 1.8x-4.5x, and 1.7x-2.6x faster than Hama respectively.
Given that both GraphMap and Hama use the same messag-
ing and BSP engines, the difference in terms of the number
of messages in Table 3 is due to the effect of the combiner.

total execution time (sec) the number of messages
Dataset SSSP CC PageRank SSSP CC PageRank

Hama Graph Hama Graph Hama Graph Hama Graph Hama Graph Hama Graph
Map Map Map Map Map Map

hollywood-2011 108.776 18.347 177.854 39.365 268.474 111.466 229M 80M 1.2B 348M 2.1B 2.1B
orkut 108.744 21.345 195.841 54.383 286.054 111.46 224M 123M 1.3B 548M 2.0B 2.0B

cit-Patents 27.693 12.337 24.646 12.335 30.688 18.353 219K 212K 17M 15M 149M 149M
soc-LiveJournal1 48.697 18.346 60.734 33.357 75.76 39.369 68M 51M 359M 243M 616M 616M

uk-2005 Fail 156.49 Fail 706.329 Fail 573.964 Fail 450M Fail 5.2B Fail 8.3B
twitter Fail 150.486 Fail 303.653 Fail 1492.966 Fail 585M Fail 1.5B Fail 13.2B

Table 3: Total execution time and the number of messages

total execution time (sec)
Dataset SSSP CC

GraphMap- GraphMap- GraphMap- GraphMap- GraphMap- GraphMap-
Sequential Random Dynamic Sequential Random Dynamic

hollywood-2011 24.354 27.345 18.347 45.383 81.405 39.365
orkut 27.35 33.356 21.345 57.384 126.455 54.383

cit-Patents 15.34 12.34 12.337 18.34 12.332 12.335
soc-LiveJournal1 24.348 36.357 18.346 36.361 120.447 33.357

uk-2005 1225.637 225.555 156.49 2033.522 2898.407 706.329
twitter 252.598 267.622 150.486 712.085 721.089 303.653

Table 4: Effects of dynamic access methods

0

5

10

15

20

25

30

35

40

45

H
a

m
a

G
M

H
a

m
a

G
M

H
a

m
a

G
M

H
a

m
a

G
M

H
a

m
a

G
M

H
a

m
a

G
M

H
a
m

a

G
M

H
a

m
a

G
M

H
a

m
a

G
M

0 1 2 3 4 5 6 7 8

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

se
c)

Iteration

vertex processing

synchronization

Figure 5: Comparison with Hama (PageRank on
orkut)

The GraphMap’s messages are counted after the combiner
is executed and, on the other hand, Hama reports only the
numbers, which are measured before the combiner is exe-
cuted. For PageRank, the number of messages is almost the
same for both systems because no combiner is used.

To provide in-depth analysis, we further divide the to-
tal execution time into the vertex processing time and the
synchronization (global barrier) time per iteration as shown
in Fig. 5. The synchronization time includes not only the
message transfer time among workers but also the wait-
ing time until the other workers complete their processing
in the current iteration. The vertex processing time in-
cludes the vertex update time (the core part defined in the
vertex-centric program), received message processing time,
and message queuing time for messages to be sent during the
next synchronization. For GraphMap, it also includes the
disk (HBase) access time. It is interesting to note that, even
though Hama is the in-memory system, its vertex processing
time is much slower than that of GraphMap, which accesses
HBase to read the vertex blocks stored on disk, for all itera-
tions. This result shows that a carefully designed framework
based on the access locality of iterative graph algorithms can
be competitive with and in some cases outperform the in-
memory framework in terms of the total execution time even
though it requires disk IOs in each iteration for reading a
part of graph data.

We split the vertex processing time of GraphMap for fur-
ther details as shown in Fig. 6. We could not find measure-
ment points to gather such numbers for Hama. For PageR-
ank, all iterations have similar results except the first iter-
ation, in which there is no received message, and the last
iteration, in which no message is sent. Note that the ver-
tex update time, the core component for the vertex-centric
model, is only a small part in the total execution time. For
SSSP, the disk IOs from iteration 5 to iteration 15 are al-
most the same because GraphMap chooses the sequential ac-
cesses based on our dynamic access methods. From iteration
16 to iteration 30, the disk IOs continue to drop until the
algorithm converges thanks to our dynamic locality-based
optimization.

5.4 Effects of Dynamic Access Methods
Table 4 shows the effects of the dynamic access methods

of GraphMap, compared to two baseline approaches that
use only sequential accesses or only random accesses in all
iterations for SSSP and CC. For PageRank, GraphMap al-
ways chooses the sequential accesses because all vertices are
active during all iterations. The experimental results clearly
show that GraphMap with the dynamic access methods of-
fers the best performance because it chooses the optimal
access method for each worker and in each iteration based
on the current computation loads, such as the ratio of active
vertices to total vertices in a partition.

Table 4 also shows that for the cit-Patents graph dataset,
GraphMap always chooses the random accesses because only
3.3% vertices are reachable from the start vertex and thus
the number of active vertices in each iteration is very small.
For SSSP on the uk-2005 graph, the baseline approach using
only sequential accesses is 8x slower than GraphMap. This
is because it takes 198 iterations for SSSP on the uk-2005
graph to converge and the baseline approach always runs
with the sequential disk accesses even though the number of
active vertices is very small in most iterations.

Fig. 7 shows the effects of GraphMap’s dynamic access
methods per iteration, for the first 40 iterations, on a sin-
gle worker using the uk-2005 graph. The result shows that
GraphMap chooses the optimal access method in most of
the iterations based on the number of active vertices. It is

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9

C
o
m

p
u

ta
ti

o
n

 T
im

e
 (

se
c)

Iteration

synchronization msg queing

vertex updates disk access

recv. msg processing

(a) PageRank (uk-2005)

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

C
o
m

p
u

ta
ti

o
n

 T
im

e
 (

se
c)

Iteration

synchronization

msg queing

vertex updates

disk access

recv. msg processing

(b) SSSP (uk-2005)

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

se
c)

Iteration

synchronization

msg queing

vertex updates

disk access

recv. msg processing

(c) CC (uk-2005)

Figure 6: Breakdown of execution time per iteration (single worker)

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40

C
o

m
p

u
ta

ti
o
n

 T
im

e
(s

ec
)

Iteration

GraphMap-Sequential-IO

GraphMap-Random-IO

GraphMap-Adaptive-IO

(a) Computation Time

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

N
u

m
b

er
 o

f
A

ct
iv

e
V

er
ti

ce
s

(1
0
0
0
)

Iteration

(b) #active vertices

Figure 7: Effects of dynamic access methods

interesting to note that GraphMap chooses the sequential
accesses in iteration 5 and 15 even though random accesses
are faster. This indicates that GraphMap’s performance can
be improved further by fine-tuning the threshold θ value. In
these experiments, θ is empirically set to 2% of all vertices
in each partition.

5.5 Scalability
To evaluate the scalability of GraphMap, we report the

SSSP execution results with varying numbers of workers
from 60 to 180 using the same cluster, as shown in Table 5.
For this set of experiments, we use 1GB as the maximum
heap size of each worker for both GraphMap and Hama.
The results show that GraphMap needs fewer workers than
Hama to run the same graph because it reduces the memory
requirement of graph computations. If we run more workers,
each worker handles fewer active vertices proportionally, as
shown in Fig. 8(a) and Fig. 8(b), because the worker is in
charge of a smaller partition. However, by increasing the
number of workers, the cost of inter-worker communication
will increase significantly, which increases the total compu-
tation time even with a smaller number of active vertices
on each worker. As shown in Fig. 8(c) and Fig. 8(d), the
vertex update time reduces as we increase the number of
workers but at the cost of increased synchronization time
for coordinating more workers.

5.6 Comparison with Existing Systems
In this section we compare GraphMap with existing rep-

resentative in-memory graph systems, including GraphX,
GraphLab (PowerGraph), Giraph, Giraph++ (with hash
partitioning), and Hama, in Table 6. We compare the
performance of PageRank and CC on twitter and uk-
2005/uk-2007 datasets. Given that GraphX requires Spark
and larger memory to run, we extract the performance re-
sults of GraphX, GraphLab, and Giraph from [8], annotated
with their respective system configurations for the same

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8

N
u

m
b

er
 o

f
A

ct
iv

e
V

er
ti

ce
s

(1
0
0
0
)

Iteration

60 workers

120 workers

180 workers

(a) #active vertices (orkut)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 1011121314151617181920

N
u

m
b

er
 o

f
A

ct
iv

e
V

er
ti

ce
s

(1
0

0
0

)

Iteration

60 workers

120 workers

180 workers

(b) #active vertices (uk-2005)

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

60 workers 120 workers 180 workers

C
o
m

p
u

ta
ti

o
n

 T
im

e
 (

se
c)

Iteration

synchronization msg queing

vertex updates disk access

recv. msg processing

(c) computation time (orkut)

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18 20 1 3 5 7 9 11 13 15 17 19 0 2 4 6 8 10 12 14 16 18 20

60 workers 120 workers 180 workers

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

se
c)

Iteration

synchronization msg queing

vertex updates disk access

recv. msg processing

(d) computation time (uk-2005)

Figure 8: Scalability (varying #workers)

graph datasets. The results of Giraph++ are extracted
from [28]. We offer a number of observations.

First, the testbeds for other systems have larger RAM
and a larger number of CPU cores. For example, GraphX,
GraphLab, and Giraph run on a cluster with 1,088GB
RAM and 128 cores while GraphMap runs on a cluster
with 256GB RAM and 84 cores. For CC on the twitter
dataset, GraphMap shows comparable performance to these
state-of-the-art in-memory graph systems, even though
GraphMap uses much less computing resources (less than
two-thirds of cores and less than one-fourth of RAM). For
example, GraphMap is only 20% slower than GraphX with

CC (sec) PageRank (sec per iteration)
System Setting twitter uk-2005(*uk-2007) twitter uk-2005(*uk-2007) Type

GraphMap on Hadoop 21 nodes (21x4=84 cores, 304 706 149 57 Out-of-core
21x12=252GB RAM)

Hama on Hadoop 21 nodes (21x4=84 cores Fail Fail Fail Fail In-memory
21x12=252GB RAM)

GraphX on Spark 16 nodes (16x8=128 cores 251 800* 21 23* In-memory
16x68=1088GB RAM)

GraphLab 2.2 16 nodes (16x8=128 cores 244 714* 12 42* In-memory
(PowerGraph) 16x68=1088GB RAM)

Giraph 1.1 on Hadoop 16 nodes (16x8=128 cores 200 Fail* 30 62* In-memory
16x68=1088GB RAM)

Giraph++ on Hadoop 10 nodes (10x8=80 cores No result 723 No result 89 In-memory
10x32=320GB RAM) reported reported

Table 6: System Comparison

Total execution time (sec)
#Workers

Dataset Framework 60 120 180

hollywood-2011 Hama Fail 114.801 114.926
GraphMap 18.352 21.351 27.356

orkut Hama Fail 99.784 102.883
GraphMap 21.36 24.359 30.355

cit-Patents Hama 27.678 39.738 54.799
GraphMap 9.348 15.369 18.348

soc-LiveJournal1 Hama 45.683 54.736 75.837
GraphMap 18.357 21.368 27.356

uk-2005 Hama Fail Fail 415.239
GraphMap 159.517 135.486 138.481

twitter Hama Fail Fail Fail
GraphMap Fail 141.485 126.468

Table 5: Scalability (SSSP)

a much more powerful cluster. GraphMap is even faster
than Giraph++ on the uk-2005 dataset. Through our
dynamic access methods, GraphMap achieves competitive
performance for CC even though it accesses the disk for
each iteration. For PageRank, GraphMap is slower than
GraphX, GraphLab, and Giraph because it reads all the
edge data from disk in each iteration with only two-thirds of
CPU cores. This comparison demonstrates the effectiveness
of the GraphMap approach to iterative computations of
large graphs.

6. RELATED WORK
We classify existing systems for iterative graph algorithms

into two categories. The first category is the distributed
solution that runs the iterative graph computations using a
cluster of commodity machines, represented by distributed
memory-based systems like Pregel. The second category of
graph systems is the disk-based solution on a single machine,
represented by GraphChi [13] and X-Stream [20].

Distributed memory-based systems typically require to
load the whole input graph in memory and to have sufficient
memory to store all intermediate results and all messages in
order to run iterative graph algorithms [17, 7, 16, 22, 8].
Apache Hama and Giraph are the popular open-source im-
plementations of Pregel. GraphX [8] and Pregelix [5] imple-
ment a graph processing engine on top of a general-purpose
distributed dataflow framework. They represent the graph
data as tables and then use database-style query execution
techniques to run iterative graph algorithms.

Unlike Pregel-like distributed graph systems, GraphLab [16]
and PowerGraph [7] replicate a set of vertices and edges us-
ing a concept of ghosts and mirrors respectively. GraphLab
is based on an asynchronous model of computations and
PowerGraph can run vertex-centric programs both syn-

chronously and asynchronously. Trinity [22] handles both
online and offline graph computations using a distributed
memory cloud (an in-memory key-value store). In addition,
several techniques for improving the distributed memory-
based graph systems have been explored, such as dynamic
workload balancing [21, 11] and graph-centric view [25].

Disk-based systems focus on improving the performance
of iterative computations on a single machine [13, 20, 9,
28, 30]. GraphChi [13] is based on the vertex-centric model.
It improves disk access efficiency by dividing a large graph
into small shards, and uses a parallel sliding window-based
method to access graph data on disk. Unlike the vertex-
centric model, X-Stream [20] proposes an edge-centric model
to utilize sequential disk accesses. It partitions a large graph
into multiple streaming partitions and loads a streaming
partition in main memory to avoid random disk accesses
to vertices. PathGraph [28] proposes a path-centric model
to improve the memory and disk access locality. Turbo-
Graph [9] and FlashGraph [30], based on SSDs, improve the
performance by exploiting I/O parallelism and overlapping
computations with I/O.

Even though some systems, including Giraph and
Pregelix, provide out-of-core capabilities to utilize ex-
ternal memory for handling large graphs, they typically
focus only on reducing the memory requirement, not the
performance of iterative graph computations. To the best
of our knowledge, GraphMap is the first distributed graph
processing system, which incorporates external storage into
the system design for efficient processing of iterative graph
algorithms in a cluster of compute nodes.

7. CONCLUSION
We have presented GraphMap, a distributed iterative

graph computation framework, which effectively utilizes
secondary storage to maximize access locality and speed
up distributed iterative graph computations. This paper
makes three unique contributions. First, we advocate a
clean separation of those data states that are mutable dur-
ing iterative computations from those that are read-only in
all iterations. This allows us to develop locality-optimized
data placement and data partitioning methods to maxi-
mize sequential accesses and minimize random accesses.
Second, we devise a two-level graph partitioning algorithm
to enable balanced workloads and locality-optimized data
placement. In addition, we propose a suite of locality-based
optimizations to improve computation efficiency. We eval-
uate GraphMap through extensive experiments on several
real graphs and show that GraphMap outperforms an exist-
ing distributed memory-based system for various iterative

graph algorithms.

8. ACKNOWLEDGMENTS
This work was performed under the partial support by

the National Science Foundation under grants IIS-0905493,
CNS-1115375, IIP-1230740, and a grant from Intel ISTC on
Cloud Computing.

9. REFERENCES
[1] Apache Giraph. http://giraph.apache.org/.

[2] Apache Hama. https://hama.apache.org/.

[3] L. Backstrom, D. Huttenlocher, J. Kleinberg, and
X. Lan. Group Formation in Large Social Networks:
Membership, Growth, and Evolution. In Proceedings
of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’06,
pages 44–54, New York, NY, USA, 2006. ACM.

[4] P. Boldi and S. Vigna. The WebGraph framework I:
Compression techniques. In Proc. of the Thirteenth
International World Wide Web Conference (WWW
2004), pages 595–601, Manhattan, USA, 2004. ACM
Press.

[5] Y. Bu, V. Borkar, J. Jia, M. J. Carey, and T. Condie.
Pregelix: Big(Ger) Graph Analytics on a Dataflow
Engine. Proc. VLDB Endow., 8(2):161–172, Oct. 2014.

[6] G. Karypis and V. Kumar. A Coarse-Grain Parallel
Formulation of Multilevel k-way Graph Partitioning
Algorithm. In PARALLEL PROCESSING FOR
SCIENTIFIC COMPUTING. SIAM, 1997.

[7] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. PowerGraph: Distributed Graph-parallel
Computation on Natural Graphs. In Proceedings of the
10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, pages 17–30,
Berkeley, CA, USA, 2012. USENIX Association.

[8] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw,
M. J. Franklin, and I. Stoica. GraphX: Graph
Processing in a Distributed Dataflow Framework. In
Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation,
OSDI’14, pages 599–613, Berkeley, CA, USA, 2014.
USENIX Association.

[9] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim,
J. Kim, and H. Yu. TurboGraph: A Fast Parallel
Graph Engine Handling Billion-scale Graphs in a
Single PC. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’13, pages 77–85, New York, NY,
USA, 2013. ACM.

[10] G. Karypis and V. Kumar. A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs.
SIAM J. Sci. Comput., 20(1):359–392, Dec. 1998.

[11] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom,
D. Williams, and P. Kalnis. Mizan: A System for
Dynamic Load Balancing in Large-scale Graph
Processing. In Proceedings of the 8th ACM European
Conference on Computer Systems, EuroSys ’13, pages
169–182, New York, NY, USA, 2013. ACM.

[12] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a Social Network or a News Media? In
Proceedings of the 19th International Conference on

World Wide Web, WWW ’10, pages 591–600, New
York, NY, USA, 2010. ACM.

[13] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi:
Large-scale Graph Computation on Just a PC. In
Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation,
OSDI’12, pages 31–46, Berkeley, CA, USA, 2012.
USENIX Association.

[14] K. Lee and L. Liu. Scaling Queries over Big RDF
Graphs with Semantic Hash Partitioning. Proc. VLDB
Endow., 6(14):1894–1905, Sept. 2013.

[15] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs
over Time: Densification Laws, Shrinking Diameters
and Possible Explanations. In Proceedings of the
Eleventh ACM SIGKDD International Conference on
Knowledge Discovery in Data Mining, KDD ’05, pages
177–187, New York, NY, USA, 2005. ACM.

[16] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin,
A. Kyrola, and J. M. Hellerstein. Distributed
GraphLab: A Framework for Machine Learning and
Data Mining in the Cloud. Proc. VLDB Endow.,
5(8):716–727, Apr. 2012.

[17] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A
System for Large-scale Graph Processing. In
Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’10,
pages 135–146, New York, NY, USA, 2010. ACM.

[18] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee. Measurement and Analysis of
Online Social Networks. In Proceedings of the 5th
ACM/Usenix Internet Measurement Conference
(IMC’07), San Diego, CA, October 2007.

[19] R. Pearce, M. Gokhale, and N. M. Amato.
Multithreaded Asynchronous Graph Traversal for
In-Memory and Semi-External Memory. In
Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pages 1–11,
Washington, DC, USA, 2010. IEEE Computer Society.

[20] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-Stream:
Edge-centric Graph Processing Using Streaming
Partitions. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP
’13, pages 472–488, New York, NY, USA, 2013. ACM.

[21] S. Salihoglu and J. Widom. GPS: A Graph Processing
System. In Proceedings of the 25th International
Conference on Scientific and Statistical Database
Management, SSDBM, pages 22:1–22:12, New York,
NY, USA, 2013. ACM.

[22] B. Shao, H. Wang, and Y. Li. Trinity: A Distributed
Graph Engine on a Memory Cloud. In Proceedings of
the 2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, pages 505–516,
New York, NY, USA, 2013. ACM.

[23] I. Stanton and G. Kliot. Streaming Graph Partitioning
for Large Distributed Graphs. In Proceedings of the
18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’12,
pages 1222–1230, New York, NY, USA, 2012. ACM.

[24] S. Suri and S. Vassilvitskii. Counting Triangles and the
Curse of the Last Reducer. In Proceedings of the 20th

International Conference on World Wide Web, WWW
’11, pages 607–614, New York, NY, USA, 2011. ACM.

[25] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and
J. McPherson. From” Think Like a Vertex” to” Think
Like a Graph. Proceedings of the VLDB Endowment,
7(3), 2013.

[26] L. G. Valiant. A Bridging Model for Parallel
Computation. Commun. ACM, 33(8):103–111, Aug.
1990.

[27] B. White, J. Lepreau, L. Stoller, R. Ricci,
S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An Integrated Experimental Environment
for Distributed Systems and Networks. In Proceedings
of the 5th Symposium on Operating Systems Design
and implementation, OSDI ’02, pages 255–270, New
York, NY, USA, 2002. ACM.

[28] P. Yuan, W. Zhang, C. Xie, H. Jin, L. Liu, and

K. Lee. Fast Iterative Graph Computation: A Path
Centric Approach. In Proceedings of the International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’14, pages
401–412, Piscataway, NJ, USA, 2014. IEEE Press.

[29] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster Computing
with Working Sets. In Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud
Computing, HotCloud’10, pages 10–10, Berkeley, CA,
USA, 2010. USENIX Association.

[30] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein,
C. E. Priebe, and A. S. Szalay. FlashGraph:
Processing Billion-Node Graphs on an Array of
Commodity SSDs. In 13th USENIX Conference on
File and Storage Technologies (FAST 15), pages
45–58, Santa Clara, CA, Feb. 2015. USENIX
Association.

