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ABSTRACT

HPC network topology design is currently shifting from high-
performance, higher-cost Fat-Trees to more cost-effective
architectures. Three diameter-two designs, the Slim Fly,
Multi-Layer Full-Mesh, and Two-Level Orthogonal Fat-Tree
excel in this, exhibiting a cost per endpoint of only 2 links
and 3 router ports with lower end-to-end latency and higher
scalability than traditional networks of the same total cost.
However, other than for the Slim Fly, there is currently no
clear understanding of the performance and routing of these
emerging topologies. For each network, we discuss mini-
mal, indirect random, and adaptive routing algorithms along
with deadlock-avoidance mechanisms. Using these, we eval-
uate the performance of a series of representative workloads,
from global uniform and worst-case traffic to the all-to-all
and near-neighbor exchange patterns prevalent in HPC ap-
plications. We show that while all three topologies have sim-
ilar performance, OFTs scale to twice as many endpoints at
the same cost as the others.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; C.4 [Performance of Systems]

General Terms

Performance, Theory, Experimentation

Keywords

Diameter-two networks, Adaptive routing, All-to-all, Near-
est neighbor, Global and adversarial traffic, Slim Fly, Multi-
Layer Full-Mesh, Orthogonal Fat-Tree

1. INTRODUCTION / RELATED WORK
One of the most popular interconnection network designs,

used in both the High Performance Computing and datacen-
ter space, is the Fat-Tree [13,18,19]. Full bisection Fat-Trees
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ensure that any permutation traffic can traverse the network
at maximum bandwidth and can attain close to ideal behav-
ior for any communication pattern (with a properly chosen
routing strategy) in practice. At small scale, Fat-Trees re-
quire only two levels of switches and as such are very cost
effective. When moving to larger scales, they require in-
creasingly more resources as the number of levels increases,
both in terms of routers and network cables. Typical cost re-
duction measures (such as slimming for example) generally
have the drawback of impacting performance across many
traffic patterns, particularly the more global ones [20]. In
practice, the network does not need to be optimal for every
pattern, but global communication (such as uniform ran-
dom global traffic, or all-to-all exchanges) is central to many
applications. Therefore, several alternatives have been pro-
posed that are more cost effective than a three level Fat-Tree
while maintaining close to ideal performance for a subset of
communication patterns, particularly global uniform traffic.
The most widely deployed of these has been the Dragon-
fly topology [11], employed for example in the IBM PERCS
systems [3] and in Cray Cascade systems [8] (e.g., Piz Daint
and Shaheen II [1]).

However, most of these alternative topologies are still not
a match for the two level Fat-Tree, neither in terms of cost
nor in terms of latency/diameter. Two classes of topolo-
gies, one direct and one indirect, are exceptions to this
rule, sharing the same cost and diameter metrics with the
two-level Fat-Tree but having better, approaching maximal,
scalability, making them ideal candidates for current HPC
and datacenter interconnects. The direct topology is the
recently proposed Slim Fly (SF) [4]. The indirect topol-
ogy class is one that we introduce in this paper and that
we call Stacked Single-Path Trees (SSPT). The Multi-Layer
Full-Mesh (MLFM) [9] as well as the two-level Orthogonal
Fat-Trees (OFT) [22, 23] are examples of members of this
class.

While the individual topologies have already been de-
scribed in the literature, the SSPT class has not. Also, other
than for the Slim Fly there have been no concrete proposals
as to how to perform routing and deadlock avoidance, nor
have there been comparative performance studies between
the three options. In this paper:

• We introduce and analyze the SSPT topology class.

• We compare the diameter-two topologies in terms of
cost, scalability, and bandwidth limitations.

• We propose load oblivious and adaptive deadlock-free
routing strategies for the MLFM and OFT topologies
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and discuss these in comparison with respective strate-
gies for the SF.

• We evaluate the performance of the three topologies
under the proposed routing and deadlock avoidance
strategies through simulations, for several representa-
tive communication patterns: on the one hand global
uniform and adversarial worst-case synthetic traffic and
on the other hand two of the most representative traf-
fic patterns in the HPC space: all-to-all and nearest-
neighbor exchanges.

2. DIAMETER-TWO TOPOLOGIES

In this section we present the description of the topologies
and perform an analysis of their main characteristics.

Symbol Explanation

G
e
n
e
r
a
l

N Number of end-nodes
R Number of routers
r Router radix
p Number of end-nodes attached to routers

(Applies only to routers with
end-nodes for the OFT and MLFM)

Np Number of total router ports in the topology
Nl Number of total links in the topology

D
ir

e
c
t

S
F

q Prime power that defines N , R, and r
r′ Network radix

(i, j, k) Router in the j-th row and k-th
column of the i-th subgraph

In
d
ir

e
c
t

M
L
F
M l Number of layers

h Network radix of local routers
Rg, Rl Number of global, local routers

O
F
T

k Network radix of routers with end-nodes
(i, j) j-th router of the i-th level

RL Number of routers per level

Table 1: Symbols used in the paper.

2.1 Direct Topologies

2.1.1 Two-Dimensional HyperX

The n-dimensional HyperX (also known as Generalized
Hypercube) [2, 5] is the direct topology resulting from the
Cartesian product of n fully-connected graphs. The longest
path between a pair of routers in such a topology has length
n, corresponding to one movement in each of the n di-
mensions. The two-dimensional HyperX is thus a direct
diameter-two topology. It is defined by three main parame-
ters: the sizes of the two fully-connected graphs in the Carte-
sian product and the number p of end-nodes connected to
each router. Typical configurations use the same size for
the two fully-connected graphs while p is chosen such that
the network is balanced, that is, it is able to sustain full
injection bandwidth for uniform traffic. Given a router with
radix r, this translates into an equal number of ports r/3 be-
ing used to i) connect to routers in the same fully-connected
graph in the first dimension; ii) connect to routers in the
same fully-connected graph in the second dimension; and iii)
connect to end-nodes. The number of routers in each fully-
connected graph is thus r

3
+ 1 leading to a total number of

routers of R = ( r
3

+ 1)2 and a total number of end-nodes of

N = pR = r
3
· ( r

3
+ 1)2. The network has a per end-point

cost of 3 router ports and 2 links.

2.1.2 Diameter-Two Slim Fly

The SF [4] is a direct topology created by arranging the
routers in a McKay, Miller, and Širán (MMS) graph [14].
MMS graphs approximate the Moore Bound [15], the max-
imum number of nodes a graph can have for a given node
degree and diameter. This effectively means that the SF
is among the largest direct diameter 2 networks possible,
reaching approximately 88% of the Moore Bound [4].

The creation of the SF topology begins with the selection
of a prime power q of the form q = 4w + δ, w ∈ N, δ ∈
{−1, 0, 1}. From that, we calculate ξ, a primitive element
of the Galois Field Fq and create two generator sets X and
X ′, as follows (all calculations are performed over the field):

• X = {1, ξ2, · · · , ξq−3}, X ′ = {ξ, ξ3, · · · , ξq−2}, if δ = 1

• X = {1, ξ2, ξ4, · · · , ξ2w−2, ξ2w−1, ξ2w+1, · · · , ξ4w−3},
X ′ = {ξ, ξ3, ξ5, · · · , ξ2w−1, ξ2w, · · · , ξ4w−4, ξ4w−2},
if δ = −1

• X = {1, ξ2, · · · , ξq−2}, X ′ = {ξ, ξ3, · · · , ξq−1}, if δ = 0

The topology consists of R = 2q2 routers, arranged in two
subgraphs, each with q2 routers in q rows and columns
(Fig. 1a). Each router has two kinds of network connec-
tions: 2w connections to routers of the same column in
its subgraph, and q connections directed to the other sub-
graph, one in each of its columns, leading to a network radix
r′ = 3q−δ

2
. Specifically:

(0, x, y) connects to (0, x, y′) if y − y′ ∈ X

(1, m, c) connects to (1, c, c′) if c − c′ ∈ X ′

(0, x, y) connects to (1, m, c) if y = mx + c

According to Besta and Hoefler [4], the number p of end-
nodes connected to each router is selected to be equal to half

the network radix: p = ⌈ r′

2
⌉. This value ensures full global

bandwidth for the topology (i.e., given a uniform commu-
nication pattern, end-nodes are theoretically able to sustain
full bandwidth injection). Here, we argue that using the
ceiling function, while enabling higher scalability and bet-
ter cost per endpoint, slightly overestimates the number of
nodes that can be attached to a router, leading to lower
performance. As such, we also consider configurations with

p = ⌊ r′

2
⌋ and show in Section 4 the performance implications

of this choice.
The Slim Fly comprises R = 2q2 routers. These routers

have a network radix of r′ = q + 2w = 3q−δ

2
and p = r′

2
≈

3q−δ

4
attached end-nodes, amounting to a router radix of r =

3
4
(3q − δ). The number of end-nodes is N = pR ≈ q2(3q−δ)

2
.

The total number of router ports is Np = rR ≈ 3
2
q2(3q− δ),

and the total number of links is Nl = N + r′R
2

≈ q2(3q − δ),
resulting in a cost of approximately 3 ports and 2 links per
end-node. As practical values of q are relatively small, the
choice of rounding up or down when determining p has a
non-negligible impact on the cost metrics. As an example,
for q = 13, selecting p = 10 results in a cost of 2.9 ports and
1.95 links per endpoint, while selecting p = 9 results in 3.11
ports and 2.05 links per endpoint.



(a) Diameter-Two Slim Fly (End-nodes are omit-
ted for clarity). (b) 3,3,3 MLFM. (c) Two-level OFT.

Figure 1: System view of diameter-two cost-effective topologies

(a) SPT. (b) SSPT. (c) 3,3,3-MLFM. (d) 3-OFT.

Figure 2: Tree view of diameter-two cost-effective topologies

2.2 Indirect Topologies

2.2.1 Two Level Fat-Trees

A two level Fat-Tree is an indirect topology built from two
levels of routers. The endpoints are connected to the routers
on the first level while the second level is used to provide an
increase in bandwidth/path diversity. A full bisection two
level Fat-Tree must additionally obey the constraint that ev-
ery level-one router have as many links connecting it to level-
two routers as endpoints. This effectively translates into the
network theoretically providing sufficient bandwidth to ac-
commodate any permutation traffic pattern at full injection.
Given a configuration where every router has a fixed even
router radix r, the number of nodes connected to every level-
one router is then p = r/2, the total number of routers is
3r/2 and the total number of endpoints is r2/2. The cost of
the network is 3 router ports and 2 links per endpoint.

2.2.2 Stacked Single-Path Trees

While the full bisection two-level Fat-Tree simultaneously
offers a low cost, a low diameter, and high throughput for
any permutation pattern (due to high path diversity), its
use in practice is limited by its low scalability under a fixed
router radix. In this section we will show that we can
sacrifice one of the defining characteristics of this design,
the high path diversity, and still preserve the other two
advantages, while also providing high throughput for ran-
dom uniform traffic. To define the structure of Single-Path
Trees (SPT) (Fig. 2a), we start as in the Fat-Tree case with
two levels of routers, where nodes will be connected only
to routers in the first layer and every router-to-router link
has an endpoint in each of the levels. Unlike the Fat-Tree
though, we propose to interconnect the two layers in such
a way that i) exactly a single minimal path exists between

any pair of level-one routers, and ii) a minimal number of
level-two routers are used. Given a router-to-router radix of
r1 for the first level routers and of r2 for the second level
routers, such a design scales to R1 = 1+r1 ·(r2−1) first level
routers (requiring R2 = R1 · r1/r2 second level routers). To
achieve maximum performance for random uniform traffic,
the number of nodes connected to each level-one router is
limited to p = r1. The scalability of an SPT is thus given by
N = r2

1 ·(r2−1)+r1. In terms of cost, an SPT then requires
R1 routers with 2r1 ports each and R2 routers with r2 ports
each, for a total of 3R1r1 ports, or 3 ports per end-point.
Similarly, the number of links per endpoint is equal to 2.

Determining level-one to level-two interconnection pat-
terns with the constraints characteristic of SPTs is not
straightforward and as such we might be limited in prac-
tice to certain combinations of (r1, r2) values. In particu-
lar, precise procedures are known to build such interconnec-
tion patterns for the r2 = r1 case when r1 − 1 is prime as
well as for any value of r1 when r2 = 2. However, when
building interconnection networks in practice, it is often de-
sirable that individual routers be identical, i.e., have the
same radix. An interconnection pattern might not be read-
ily available for the (r1, r2 = 2r1) case corresponding to this
goal for an SPT. One might however be available for the
(r1, r2) case, r2 being some divisor of 2r1. In that case,
one way of achieving the goal of building the network from
individual routers is a procedure that we will call stack-
ing SPTs and leading to Stacked Single-Path Tree (SSPT)
topologies (Fig. 2b). The procedure consists of logically in-
stantiating 2r1/r2 identical SPT (r1, r2) topologies and then
“merging” each 2r1/r2-tuple of corresponding radix-r2 level-
two routers together to form a single 2r1 radix physical
router. For every intra-SPT pair of endpoints, the SPT
properties are trivially preserved. For every inter-SPT pair



i
j, s.t. (1, j) and (0, i)

are connected

0 9 10 11 12

1 9 0 1 2

2 9 3 4 5

3 9 6 7 8

4 10 0 3 6

5 10 1 4 7

6 10 2 5 8

7 11 0 4 8

8 11 1 5 6

9 11 2 3 7

10 12 0 5 7

11 12 1 3 8

12 12 2 4 6

Table 2: 4-ML3B.

Topology Diam. Scale Nl

N

Np

N

D
ir

ec
t 2D HyperX 2 ≈ r3/27 2 3

Slim Fly (SF) 2 ≈ r3/8 2∗ 3∗

In
d
ir

ec
t 2-lvl Fat-Tree 2 r2/2 2 3

3-lvl Fat-Tree 4 r3/4 3 5
MLFM 2 ≈ r3/8 2 3
OFT 2 ≈ r3/4 2 3

∗ See Section 2.1.2

Figure 3: Comparison of the scale and cost (links and
ports per end-node) of various low diameter topologies.

Figure 4: Approximating bi-
section bandwidth.

of endpoints, the diameter property is preserved (a short-
est path always consists of an upward SPT traversal in the
source SPT and a downward SPT traversal in the destina-
tion SPT), while the single path property is preserved for
all pairs excepting those containing corresponding nodes in
two different SPTs. Indeed, for the latter, the path diver-
sity is equal to r1. The scale of the resulting network is:

N =
(

r2
1(r2 − 1) + r1

)

· 2r1

r2
= r3

4

(

r2−1
r2

)

+ r2

2r2
, where r = 2r1

is the router radix of the resulting topology. As each SPT
that we stack has a network cost of 3 ports and 2 links per
end-node, the SSPT has the same cost per end-node.

In the following, we will present two particular instances
of SSPTs, the Multi-Layer Full-Mesh, obtained for r2 = 2
and the two level Orthogonal Fat-Tree, obtained for r2 = r1

when r1 − 1 is prime.

2.2.3 Multi-Layer Full-Mesh

The MLFM [9], as the name suggests, is initially con-
ceived as stacked layers of full-mesh networks. The stacking
procedure is performed by considering each layer as a normal
full-mesh, and replacing the direct link between any pair of
local routers (LRs) with two links to one global router (GR)
(Fig. 1b). By connecting the respective pairs of all layers to
the same GRs, each LR can reach any other through its GR
neighbors.

The LRs of each full mesh are the routers of the lower level
of the SPT, with end-nodes attached to each of them. The
GRs, with r2 = 2 connections on each SPT, are the routers
of the upper level of the SPT, and stacking them leads to
the creation of the SSPT (Fig. 2c).

In more detail, the (h,l,p)-MLFM contains l layers with
h + 1 LRs each, and p endpoints attached to each LR. The

number of GRs used to perform the stacking is Rg = h(h+1)
2

,
and their radix is rg = 2l. The radix of LRs is rl = h + p.
Following the description of SSPTs that can be realized with
a single fixed router radix, we will only consider the case
where h = l = p, where all routers of the MLFM have the
same radix r = 2h and refer from now on to the h-MLFM.

The h-MLFM contains h layers of h + 1 LRs each, along

with h(h+1)
2

GRs, amounting to a router count of R =
3
2
h(h + 1). Each LR is connected to h end-nodes, and thus

the whole topology contains N = h3 + h2 end-nodes. Being
an SSPT, the MLFM has a cost of 3 router ports and 2 links
per end-node.

2.2.4 Two-Level Orthogonal Fat-Trees

Building SSPTs with r1 = r2 = k requires stacking only
2 SPTs, leading to the Two-Level k-OFT [22, 23], a three-

level indirect network (Fig. 1c). The lower layers of each of
the two SPTs (which we will call L0 and L2) will consist of
R0 = R2 = 1 + k(k − 1) routers each. The common upper
layer of the two SPTs (which we will call L1) will also have
the same number of switches R1 = R0 = R2 = RL (due to
r1 = r2 within the individual SPTs).

The interconnection pattern of the SPT that creates the
k-OFT is called the Maximal Leaves Basic Building Block
of degree k (k-ML3B) of the topology [23]. The tabular
representation of the k-ML3B is a RL × k table, whose i-th
row contains all values j for which (0, i) connects to (1, j).
An algorithm to create this representation of the k-ML3B
has been described for the case where k equals a prime plus
one [22]. This algorithm involves filling the table using a
set of slightly modified Mutually Orthogonal Latin Squares
(MOLS) [7]:

1. Fill the first row with the numbers in the range [RL −
k, RL − 1] in that order.

2. Fill the remaining empty cells of the first column with
k−1 instances of RL−k, k−1 instances of RL−k+1,
..., k − 1 instances of RL − 1.

3. At this point, a k(k − 1) × (k − 1) area of the tabular
representation is unfilled. This subset is divided in k
squares, each of size (k − 1) × (k − 1). The first is
filled with the numbers 0 to (k− 1)2 − 1, ordered from
left to right and from top to bottom. The second is
filled with the transpose of the first. Each remaining
square is filled with each of the k − 2 MOLS of size
(k − 1) × (k − 1) with elements in the range [0, k − 2].
Finally, the i-th column of each of these k − 2 squares
is increased by (i − 1) · (k − 1), ∀i ∈ [1, k − 1].

Table 2 shows the result of the above algorithm for the tab-
ular representation of the 4-ML3B.

Each router of the L0 and L2 levels connects to p = k
end-nodes (as explained in Section 2.2.2). This results in
a topology with N = 2kRL = 2k3 − 2k2 + 2k end-nodes,
built with 2k-radix routers. The number of routers needed
is R = 3RL = 3k2 −3k +3. As all SSPTs, the OFT also has
a cost of 3 router ports and 2 links per end-node.

2.3 Analysis

2.3.1 Scalability

Fig. 3 shows the scalability of the considered diameter-
two topologies, as well as that of the three-level Fat-Tree
as a reference for comparison. The table in the same figure
contrasts the scale with the cost of each of these topologies.



Asymptotically, all topologies scale to a number of nodes
that is proportional to the cube of the router radix with the
exception of the two-level Fat-Tree which scales proportion-
ally to only the square of the router radix. However, the
exact end-node count is significantly different from topol-
ogy to topology: i) among the direct topologies, a SF will
be able to accommodate ≈ 27/8 more end-nodes than a 2D
HyperX build with the same-sized router; ii) among the in-
direct topologies, both OFT and MLFM offer significantly
higher scalability than the same diameter FT, with the OFT
scaling to twice as large a network than the MLFM (thus
achieving a number of end-points similar to the much more
costly 3-level FT).

As an example, using a radix-64 router design, the OFT
can support approximately 63.5K nodes, while the MLFM
and SF support around 36K and 33.7K, respectively. Thus,
they are both good candidates for the interconnection net-
work of the largest of today’s datacenters or that of exascale
HPC systems (e.g. a system comprising 40TFlop nodes –
i.e., CORAL nodes [17], 2017 time frame – would require
an interconnect that scales to 25, 000 nodes to reach peak
exaflop performance).

Comparing between the best direct topology option (SF)
and the best indirect topology option (OFT) is more prob-
lematic, as the choice of one over the other is highly depen-
dent on the technology envisioned for the design. Partic-
ularly, direct topologies typically benefit from having the
router integrated close to the compute chips, whereas in
the case of indirect topologies routers are discrete. Thus,
the choice between the two topologies is subject to a cost-
scalability tradeoff.

2.3.2 Upper bound for bisection bandwidth

Due to the irregular nature of the OFT and the Slim Fly,
an analytical calculation of their bisection bandwidth is not
easy. However, we can approximate it for the topologies
under discussion using a graph partitioning tool [10]. The
approximate results (Fig. 4) suggest that the OFT bene-
fits from the higher bisection bandwidth among the three
topologies, offering ≈ 0.89b per end-node (≈ 0.81b for small
scale networks), b being the link bandwidth. Conversely, the
approximate bisection bandwidth for the SF is ≈ 0.71b per

node when p = ⌊ r′

2
⌋ and ≈ 0.67b per node when p = ⌈ r′

2
⌉.

Finally, the MLFM seems to have the lowest bisection band-
width of the three, being limited to ≈ 0.5b.

2.3.3 Diversity of shortest paths

Compared to the two-level Fat-Tree, the considered
diameter-two topologies (both direct and indirect) trade di-
versity of shortest paths for higher scalability. Nonetheless,
in all of them there exist (source,destination) router pairs be-
tween which more than one shortest path exists. These pairs
can potentially be leveraged by optimized routing and/or
mapping policies to improve the network’s performance un-
der adversarial traffic patterns.

For the SF there is no path diversity between routers that
are directly connected. However, some pairs of non-directly
connected routers share more than one neighbor and thus
there exists some path diversity between them. Such pairs
are scarce, thus system-wide path diversity is relatively low.
For instance, for q = 23, the average number of minimal
paths between pairs of non-directly connected routers is ap-
proximately 1.1, with the maximum path diversity being 8.

The MLFM also exhibits path diversity that is irregularly
distributed across the network. A pair of LRs that belong
to the same router column, that is, having the same relative
index in their respective layer (Fig. 1b), have h minimal
routes between them. Any other pair of routers however
have strictly one minimal path between them.

The OFT (and SPTs/SSPTs in general) are designed to
provide high scalability through the reduction of diversity of
minimal paths between routers connected to end-points. In
general, only one minimal route exists between any pair of
such routers, with the only exception of pairs of counterpart
routers in different stacked layers. Due to the symmetry,
routers (0, i) and (2, i) connect to the same L1 routers and
as result there are k minimal paths between them.

3. ROUTING

We discuss routing of packets from a source node directly
connected to router Rs, to a destination node directly con-
nected to a different router Rd.

3.1 Oblivious Minimal Routing

The SF is the only one of the three topologies without
constant length minimal paths. Being a direct topology, Rs

and Rd can be either directly connected, in which case the
path has a length of 1, or connected through a common
neighbor, in which case there exists a 2-hop minimal path.

Minimal routing for the MLFM consists exclusively of 2-
hop paths. The local source router Rs sends the routed
packet to a global router, to be forwarded to Rd. If the com-
municating router pair belongs to the same column (Fig. 1b),
any output port of the source leads to a global router that
is connected to the destination. However, if this is not the
case, there is again only one global router that is a common
neighbor of both Rs and Rd.

Similarly, in minimal routing for the OFT, a packet from
Rs traverses an L1 router to reach Rd, on a strictly 2 hop
path. In the case where Rs and Rd are a symmetric pair, any
L1 router connected to Rs can be used as the intermediate
hop, since the same L1 routers are connected to Rd. In
the opposite case, only one L1 router connects the source-
destination pair and therefore the intermediate hop is their
single common neighbor.

3.2 Oblivious Indirect Random Routing

Valiant’s algorithm [24] can be used to load balance adver-
sarial traffic patterns where minimal routing underperforms.
A packet from Rs is first minimally routed to a uniformly
randomly selected intermediate router Ri (other than the
source and destination routers) and from there minimally
routed to its final destination Rd. In the case of SF, any
router in the topology is eligible to become an intermediate
router. This means that indirect routes have a length of 2,
3 or 4 hops.

In the case of the OFT and the MLFM however, if any
router in the topology is eligible to become Ri, indirect paths
would have lengths of 2, 4 or 6 hops. However, this is not
desirable, since short paths will result in inadequate load bal-
ancing and long paths will result in higher latency. Hence,
for these two topologies, the intermediate destination is cho-
sen among the routers that are directly connected to end-
nodes (L0 or L2 routers for the OFT, local routers for the
MLFM), restricting the indirect path length to 4 hops.



3.3 Adaptive Routing

For adaptive routing on the topologies under discus-
sion, we explore variants of the Universal Globally-Adaptive
Load-balanced (UGAL) algorithm [21], which has already
been successfully used in various other topologies [4, 11].
The UGAL algorithm selects between minimal and indirect
random routing on a per-packet basis, based on the channel
load at the moment of the packet’s injection, as conceived by
the network’s buffers’ occupancy level. The global variant
of the algorithm requires knowledge of the buffers’ state for
the whole topology at the point of injection, which is hard
to implement in practice. Here, we only consider the local
variant of UGAL, in which each router has access exclusively
to information about the state of its own buffers.

In general, the generic UGAL algorithm works as follows:
When a packet is injected to the network a number of pos-
sible paths is selected and each one of them is assigned a
cost. The minimal path is assigned a cost CM equal to the
occupancy of the first output port of the path : CM = qM

1.
Additionally, nI indirect routes are randomly selected, and
a cost Cj

I , j ∈ {1..nI} is assigned to each one of them, cal-
culated as follows:

Cj
I = c · qj

I

where c denotes the penalty of the selection of an indirect
path over a minimal one, and qj

I is the occupancy of the first
output port of the particular path. Finally, the path with
the minimum cost is selected for the routing of the packet.

The generic UGAL algorithm has the drawback that it
allows packets to be routed indirectly even when the occu-
pancy of the minimal path is low, because some indirect
path starts with an empty or lower occupancy first buffer
(when qj

I = 0, the value of c doesn’t matter). Because an in-
direct path is twice as long as a minimal one, we expect the
packet to have an increased latency. Adding to this problem
is the fact that there is a good chance that the occupancy
of the first output buffer does not always accurately reflect
the congestion on its links. Therefore, in our experiments,
in addition to the generic UGAL, we use also a modified
version of the algorithm, in which packets are routed min-
imally when qM < T and adaptively in the opposite case,
with T being a threshold in the buffer occupancy, expressed
as a percentage of the buffer size.

SF adaptive routing.
For the SF we use the generic algorithm (SF-A), but we

base the cost calculation to the one of the original UGAL
algorithm [21], similarly to Besta and Hoefler [4]. In this
calculation, the cost of an indirect path is analogous to the
ratio of the length of the indirect path (Lj

I) to the length of
the minimal path (LM ). Thus, we have:

c =
Lj

I

LM

· cSF

where cSF is a constant, selected to balance the ratio be-
tween minimal and indirect routes. The same calculation is
also used for adaptive routing with a threshold (SF-ATh).

1In the rare cases where multiple minimal paths exist, we
can either select one of them at random, or select the mini-
mal path with the lowest cost.

MLFM and OFT adaptive routing.
For both MLFM and OFT we use the generic UGAL al-

gorithm (MLFM-A and OFT-A, respectively) and the ver-
sion of UGAL with a threshold (MLFM-ATh and OFT-ATh)
with a constant value for c.

3.4 Deadlock Freedom and Avoidance
The deadlock avoidance scheme proposed by Besta and

Hoefler [4] for the SF utilizes 2 VCs in the case of minimal
routing, and 4 in the case of indirect routing to effectively
avoid deadlocks without restricting turns.

The OFT and MLFM topologies require less VCs than
that. Both are inherently deadlock-free when minimal rout-
ing is utilized. In both cases, all uni-directional links belong
in one of two groups. In the case of the OFT these groups
can be characterized as towards or away from an L1 router,
and in the case of the MLFM, they can be characterized as
towards or away from a global router. In both topologies,
a minimal route comprises a towards link followed by an
away link, and therefore, since an order can be imposed on
the classes of links so that they are always allocated in as-
cending order, this kind of routing entails no risk of routing
deadlock [6].

On the contrary, with indirect routing the risk is present,
since the routes are now of the form: towards, away, towards,
away, thus forming cycles on the channel dependency graph
(CDG). These cycles can be easily avoided by using 2 Vir-
tual Channels (VCs) at each port. The first VC is used
when a packet is moving towards the intermediate destina-
tion (first towards, away pair) and the second VC is used
when the packet is moving away from it (second pair). This
VC allocation scheme results in two virtual networks, each
of which has the same cycle-free CDG as minimal routing,
thus avoiding any deadlock.

4. EXPERIMENTAL RESULTS
In this section we present simulation-based performance

results for the three topologies, using the routing and dead-
lock avoidance approaches we introduced.

4.1 Framework, parameters and metrics
The results presented in this section were obtained using

a simulation framework [16] that is able to accurately model
generic and custom networks at a flit level. The switch archi-
tecture chosen was that of a virtual-channel capable, input-
output-buffered switch with 100 KB of buffer space per port
per direction and a switch traversal latency of 100 ns. The
links had a bandwidth of 100 Gbps and a latency of 50 ns.
Credit based flow control was used and messages consisted
of 256 byte packets.

We benchmarked several traffic patterns, both synthetic
(global uniform traffic and adversarial permutation traffic)
and representative of real-world applications (nearest neigh-
bor and all-to-all communication patterns). For the syn-
thetic traffic patterns, messages were generated continuously
at link rate for the entire duration of the simulation, while
for the realistic patterns, the total amount of data exchanged
between any communicating pair was 512 KB for nearest
neighbor and 7.5 KB (30 packets) for all-to-all. For each
traffic pattern, the assignment of processes to nodes was
performed contiguously with a single process per node.

For the synthetic traffic experiments, the system was sim-
ulated for 200 microseconds with a 20 microseconds warm-



up. For the realistic communication patterns, the system
was simulated for the entire duration of the exchange.

The topology configurations that were used are the fol-
lowing:

• SF with q = 13, p = ⌊ r′

2
⌋ = 9, N = 3042, R = 338,

r = 28

• SF with q = 13, p = ⌈ r′

2
⌉ = 10, N = 3380, R = 338,

r = 29

• MLFM with h = 15, N = 3600, R = 360, r = 30

• OFT with k = 12, N = 3192, R = 399, r = 24

These were selected to approximate the number of nodes
in CORAL Summit [17], a 150 PetaFlops system to be de-
ployed in the 2017 time frame in a collaboration between
IBM, NVIDIA and Mellanox.

4.2 Worst-Case Traffic
What constitutes an adversarial or worst-case (WC) work-

load varies from topology to topology. We consider patterns
that are not end-node limited, meaning that a node does
not generate a higher load than its link to the network can
accommodate, nor does it receive more. In other words, pat-
terns for which the bottleneck is in the network itself, not
in the interface from the nodes to the network.

Figure 5: Worst-Case traffic for the SF is encountered when
all routers of the topology communicate in pairs of distance
2, with overlapping routes.

The WC traffic pattern under minimal routing in SF is
encountered when all routers communicate in pairs with a
distance of 2, and pairs of the routes of this communication
partially overlap. Fig. 5 shows an example of such a pair of
overlapping routes. All end-nodes of RA send their traffic to
the end-nodes of RC and all nodes from RB send to all nodes
of RD. Thus, the link that connects RB and RC becomes
overloaded, with 2p flows passing per direction, resulting to
1
2p

of the maximum throughput. Arranging all traffic in the
network in such pairs for our experiments is easily achieved
with a greedy assignment.

The WC traffic pattern under minimal routing for the
MLFM occurs when end-nodes belonging to pairs of routers
connected by a single minimal path communicate exclusively
across that path. Specifically, this occurs when the end-
nodes connected to a router Rs send all their traffic to the
endpoints of a router Rd which does not belong to same
column as Rs, thus overloading the single minimal path be-
tween Ra and Rd with h flows. A particular case of this
pattern is the shift traffic pattern with a shift value of h,
which we use in our experiments.

The WC traffic pattern for the OFT under minimal rout-
ing is very similar to the one for the MLFM. Once again,
it occurs when all end-nodes of some L0 or L2 router Rs

communicate exclusively with all end-nodes of some other

router Rd of the same levels, which is not the symmetrical
equivalent of Rs. In this case, each link of the common path
used is oversubscribed with k flows, resulting in a through-
put equal to only 1

k
of the link bandwidth. Once more, we

use in our experiments a particular case of this pattern that
is the shift traffic pattern with an offset of k.

(a) Uniform random traffic. (b) Worst case traffic.

Figure 6: Throughput, and throughput saturation points for
oblivious (minimal, MIN and indirect random, INR) routing,
under uniform random and worst-case traffic.

4.3 Synthetic traffic
Our synthetic traffic experiments were conducted under

global uniform and worst-case adversarial permutation traf-
fic (as discussed in Section 4.2), in order to explore the limits
of each topology and each routing strategy.

4.3.1 Oblivious routing

Fig. 6 shows the throughput achieved by the three topolo-
gies using oblivious routing, either minimal or indirect ran-
dom. Under minimal routing, all three topologies are able
to support almost full bandwidth in uniform traffic, up to
approximately 96 to 98% of the total load. Between the two
versions of SF, the one with higher p saturates faster, at
approximately 87% of the injection rate (in accordance with
the results presented by Besta and Hoefler [4]). Still, this
routing strategy severely underperforms on WC traffic. As
all three topologies have a low degree of minimal path di-
versity, they saturate at load levels as low as 5% (SF), 6.6%
(MLFM), and 8.3% (OFT), equal to 1

2p
, 1

h
, and 1

k
respec-

tively, as calculated in Section 4.2. Indirect random routing
helps alleviate the problem by load-balancing the network
equally. However, because it effectively doubles the length of
all routes, the throughput saturation point in both kinds of
traffic becomes equal to half the saturation point in uniform
traffic, and the average packet latency increases accordingly.

4.3.2 Adaptive routing

Fig. 7 shows throughput and packet delay results for the
SF-A routing strategy when different values of cSF and nI

are used. SF-A manages to match the performance of min-
imal routing under uniform random traffic, and exceeds in-
direct random routing for the worst-case, by adaptively se-
lecting both minimal and indirect paths. Overall, varying
the number of indirect routes considered at each packet in-
jection (nI) affects slightly the throughput saturation point
under worst-case traffic, with higher numbers providing bet-
ter results, as more available routes are available. On the
other hand, cSF affects the average delay under high loads



(a) Varying nI (cSF = 1).

(b) Varying cSF (nI = 4).

Figure 7: SF-A routing on the SF with p = ⌊ r′

2
⌋, with vari-

ous values for cSF and c, under uniform random (UNI) and
worst case (WC) traffic.

of uniform traffic. A low value of the paremeter results in in-
direct paths being selected easily and their increased length
negatively affects the packet delay.

The drawback of the generic UGAL algorithm is appar-
ent under uniform random traffic in the increase in latency
for higher injection loads (higher than 50%). As the load
increases, even with a very low occupancy on the minimal
buffers, the algorithm turns to indirect routes, effectively
increasing the average packet delay. The SF-ATh routing
(Fig. 8) manages to alleviate this problem, keeping the de-
lay in low levels by selecting only minimal routes. However,
the threshold has a negative effect in adversarial traffic, in-
creasing the latency for low loads, as a result of T = 10% of
the packets in each port being routed minimally.

Compared to the SF-A, the effects of the MLFM-A rout-
ing algorithm on its respective topology are more sensitive to
the parameters c and nI (Fig. 9). Although the throughput
achieves the levels of minimal and indirect random rout-
ing, the delay depends heavily on both parameters: higher
values for c and nI provide lower latency under uniform ran-
dom traffic, meaning that the algorithm requires a variety
of choices for indirect paths to work effectively, but needs
to select them with strict criteria. On the contrary, lower
values for c and nI appear best in the worst-case.

With carefully selected parameters, MLFM-A does not
exhibit the symptom of the the generic UGAL algorithm
(higher delay in higher loads of uniform random traffic).
Thus, the MLFM-Ath algorithm (Fig. 11) does not provide
any significant benefit under uniform random traffic, other
than parameter-independence. Nevertheless, the effect of
increased delay for low-load worst-case traffic is once again
apparent, similarly to the SF case.

Fig. 10 shows throughput and packet delay results for the
OFT-A routing strategy when different values of c and nI

(a) Varying nI (cSF = 1).

(b) Varying cSF (nI = 4).

Figure 8: SF-ATh routing on the SF with p = ⌊ r′

2
⌋, with

various values for cSF and c, under uniform random (UNI)
and worst case (WC) traffic (T = 10%).

are used. Contrary to MLFM-A, OFT-A offers the lowest
delay under uniform random traffic when the selection of
indirect paths is constricted (low values of nI and high val-
ues of c). Nevertheless, the performance under worst-case
traffic appears mostly independent of the routing algorithm
parameters. Once again, adaptive routing with a threshold
(OFT-ATh, Fig. 12) manages to lower the delay in uniform
random traffic by trading off a higher delay in low load levels
of worst-case traffic.

4.4 Exchange patterns
Synthetic traffic patterns, as informative as they are about

a topology’s limitations, are rarely encountered in real-life
applications. As such, we also experimented with two preva-
lent data exchange patterns, the All-to-All (A2A) and the
Nearest-Neighbor (NN) exchange. In the former, each pro-
cess sends one message to each other process, meaning that
N2 messages are exchanged in total (a node is assigned a
single process). For the latter, the processes are arranged in
a 3D Torus (the largest one that fits in each topology), and
each process sends one message to each of its 6 neighbors.
The tori used have the following sizes: 12× 14× 19 (OFT),
15×16×15 (MLFM), 13×13×18 (SF, p = 9) and 13×13×20
(SF, p = 10). We chose a contiguous mapping, in which pro-
cesses consecutive in dimension order in the application do-
main are mapped to consecutive end-nodes in the network.
The order of the end-nodes in the network is derived from
the morphology of each topology: the nodes are ordered con-
secutively, first at the intra-router level, then at the intra-
column (SF, Fig. 1a)/intra-layer(MLFM,OFT) level and fi-
nally at the subgraph(SF)/inter-layer(MLFM,OFT) level.
The routing strategies compared for each topology are the
MIN, INR, and the adaptive configuration that showed the
best performance under synthetic traffic.



(a) Varying nI (c = 2).

(b) Varying c (nI = 5).

Figure 9: MLFM-A routing, with various values for c and nI ,
under uniform random (UNI) and worst case (WC) traffic.

(a) Varying nI (c = 2).

(b) Varying c (nI = 1).

Figure 10: OFT-A routing, with various values for c and nI ,
under uniform random (UNI) and worst case (WC) traffic.

Fig. 13 shows the effective throughput achieved when per-
forming a single A2A exchange for each topology. The ex-
change is performed in a manner similar to that described
by Kumar et al. [12]. We calculate the effective through-
put of the exchange by dividing the total amount of data
exchanged by the completion time (the time interval be-
tween the moment when the first message is injected in the
network and the moment when the last message in the net-

(a) Varying nI (c = 2).

(b) Varying c (nI = 5).

Figure 11: MLFM-ATh routing (various c, nI) under uni-
form random (UNI) and worst case (WC) traffic (T = 10%).

(a) Varying nI (c = 2).

(b) Varying c (nI = 1).

Figure 12: OFT-ATh routing (various c, nI) under uniform
random (UNI) and worst case (WC) traffic (T = 10%).

work reaches its destination). The result is normalized per
end-node and expressed as a percentage of the maximum
injection bandwidth.

The performance of each of the three topologies is sim-
ilar, with the SF (p = 9), MLFM and OFT exhibiting an
effective throughput close to 100% for both minimal and
adaptive routing strategies and half of that for indirect ran-
dom routing, similar to what we observed before for uniform



Figure 13: Effective throughput for one all-to-all exchange,
with different routing strategies.

traffic. The main difference between these results and those
obtained for the synthetic pattern is that here we measure
the performance of a fixed load (as opposed to steady state
throughput) and thus we would have also captured negative
tail effects should they have occurred. The fact that the
effective throughput is almost identical to the steady state
throughput is a strong indicator that such tail effects are
negligible.

Fig. 14 shows the respective results for the NN exchange.
In this exchange, minimal routing has very low performance
for all topologies, as only a few routes are available to ac-
commodate the traffic from a large number of processes.
Indirect random routing achieves load balancing across the
network, leading to higher effective throughput. The close
to 70% effective throughput obtained is explained by the
X exchanges (which stay within the first router) achieving
100% throughput while the Y and Z exchanges achieve the
50% expected of indirect random routing.

The adaptive routing schemes are generally able to im-
prove on the performance for indirect random routing, with
the exception of the OFT. For the MLFM in particular,
adaptive routing achieves close to 100% effective through-
put. The contiguous mapping readily maps the 3 dimen-
sions of the 3D Torus to the three dimensional structure
of the topology: the X exchanges take place inside a sin-
gle router, the Y exchanges take place inside a single layer,
and the Z exchanges take place across a router column. The
adaptive algorithm decides to route minimally, indirectly,
and minimally, respectively, achieving full bandwidth. The
same effect is not witnessed on the OFT, as the Torus that
would fit the topology in the same way would be the highly
impractical: 12× 133× 2 one. For the SF, fitting the Torus
exactly on the topology would not be a trivial task given
its complex structure, but nevertheless, the contiguous map-
ping is sufficient to allow the adaptive routing to outperform
indirect random routing by ≈ 20%.

5. CONCLUSIONS
In this paper we survey the options for cost-effective

diameter-two network topologies. We consider both direct
topologies, in particular the Slim Fly, and indirect topolo-
gies, where we introduce a more scalable alternative to the
traditional two-level Fat-Tree, the family of Stacked Single-
Path Trees of which existing designs such as the Multi-Layer
Full-Mesh and the two-level Orthogonal Fat-Tree are partic-
ular members. For the latter two, we introduce mechanisms
for routing and deadlock avoidance.

Figure 14: Effective throughput for one nearest-neighbor
exchange, with different routing strategies.

Through theoretical analysis of the characteristics of these
networks, we showed that all three exhibit several useful
properties: a per-endpoint cost of only two links and three
router ports (an improvement of more than 30% over the
three-level Fat-Tree design), a low end-to-end network la-
tency (at most three switch traversals for any minimal path),
full global bandwidth, and reasonable scale (33K-64K end-
nodes using radix-64 routers).

Furthermore, we identified for each topology adversarial
traffic patterns for which performance is the lowest possible
and presented mechanisms to mitigate this effect, mainly in
the shape of indirect routing approaches. Finally, through
detailed simulations, we showed that close to ideal levels of
performance can be attained for each design for both best-
case (global uniform) and worst-case (adversarial) traffic as
well as good performance for traffic patterns that are rep-
resentative of real world applications (nearest neighbor and
all-to-all exchanges). Instrumental in achieving these perfor-
mance levels was the use of adaptive routing mechanisms.
We showed that with proper tuning, such mechanisms are
able to handle a wide range of communication behavior by
seamlessly switching from minimal to indirect routing, as
needed.

All in all, we have shown that both the diameter-two Slim
Fly (as the best overall direct topology) and the two level
Orthogonal Fat-Tree (as the best overall indirect topology)
i) exhibit good if not ideal performance across a wide range
of traffic patterns, ii) have a degree of scalability that is
compatible with the requirements for future datacenter and
HPC interconnects, and iii) achieve this at a very low cost,
especially compared to current options such as three-level
Fat-Trees or Dragonflies. The choice between the two hinges
mainly on the tradeoff between, on the one side, the lower
cost characteristic of direct topologies (where the routers
can be integrated close to the nodes), and on the other side,
the factor of two higher scalability that can be achieved with
OFT (surprisingly allowing it to accommodate as many end-
nodes as a three level Fat-Tree at the cost of a two-level
Fat-Tree).
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