
The CMUnited-97 Robotic Soccer Team: Perception and Multiagent Control 

Manuela Veloso Peter Stone K-Nun Han 

Computer Science Department 
Carnegie Mellon University 

Pittsburgh, PA 15213 
{veloso,pstone,kwunh)@cs.cmu.edu 

http://www.cs.cmu.edu/(‘mmv,-pstone,-kwunh} 

Abstract 

Robotic soccer is a challenging research domain which in- 
volves multiple agents that need to collaborate in an adver- 
snrlnl environment to achieve specific objectives. In this pa- 
per, we describe CMUnited, the team of small robotic agents 
that we developed to enter the RoboCup-97 competition. 
We designed and built the robotic agents, devised the ap- 
propriate vision algorithm, and developed and implemented 
algorithms for strategic collaboration between the robots in 
nn uncertain and dynamic environment. The robots can 
organize themselves in formations, hold specific roles, and 
pursue their goals. In game situations, they have demon- 
strated their collaborative behaviors on multiple occasions. 
The robots can also switch roles to maximize the overall 
performance of the team. We present an overview of the vi- 
sion processing algorithm which successfully tracks multiple 
moving objects and predicts trajectories. The paper then 
focusses on the agent behaviors ranging from low-level indi- 
vidual behaviors to coordinated, strategic team behaviors. 
CMUnited won the RoboCup-97 small-robot competition at 
IJCAI-97 in Nagoya, Japan. 

1 Introduction 

Problem solving in complex domains often involves multi- 
ple agents, dynamic environments, and the need for leam- 
ing from feedback and previous experience. Robotic soc- 
cer is an example of such complex tasks for which multiple 
agents need to collaborate in an adversarial environment to 

’ achieve specific objectives. Robotic soccer offers a challeng- 
ing research domain to investigate a large spectrum of issues 
of relevance to the development of complete autonomous 
agents [2, 81. 

The fast-paced nature of the domain necessitates real- 
time sensing coupled with quick behaving and decision mak- 
ing, The behaviors and decision making processes can range 
from the most simple reactive behaviors, such as moving 
directly towards the ball, to arbitrarily complex reasoning 
procedures that take into account the actions and perceived 
strategies of teammates and opponents. Opportunities, and 
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indeed demands, for innovative and novel techniques abound. 
We have been pursuing research in the robotic soccer 

domain within the RoboCup initiative [7], which, in 1997, 
included a simulator league and small-size and medium-size 
robot leagues. We have been doing research extensively 
in the simulator league, developing learning techniques and 
team strategies in simulation [14, 161. Many of these team 
strategies were directly incorporated into the robotic sys- 
tem described here. We are currently also applying machine 
learning techniques to acquire hard to tune boundary be- 
haviors for the real robots. 

In this paper, we focus on presenting our team of small 
robotic agents which we used to enter RoboCup97, namely 
CMUnited-97, as a complete system with action, percep- 
tion, and cognition capabilities. We developed the physical 
robots as actuators, a vision processing algorithm to per- 
ceive the world, and strategic reasoning for individual and 
collaborative behaviors. 

The team is clearly not the ultimate version of our mul- 
tiple autonomous agents. We have developed previous ver- 
sions of the team [l], and, as presented in the discussion and 
conclusion section, improving the team further is part of our 
on-going research. However, we believe that CMUnited-97 
represents a major advance in our work and has several in- 
teresting contributions which we present in this paper: 

l Reliable perception through the use of a Kalman-Bucy 
filter. Sensing through our vision processing algorithm 
allows for (i) color-based tracking of multiple moving 
objects; (ii) and prediction of object movement, partic- 
ularly the ball, even when inevitable sharp trajectory 
changes occur. 

l A set of robust behaviors for individual agents. Each 
agent is equipped with skills that enable it to effec- 
tively perform individual and collaborative actions. 

l Multiagent strategic reasoning. Collaboration between 
robots is achieved through: (i) a flexible role-based 
approach by which the task space is decomposed and 
agents are assigned subtasks; (ii) a flexibIe team struc- 
ture by which agents are organized in formations, and 
homogeneous agents flexibly switch roles within for- 
mations; and (iii) alternative plans allowing for col- 
laboration (e.g. passing to a teammate or shooting at 
the goal directly), are controlled by pm-defined metrics 
and are evaluated in real-time. 

0 Demonstration of a complete integration of perception, 
action, and cognition in a team of multiple robotic 
agents. 
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The combination of robust hardware, real-time vision, 
and inlclligcnt control code represented a significant chal- 
lenge which we were able to successfully meet. The work 
dcscrlbcd in this paper is all fully implemented. Figure 1 
shows IZ picture of our robotic agents. For the hardware 
description of our robots, see [17]. This paper is organized 
as follows: Section 2 presents the vision processing algo- 
rilhm, In Section 3 we focus on the agent behaviors ranging 
from low-level individual behaviors, to coordinated, strate- 
gic, multiagent behaviors. Section 4 reports on our experi- 
ences using these robots in the RoboCup-97 robot competi- 
tion and concludes. 

Figure t: CMWnited-9’l: Our robot team that competed in 
RoboCup.97, 

2 Real-Time Perception for Multiple Agents 

The small-size robot league setup is viewed as an overall 
complete autonomous framework composed of the physical 
navigational robotic agents, a video camera over-looking the 
playing Ileld connected to a centralized interface computer, 
and several clients as the minds of the small-size robot play- 
ers, Figure 2 sketches the building blocks of the architecture. 

Action A Client k- Object 
/Positions 

Figure 2: CMUnited architecture with global perception and 
distributed reaction. 

The complete system is fully autonomous consisting of a 
well-defined and challenging processing cycle. The global vi- 
sion algorithm perceives the dynamic environment and pro- 
cesses the images, giving the positions of each robot and the 
ball. This information is sent to an off-board controller and 
distributed to the different agent algorithms. Each agent 
evaluates the world state and uses its strategic knowledge 
to decide what to do next. Actions are motion commands 
that are sent by the off-board controller through radio com- 
munication. Commands can be broadcast or sent directly to 
lndividual agents. Each robot has an identification binary 
code Lhat is used on-board to detect commands intended for 
that robot, This complete system is fuIIy implemented. 

Although it may be possible to fit an on-board vision 
system onto robots of smalI size, in the interest of being 
able to quickly move on to strategic multiagent research is- 
sues, we have opted for using a global vision system. It is 
part of our on-going research to also investigate and develop 
teams of robots capable of local perception [9, 121. Part of 
our challenge in developing approaches to individual robot 
autonomy will consist of combiing different sources of per- 
ception, namely local sensing, and targeted and broadcasted 
communication. 

The fact that perception is achieved by a video camera 
that over-looks the complete field offers an opportunity to 
get a global view of the world state. Although this setup 
simplifies the sharing of information among multiple agents, 
it presents a challenge for reliable and real-time processing 
of the movement of multipIe moving objects-in our case, 
the ball, five agents on our team, and five agents in the 
opponent team. 

This section focusses on presenting our vision processing 
algorithm whose accuracy makes it a major contribution to- 
wards the success of our team. 

2.1 Detection 

The vision requirements for robotic soccer have been ex- 
amined by different researchers. SmalLsized and medium- 
sized robotic soccer researchers investigate on-board and off- 
board vision processors respectively [3, 10, 11, 121. Due to 
the reactiveness of soccer robots both frameworks require a 
high perception processing cycle time. And, due to the rich 
visual input, dedicated processors or even DSPs have been 
used. 

The vision system we successfully used at RoboCup97 
was surprisingly simpIe, consisting of a framegrabber with 
framerate transfer from a &CCD camera. The processing is 
done by a relatively slow processor (166MHz Pentium). 

The detection mechanism was kept as simple as possible. 
The RoboCup ruIes have weII defined colors for different 
objects in the field and these were used as the major cue for 
object detection. The RoboCup rules specify a green color 
field with white markings at the side. Also, it specifies a 
yellow or blue colored circular area on the top of the robots, 
one color for each team. A single coIor patch on the robot 
is not enough to provide orientation information. Thus, we 
added an additional second colored patch (pink) on top of 
each robot. The ball is an orange golf balI. We are able 
to differentiate these colors in a straightforward manner in 
color-space. 

The set of detected patches is unordered. The detected 
color patches on the tops of the robots are then matched 
by their distance. Knowing the constant distance between 
the team-color and the pink orientation patch, we match 
patches that are this distance apart. Two distance-matched 
patches are marked as a robot capturing its position and 
orientation. 

Noise is inherent in all vision systems. False detections 
in the current system are often of a magnitude of 100 spu- 
rious detections per frame. The system attempts to elimi- 
nate false detection using two different methods. First, color 
patches of size not matching the ones on the robots are dis- 
carded. This technique filters off most “salt and pepper” 
noise. Second, adding the distance matching mechanism 
briefly described above, all false detections are eliminated, 
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2,2 Data Association 

Data association addresses the problem of retaining robot 
idcntiflcation in subsequent frames. One obvious approach 
to dilfercntiate a number of robots using color-based detec- 
tion is to use that number of different colors. However, with 
Avc robots, it is not simple to find five robustly distinguish- 
able colors, as several colors are assigned to shared objects, 
such ~9 green for the field, orange for the ball, white for 
the flcld markings, and blue and yellow for the team colors. 
Furthermore the inevitable variations in lighting conditions 
over the area of the field are enough to make a detection 
ond association mechanism fully based on separable colors 
unrcliablc, We fit therefore each of the robots with the same 
color tops and no attempts are made to differentiate them 
via color, 

Out data association approach solves the problem of re- 
taining robot identification in subsequent frames given that 
all of the robots have the same color marker. We devised a 
greedy algorithm to retain association based on the spatial 
locations of the robots. During consecutive frames, associ- 
alion is maintained by searching using a minimum distance 
crllerium, Current robot positions are matched with the 
closest positions from the previous frame, taking into ac- 
count the size of the robots and an estimate of their velocity. 
The algorithm is robust to noisy detections, but in theory 
It is not guaranteed to find the optimal correct matches [5]. 
However in practice our detection and association approach 
is highly reliable. 

2.3 Tracking and Prediction 

In the setting of a robot soccer game, the ability to de- 
lect merely the locations of objects on the field is often not 
enough, Like for real soccer players, it is essential for robots 
to predict future locations of the ball (or even of the other 
players), We have used an Extended Kalman filter (EKF) 
for such a purpose [6], The Kalman-Bucy filter is very suit- 
able for such a purpose since the detection of the ball’s lo- 
cation Is noisy, 

The EKF is a recursive estimator for a possibly non- 
linear syslem. The goal of the filter is to estimate the state of 
a system. The state is usually denoted as an n-dimensional 
vector z:. A set of equations is used to describe the behavior 
of the syslem, predicting the state of the system as: 

where /(*) is a non-linear function which represents the be- 
havior of the non-linear system, (II; is the external input to 
the system and wk is a zero-mean, Gaussian random vari- 
able with covariance matrix Qk; wk captures the noise in the 
system and any possible discrepancies between the physical 
system and the model; and k denotes time. 

The system being modeled is being observed (measured). 
The observations can also be non-linear: 

where XI; is the vector of observations and /I(.) is the non- 
linear measurement function, and VJ: is another zero-mean, 
Gaussian random variable with covariance matrix Rk, which 
captures any noise in the observation process. 

The EKE involves a two-step iterative process, namely 
update and propagate. The current best estimate of the sys- 
tem’s state 9 and its error covariance is computed on each 
iteration. During the update step, the current observations 
arc used to refine the current estimate and recompute the 

covariance. During the propagate step, the state and co- 
variance of the system at the next time step are calculated 
using the system’s equations. The process then iteratively 
repeats, alternating between the update and the propagate 
steps. 

Through a careful adjustment of the filter parameters 
modelling the system, we were able to achieve successful 
tracking and, in particular prediction of the ball trajectory, 
even when sharp bounces occur [5]. 

Our vision processing approach worked perfectly during 
the RoboCup-97 games. We were able to detect and track 
11 moving objects (5 teammates, 5 opponents and the ball). 
The prediction of the movement of the ball provided by the 
EKF is used by several agent behaviors. In particular, it 
allows the goalkeeper to look ahead in time and predict the 
best defending position. During the game, no goals were 
suffered due to miscalculation of the predicted ball position. 

3 Multiagent Strategy Control 

We achieve multiagent strategy through the combination of 
accurate individual and collaborative behaviors. Agents rea- 
son through the use of persistent reactive behaviors that are 
developed to aim at reaching team objectives. 

3.1 Single-agent Behaviors 

In order to be able to successfully collaborate, agents require 
robust basic skills. These skills include the abiity to go to 
a given place on the field, the ability to direct the ball in a 
given direction, and the abiity to intercept a moving ball. 
All of these skills must be executed while avoiding obstacles 
such as the walls and other robots. 

The navigational movement control is done via closed- 
loop reactive control. The control strategy follows a modi- 
fied version of a simple Braitenburg vehicle [4]. The Braiten- 
burg love vehicle defines a reactive control mechanism that 
directs a differentially driven robot to a certain destination 
point (goal). A similar behavior is required in the system; 
however, the love vehicle’s control mechanism is too simplis- 
tic and, in some start configurations, tends to converge to 
the goal very sIowIy. We devised a modified set of reactive 
control formulae that allows for effective adjustment of the 
control trajectory: 

translationaluelocity = a -sin 0, 

rotationalvelocity = /I - cos 6, 

where 0 is the direction of the target relative to the robot, a 
and 0 are the base translational and rotational velocities, re- 
spectively. This set of control formulae differs from the love 
vehicle in that it takes into account the orientation of the 
robot with respect to the goal and e.xplicitIy adds rotational 
control. 

The robot’s hardware includes two motors which allows 
a robot to turn on itself. The front and the back of the 
robots are also absolutely equivalent in terms of navigation. 
Through these two features, the robots can therefore effi- 
ciently switch direction by turning at most 90’. 

3.1.1 Ball Handling 

If a robot is to accurately direct the ball towards a target 
position, it must be able to approach the ball from a specified 
direction. Using the ball prediction returned by the vision 
processing algorithm, the robot aims at a point on the far 
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side of the target position. The robots are equipped with 
two methods of doing so: 

Bnll Collection: Moving behind a ball and knocking it to- 
wards the target. 

Bnll Interception: Waiting for a moving ball to cross its 
path and then intercepting it towards the target. 

When using the ball collection behavior, the robot con- 
siders a line from the target position to the ball’s current 
or predicted position, depending on whether or not the ball 
Is moving, The robot then plans a path to a point on the 
line and behind the ball such that it does not hit the ball 
on the way and such that it ends up facing the target posi- 
tion, Finally, the robot accelerates to the target. Figure 3 
illustrates this behavior. 

: 
‘. 

‘* 

Figure 3: Ball Collection-The robot computes the line 
from the ball to the target (line a) as well as the line through 
the ball and perpendicular to this line (line b). Whenever 
tbc robot is on the same side of line b as the target, it aims 
for an intermediate target to the side of the ball so that it 
avoids hitting the ball away from the target. Otherwise, the 
robot aims for a point directly behind the ball along line a. 
Once there, it accelerates towards the target. 

When using the ball interception behavior (Figure 4), 
on the other hand, the robot considers a line from itseIf to 
the target position and determines where the ball’s path 
will intersect this line. The robot then positions itself along 
this line so that it will be able to accelerate to the point of 
intersection at the same time that the ball arrives. 

In practice, the robot chooses from between its two ball 
handling routines based on whether the ball will eventually 
cross its path at a point such that the robot could intercept 
it towards the goal. Thus, the robot gives precedence to 
the ball interception routine, only using ball collection when 
necessary. When using ball collection, it actually aims at 
the ball’s predicted location a fixed time in the future so 
as to eventually position itself in a place from which it can 
intercept the ball towards the target. 

3X2 Obstacle Avoidance 

In the robotic soccer field, there are often obstacles between 
the robot and its goal location. Our robots try to avoid col- 
lisions by planning a path around the obstacles. Due to the 
highly dynamic nature of this domain, our obstacle avoid- 
ance algorithm uses closed-loop control by which the robots 
conllnually replan their goal positions around obstacles. In 
the event that an obstacle blocks the direct path to the goal 

? Bali Final Ball Target X .-,- 
i Line b 

..-* 

.--- -/‘Line a 

Intennediate~&~~* 
/ 

Target s’?Interception 

KY 
.’ :’ Point 

Robot i 

Figure 4: Ball Interception-The robot computes the in- 
tersection of the line between itself and the target position 
(line a) and the ball’s line of trajectory (line b). The robot 
then positions itself at a fixed distance (0) behind the inter- 
section point, either moving forwards or backwards to get 
there. Knowing the time T required to accelerate from a 
stopped position to distance D, and also knowing the ball’s 
velocity, the robot accelerates towards the final target when 
the ball is time 2’ away from the interception point. 

location, the robot aims to one side of the obstacle until it 
is in a position such that it can move directly to its origi- 
nal goal. Bather than planning the entire path to the goal 
location at once, the robot just looks ahead to the first ob- 
stacle in its way under the assumption that other robots are 
continually moving around. Using the reactive control de- 
scribed above, the robot continually reevaluatesits target 
position. For an illustration, see Figure 5. 
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Figure 5: Obstacle Avoidance-The robot starts by trying 
to go straight towards its final target along line a. When it 
comes across an obstacle within a certain distance of itself 
and of line a, it aims at an intermediate target to the side, 
and slightly beyond the obstacle. The robot goes around the 
obstacle the short way, unless it is at the edge of the field. 
Using reactive control, the robot continually recomputes line 
a until the obstacle is no longer in its path. As it comes 
across further obstacles, it aims at additional intermediate 
targets until it obtains an unobstructed path to the final 
target. 

Even with obstacle avoidance in place, the robots can 
occasionally get stuck against other robots or against the 
wall. Particularly if opponent robots do not use obstacle 
avoidance, collisions are inevitable. When unable to move, 
our robots identify the source of the problem as the closest 
obstacle and “‘unstick” themselves by moving away. Once 
free, normal control resumes. 
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3.2 Multiagent Behaviors 

Although the single-agent behaviors are very effective when 
just a single robot is on the field, if all five robots were simnl- 
tnneously chasing the ball and trying to shoot it at the goal, 
chaos would result. In order to achieve coordinated multi- 
agent behavior, we organize the five robots into a flexible 
team structure. 

The team structure, or formation, defines a set of roles, 
or positions with associated behaviors. The robots are then 
dynamically mapped into the positions. 

Each robot is equipped with the knowledge required to 
play nny position in each of several formations. The posi- 
tions indicate the areas of the field which the robots should 
move to in the default situation. There are also different 
active modes which determine when a given robot should 
move to the ball or do something else instead. Finally, the 
robot with the ball chooses whether to shoot or pass to a 
teammate using a passing evaluation function. 

These high-level, multiagent behaviors were originally 
developed in simulation and then transferred over to the 
robot-control code. Only the run-time passing evaluation 
function was redefined. Further details, particularly about 
the flexible learn structures, are available in [13, 151. 

3.2.1 Positions, Formations, and Active Modes 

Positions are defined as flexible regions within which the 
player attempts to move towards the balk For example, a 
robot playing the “right-wing” (or “right forward”) position 
remains on the right side of the field near the opponents’ goal 
until the ball comes towards it. Positions are classified as 
defender/midfielder/forward based on the locations of these 
regions, They are also given behavior specifications in terms 
of which other positions should be considered as potential 
pnss-receivers (see Section 3.2.2). 

At any given time each of the robots plays a particular 
position on the field, However, each robot has all of the 
knowledge necessary to play any position. Therefore the 
robots can-and do-switch positions on the fly. For exam- 
ple, robots A and B switch positions when robot A chases 
the ball into the region of robot B. Then robot A continues 
chasing the ball, and robot B moves to the position vacated 
by A, 

The pre-defined positions known to all players are col- 
lected into formations, which are also commonly known. An 
cxample of a formation is the collection of positions consist- 
ing of the goalkeeper, one defender, one midfieIder, and two 
attaclcers, Another possible formation consists of the goal- 
keeper, two defenders and two attackers. For illustration, 
se0 Figure 6, 

As is the case for position-switches, the robots switch 
formations based on pre-determined conditions. For exam- 
ple, if the team is losing with very not much time left in 
the game, the robots would switch to a more offensive for- 
mation, On the other hand, if winning, they might choose 
a defensive formation. The precise conditions for switching 
positions and formations are decided upon in advance, in 
what WC call a “locker-room agreement,” [13, 151 in order to 
eliminate the need for complex on-line negotiation protocols. 

Although the default action of each robot is to go to 
its position and face the ball, there are three active modes 
from which the robot must choose. The default position- 
holding behavior occurs when the robot is in an inactiue 
state. However, when the ball is nearby, the robot changes 
into an active state. In the active state, the robot moves to- 
wards the ball, attempting either to pass it to a teammate or 

!I 
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Figure 6: Two different defined formations. Positions in a 
formations represent behavioral roles. The goalkeeper, de- 
fender, midfielder, and attacker positions are shown. Notice 
that several of the positions are reused between the two for- 
mations. 

to shoot it towards the goal based on an evaluation function 
that takes into account teammate and opponent positions 
(see Section 3.2.2). A robot that is the intended receiver 
of a pass moves into the auziliary state in which it tries to 
intercept a moving ball towards the goal. Our current de- 
cision function sets the robot that is closest to the ball into 
the active state; the intended receiver robot (if any) into the 
auxiliary state; and all other robots into the inactive state, 

3.2.2 Run-time Evaluation of Collaborative Opportunities 

One of CMUnited-97’s main features is the robots’ abiity to 
collaborate by passing the ball. When in active mode, the 
robots use an evaluation function that takes into account 
teammate and opponent positions to determine whether to 
pass the ball or whether to shoot. In particular, as part 
of the formation definition, each position has a set of posi- 
tions to which it considers passing. For example, a defender 
might consider passing to any forward or midfielder, while 
a forward would consider passing to other forwards, but not 
backwards to a midfielder or defender. 

For each such position that is occupied by a teammate, 
the robot evaluates the pass to that position as well as eval- 
uating its own shot. To evaluate each possible pass, the 
robot computes the obstruction-free-index of the two line 
segments that the ball must traverse if the receiver is to 
shoot the ball (lines b and c in Figure 7). In the case of 
a shot, only one line segment must be considered (line a). 
The value of each possible pass or shot is the product of 
the relevant obstruction-free-indices. Robots can be biased 
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towards passing or shooting by further multiplying the vaI- 
ucs by a factor determined by the relative proximities of the 
active robot and the potential receivers to the goal. The 
robot chooses the pass or shot with the maximum value. 
The obstrucUon-free-index of line segment I is computed by 
the following algorithm (variable names correspond to those 
In Figure 7): 

1, olelruction-free-index= 1. 

2, For each opponent 0: 

l Compute the distance x from 0 to 1 and the dis- 
tance r/ along 1 to I’s origin, i.e. the end at which 
the ball will be kicked by the robot (See Figure 7). 

l Define constants min-dist and maz-denominator. 
Opponents farther than min-dist from 1 are not 
considered, When discounting obstruction-free- 
indcxin the next step, the 9 distance is never con- 
sidered to be larger than max-denominator. For 
example, in Figure 7, the opponent near the goal 
would be evaluated with y = max-denominator, 
rather than its actual distance from the ball. The 
reasoning is that beyond distance max-denominator, 
the opponent has enough time to block the balk 
the extra distance is no longer useful. 

o if x < min-dist and x < y, 
obstruction-free-index *= x/MIN(max-denomi- 
nator,y). 

3, return obstruction-free-index. 

Robot 

Figure 7: Pass Evaluation-To evaluate a pass to a team- 
mate, the robot considers how open the paths are from the 
ball to the teammate (line b) and from the teammate to the 
&OAl (line c), When evaluating shots, it considers the Iine 
from the ball to the goal (line a). For each opponent and 
coch line segment, it computes the opponent’s distance to 
the segment (x) and along the segment, to the origin. The 
smaller x is and the larger y is, the easier it would be for the 
opponent to intercept the ball. Note that some opponents 
would cause discounts in the values of passes along more 
than one segment. 

Thus the obstruction-free-index reflects how easiIy an op- 
ponent could intercept the pass or the subsequent. shot. The 
closer the opponent is to the line and the farther it is from 
the ball, the better chance it has of intercepting the ball. 

3.2.3 The Goalkeeper 

The goalkeeper robot has both special hardware and special 
software. Thus, it does not switch positions or active modes 
like the others. The goalkeeper’s physicaI frame is distinct 
from that of the other robots in that it is as long as allowed 
under the RoboCup-97 rules @cm) so as to block as much 
of the goal as possible. The goalkeeper’s role is to prevent 
the ball from entering the goal. It stays parallel to and close 
to the goal, aiming always to be directly even with the ball’s 
lateral coordinate on the field. 

Ideally, simply staying even with the ball would guar- 
antee that the bail would never get past the goalkeeper. 
However, since the robots cannot accelerate as fast as the 
balI can, it would be possible to defeat such a behavior. 
Therefore, the goalkeeper continualIy monitors the ball’s 
trajectory. In some caSes it moves to the ball’s predicted 
destination point ahead of time. 

The decision of when to move to the predicted ball posi- 
tion is both crucial and difficult, as illustrated in Figure 8. 
Our current decision function is as follows: 

1. The goalkeeper always stays in front of the goal. If the 
following steps indicate that it should move beyond the 
goal, if, stays at the dosest edge of the goal. 

2. If all of the following conditions are true, the goal- 
keeper moves to the ball’s predicted location (dotted 
in Figure 8): 

l The ball’s speed is larger than a minimum thresh- 
old speed; 

l The ball is not in Zone Z of Figure 8 (on either 
side of the field). 

l The ball is moving towards a point either within 
a minimum distance from the goal. 

3. Otherwise, the goalkeeper stays even wivith the ball’s y 
coordinate (see Figure 8). 

Y t x 

Bdl A d” BdIB. 
I 

Figure 8: Goalkeeping-Ideally, the goalkeeper should al- 
ways be even with the ball’s y coordinate. However it must 
sometimes move to the ball’s predicted location, as illus- 
trated by Bali A. Ball B indicates a situation in which the 
goalkeeper should not move to the ball’s predicted location: 
were the goalie to move to the dotted position, an opponent 
could intercept the ball into the goal. The goalkeeper’s be- 
havior chooses between following the ball’s y coordinate and 
moving to the ball’s predicted location. 
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4 Dlscuosion and Conclusion 

CMUnitcd-97 successfully demonstrated the feasibility and 
cffcctivcncss of teams of multiagent robotic systems. Within 
this paradigm, one of the major challenges was to “close the 
loop,” i,o,, to integrate all the different modules, ranging 
from perception to strategic multiagent reasoning. CMU- 
nltcd is an example of a fully implemented multiagent sys- 
tem in which the loop is closed. In addition, we implemented 
intcresling strategic behaviors, including agent collaboration 
and real-time evaluation of alternative actions. 

It is generally very difficult to accumulate significant sci- 
entiflc results to test teams of robots. Realistically, extended 
runs are prohibited by battery limitations and the difficulty 
of keeping many robots operational concurrently. Further- 
more, we only had the resources to build a single team of five 
robols, with one spare so far. Therefore, we offer a restricted 
evaluation of CMUnited based on the results of four effective 
lo-minute games that were played at RoboCup-97. We also 
include anecdotal evidence of the multiagent capabilities of 
the CMUnited-97 robotic soccer team. 

The CMUnitcd-97 robot team played games against robot 
teams from Nara Institute of Science and Technology (NAIST), 
Japan; University of Paris VI, France (team name “MI- 
CROB”); and University of Girona, Spain. The results of 
the games are given in Table 1. 

Table 1: The scores of CMUnited’s games in the small robot 
league of RoboCup-97. CMUnited-97 won all four games. 

In total, CMUnited-97 scored thirteen goals, allowing 
only one against. The one goal against was scored by the 
CMUnited goalkeeper against itself, though under an at- 
tacking situation from France. We refined the goalkeeper’s 
goal behavior, as presented in Section 3.2.3, following the 
observation of our goalkeeper’s error. 

As the matches proceeded, spectators noticed many of 
the team behaviors described in Section 3.2. The robots 
switched positions during the games, and there were several 
successful passes. The most impressive goal of the tour- 
namcnt was the result of a 3-way passing play: one robot 
passed lo a second, which passed to a third, which shot the 
bnll into the goal. 

In general, the robots’ behaviors were visually appealing 
and entertaining to the spectators. Several people attained a 
first-hand appreciation for the difficulty of the task as we let 
them try controlling a single robot with a joystick program 
that we developed. All of these people (several children and 
a few adults) found it quite difficult to maneuver a single 
robot well enough to direct a ball into an open goal. These 
people in particular were impressed with the facility with 
which the robots were able to pass, score, and defend. 

WC are aware that many issues are clearly open for fur- 
ther research and development. We are currently systemati- 
cally identifying them and addressing them towards our next 
team version, In particular, we are enhancing the robot’s 
behaviors by using machine learning techniques. 
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