
The Michigan Internet AuctionBot: A Configurable Auction Server for Human
and Software Agents

Peter R. Wurman Michael P. Wellman William E. Walsh

University of Michigan
Artificial Intelligence Laboratory

{ pwurman, wellman, wew) @umich.edu

Abstract

Market mechanisms, such as auctions, will likely rep
resent a common interaction medium for agents on the
Internet. The Michigan Internet AuctionBot is a flex-
ible, scalable, and robust auction server that supports
both software and human agents. The server manages
many aimultancous auctions by separating the interface
from the core auction procedures. This design provides
a responsive interface and tolerates system and network
disruptions, but necessitates careful timekeeping proce-
dures to ensure temporal accuracy. The AuctionBot
has been used extensively in classroom exercises, and is
available to the general Internet population. Its flexi-
ble specification of auctions in terms of orthogonal pa-
rameters makes it a useful device for agent researchers
exploring the design space of auction mechanisms.

1 Introduction

The emergence of electronic commerce is feeding a gold-
rush atmosphere in the computer industry. Forecasts
predict US, electronic commerce revenues will grow
from $8 billion in 1997 to $327 billion in the year 2002.l
The automation of commerce activities is a major step
in the evolution of the economy, and we expect that,
for some tasks, the processes and conventions employed
online will differ from those prevalent in the offline econ-
omy,

It is widely observed that agent technology may have
a profound effect upon the way goods are bought and
sold, For cxample, shopping agents, such as Bargain
Findc? and Jango (a commercial product based on

?3ourcc: Wrrcster Research, Inc.
“httpr//bf,cstar.ac.com/bf
ahttp~//vuw,jango.com

J)c?mlir;sioll to ~~lnl;c digitnl/hard copies oFnIl or pi111 ol’lhis ~l~nkrinl for
ptnollnl or cjnssroom USC is gtw~d cvidlout liie provided Lnt IIIC copi=
nrr: llot lllntle or dislribulc‘d tbr prolit or commrrchl zidvaaL?& 111~ COPY-
r&$1 Ilolicc. I\IC lj(le ol’ll~e plklicn\ion and its dnk :\ppcar. ;\l\d WS~CC is
&ell llml copying is hy permission ol’ ACM. IIIC. To copy olhmvisc.
10 rspublit,h, 10 PUSI 011 scrvcm 01’ to rcdis(ribuk IO lists. rquirti prior
spccitic pcnuission md/or kc.

Aulono~nous Aga~ts 98 MiJlJlCapOliS MN WA
Copyri&t 1998 O-89791-983-l/981 5...%5.00

the ShopBot [3]), can make online comparison shop
ping dramatically more efficient, potentially shifting the
competitive balance between consumers and retailers.
Firefly [12] expands a consumer’s awareness by suggest-
ing products-in this case, music CDs-based upon the
reported preferences of others with similar tastes.

The agents mentioned above facilitate the connec-
tion of potential buyers and sellers. This represents
the first stage of an electronic commerce activity [S].
To complete the transaction, the agents must negoti-
ate a mutually acceptable contract, and exchange the
goods. Negotiation on the Internet often amounts to
one party (typically the seller), presenting a takeit-or-
leave-it offer (e.g., a sale price). Auctions represent a
more general approach to price determination, admit-
ting a range of negotiation protocols-including fixed
price as a special case.

Auctions have rapidly achieved enormous popular-
ity on the Internet. EBay,4 one of several commercial
sites that run user-created auctions, claims to be trans-
acting nearly 32 million a week. Onsale, the first and
most prominent of the seller-run online auctions, re-
ported gross revenue for the second quarter of 1997 of
$18.6 million-a 50% increase over the previous quar-
ter. The industry has rapidly spawned subindustries,
such as newsletters,6 auction software providers,? and
specialized search engines8

In addition to their use in online retail, automated
auctions are also found at the core of systems for market-
based resource allocation [2, 13, 16, 17, 18,201. To sup
port our research on this topic, as well as electronic com-
merce, we have developed a general platform for price-
based negotiation-the Michigan Internet AuctionBot.g
The AuctionBot serves as infrastructure for our research
efforts, and can be used by others exploring related

sFor example, AuctionLand (http://uuu.neomax.com), which also
provides ratings of over 200 online auction sites.

‘For example, OpenSite Technologies (http://usa.opensite.com).
8http:IImzm.bidfind.corn

301

http://crossmark.crossref.org/dialog/?doi=10.1145%2F280765.280847&domain=pdf&date_stamp=1998-05-01

mechanisms, We have also deployed the system over
the World-Wide Web as an experiment in Internet com-
merce, and as an instructional tool to support education
in the design and development of market-based multi-
agent systems.

This paper presents an overview of the AuctionBot
system, highlighting its versatility as a tool for explor-
ing the auction design space, and the potential ben-
cfits of a standardized agent interface to online auc-
tions. The next section defines auctions and catego-
rize8 the messages required to interact with them. Sec-
tions 3 and 4 present overviews of the main features
and overall design of the AuctionBot. We follow this
with a more detailed explanation of the auction param-
eter space in Section 5, and our treatment of time in
Section 6. Section 7 briefly presents the age&level in-
terface for the AuctionBot. We relate our experience
with several classroom exercises in Section 8.

2 Auctions

A negotiation mechanism is essentially a protocol within
which agents interact to determine a contract. Auctions
conetitute a general class of such protocols, as charac-
terized in the standard definition expressed by McAfee
and McMillan (1987):

An auction is a market institution with an
explicit set of rules determining resource al-
location and prices on the basis of bid8 from
the market participants.

Notice that the stereotyped image-of a fast-talking
pcraon with a gavel calling out prices-is but a partic-
ular special case of this class (technically, the English
open outcry auction). Another classic mechanism is the
Dutch auction, in which the auctioneer begin8 at a high
*price and incrementally lowers it until some bidder sig-
nals acceptance. Sealed bid auctions come in fir& and
second-price varieties (FPSB and Vickrey [15], respec-
tively), and involve no iteration. In all of these single-
aided mechanisms, bidders are uniformly of type buyer
or uniformly of type seller. The classic single auctions
have been the main province of theoretical studies of
auction8 [7, 91.

Double-sided auctions admit muItiple buyers and sell-
cr8 at once, The continuous double auction (CDA) [5]-
a general model for commodity and stock markets-
initiate8 trade8 as Soon as matches are detected. An-
other common mechanism for two-sided markets is the
clearing house or call market [S]. These markets aggre
gate bids over time and clear at scheduled intervals.

Figure 1 shows one possible taxonomy for a small
part of auction space. Auction8 are first classified by
whether they are single or double sided, and then by

Figure 1: A classification of classic auction types.

whether bids are sealed (SB) or public (outcry). Fur-
ther distinctions can be made, as we have to differen-
tiate the English and Dutch auctions. However, be-
cause there are many distinguishing characteristics-
often orthogonal-there are many possible ways to struc-
ture such a taxonomy. In Section 5, we present an al-
ternate view of the auction design space based on pa-
rameterization.

Formalizing multiagent negotiation in terms of auc-
tions provides a unifying framework and access to a
large body of underlying theory. Despite the diversity
of these mechanisms, we can clearly define their activi-
ties and the messages used to interact with them. This
is attractive to designers of multiagent systems because
it structures the communication.

We first define the three core auction activities. All
auctions must have the first and third behavior, and
most have the second as well.

l Receive Bids: When a bid is received, the auc-
tioneer must verify that it satisfies the rules of the
auction.

l Supply Intermediate Information: Auctions com-
monly supply agents with some form of interme-
diate results, which we generically term a price
quote.

l Clear: The central purpose of an auction is to de-
termine the resource exchanges and the payments
between buyers and sellers.

In our formulation, the auction need not get directly
involved in the execution of the transaction, though
many auction services on the Internet participate in the
transfer of money or goods.

To support these activities, the following message
types are required:

l Bid: Sent by agent to auction. A bid specifies an
agent’s offer to buy or sell quantities of a good
as a function of the price of the good. It may also
include other qualifications on an offer, such as bid
expiration conditions and whether the bid may be
subdivided.

302

-.- -~

l Bid Withdrawal: Sent by agent to auction.lO Not
all auctions allow an agent to withdraw its bid.

l Bid Adnzittance: Sent by auction to agent when a
bid satisfies the rules of the auction.

l Bid Rejection: Sent by auction to agent when a
bid violates the rules of an auction.

l Price Quote: Sent by auction to agent. The pre-
cise content varies by auction, but the “standard”
definition we employ is the price that the agent
would have had to offer in order for its bid to have
been one of the bids in the set that would have
transacted at the time the quote was issued. This
definition is given in past tense because a price
quote is necessarily relative to the bidding state at
quote time.

l Transaction Notification: Sent by auction to agents
involved in a transaction. The message specifies
the terms of an exchange, including price and quan-
tity, and information necessary to execute the ex-
change, such as trading partner identity.

An agent can have only one active bid at a time-
a new bid received by the auction supersedes any old
bids, This requirement is not a restriction per se; the
general dellnition of a bid allows an agent to specify any
arbitrary offer function. An agent can “edit” its bid
simply by submitting a new one, to the extent allowed
by auction rules.

Within this interaction protocol, the perceptions of
tho agent are restricted to observing the price quote.
In many situations the agent can infer from the price
quote its current allocation. If the agent has a buy bid
greater than (or a sell bid less than) the price quote,
then it is currently winning. However, if the agent’s bid
equals the price quote, then it cannot, in general, know
whether its current bid is in the transaction set. For
situations when it is necessary that agents correctly de-
duce their participation there are two approaches. The
first approach augments the price quote with the agents’
allocation. The second approach generates a disam-
biguating price quote customized for particular agents.
l?or example, in some auctions it would be sufficient to
send losing agents a price quote that is 6 above (or be-
low) the actual winning price. In both cases the content
of the price quote message is agent dependent.

As an example of the communication process, con-
sider the messages sent in the running of an English
auction, The first message is a price quoter’ sent by
the auctioneer to each agent. Agents see the price quote

l”Technicnlly, thin mesenge could be implemented by submitting a
rqhcemont bid with zero demand.

“The lnltial price quoted is the reserve price ofthe seller. In human
nuctlons thls vnlue ie presumably communicated to the auctioneer
outside of the mechnnism. In the AuctionBot, the selling agent must

i
plnce R sell bid.

,
I

303

and determine whether to bid. When the auctioneer re-
ceives a new bid that beats the current price quote, it
sends an acknowledgment to the bidder, and generates
a new price quote, at some 6 over the new high bid,
for all non-winning agents. This continues until some
period of inactivity elapses, at which time the auction-
eer closes the auction and sends transaction messages
to the seller and the winning bidder.

The messages described in this section are sufficient
to describe any of the auction mechanisms mentioned
in this paper. Other messages would be necessary if an
auction revealed more intermediate information than
the simple price quote. In addition, implementing auc-
tion mechanisms in a larger context will require tools
to aid agents in finding appropriate auctions, inform
them about auction rules, and perform many other mar-
ket facilitation functions. Such issues are being ad-
dressed in several experimental automated market sys-
tems [l, 4, 11, 141.

3 AuctionBot Features

The AuctionBot manages a large number of simultane-
ous auctions. In order to participate in any of these
auctions, a user must register. Human users can in-
spect their accounts via a web page presenting an or-
ganized view of their bids, auctions they initiated, and
past transactions. This has proven especially useful to
students participating in complex economies as clsss-
room exercises (discussed in Section 8). The account
view allows a student to track her bids in multiple auc-
tions and provides an automatic accounting of her final
transactions.

When they do not wish to babysit their bids, users
can choose to be notified of price quotes and clears via
e-mail.

The AuctionBot organizes active auctions in a hi-
erarchical catalog. The user initiating an auction can
position it anywhere within the existing catalog, or ex-
tend the catalog to create an appropriate subcategory.
The user also has the choice not to list the auction in
the public catalog, choosing, instead, to limit visibility
to a private group. We chose to give AuctionBot users
complete control over the catalog structure for several
reasons. Most importantly, it allows us to avoid exercis-
ing editorial control over the subject of AuctionBot ne-
gotiations. It also minimizes maintenance on our part.
The result is undoubtedly more flexible than anything
we would come up with, albeit probably less consistent
and coherent.

The AuctionBot is designed to support several lan-
guages for expressing bids. For discrete goods, the
base language allows a bidder to specify a set of price-
quantity pairs, which effectively define a step-wise de
mand function. The stereotypical bid-expressing a

Agonl Inlcfiace

Bigure 2: The AuctionBot architecture.

price for some individual object-is encoded by a sin-
gle point, We are currently working on languages that
support functional representations of continuous offer
curves for divisible goods, and offers for bundles of in-
terdependent goods of different types.

Mechanism designers will find the most interesting
aspect of the AuctionBot is its support of a wide va-
riety of auction types. l2 It is the combination of the
variety of auctions and the agent API that makes the
AuctionBot a useful platform for both commerce and
research.

4 AuctionBot Architecture

The AuctionBot’s basic design is shown in Figure 2.
The interface consists of two distinct portions-the web
interface for humans and the TCP/IP interface for soft-
ware agents. The right side of the diagram shows the
auctioneer processes and scheduler. The interface and
the auctioneer programs update information in a com-
mon database,

The following example illustrates the interaction be-
tween the basic AuctionBot program elements. A hu-
man user specifies a bid via a sequence of Web forms.
The final form hands off the data to a bid-submission
program which inserts the bid into the database and
marks it as unprocessed. The bid-submission program
then returns to the user a confirmation that the bid
has been submitted. To keep the interface responsive,
the submission program does only cursory verification
of the bid, Full verification-which may involve exam-
ining all of the other bids in the auction-is done by
the auctioneer program.

The scheduler is a daemon process that continually
monitors the database for auctions that have events to
process or bids to verify. When it finds such an auc-
tion, it forks the appropriate auctioneer program. The
auctioneer loads the auction parameters and the set of
current bids from the database. The auctioneer vali-
dates bids as necessary, and may do one clear and/or

“The AuctionBot currently implements every auction mentioned
In this pnpcr except the Dutch. Such an extension would be easy, but
superfiuous, ae the Dutch auction is strategically equivalent to the
FPSJJ [7J, ’

one price quote each time it is run. The current config-
uration does not allow the auctioneer to perform more
than one clear or quote in a single run due to the over-
head of managing the bids and maintaining consistency
with the database. We developed this scheme based
on our expectation that the majority of auctions would
be used by humans and have activity levels measured
in seconds or minutes. To provide more responsive auc-
tions at the higher levels of activity that software agents
could generate, we plan to extend the design to keep
high activity auctions running between events.

Note that the relationship between the interface and
the scheduler is asynchronous. If the scheduler goes
offline or falls behind in its tasks, the interface continues
to operate, and vice versa. All data is timestamped to
ensure that when an auction event occurs, it does so
with the set of bids that were active at the time the
event was supposed to happen. This is discussed further
in Section 6.

5 Auction Parameters

The AuctionBot supports the widest range of auction
types of any auction service we know of. We achieve this
flexibility by decomposing the auction design space into
a set of orthogonal parameters. With these parameters,
we can implement many of the classic auction types, and
quite a few that have not been studied before.13

We broadly categorize these parameters by whether
they define acceptable bids, control the schedule of clear
and quote events, determine the information made avail-
able, or specify the matching and price setting algo-
rithm.

5.1 Bidding Restrictions

Participation: For the purposes of specifying the mech-
anisms, we are interested only in whether the auction
allows one buyer or many buyers, and one seller or
many sellers. The three combinations of interest are
{Lmany}, {many:l}, and {many:many}. A restriction
to “1” essentially means that the auction is onesided,
and the sole buyer or seller must be designated. Within
the AuctionBot, we assume this agent is the auction ini-
tiator, and simply reject bids of the corresponding type
from other agents.

Discrete Goods: To enforce the discrete good rule
an auction simply rejects bids for non-integer quantities.

Bid rules: The AuctionBot supports several other
restrictions on allowable bids. One such rule requires
that a user’s new bid must dominate its previous bid.
Note that this would also prohibit bid withdrawal. A

IJAn earlier version of this parameterization appears in [lo]. The
FM96.5 (FishMarket) testbed [ll] is based on a detailed parameteri-
zation of the space of Dutch auctions.

304

rclatcd rule requires that bidders beat the current price
quole,

IL2 Auction Events

Clenring Scbedulo: Running the matching algorithm
and producing an allocation constitutes a market clear
event, The frequency and number of clears is one of the
most important parameters defining an auction. Clears
can be triggered at scheduled times (as in sealed bid
auctions), at random times, by bidder activity (as in
Dutch and CDAs), or by bidder inactivity (as in English
auctions),

Closing Conditions: The closing conditions are
logical conditions that determine whether a clear should
be Lhc final clear. Auctions can close at a scheduled
time, at a random time, after a period of inactivity, or
when designated bids are matched.

Quote Schedule: Like clears, price quotes can vary
in number and frequency. The same options are avail-
able: schedule, random, activity, or inactivity.

5.3 Information Revelation

Price Quotes: l?or divisible-good auctions, the stan-
dard price quote is a single price that balances supply
and demand. l?or discrete-good auctions, the general
form of the price quote is a range. The bid quote is
the price an agent would have to bid under in order to
place a winning sell bid. The ask quote is the price an
agent would have to bid over to place a winning buy
bid, The ask quote is always greater than or equal to
the bid quote.

In the literature, bid-ask spreads are typically used
in auctions that clear continuously (and therefore the
buyers and sellers do not overlap). However, under the
quote interpretation described in Section 2, the bid-ask
quote is meaningful even when the buyers and sellers
overlap, For example consider a simple case where there
is one agent with an offer to buy at $10 and another with
an o&r to sell at $5, The buyer and seller overlap,
so if the auction cleared at this moment, they would
transact. A bid-ask quote, in this case, would report
that a new buyer would need to outbid $10 and a seller
underbid $6 in order to transact in the hypothetical
clear,

Transaction History: Auctions may publicize se-
lccted information about past transactions. Such infor-
mation may include the prices, quantities, or even the
identities of the transacting agents.

Schedule Information: Auctions may or may not
rovcal the timing of upcoming clear and quote events.
In particular, an auction can used randomized or aperi-
odic scheduled events and a hidden schedule to discour-
n&c attempts at price quote manipulation.

Table 1: A sequence of three bids.

5.4 Allocation Policies

The last, and perhaps most important, parameter is
that determining the allocation policy. The allocation
policy dictates which agents transact, and at what price(s),
as a function of the bids. The AuctionBot currently
supports three different policies, all of which assume
that goods are measured in integer quantities. They
are also uniform-price mechanisms, meaning that all
transactions determined by a particular clear occur at
the same price. Several more allocation policies are in
the process of implementation (including a Walrasian
auction for divisible goods), or on the drawing board.

The Mth- and (M + l)st-price policies are gener-
alizations of the classic first- and second-price mecha-
nisms to multiple units. In both algorithms, M refers
the number of units offered for sale. Bids are sorted
by price, and the auction counts down M (or M + 1)
units. Roughly speaking, agents with sell bids at or be-
low this mark transact with agents with buy bids at or
above this mark. We have analyzed these mechanisms
in detail elsewhere [19].

The chronological match policy implements the se
quential trade effect of the CDA. When the auction
processes a new bid, it determines whether the bid can
be satisfied by any standing offer. The portion of the
new bid that is satisfied transacts. What remains of the
bid, if anything, is added to the list of standing offers.

The following example illustrates some differences
among these policies. Table 1 shows three bids in the
order they are received by the auction. In this example,
the Mth-price algorithm would form the transaction
<Agent 1 sells one unit to agent 3 for $4>.The
(M + l)st-price algorithm would form the transaction
<Agent 1 sells one unit to agent 3 for $3>.The
surpZus (difference between reported willingness to pay
by buyers and to accept by sellers) in both cases is $2,
but it is allocated differently between the agents.

The chronological-match policy takes bids in the or-
der they are received and forms transactions at the price
of the earlier bid. Thus, it would form the transaction
<agent 1 sells one unit to agent 2 for $2>.The
surplus in this case is only $1.

This example also illustrates an important point in
mechanism design. Seemingly minor differences in pa-
rameter settings can affect overall economic efficiency
and lead to drastically different agent strategies. For
example, in the Mth-price policy, Agent 3 can garner
more of the surplus by bidding $3+~ rather than $4. In

i
I‘

305

the (M -+ l)st-price case, agent 3 can derive no benefit
from changing its bid, but agent 1 can.“l

Tic-breaking rules can also influence the outcome
of an auction, The AuctionBot can either break ties
arbitrarily, or in favor of the earlier bids. Note that
if a new bid ties some existing bids, re-evaluating the
earliest-bid rule will not change the allocation, whereas
m-evaluating the arbitrary rule may. Thus, when using
arbitrary tie breaking, it adds no information to signal
an agent how many units it is winning.

G.5 Benefits of Parameterization

We can construct many of the classic auctions from
these primitive rules. The English Open Outcry and
Vickrcy auctions both use the single seller restriction.
The English auction is implemented with the Mth-price
policy, price quotes based on activity, a singIe clear
based on inactivity, and a rule that bids must beat
the price quote by 6. The Vickrey auction has a sin-
gle clear, no price quotes, and uses the (M + l)st-price
policy, The FPSB auction can be similarly constructed.

The CDA allows multiple buyers and sellers, uses
the chronological match pobcy, with clears and price
quotes based on bidder activity. A variety of differ-
ent call markets can be constructed from the Mth- and
(M + l)st-price policies.

Other combinations of these parameters yield some
new, possibly interesting auctions. For instance, the
Mth- and (M + l)st-price policies can be used with
auctions that clear with each new bid. Or, the chrono-
logical match algorithm can be used with periodic, or
inactivity based clears.

From a software engineering perspective, the advan-
tage of the parameterbation scheme is that we can im-
plement many different specialized auctions with only
three auctioneer programs. Each auctioneer is written
for the general case and supports all of the restrictions
imposed by the parameter settings through common
code modules.

0 Ensuring Temporal Accuracy

The asynchrony between the scheduler and the inter-
face creates some interesting bookkeeping challenges.
The general problem is to ensure that only the correct
bids are in the active state at a given auction event. For
example, Figure 3 depicts a situation in which an agent
bids before the time of a scheduled cIear and then places
a revised bid after the scheduIed clear. The scheduIer
is slightly delayed and does not invoke the auction until

l”Thls property, formally cnlled incentive compatibility, means
thnt an ngont’s dominant strategy is to bid its true valuation for
a good, In B one-shot (M + I)-st price auction, it holds for buyers
who desire a single unit, whereas in a one-shot Mth price auction it
holdn for sellers offering a single unit.

Bid A Bid A’

Tme
Scheciuled Au&fleer

Clear Runs

Figure 3: Bids before and after a scheduled event.

after the second bid has been placed. This would not
be an issue if the auction were running synchronously.
However, within the asynchronous AuctionBot architec-
ture we need to ensure that the clear executes with bid
A and not A' active.

The dependency between the validation of bids and
scheduled clear events goes both ways. Consider Figure
3 again, but this time assume it illustrates an auction
in which the scheduled clear is based on inactivity, and
that the period of inactivity is greater than the time
interval between A and A'. The scheduler has been
delayed, so the auctioneer has not validated bid A -
the scheduled clear time indicated in the diagram was
calculated from a previous bid. When the auctioneer
runs and verifies A, it must also recalculate the time of
the clear event. The correct behavior is to include A’
in the next clear.

To address these issues we need to keep careful track
of the state of a bid. Figure 4 diagrams the transitions
possible in the life of a bid. The auctioneer uses only
active bids, indicated by grey boxes, when making clear
or price quote calculations. The interface inserts a new
bid into the database with a timestamp and a state
of unprocessed. The next time it runs, the auction-
eer first determines when its next clear or quote event
should occur. It then loads all the bids that were sub-
mitted before the time of the next event. If the bid
state is unprocessed, the auctioneer verifies whether
the bid satisfies the auction’s rules, and transitions the
bid to either valid or rejected. The auctioneer must
also check whether any active bids have expired or been
replaced, and transition them to the appropriate closed
state. Five distinct types of closed states are tracked
for auditing purposes.

Bid withdrawals, like bid submissions, arrive asyn-
chronously, and so can occur out of sequence with clear
events. <To track a user’s request to withdraw a bid,
we have two extra states. When a user withdraws a
bid, indicated by the dashed arrows, the interface tran-
sitions it to the appropriate withdraw-requested state
and marks it with a timestamp. If the withdraw request
occurred before the auction event, the auctioneer tran-
sitions the bid to the withdrawn state. Otherwise the
auctioneer considers the bid active at the time of the
auction event.”

lsThis may involve verifying the bid and transitioning it from

306

-aL___- .L - _--_. -

c1 - + Wllhdraw Acllon
I_) Bid Verification
+ Clear Event

Pigure 4: State transitions of bids.

7 Agent interface

The agent interface is a TCP/IP-level message proto-
col that allows agents to access all of the features of
the AuctionBot present in the web interface. Agents
can plwe bids, create auctions, request auction infor-
mation, or review their accounts. The notification fea-
turc, equivalent to the e-mail notification available in
the web interface, is not yet available in the agent API.

To the best of our knowledge, the AuctionBot is the
only online auction site with explicit support for user-
written software agents. The client code is publicly
available, and we plan to enhance the libraries with sup-
port for common high-level strategies and market agent
functions.

In fact, the API is complete enough that developers
can use it to build their own front end to the Auction-
Dot, This flexibility is particularly useful for researchers
who wish to use the functionality of the AuctionBot but
would rather provide an alternate interface.

8 Uses of the AuctionBot

The AuctionBot has been open for public use at the
University of Michigan since September 1996, and to the
entire Internet since January 1997. We have used the
AuctionBot to create online market8 for used textbooks,
and several individual8 have successfully sold various
objects, The volume of public retail activity has been
small to date, we believe in large part because com-
mercial sites like EBay are already serving that sector
well, Network externalities make it difficult for other
sites to reach the critical mass of participation needed
to sustain an active marketplace.

The AuctionBot’s most demanding use has come
during several classroom exercises run in computer sci-

ence courses at the University of Michigan. In the
largest of these exercises, we assigned each of 90 stu-
dents one of three roles: consumer, component manu-
facturer, or widget assembler. Consumers are endowed
with raw materials which they sell to the component
manufacturers. The manufacturers convert the raw ma-
terials into one of four components and sell them to the
assemblers. Assemblers can combine different compo-
nents to create one of three widget types. The assem-
blers sell the widgets to the consumers, who derive util-
ity from owning widgets. Each agent ha8 additional
budget or production constraints that make its task
challenging.

Perhaps the most interesting qualitative observation
about the exercise is how students react, to the reality
that the outcomes of their actions depend on the unpre-
dictable behaviors of 89 other students. Although they
were invited to try to collude, such efforts proved fruit-
less at this scale. Despite some incentive mismatches
in our design of the exercise, the aggregate results were
consistent with an efficient mix of widgets produced,
and attentive students were able to discern structure in
the movements of prices and draw appropriate implica-
tions for their agent strategies.

We have used the AuctionBot for other classroom
exercises, including a task allocation problem that is
also a subject of our multiagent systems research [16].
We welcome efforts by researchers interested in setting
up their own experiments on this platform.

Our primary current use of the AuctionBot is as part
of a comprehensive testbed in market mechanism de-
sign. We have used the system to prototype protocols
for market-based scheduling [17], and the simple web-
based demonstration we have deployed may be a good
introduction for those interested in experimenting with
the AuctionBot.16

9 Conclusion

The Michigan Internet AuctionBot is a versatile, ro-
bust online auction server that supports both human
and software agents. It is potentially attractive to those
wishing to develop or prototype online marketplace8 be-
cause it is free and it implements the widest variety of
auctions. It has demonstrated usefulness as an instruc-
tional tool by supporting large-scale, complexclassroom
exercise8 that involve many interacting markets. As a
research platform, the large parameter space and open
agent API make it particularly well suited for running
experiments in computational market mechanisms and
agent strategies.

u~thdrau-roquaeted(unprocossod) to Uithdrau-requested(validated).

307

Acknowledgments

This work was supported in part by grants from NSF,
AFOSR, and DARPA, and an equipment donation from
IBM, Many University of Michigan students have con-
tributed: Stewart Blacklock, Brian Joh, Yee-Wah Lee,
Jonathan Mayer, Tracy Mullen, Ryan Papa, Chris Wong,
and Itai Zohar. We are grateful to them, as well as to
all of the students who have participated in AuctionBot
experiments, Jeff Kopmanis deserves credit for keeping
the AuctionBot running smoothly, and Kevin O’Malley
for helping us develop the next generation of Auction-
Bot functions.

Roferances

[l] Anthony Chavez and Pattie Maes. Kasbah: An
agent marketplace for buying and selling goods.
In Firat International Conference on the Pmctical
Application of Intelligent Agents and Multi-Agent
Technology, London, 1996.

[2] Scott Clearwater. Market-Based Control: A
Paradigm for Distributed Resource Allocation.
World Scientific, 1995.

[3] Robert B. Doorenbos, Oren Etzioni, and Daniel S.
Weld, A scalable comparison-shopping agent for
the world-wide web. In First International Con-
ference on Autonomous Agents, pages 39-48,1997.

[4] E, 1-I. Durfee, D. L. Kiskis, and W. P. Birmingham.
The agent architecture of the University of Michi-
gan Digital Library. In IEEE Proceedings - Soft-
ware Engineering, volume 144, pages 61-71, 1996.

[5] Daniel Friedman and John Rust, editors. The Dou-
ble Auction Market: Institutions, Theories and Eu-
idence, Addison-Wesley Publishing, Reading, MA,
1993,

[6] Robert 1-I. G uttman, Alexandros G. Moukas, and
Pattic Maes. Agent-mediated electronic commerce:
A survey. Knowledge Engineering Review, to ap-
pear.

[7] R, Preston McAfee and John McMillan. Auc-
tions and bidding. Journal of Economic Literature,
25:699-738,1987.

[8] Kevin A. McCabe, Stephen J. Rassenti, and Ver-
non L, Smith. Auction institutional design: The-
ory and behavior of simultaneous multiple-unit
generalizations of the Dutch and English auc-
tions, American Economic Review, 80(5):1276-
1283, 1990.

[9] Paul Milgrom. Auctions and bidding: A primer.
Journal of Economic Perspectives, 3(3):3-22, 1989.

[lo] Tracy Mullen and Michael P. Wellman. Market-
based negotiation for digital library services. In
Second USENIX Workshop on Electronic Gom-
merce, pages 259-269, Oakland, CA, 1996.

[ll] Juan A. Rodriguez-Aguilar, Francisco J. Martin,
Pablo Noriega, Pere Garcia, and Carles Sierra.
Competitive scenarios for heterogeneous trading
agents. In Second International Conference on Au-
tonomous Agents, 1998.

[12] U. Shardanand and P. Maes. Social informa-
tion filtering: Algorithms for automating ‘word of
mouth’. In Proceedings of the Computer-Human
Intemction Conference (CHI-95), 1995,

[13] Michael Stonebraker, Robert Devine, Marcel Ko-
rnacker, Witold Litwin, Avi Pfeffer, Adam Sah,
and Carl Staelin. An economic paradigm for query
processing and data migration in Mariposa. In
Third International Conference on Parallel and
Distributed Information Systems, Las Vegas, NV,
1994.

[14] Maksim Tsvetovatyy, Maria Gini, Bamshad Mob-
sher, and Zbigniew Wieckowski. MAGMA: An
agent based virtual market for electronic com-
merce. International Journal of Applied Artijcial
Intelligence, September 1997.

[15] William Vickrey. Counterspeculation, auctions,
and sealed tenders. Journal of Finance, 16:8-37,
1961.

[16] William E. Walsh and Michael P. Wellman. A
market protocol for distributed task allocation. In
Third International Conference on Multiagent Sys-
tems, Paris, 1998.

[17] William E. Walsh, Michael P. Wellman, Peter R.
Wurman, and Jeffrey K. MacKie-Mason. Some eco-
nomics of market-based distributed scheduling. In
18th International Conference on Distributed Com-
puting Systems, Amsterdam, 1998.

[18] Michael P. Wellman. A market-oriented pro-
gramming environment and its application to dis-
tributed multicommodity flow problems. Journal
of Artificial Intelligence Research, l:l-23, 1993.

[19] Peter R. Wurman, William E. Walsh, and
Michael P. Wellman. Flexible double auctions for
electronic commerce: Theory and implementation.
Submitted for publication, 1998.

[20] Fredrik Ygge and Hans Akkermans. Power load
management as a computationalmarket. In Second
International Conference on Multiagent Systems,
pages 393-400, Kyoto, 1996.

308

