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Abstract

In this paper we study the topological properties of wireless communication

maps and their usability in algorithmic design. We consider the SINR model,

which compares the received power of a signal at a receiver against the sum of

strengths of other interfering signals plus background noise. To describe the be-

havior of a multi-station network, we use the convenient representation of a recep-

tion map. In the SINR model, the resulting SINR diagram partitions the plane

into reception zones, one per station, and the complementary region of the plane

where no station can be heard. SINR diagrams have been studied in [3] for the

specific case where all stations use the same power. It is shown that the reception

zones are convex (hence connected) and fat, and this is used to devise an efficient

algorithm for the fundamental problem of point location. Here we consider the

more general (and common) case where transmission energies are arbitrary (or

non-uniform). Under that setting, the reception zones are not necessarily convex

or even connected. This poses the algorithmic challenge of designing efficient point

location techniques for the non-uniform setting, as well as the theoretical challenge

of understanding the geometry of SINR diagrams (e.g., the maximal number of

connected components they might have). We achieve several results in both di-

rections. We establish a form of weaker convexity in the case where stations are

aligned on a line and use this to derive a tight bound on the number of connected

components in this case. In addition, one of our key results concerns the behavior
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of a (d+1)-dimensional map, i.e., a map in one dimension higher than the dimen-

sion in which stations are embedded. Specifically, although the d-dimensional map

might be highly fractured, drawing the map in one dimension higher “heals” the

zones, which become connected (in fact hyperbolically connected). In addition,

as a step toward establishing a weaker form of convexity for the d-dimensional

map, we study the interference function and show that it satisfies the maximum

principle. This is done through an analysis technique based on looking at the

behavior of systems composed on lines of densely placed weak stations, as the

number of stations tends to infinity, keeping their total transmission energy fixed.

Finally, we turn to consider algorithmic applications, and propose a new variant

of approximate point location.

Keywords: Wireless communication, signal to interference plus noise ratio (SINR), point

location, convexity



1 Introduction

Background and motivation: The use of wireless technology in communication net-

works is rapidly growing. This trend imposes increasingly heavy loads on the resources

required by wireless networks. One of the main resources required for such communica-

tion is radio spectrum, which is limited by nature. Hence careful design of all aspects

of the network is crucial to efficient utilization of its resources. Good planning of radio

communication networks must take advantage of all its features, including both physical

properties of the channels and structural properties of the entire network. While the

physical properties of channels have been thoroughly studied, see [8, 21]. Relatively

little is known about the topology and geometry of the wireless network structure and

their influence on performance issues.

There is a wide range of challenges in wireless communication for which better orga-

nization of the communication network may become useful. Specifically, understanding

the topology of the underlying communication network may lead to more sophisticated

algorithms for problems such as scheduling, topology control and connectivity. We study

wireless communication in free space; this is simpler than the irregular environment of

radio channels in a general setting, which involves reflection and shadowing. We use the

Signal to Interference-plus-Noise Ratio (SINR) model which is widely used by the Elec-

trical Engineering community, and is recently being explored by Computer Scientists as

well. Let

SINR(si, p) =
ψi · dist(si, p)−α∑

j 6=i ψj · dist(sj, p)−α + N
.

In this model, a receiver at point p ∈ Rd successfully receives a message from the sender

si if and only if SINR(si, p) ≥ β, where N is the environmental noise, the constant β ≥ 1

denotes the minimum SINR required for a message to be successfully received, α is the

path-loss parameter and S = {s1, . . . , sn} is the set of concurrently transmitting stations

using power assignment ψ. Within this context, we focus on one specific algorithmic

challenge, namely, the point location problem, defined as follows. Given a query point

p, it is required to identify which of the n transmitting stations is heard at p, if any,

under interference from all other n − 1 transmitting stations and background noise N .

Obviously, one can directly compute SINRA(si, p) for every i ∈ {1, . . . , n} in time Θ(n)

and answer the above question accordingly. Yet, this computation may be too expensive,

if the query is asked for many different points p. Avin et al. [3] initiated the study of the

topology and geometry of wireless communication in the SINR model, and its application

to the point location problem, in the relatively simple setting of uniform powers, namely,
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under the assumption that all stations transmit with the same power level. They show

that in this setting, the SINR diagram assumes a particularly convenient form: the

reception zones of all senders are convex and “fat”. They later exploit these properties

to devise an efficient data structure for point location queries, resulting in a logarithmic

query time complexity.

In actual wireless communication systems, however, most wireless communication

devices can modify their transmission power. Moreover, it has been demonstrated con-

vincingly that allowing transmitters to use different power levels increases the efficiency

of various communication patterns in terms of resource utilization (particularly, energy

consumption and communication time). Hence it is important to develop both a deep un-

derstanding of the underlying structural properties and suitable algorithmic techniques

for handling various communication-related problems in non-uniform wireless networks

as well. In particular, it may be useful to develop algorithms for solving the problem of

point location in such networks. Unfortunately, it turns out that once we turn to the

more general case of non-uniform wireless networks, the picture becomes more involved,

and the topological features of the SINR diagram are more complicated than in the

uniform case. In particular, simple examples (with as few as five stations, as illustrated

later on) show that the reception zone of a station is not necessarily connected, and

therefore is not convex. Other “nice” features of the problem in the uniform setting,

such as fatness, are no longer satisfied as well. Subsequently, algorithmic design prob-

lems become more difficult. In particular, the point location problem becomes harder,

and cannot be solved directly via the techniques developed in [3] for the uniform case.

In this paper we aim to improve our understanding of the topological and geometric

structure of the reception zones of SINR diagrams in the general (non-uniform) case.

The difficulty in point location with variable power follows from several independent

sources. First, one must overcome the fact that the number of connected cells is not

always known (and there are generally several connected cells). A second problem is

that the shape of each connected cell is no longer as simple as in the uniform case. Yet

another problem is the possibility of singularity points on the boundaries of the reception

zones. (Typically, those problems become harder in higher dimensions, but as seen later,

this is not always the case for wireless networks.)

Nevertheless, we manage to establish several properties of SINR diagrams in non-

uniform networks that are slightly weaker than convexity, but are still useful for tackling

our algorithmic problems, such as satisfying the maximum principle of the interference

function and enjoying hyperbolic convexity. To illustrate these properties, let us take
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a look at the simplest example where a problem already occurs. When we look at two

stations in one dimension, the reception zones are not connected. Surprisingly, when

we look at the same example in two dimensions (instead of one), the reception zones of

both stations become connected. As shown later on, this is no coincidence. Moreover,

when we examine closely the two-dimensional case, we see that the reception zones are

no longer convex but actually hyperbolic convex (as opposed to non convex in the one

dimensional case). We use this strategy of adding a dimension to the original problem

and moving from Euclidean geometry to hyperbolic geometry to solve the point location

problem.

Contributions: In this paper we aimed toward gaining better understanding of SINR

maps with non-uniform power. Better characterization of reception map has a theo-

retical as well as practical motivation. The starting point of our work is the following

observation: in non-uniform setting, reception zones are neither convex nor fat. In

addition, they are not connected. The loss of these “niceness” properties, previously

established for the uniform power setting [3], appears even for the presumably simple

case where all stations are aligned on a line.

This raises several immediate questions. The first is a simple “counting” question

that has strong implications on our algorithmic question: What is the maximal number

of reception cells that may occur in an SINR diagram of a wireless network on n transmit-

ters. The second question has a broader scope: Are there any “niceness” properties that

can be established in non-uniform setting. Specifically, we aim toward finding other

(weaker but still useful) forms of convexity that are satisfied by cells in non-uniform

reception maps. Apart from their theoretical interest, these questions are also of con-

siderable practical significance, as obviously, having reception zones with some form of

convexity might ease the development of protocols for various design and communication

tasks.

We establish two weaker forms of convexity and show their theoretical as well as

algorithmic implications. Starting with the one-dimensional case, where stations are

aligned on a line, we show that although the zones are not convex, they are convex in a

region that is free from stations. We then use this “No-Free-Hole” (NFH) property to

establish the fact that in one dimension, the number of reception cells generated by n

stations is bounded above by 2n− 1 (and this can be realized). For the general setting

where stations are embedded in Rd, the problem of bounding the number of connected

cells seems to be harder, even for d = 2. We are able to show that the number of
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reception cells is no more than O(nd+1) and provide examples with Ω(n) reception cells

for a single station. Do d-dimensional zones enjoy the NFH property? Although this

remains an open question, we make two major advances in this context.

First, we consider the (d + 1)-dimensional SINR map of a wireless network whose

stations are embedded in d-dimensional space, and establish a much stronger property.

It turns out, that while in the d-dimensional space the network’s SINR map might be

highly fractured, going one dimension higher miraculously “heals” the reception zones,

which become connected (in fact, hyperbolically connected or hyperbolically convex).

This may have practical ramifications. For instance, considering stations located in the

2-dimensional plane, one realizes that their reception zones in 3-dimensional space are

connected, which aids in answering point location queries in this realistic setting.

Turning back to the d-dimensional map, we consider a well known property of har-

monic functions, namely, the maximum principle. Generally speaking, the maximum

principle refers to the case where the maximum value of the function in a given domain,

is attained at the circumference of that domain. Does the SINR function follow the

maximum principle? This is yet another open question. If so, NFH property is followed.

As a step toward achieving this goal, we then examine the properties of the interference

function (appearing in the denominator of the SINR function), and establish the fact

that this function satisfies the maximum principle. This is done through an analysis

technique based on looking at the behavior of systems composed on lines of densely

placed weak stations, as the number of stations tends to infinity, keeping their total

transmission energy fixed.

Finally, we consider the point location task, defined as follows. Given a set of broad-

casting stations S and a point p, we are interested in knowing whether the transmission

of station s is correctly received at p. We present a construction scheme of a data struc-

ture (per station) that maintains a partition of the plane into three zones: a zone of all

points that correctly receive the transmissions of s , i.e., points p with SINR(s , p) ≥ β;

a zone where the transmission of s cannot be correctly received, i.e., points p with

SINR(s , p) < β; and a zone of uncertainty corresponding to points that might receive

the transmission in a somewhat lower quality, i.e., points p with SINR(s , p) ≥ (1−ǫ)2α ·β,
where ǫ is predefined performance parameter. Using this data structure, a point location

query can be answered in logarithmic time.

Related work: Our starting point is the work of Avin at. el. [3], where it is proven

that if all transmitters use the same power then the reception zones are convex and
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fat. Several papers have shown that the capacity of wireless networks increases when

transmitters can adapt their transmission power. In their seminal paper [1], Gupta

and Kumar analyzed the capacity of wireless networks in the physical and protocol

models. Moscibroda [13] analyzed the worst-case capacity of wireless networks, without

any assumption on the deployment of nodes in the plane, as opposed to almost all

previous works on this problem. Non-uniform power assignments can clearly outperform

a uniform assignment [16, 15] and increase the capacity of a network. Therefore the

majority of the literature on capacity and scheduling addresses non-uniform power. In

the engineering community, the physical interference (SINR) model has been scrutinized

for almost four decades. Assuming that the power of all transmitters is uniform, we

know from [3] that the reception zones are convex and fat. Therefore the singularity

points of a zone can be easily handled. Yet when power is not uniform, handling the

singularity points becomes a major challenge. We remark that recently, Gabrielov,

Novikov, and Shapiro have shown that the number of singular points of functions similar

to the interference function is finite, see [7]. Maxwell conjectured that the number of

singularity points in the interference function is bound by (n−1)2 where n is the number

of transmitters; see [11] for more details. For illustration see Figure 1a.

Another challenge that one has to deal with in non-uniform networks is the possi-

ble existence of regions with very small gradient in the SINR function, as exemplified

in Figure 1b, which reflects the fact that the area containing all points p such that

SINR(si, p) ∈ [β, β + ǫ] cannot be bounded even for small ǫ > 0.

It is hoped that a better understanding of the topology of the SINR diagram will

improve our understanding of the joint problem of scheduling and power control. The

complexity of this problem in the physical model, taking into account the geometry

of the problem, is unknown. Nevertheless, many algorithms and heuristics have been

suggested, e.g., [5, 6, 10, 15, 22, 24]. See [14] for a more detailed discussion of these

approaches. Recently, Kesselheim [9] has shown how to achieve a constant approximation

for the capacity problem with power control, for doubling metric spaces. His algorithm

yields O(logn) approximation for general metrics. Halldrsson and Mitra [17] show tight

characterizations of capacity maximization under power control, using oblivious power

assignments in general metrics.
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Figure 1: Topographic view of H1 (with no noise). Heights indicate SINR thresholds. (a)

SINR map of 4-station non-uniform power network: singular points (p1 and p2) and contour

lines of SINR(s1, (x, y)). (b) Low gradient regions in SINR map in 2-station uniform power

network. H1 is unbounded when β ≤ 1 but finite for β > 1, illustrating the impossibility of

getting uniformly bounds of the area between two SINR curves corresponding to two different

threshold levels.

2 Preliminaries

2.1 Geometric notions

Throughout, we consider the d-dimensional Euclidean space Rd (for d ∈ Z≥1). The

distance between points p and point q is denoted by dist(p, q) = ‖q − p‖. A ball of

radius r centered at point p ∈ Rd is the set of all points at distance at most r from p,

denoted by Bd(p, r) = {q ∈ Rd | dist(p, q) ≤ r}. Unless stated otherwise, we assume the

2-dimensional Euclidean plane, and omit d. The basic notions of open, closed, bounded,

compact and connected sets of points are defined in the standard manner. A point set P

is said to be open if all points p ∈ P are internal points, and closed if its complement P̄

is open. If there exists some real r such that dist(p, q) ≤ r for every two points p, q ∈ P ,
then P is said to be bounded. A compact set is a set that is both closed and bounded.

The closure of P , denoted cl(P ), is the smallest closed set containing P . The boundary

of a point set P , denoted by Φ(P ), is the intersection of the closure of P and the closure

of its complement, i.e., Φ(P ) = cl(P ) ∩ cl(P̄ ). Let L(Φ(P )) denote the length of Φ(P ).

A connected set is a point set P that cannot be partitioned to two non-empty subsets
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P1, P2 such that each of the subsets has no point in common with the closure of the

other (i.e., P is connected if for every P1, P2 6= ∅ such that P1∩P2 = ∅ and P1∪P2 = P ,

either P1 ∩ cl(P2) 6= ∅ or P2 ∩ cl(P1) 6= ∅.). A maximal connected subset P1 ⊆ P is a

connected point set such that P1 ∪ {p} is no longer connected for every p ∈ P \ P1.

We use the term zone to describe a point set with some “niceness” properties. Unless

stated otherwise, a zone refers to the union of an open connected set and some subset

of its boundary. It may also refer to a single point or to the finite union of zones.

Let F : Rd → Rd and let p ∈ Rd. Then F is the characteristic polynomial of a zone

Z if p ∈ Z ⇔ F (p) ≤ 0.

Denote the area of a bounded zone Z (assuming that it is well-defined) by area(Z).

For a non-empty bounded zone Z 6= ∅ and an internal p ∈ Z, denote the maximal and

minimal radii of Z w.r.t. p by

δ(p, Z) = sup{r > 0 | Z ⊇ B(p, r)} , ∆(p, Z) = inf{r > 0 | Z ⊆ B(p, r)} ,

and define the fatness parameter of Z with respect to p to be ϕ(p, Z) = ∆(p, Z)/δ(p, Z).

The zone Z is said to be fat with respect to p if ϕ(p, Z) is bounded by some constant.

2.2 Wireless networks

We consider a wireless network A = 〈d, S, ψ,N , β, α〉, where d ∈ Z≥1 is the dimension,

S = {s1, s2, . . . , sn} is a set of transmitting radio stations embedded in the d-dimensional

space, ψ is an assignment of a positive real transmitting power ψi to each station si,

N ≥ 0 is the background noise, β ≥ 1 is a constant that serves as the reception threshold

(to be explained soon), and α > 0 is the path-loss parameter. We sometimes wish to

consider a network obtained from A by modifying one of the parameters while keeping

all other parameters unchanged. To this end we employ the following notation. Let Ad′
be a network identical to A except its dimension is d′ 6= d. Aβ′ and Aα′ are defined

in the same manner. For notational simplicity, si also refers to the point (xsi1 , ..., x
si

d ) in

the d-dimensional space Rd where the station si resides, and moreover, when d = 2, the

point si in the Euclidean plane is denoted (xi, yi). The network is assumed to contain

at least two stations, i.e., n ≥ 2. The energy of station si at point p 6= si is defined

to be EA(si, p) = ψi · dist(si, p)−α. The energy of a set of stations T ⊆ S at a point

p 6∈ T is defined to be EA(T, p) =
∑

si∈T EA(si, p). Fix some station si and consider some

point p /∈ S. We define the interference of sj to be the energy of sj at p, j 6= i denoted

IA(sj, p) = EA(sj, p). The interference of a set of stations T ⊆ S \ {si} at a point p 6∈ S
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is defined to be IA(T, p) = EA(T, p). The signal to interference & noise ratio (SINR) of

si at point p is defined as

SINRA(si, p) =
EA(si, p)

IA(S − {si}, p) + N
=

ψi · dist(si, p)−α∑
j 6=i ψj · dist(sj, p)−α + N

. (1)

Observe that SINRA(si, p) is always positive since the transmitting powers and the dis-

tances of the stations from p are always positive and the background noise is non-

negative.

In certain contexts, it is convenient to consider the reciprocal of the SINR function,

namely, SINR−1 defined as

SINR−1
A (si, p) =

IA(S − {si}, p) + N

EA(si, p)
. (2)

When the network A is clear from the context, we may omit it and write simply

E(si, p), I(sj, p), SINR(si, p) and SINR−1(si, p).

The fundamental rule of the SINR model is that the transmission of station si is

received correctly at point p /∈ S if and only if its SINR at p is not smaller than the

reception threshold of the network, i.e., SINRA(si, p) ≥ β. If this is the case, then we say

that si is heard at p. We refer to the set of points that hear station si as the reception

zone of si, defined as

Hi(A) = {p ∈ Rd − S | SINRA(si, p) ≥ β} ∪ {si} .

This definition is necessary since SINR(si, ·) is undefined at points in S and in particular

at si itself. In the same manner we refer to the set of points that hear no station si ∈ S
(due to the background noise and interference) defined as

H∅(A) = {p ∈ Rd − S | SINR(si, p) < β, ∀si ∈ S}.

An SINR diagram H(A) = {Hi(A), 1 ≤ i ≤ n} ∪ {H∅(A)} is a “reception map”

characterizing the reception zones of the stations. This map partitions the plane into

n + 1 zones; a zone for each station Hi(A), 1 ≤ i ≤ n, and a zone H∅(A) where no

successful reception exists to any of the stations.

It is important to note that a reception zone, Hi(A), is not necessarily connected. A

maximal connected component within a zone is referred to as a cell. Let Hi,j(A) be the

jth cell in Hi(A).

Hereafter, the set of points where the transmissions of a given station are successfully

received is referred to as its reception zone, and a cell is a maximal connected set or
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component in a given reception zone. Hence the reception zone is a set of cells, given

by Hi(A) = {Hi,1(A), . . .Hi,τi(A)(A)}, where τi(A) is the number of cells in Hi(A).
Analogously, H∅(A) is composed of τ∅(A) connected cells, H∅,j(A). Overall, the topology

of a wireless network A is arranged in three levels: The reception map is at the top of

the hierarchy. It is composed of n + 1 reception zones, Hi(A), i ∈ {1, . . . n, ∅}. Each

zone Hi(A) is composed of τi(A) reception cells. For a pictorial description see Figure

2.

2

s1

s2

s1

s3s

cell

zone

Figure 2: Schematic representation of a reception map, consisting of reception zones, each

composed of several connected components referred to as cells.

The following definition is useful in our later arguments. Let F i
A(p)

1 , p ∈ Rd be the

characteristic polynomial of Hi(A) given by

F i
A(p) = β

(∑

k 6=i
ψk
∏

l 6=k
dist(sl, p)

α + N ·
∏

k

dist(sk, p)
α

)
− ψi

∏

k 6=i
dist(sk, p)

α . (3)

Then p ∈ Hi(A) iff F i
A(p) ≤ 0.

Avin et al. [3] discuss the relationships between SINR diagram on a set of stations

S with uniform powers and the corresponding Voronoi diagram on S. Specifically, it

is shown that the n reception zones Hi(A) are strictly contained in the corresponding

Voronoi cells Vori. SINR diagrams with non-uniform powers are related to the weighted

Voronoi diagram of the stations instead of to the Voronoi diagram.

In the weighted version of Voronoi diagram [2], we consider a weighted system V =

〈S, w〉, where S = {s1, ..., sn} represents a set of n points in d-dimensional Euclidean

1When A is clear from context we may omit it and simply write Hi, τi and Fi(p). When refereing

to reception zones Hi(Ad′) or Hi(Aβ′) we may omit A and simply write Hi(d
′) and Hi(β).
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space and w = {w1, ..., wn} is an assignment of weights wi ∈ R>0 to each point si ∈ S.
The weighted voronoi diagram of V = 〈S, w〉 partitions the planes into n zones, where

WVori(V ) =

{
p ∈ Rd | wi

dist(si, p)
>

wj
dist(sj , p)

, for any j 6= i

}
,

denotes the zones (of influence) of a point si in S, for every i ∈ {1, . . . , n}. The weighted
Voronoi map denoted by WVor(V ), is composed of cells, edges and vertices. A cell

corresponds to amaximal connected component inWVori(V ), i ∈ {1, . . . , n}. An edge is

the relative interior of the intersection of two closed cells. Finally, a vertex is an endpoint

of an edge. In the unweighted Voronoi diagram each zone WVori(V ) corresponds to

one connected cell. On the contrary, a weighted Voronoi map is composed of O(n2) cells

as was shown at [2]. For a given wireless network A = 〈d, S, ψ,N , β, α〉, we define the

corresponding weighted Voronoi system VA = 〈SA, wA〉 in the following manner. The

set of points SA corresponds to S positions and wA
i = ψ

1/α
i , for every 1 ≤ i ≤ n. In

what follows we formally express the relation between H(A) and WVor(VA).

Lemma 2.1 Hi(A) ⊆WVori(VA), for every i ∈ {1, . . . , n} and β ≥ 1.

Proof: Let di = dist(si, p). Let p ∈ Rd be such that p ∈ Hi(A). We prove that

p ∈WVori(VA). Since p ∈ Hi(A), by (1)

ψi
dαi
≥ β ·

(∑

j 6=i

ψj
dαj

+ N

)
≥ ψk

dαk

(
1 +

∑

j 6=k,i

ψj/ψk
(dj/dk)

α

)

where ψk/d
α
k = maxj 6=i

(
ψj/d

α
j

)
, and hence

ψi
dαi

>
ψk
dαk

and
ψ

1/α
i

di
>

ψ
1/α
k

dk
.

The choice of wi implies that p ∈WVori(VA) and the claim holds.

Consider the way the “reception map” H(Aα) of a given network Aα changes as α

goes to infinity while the other parameters (e.g., the set of stations, β, the noise etc.)

are fixed. The map H(Aα) converges to is denoted by

H(A∞) = lim
α→∞

H(Aα).

Lemma 2.2 Hi(A∞) ⊆ Vori, for every i ∈ {1, . . . , n}.

Proof: By Lemma 2.1, Hi(A) ⊆WVori(VA). It follows that Hi(A∞) ⊆WVori(VA∞
)

for wi = limα→∞ ψ
1/α
i = 1. But WVori(VA∞

) is simply Vori. This can also be seen
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by considering the SINR function: as α gets larger, the power of the station becomes

negligible compared to distance between the station and the point p. In other words, it

gets closer to the uniform Voronoi diagram.

We conclude this section by stating an important technical lemma from [3] that will

be useful in our later arguments.

Lemma 2.3 [3] Let f : Rd → Rd be a mapping consisting of rotation, translation, and

scaling by a factor of σ > 0. Consider some network A = 〈d, S, ψ,N , β, α〉 and let

f(A) = 〈d, f(S), ψ,N /σ2, β, α〉, where f(S) = {f(si) | si ∈ S}. Then for every station

si and for all points p /∈ S, we have SINRA(si, p) = SINRf(A)(f(si), f(p)).

3 SINR diagrams of nonuniform networks: Basics

3.1 Disconnectivity of nonuniform power SINR maps

The SINR diagram H(A) is a central concept to this paper. We are interested in

gaining some basic understanding of its topology. Specifically, we aim toward finding

some “niceness” properties of reception zones and studying their usability in algorithmic

applications. In previous work [3], Avin et al. consider the simplified case where all

stations transmit with the same power. For a uniform power network, the reception

zone of each station is known to be connected and to exhibit some desirable properties

such as fatness and convexity. In the current work we study the general (and common)

case of non-uniform transmission powers.

3.2 2-Station networks

This section provides a detailed characterization of the possible SINR diagrams in a sys-

tem with two stations. Let A = 〈d, {s1, s2}, (ψ1, ψ2),N , β, 2α〉 be a network consisting of

two stations s1, s2 embedded on the x-axis with transmitting powers ψ1, ψ2 > 0 respec-

tively, with a threshold parameter β ≥ 1 and path-loss parameter 2α > 0. For clarity of

presentation, we first assume the simplified case where there is no background noise (i.e.,

N = 0). This is represented by the network AN=0. The case of AN>0, corresponding to

N > 0, is discussed at the end of this section.

Assume without loss of generality that s1 is located at the origin and s2 is located
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at (a, 0, . . . , 0), where a > 0. Recall that for a 2-station network with no background

noise, the SINR formula takes the form

SINRAN=0
(s1, p) =

ψ1 · dist(s1, p)−2α

ψ2 · dist(s2, p)−2α
=

ψ1

ψ2

·
(
dist(s2, p)

2

dist(s1, p)2

)α
.

Assuming that p = (x1, . . . , xd) ∈ Rd, the formula takes the form

SINRAN=0
(s1, p) =

ψ1

ψ2
·
(
(x1 − a)2 +

∑d
j=2 x

2
j

x21 +
∑d

j=2 x
2
j

)α

. (4)

As may be expected, the parameter controlling the behavior of the system is the ratio

η = βψ2/ψ1. When η 6= 1, define q =
(

a
1− α

√
η
, 0 . . . , 0

)
∈ Rd and R =

∣∣∣a· 2α
√
η

1− α
√
η

∣∣∣.

Lemma 3.1 The zone H1(AN=0) assumes one of the following three possible configura-

tions.

(C1) If η > 1, then H1(AN=0) is a d-dimensional disk, H1(AN=0) = Bd(q, R).

(C2) If η < 1, then H1(AN=0) is a complement of a d-dimensional disk, H1(AN=0) =

Rd \ Bd(q, R).

(C3) If η = 1, thenH1(AN=0) is a halfplane, H1(AN=0) =
{
p = (x1, . . . , xd) ∈ Rd | x ≤ a/2}.

See Figure 3 for illustration assuming d = 2.

Proof: Eq. (4) implies that

H1(AN=0) = {p = (x1, . . . , xd) ∈ Rd | ψ1

ψ2

·
(
(x1 − a)2 +

∑d
j=2 x

2
j

x2 +
∑d

j=2 x
2
j

)α

≥ β}.

Letting A = α
√
η, the condition on p can be rewritten as

(x1 − a)2 +
d∑

j=2

x2j ≥ A · (x21 +
d∑

j=2

x2j). (5)

We begin with Claim (C3). If A = 1, then condition (5) can be written as (x1−a)2−x21 ≥
0, implying x1 ≤ a/2 and Claim (C3) follows.

Next, we prove (C1) and (C2). Assume that A 6= 1. We first rewrite condition (5)

in a circle form, by rearranging it as (1− A)(∑d
j=1 x

2
j )− 2ax1 + a2 ≥ 0, or

(1−A)
((

x1 −
a

1−A

)2

+

d∑

j=2

x2j

)
+ a2 − a2

1− A ≥ 0

12
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Figure 3: Possible configurations of a 2-stations network, where s1 is located at the origin

and s2 is located at (0,2), with the following energies and path loss parameter: (a) ψ1 = 1.1,

ψ2 = 1 and β = 2.1: η > 1 and H1(AN=0) assumes configuration (C1), (b) ψ1 = 2, ψ2 = 1

and β = 1.25: η < 1 and H1(AN=0) assumes configuration (C2), (c) ψ1 = 1.5, ψ2 = 1 and

β = 1.5: η = 1 and H1(AN=0) assumes configuration (C3).

⇔ (1−A)
((

x1 −
a

1−A

)2

+

d∑

j=2

x2j

)
≥ a2A

1− A .

We consider two cases.

Case 1: If A = α
√
η > 1, then

H1(AN=0) =

{
p = (x1, . . . , xd) ∈ Rd |

(
x1 −

a

1−A

)2

+
d∑

j=2

x2j ≤
a2A

(1− A)2

}

=

{
p = (x1, . . . , xd) ∈ Rd | dist(q, p) ≤ − a · 2α

√
η

1− α
√
η

}
= Bd(q, R).

Hence the zone H1(AN=0) is composed of one cell defined by a circle centered at q of

radius R. Claim (C1) follows.

Case 2: If A < 1, then

H1(AN=0) =

{
p = (x1, . . . , xd) ∈ Rd |

(
x1 −

a

1− A

)2

+
d∑

j=2

x2j ≥
a2A

(1−A)2

}

=

{
p = (x1, . . . , xd) ∈ Rd | dist(q, p) ≥ a · 2α

√
η

1− α
√
η

}
= Rd \ Bd(q, R).

Hence the zone H1(AN=0) is composed of one cell defined by the complement of a circle

centered at q of radius R, establishing (C2).
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Finally, we turn to the case where N > 0. It can be shown that H(AN>0) assumes

three configurations as well (see Lemma 3.1). The key difference between H(AN>0) and

H(AN=0) is that the presence of noise induces only bounded zones. Consequently, (C2)

and (C3) where H1(AN=0) is unbounded, are no longer feasible. These configurations

are replaced by an equivalent ones where H1(AN=0) attains a bounded shape (i.e., a

large enclosing disc for (C2) and an elliptic shape for (C3)).

By considering a 2-station network with non-uniform power it is apparent that the

reception zones of non-uniform power networks are not convex, however connectivity

is maintained. Unfortunately, although this is true for 2-stations systems, it does not

hold in general. Connectivity might be broken even in networks with small number of

participants, as illustrated by the 5-station system of Figure 4, where the reception zone

of s1 is composed of two connected cells. This raises the immediate question of bounding

the maximal number of cells a given SINR diagram might have.

à

S1 S2

S3

S4

S5

Figure 4: An instances of 5-station system with two connected cells of H1.

A seemingly promising approach to studying this question is considering the corre-

sponding weighted Voronoi diagrams. Recall that by Lemma 2.1, Hi(A) ⊆WVori(VA).

It therefore seems plausible that the number of weighted Voronoi cells (bounded by O(n2)

[2]) might upper bound the number of connected cells in the corresponding SINR dia-

gram. Unfortunately, this does not hold in general, since it might be the case that a single

weighted Voronoi cell corresponds to several connected SINR cells. This phenomenon is

formally stated in the following lemma.

Lemma 3.2 There exists a wireless network A∗ such that a given cell of the correspond-
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ing weighted Voronoi diagram WVor(VA∗) contains more than one cell of H(A∗).

Proof: Let A = 〈d, S, ψ,N , β, α〉 be a wireless network, where S = {s1, ..., sn} and

H1(A) is not connected, i.e., H1(A) is composed of more than one cell. Let

Am = 〈d,Sm,Θm,N , β, α〉, where Sm = {s1} ∪ {s12 , ..., sm2 } ∪ ... ∪ {s1n, ..., smn }, Θm =

{θ1}∪ {θ12, ..., θm2 }∪ ...∪ {θ1n, ..., θmn }, where θ1 = ψ1 and θ
l
i = ψi/m, for every i = 2, ..., n

and l = 1, ..., m. To avoid cumbersome notation, let Vm = VAm
and let WVor(Vm) be

the corresponding weighted Voronoi diagram of Am. In what follows, we show that for

sufficiently large m∗, the network Am∗ satisfies the conditions of the desired network A∗.

Specifically, it is easy to verify that for large enoughm∗, the weighted zoneWVor1(Vm∗)

is connected. We next show that WVor1(Vm∗) contains more than one connected cell

of H1(Am∗). First, observe that H1(A) = H1(Am∗), and therefore H1(Am∗) is not

connected as well. This follows by noting that EA(s1, p) = EAm∗
(s1, p) and IA(S \

{s1}, p) = IAm∗
(Sm∗ \ {s1}, p). Next, by the connectivity of WVor1(Vm∗) and Lemma

2.1, it follows that H1(Am∗) ⊆ WVor1(Vm∗). Since H1(Am∗) is not connected, the

lemma follows.

This lemma illustrates that the structural complexity of the SINR diagram cannot

be fully captured by the weighted Voronoi diagram. Specifically, it implies that the

number of connected cells in a non-uniform SINR diagram cannot be bounded by the

number of weighted Voronoi cells, hence a different approach is needed. This challenge

is extensively discussed in this paper, where we obtain bounds and provide extreme

constructions with respect to the the number of connected cells for a given station. We

conjecture that the obtained upper bounds are not tight, and our constructions are close

to the limit. Yet so far, no formal proof is available.

4 The No-free-hole property

Convexity was shown in [3] to play a significant role in showing that the reception zones

of uniform SINR diagrams are connected. Unfortunately, as discussed in the previous

section, reception zones of non-uniform SINR diagrams might be non-convex, even when

the network is composed of only two stations. Is there any form of weaker convexity that

can still be established? Are there excluded configurations in non-uniform diagrams? To

address these questions, let’s examine several examples of non-convex shapes illustrated

in Figure 5. Non-convex shapes can be classified into two types: (a) shapes with non-

convex contour (Fig. 5a), (b) shapes with a convex contour but with a hole. Type
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(b) is further classified into two types; (b1) the hole contains at least one interfering

station (Fig. 5b1) and (b2) the hole is free of stations (Fig. 5b2). Interestingly, though

type (a) and (b1) are fairly common feasible configurations of cells in non-uniform SINR

diagrams, all our attempts to generate a configuration of type (b2) have failed so far.

We conjecture that type (b2) is an excluded configuration of cells in non-uniform SINR

diagrams. In other words, we believe that every hole in a reception cell must contain

at least one interfering station. This property (namely, that type (b2) is an excluded

state) is hereafter termed “no-free-hole” or NFH for short, and is defined as follows. A

collection of closed shapes C in Rd obeys the NFH property with respect to a set S of

stations if for every C ∈ C that is free of stations, if all its border points are reception

points of s1, then all points of C are reception points as well. Formally, if C ∩ S = ∅
and Φ(C) ⊆ H1(A), then also C ⊆ H1(A). This property turns out to be relevant for

bounding the number of connected cells in H(A). The next subsection is dedicated to

proving the conjecture in the 1-dimensional case.

2S

1

(a)

S

S

1

(b1)

S

2

1S

(b2)

Figure 5: Classification of non-convex cells. (a) Non-convex contour; (b1) Convex contour

with a hole that occupied by some interfering station; (b2) Convex contour with a hole that

is free of stations.

4.1 The one-dimensional case

The purpose of this subsection is to show that the NFH property holds in the one dimen-

sional case. This fact is later used in Subsection 5.1 to bound the number of connected

cells in a one dimensional map. The analysis is organized as follows. In Subsection 4.1.1,

we introduce the framework and establish some basic properties. In Subsection 4.1.2, we

establish the NFH property for 3-station network and no background noise. In Subsec-

tion 4.1.3, the NFH property for n-station network either with or without background
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noise is established.

4.1.1 Framework

We consider a network of the form A = 〈d = 1, S, ψ,N , β ≥ 1, α = 2〉. Let xi be the

position of si. In the following we may abuse notion by confusing between a station and

its geometric location. Without loss of generality, we focus on s1. By adopting Eq. (1)

to the current setting we get that

SINRA(s1, x) =
ψ1/(x− x1)2

n∑
i=2

ψi/ (x− xi)2 +N
(6)

and s1 is heard at x iff SINRA(s1, x) ≥ β. To establish NFH, we consider a segment

σ = [a, b] ⊆ H1(A) such that Φ(σ) = {a, b} where a, b ∈ H1(A) and σ∩S = ∅, and show

that under these conditions σ ⊆ H1(A). Continuity follows simply by the fact that no

station is located on σ. We need to show that p ∈ H1(A) for every p ∈ [a, b].

First, we provide some notation useful for this section. Let qi(x) = ψi((x− x1)/(x−
xi))

2 and let qN = N (x − x1)2. Then using Equation (6), the fundamental rule of the

SINR model of can be expressed by the 1-variate polynomial

QA(x) =
n∑

i=2

qi(x) + qN − ψ1/β , (7)

such that s1 is heard iff QA(x) ≤ 0. The first derivative of QA(x) is given by

∂QA(x)

∂x
=

n∑

i=2

∂qi(x)

∂x
+ 2N (x− x1) = 2(x− x1)

(
N +

n∑

i=2

x1 − xi
(x− xi)3

)
. (8)

In the same manner, the second derivative of QA(x) is given by

∂2QA(x)

∂x2
=

n∑

i=2

∂2qi(x)

∂x2
+ 2N = 2

n∑

i=2

(2x− 3x1 + xi)(xi − x1)
(x− xi)4

+ 2N . (9)

Without loss of generality, let a > x1. Our analysis relies on the observation that a

network A may assume one of the following three configurations:

(C1) xi ≥ x1, for every si ∈ S.
(C2) (S \ {s1}) ∩ [x1, a] = ∅.
(C3) xj < x1 for some sj ∈ S and (S \ {s1}) ∩ [x1, a] 6= ∅.
The NFH property follows easily for networks in configuration (C1) and (C2). In case

the network A assumes configuration (C3), the proof is more involved. We begin with

configurations (C1) and (C2).

17



Claim 4.1 If the network A = 〈d = 1, S, ψ,N ≥ 0, β, α = 2〉 assumes configuration

(C1) or (C2), then QA(x) has no local maximum in the interval [a, b].

Proof: Without loss of generality, let x1 = 0. Suppose first that A is in configuration

(C1). Since xi > 0 for every i ∈ {2, . . . , n}, it follows by Eq. (9) that ∂2QA(x)/∂x2 > 0

for every x > 0 and specifically for every p ∈ [a, b], which establishes the claim. Next,

assume that A is in configuration (C2). In this case, the set of stations S \ {s1} can be

partitioned into two sets, namely, Sb
+

= {si | i > 1, xi > b} and S− = {si | i > 1, xi < 0}.
Since (x − xi)3 < 0 for every si ∈ Sb+ and x ∈ [a, b], we have that ∂qi(x)/∂x > 0 for

every x > 0 and si ∈ Sb
+

. In addition, one can verify that ∂qi(x)/∂x > 0 for every

x ∈ [a, b] and si ∈ S−. In summary, we get that ∂QA(x)/∂x > 0 for every p ∈ [a, b], and

the claim follows.

Corollary 4.2 If A assumes configuration (C1) or (C2), then σ ⊆ H1(A).

Proof: By Eq. (7) it holds that QA(a), QA(b) ≤ 0. By Claim 4.1, we have that

QA(x) has no local maximum in the interval σ = [a, b], hence for every p ∈ σ we have

QA(p) ≤ max{QA(a), QA(b)} ≤ 0, implying p ∈ H1(A), and the claim follows.

4.1.2 3-stations (no noise)

We now establish NFH for the special case of a non-uniform power network with three

stations and no background noise, A3 = 〈d = 1, S3 = {s1, s2, s3}, ψ,N = 0, β, α = 2〉.
Assume without loss of generality (by Lemma 2.3) that x1 = 0, x2 < x3 and 0 < a < b.

Let S− = {si ∈ S3 | xi < 0}, Sb+ = {si ∈ S3 | xi > b} and Sa− = {si ∈ S3 | 0 < xi < a}.

Lemma 4.3 Let σ = [a, b] be a segment such that a, b ∈ H1(A3) and σ ∩ S = ∅. Then

σ ⊆ H1(A3).

Proof: Due to Corollary 4.2, it remains to consider the case where A3 assumes config-

uration (C3), i.e., x2 < 0 and 0 ≤ x3 ≤ a, see Figure 6. In this context, it is convenient

to consider for H1(A3) the following characterizing polynomial

P (x) = ψ1(x− x2)2(x− x3)2 − ψ2x
2(x− x3)2 − ψ3x

2(x− x2)2.

It follows that P (x) ≥ 0 if and only if x ∈ H1(A3). Since deg(P (x)) = 4, the polynomial

P (x) has at most 4 roots. The claim follows by applying a counting argument on the
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number of roots of P (x). Clearly, a root of P (x) is consumed whenever the polynomial

changes its sign. Since P (x2), P (x3) > 0, P (0) < 0 and P (a), P (b) ≤ 0, it follows that

P (x) has roots in each of the intervals [x2, 0], [0, x3] and [x3, a]. Consequently, we are

left with one undecided root.

We claim that every point p ∈ σ is a reception point of s1. This is proven by

contradiction. Assume to the contrary, that there is a non-reception point q ∈ [a, b]

such that q /∈ H1(A3) or P (q) > 0. This would imply the existence of two roots that

correspond to the intervals [a, q] and [q, b]. First, assume P (a) < 0. Then the roots

of each interval mentioned do not overlap. We end with five roots which is infeasible

by degree consideration, a contradiction. Else, assume P (a) = 0 and that there is a

non-reception point q ∈ [a, b]. In this case there is one additional root (besides a) in

the interval [a, b], and all roots of the polynomial are assigned. As we assigned all four

roots, it follows that P (∞) < 0 and P (−∞) > 0. By the fact that P (∞) < 0 it follows

that ψ1 ≥ ψ2 + ψ3. But then it should also follow that P (−∞) < 0 and we end with

contradiction again. The claim follows.

1s2

x   =01

s3

x3x2 a b

s

Figure 6: An instances of a 3-station wireless network A3 in configuration (C3).

4.1.3 n-Stations

In this subsection, we extend Corollary 4.2 and Lemma 4.3 and show that the NFH

property holds for any n-station network for N ≥ 0.

Lemma 4.4 Let σ = [a, b] be a segment, such that a, b ∈ H1(A) and σ ∩ S = ∅. Then

σ ⊆ H1(A).

Proof: Due to Corollary 4.2, it is sufficient to consider the case where A assumes

configuration (C3). For ease of computation, we assume without loss of generality that

a = −1 and b = 1 and the position of s1 is arbitrary. We first note that since the SINR

function is continuous on σ, it is sufficient to consider the middle point of this section,

t = 0 and show that t is in H1(A), as the same argument can be re-applied to the

segments [a, t] and [t, b] and so on. Lemma 4.4 is proved by induction on the number
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of stations in the network, n = |S|. For the base of the induction, we consider the case

A assumes configuration (C1) or (C2) (indeed any 2-station network assumes one of

these two configurations). The lemma clearly holds in this case due to Corollary 4.2.

Next, we assume that the lemma holds for any n − 1-station networks (in particular,

networks in configuration (C3)). The induction step is more involved. Let sj, sk be two

stations positioned on the same side with respect to segment σ (since A assumes (C3)

such two stations are guaranteed to exist). By Lemma 2.3 we may assume, without loss

of generality, that these stations are to the right of b. Note that since the position of s1

is arbitrary, generality is indeed maintained. For clarity, let sl1 = sj and sl2 = sk where

xl1 < xl2 . Informally, we prove the inductive step by showing that these two stations

can be replaced by a single station s∗, resulting in a (n− 1)-station network An−1 with

set of stations Sn−1, that satisfies the following conditions:

1. the interference experienced by a receiver located at t = 0 is maintained, i.e.,

IAn−1
(Sn−1 \ {s1}, t) = IA(S \ {s1}, t); and

2. the interference at segment endpoints does not increase, which guarantees that

a, b ∈ H1(An−1).

Due to the inductive hypothesis for (n − 1)-station networks, it then follows that t ∈
H1(An−1), hence t ∈ H1(A). The next claim expresses this more formally.

Claim 4.5 There exists a network

A∗
n−1 = 〈d = 1, S∗

n−1 = (S \ {sl1, sl2}) ∪ {s∗}, (ψ \ {ψl1 , ψl2}) ∪ {ψ∗}, N, β ≥ 1, α = 2〉

such that:

(1) IA∗

n−1
(S∗

n−1 \ {s1}, 0) = IA(S \ {s1}, 0);
(2) IA∗

n−1
(S∗

n−1 \ {s1}, q) ≤ IA(S \ {s1}, q) for q ∈ {a, b}.

Proof: Recall that a = −1 and b = 1. Let

ψ(x) = x2 · EA({sl1, sl2}, 0), for x ∈ [xl1 , xl2 ]. (10)

Consider a station s with position x and transmission energy ψ(x). By replacing the

stations {sl1 , sl2} by s, we get the (n− 1)-station network

An−1(x) = 〈d = 1, Sn−1 = (S\{sl1, sl2})∪{s}, (ψ\{ψl1, ψl2})∪{ψ(x)}, N, β ≥ 1, α = 2〉.

It is easy to verify that IAn−1(x)(Sn−1 \ {s1}, 0) = IA(S \ {s1}, 0) for every x ∈ [xl1 , xl2 ],

which establishes condition (1). Consider condition (2). We show that there exists
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x∗ ∈ [xl1 , xl2 ] such that An−1(x
∗) satisfies condition (2) (in addition to Condition (1)

that is satisfied for any x ∈ [xl1 , xl2 ]). Let

g(1)(x) = IAn−1(x)(Sn−1 \ {s1}, 1)− IA(S \ {s1}, 1) and

g(−1)(x) = IAn−1(x)(Sn−1 \ {s1},−1)− IA(S \ {s1},−1),

for every x ∈ [xl1 , xl2 ]. We next show that there exists x∗ ∈ [xl1 , xl2 ] such that g(1)(x
∗) ≤

0 and g(−1)(x
∗) ≤ 0.

Rearranging, we get that,

g(1)(x) = IAn−1(x)(Sn−1 \ {s1}, 1)− IA(S \ {s1}, 1)
= EAn−1(x)({s}, 1)− EA({sl1, sl2}, 1)

=

(
x

x− 1

)2

· EA({sl1 , sl2}, 0)− EA({sl1 , sl2}, 1) . (11)

In the same manner,

g(−1)(x) =

(
x

x+ 1

)2

· EA({sl1 , sl2}, 0)− EA({sl1, sl2},−1) . (12)

Note that (x/x−1)2 is monotonically decreasing in the segment (1,∞), and (x/x+1)2 is

monotonically increasing in (1,∞). Correspondingly, g(1)(x) is monotonically decreasing

and g(−1)(x) is monotonically increasing in the range of their definition, [xl1 , xl2] ⊆
(1,∞), as illustrated in Figure 7.

r(−1)r(1)

(−1)
g(1)g

−1 0 1 x*
1

x
2l xl

Figure 7: g(1)(x) is monotonically decreasing and g(−1)(x) is monotonically increasing

in [xl1 , xl2 ]. In addition, g(1)(xl1) > 0, g(−1)(xl1) < 0, g(1)(xl2) < 0 and g(−1)(xl2) > 0.

The case where r(1) < r(−1) implies that g(1)(x
∗) < 0 and g(−1)(x

∗) < 0, for every

x∗ ∈ [r(1), r(−1)].

Recall that we aim to show that there exists some x∗ such that g(1)(x
∗) ≤ 0 and

g(−1)(x
∗) ≤ 0. We proceed by showing that both functions g(1)(x) and g(−1)(x) have a
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single root in [xl1 , xl2 ]. For this, we use the following inequalities (proved later on, in

Claim 4.6).

g(1)(xl1) > 0 and g(1)(xl2) < 0, (13)

g(−1)(xl1) < 0 and g(−1)(xl2) > 0. (14)

By inequality (13) and the fact that g(1)(x) is monotonically decreasing in [xl1 , xl2 ], it

follows that there exists r(1) ∈ [xl1 , xl2 ] such that g(1)(r(1)) = 0. In the same manner, by

inequity (14) and the fact that g(−1)(x) is monotonically increasing in [xl1 , xl2 ], it follows

that there exists r(−1) ∈ [xl1 , xl2 ] such that g(−1)(r(−1)) = 0. Due to the monotonicity of

g(1)(x) and g(−1)(x) it turns out that

g(1)(x) > 0, for every x ∈ [xl1 , r(1)) and (15)

g(1)(x) ≤ 0, for every x ∈ [r(1), xl2), (16)

and similarly,

g(−1)(x) ≤ 0, for every x ∈ [xl1 , r(−1)] and (17)

g(−1)(x) > 0, for every x ∈ (r(−1), xl2), (18)

as illustrated in Figure 7. By inequalities (16) and (17), it turns that taking x∗ to be

in the range [r(−1), r(1)] achieves the desire, as g(1)(x) ≤ 0 and g(−1)(x) ≤ 0 for every

x ∈ [r(−1), r(1)]. Finally, it remains to prove the range [r(−1), r(1)] is not empty, or that

r(1) ≤ r(−1).

Assume, by the way of contradiction that r(1) > r(−1) as illustrated in Figure 8. Consider

a station s ′ positioned at x′ ∈ (r(−1), r(1)) with transmitting power of ψ(x′). By inequality

(15) it then turns out that g(1)(x
′) > 0, and similarly, by inequality (18), g(−1)(x

′) > 0.

Let A3 denote a three station network,

A3 = 〈d = 1, {s ′, sl1, sl2}, {ψ(x′), ψ(xl1), ψ(xl2)}, N = 0, β, α = 2〉.

By the above, it holds that

EA3
(s ′, q) > EA3

({sl1 , sl2}, q),

for q ∈ {−1, 1}. Whereas by the energy function ψ(x), Eq. (10), it follows that

EA3
(s ′, 0) = EA3

({sl1 , sl2}, 0) .
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Since N = 0, we end with a situation where SINRA3
(s1, q) > 1 for q ∈ {−1, 1} and

SINRA3
(s1, 0) = 1. Consider a network Aǫ3 = ({s ′, sl1, sl2}, {ψ(x′), ψ(xl1), ψ(xl2)}, 0, β +

ǫ, α = 2〉, where

ǫ = min {SINRA3
(s ′, 1) , SINRA3

(s ′,−1)} − 1,

see Figure 9. Hence, we end with the following situation, in which SINRAǫ
3
(s1, q) ≥ 1+ǫ,

for q ∈ {−1, 1}, and ǫ > 0, implies that SINRAǫ
3
(s1, 0) < 1 + ǫ. Thus, {a, b} ∈ H1(Aǫ3)

and p = 0 /∈ H1(Aǫ3), contradiction by Lemma 4.3. The claim follows.

(1)
xl1

xl2

(−1)
g

−1 0 1 x’

(1)

r

g

(−1) r

Figure 8: r(−1) < r(1) implying that g(1)(x
′) > 0 and g(−1)(x

′) > 0, for every x′ ∈
(r(−1), r(1)).

xl2

l l l2s’

l l

s s

x−1 0 1 x’

Figure 9: A wireless system Aǫ3, where 1 < xl1 < x′ < xl2 .

The induction step of Lemma 4.4 is established, the lemma follows.

Finally, we establish inequalities (13) and (14), required for Lemma 4.4.

Claim 4.6 The functions g(1) and g(−1), defined in Equations (11) and (12), satisfy

Inequalities (13) and (14).

Proof: Let p ∈ {1, . . . , n} and q ∈ R>1 then define

cqp = E(sp, q)/E(sp, 0).
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It then follows that

c1l1 =

(
xl1

xl1 − 1

)2

and c1l2 =

(
xl2

xl2 − 1

)2

c−1
l1

=

(
xl1

xl1 + 1

)2

and c−1
l2

=

(
xl2

xl2 + 1

)2

.

Recall that xl1 < xl2 . Then by the decreasing (respc. increasing) monotonicity of

(x/x− 1)2 (respc. (x/x+ 1)2), we have that

c1l1 > c1l2 and c−1
l1

< c−1
l2

. (19)

Using these inequalities, we get that

EA({sl1, sl2}, 1) = EA({sl1}, 1) + EA({sl2}, 1) = c1l1 · EA({sl1}, 0) + c1l2 · EA({sl1}, 0)
< c1l1 · EA({sl1 , sl2}, 0) . (20)

In the same manner,

EA({sl1, sl2}, 1) > c1l2 · EA({sl1 , sl2}, 0) , (21)

EA({sl1 , sl2},−1) > c−1
l1
· EA({sl1, sl2}, 0) , and (22)

EA({sl1 , sl2},−1) < c−1
l2
· EA({sl1, sl2}, 0) . (23)

Finally, the left and right Inequalities of Ineq. (13) and (14) follow, respectively, by

Ineq. (20), (21), (22) and (23)).

4.2 Beyond 1-d

Our conjecture states that zones of the d-dimensional map are free convex for every

d ≥ 1. Currently, no proof is available. However, two positive results are presented in

this context. In Section 6, we consider the case where stations are embedded in Rd,

but study the topological properties of their reception-zones in Rd+1, where niceness

properties emerge. We show that zones in Rd+1 obey a stronger property, namely,

hyperbolic convexity, which consequently implies that the zones enjoy the NFH property

(see Corollary 6.5). In addition, in Subsection 7.3, we study the interference function

and show that it satisfies the maximum principle. Whether the SINR function (whose

denominator is the interference function) follows the maximal principle it is not yet

known, if so - the NFH property of d−dimensional zones follows.
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5 The number of connected cells in non-uniform SINR

diagram

In this section, we aim to achieve bounds for the number of connected cells in non-

uniform diagrams. The scheme is as follows. In Section 5.1, we consider the 1-dimensional

case, where stations are embedded in R1. We use the NFH property to derive a tight

bound on the number of cells. In Subsection 5.2, we consider the general case of Rd

and provide upper bounds for the number of cells. In Subsection and 5.3, we present

an extreme construction that maximizes the number of cells of a single transmitter. In

Section 6, we study networks of stations embedded in Rd but draw the map in Rd+1. It

is shown that the d+ 1 dimensional zones are connected.

5.1 The one-dimensional case

We follow the notations of Subsection 4.1. Recall that it is assumed that β ≥ 1, otherwise

the number of cells is bounded by Ω(n2). To see this, consider the case for infinitesimally

small β = ǫ. In this case, there exists a point p ∈ Hi(A) in (−∞, xji
1
) and (xjin−1

,∞)

and in any segment (xji
k
, xji

k+1
), for every k = 1, ...., n − 2, where jik is the index of the

k’th element in {xj | j ∈ {1, ..., n} \ {i}}, i.e., xji
1
< xji

2
< ... < xjin−1

. Since sj /∈ Hi

for any sj ∈ S \ {si}, it follows that any station has n reception cells (separated by the

positions of n− 1 stations), hence the overall number of cells is n2.

In one dimension, a connected cell H1,j(A) ⊆ H1(A), j ∈ [1, τ1(A)], is represented

by a segment σ = [a, b], where a, b ∈ R. Recall that σ is a cell of H1(A) iff it satisfies two

properties: (a) Continuity with respect to successful reception of s1, i.e., SINRA(s1, x) ≥
β for every a ≤ x ≤ b. (b) Maximality with respect to property (a), i.e., for any

a′ < a and b′ > b, neither of the segments [a′, b] nor [a, b′] enjoys property (a).

We now use the NFH property established in Lemma 4.4 for the one dimensional case

to show that the number of connected cells in 1-dimensional SINR diagrams is linear,

establishing the following theorem.

Theorem 5.1 In a 1-dimensional network A = 〈d = 1, S, ψ,N , β, α = 2〉, the number

of connected cells satisfies
∑

si∈S τi(A) ≤ 2n− 1.

Proof: We begin by observing that the reception zone of the weakest station is con-

nected.

25



Lemma 5.2 Consider a network A = 〈d = 1, S, ψ,N , β ≥ 1, α = 2〉 where station

s1 ∈ S has the lowest transmission power, i.e., ψ1 = min{ψi | i = 1, . . . , n}. Then

H1(A) is connected.

Proof: Assume, towards contradiction, that there exist (at least) two non-empty (dis-

connected) cells H1,1(A) and H1,2(A), corresponding to the segments σ1 = [a1, b1] and

σ2 = [a2, b2] respectively. Without loss of generality, assume that b1 < a2 and s1 ∈ σ1.
By the definition of a cell, p /∈ H1(A) for any p ∈ (b1, a2). Consider two cases. First,

assume that there exists some j > 1, such that sj ∈ (b1, a2). We show that in this

case σ2 ∩WVori(VA) = ∅. Recall that wA
i = ψ

1/α
i for every si ∈ S. Since ψj ≥ ψ1,

it follows that wA
j ≥ wA

1 . In addition, dist(sj , p) < dist(s1, p) for any p ∈ σ2. Thus

σ2 ∩WVori(VA) = ∅, leading to contradiction by Lemma 2.1. Next, consider the com-

plementary case, where [b1, a2] ∩ S = ∅. Since b1, a2 ∈ H1(A), by the NFH property

(Lemma 4.4), p ∈ H1(A) for every p ∈ (b1, a2), contradiction. The Lemma is established.

We proceed by bounding the total number of cells in H(A). Let the stations of

S = {s1, . . . , sn} be ordered in non-increasing order of transmission energies, i.e., ψ1 ≥
ψ2 ≥ ... ≥ ψn. Consider a process in which the stations are added to the system

sequentially, placing st at position xt in step t for any t = 1, . . . , n.

Let St = {s1, . . . , st} be the set of stations already in place on the end of the tth

iteration. Let At = 〈d = 1, St, ψ,N , β, α = 2〉 denote the wireless network at this stage,

and let µt denote the number of connected cells in At. To analyze the increase in µt on

the tth iteration, in which the station st was added to At−1 at point xt, we distinguish

between two cases:

(a) The point xt could not receive correctly any of the stations in St−1, i.e., SINRAt−1
(sk, xt) <

β for every sk ∈ St−1.

(b) The point xt was a successful reception point for some of sk ∈ St−1 on the end of

iteration t− 1, that is SINRAt−1
(sk, xt) ≥ β.

We state the following two claims (one for each case).

Claim 5.3 If SINRAt−1
(sk, xt) < β for every sk ∈ St−1, then µt ≤ µt−1 + 1.

Proof: We prove a slightly stronger property, namely, that if the cell Hk,ℓ(At−1) ⊆
Hk(At−1), for sk ∈ St−1, ℓ ∈ [1, τk(At−1)], corresponds to the segment σ = [a, b], then
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adding to At−1 any station sj for j ≥ t, even out of order, at step t to the point xj /∈ [a, b]

cannot split σ into two or more reception cells, which implies that µt ≤ µt−1 + 1. (Note

that, σ may disappear in the manner that any station cannot be heard in σ.) This

property is proven by contradiction. Assume to the contrary, that sj does split σ into

σl = [c, d] and σr = [e, f ] where a ≤ c < d < e < f ≤ b. This implies the existence

of a point q, d < q < e, such that q cannot receive sk correctly under simultaneous

transmission of the stations of St = St−1 ∪ {sj}, whereas the points d and e do receive

sk’s transmission correctly. As σ = [a, b] ⊆ Hk(At−1), the subsegment [d, e] is free of

St−1 stations (except maybe sk), i.e., xf /∈ [d, e] for any sf ∈ St−1 \ {sk}. In addition

xj /∈ [a, b], hence also xj /∈ [d, e], implying that [d, e] ∩ (St \ {sk}) = ∅. It follows by

the NFH property (Lemma 4.4) that sk is received at every point in [d, e], including q,

leading to contradiction and the claim follows.

Claim 5.4 If SINRAt−1
(sk, xt) ≥ β for some sk ∈ St−1, then µt ≤ µt−1 + 2.

Proof: As st is the weakest station in At, by Lemma 5.2, Ht(At) is composed of a single

reception cell, containing the point xt. Let σt = Ht(At) and let Hk,ℓ(At−1) correspond

to the segment σk = [a, b] such that xt ∈ [a, b], for ℓ ∈ [1, τk(At−1)], therefore σ
k∩σt 6= ∅.

We begin by showing that st cannot split σ
k into more than two parts, namely, to the

left and to the right of xt. Assume, to the contrary, that adding st creates more than

two additional cells of sk. Without loss of generality, assume that there are at least

two cells of sk to the left of xt, denoted by σkl = [al, bl] and σkl′ = [al′ , bl′], such that

bl < al′ . Since [bl, al′] ∩ St = ∅, we end with a contradiction to Lemma 4.4. Moreover,

by the stronger property proved in Lemma 5.3, it follows that none of the cells of(
∪sf∈St−1

Hf (At−1)
)
\ {σk} is divided at step t, which completes our argument. Overall,

due to step t, we have at most two fragments of a previous existing reception cell and

one addition of new reception cell, namely, σt. The claim follows.

Combining Claims 5.3 and 5.4, it follows that after n steps, µn ≤ 2n−1, establishing

Theorem 5.1.

5.2 The d-dimensional case

We now consider the general case of a network of the form A = 〈d, S, ψ,N , β, α = 2〉,
and establish upper and lower bounds on the number of connected cells. To obtain an

upper bound on the number of connected cells we apply the following theorem due to

Milnor [12] and Thom [19].
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Theorem 5.5 (Milnor (1964), Thom(1965)) Let f1 . . . , fm be polynomials in Rd with

deg(fi) < K. Then V = {x = (x1, . . . , xd) | fi(x) = 0 for every i ∈ {1, . . .m}} has at

most K(2K − 1)d−1 connected cells.

The following is a direct consequence of Theorem 5.5.

Lemma 5.6
∑n

i=1 τi = O(nd+1).

Proof: Consider F i
A(p), the characteristic polynomial of Hi(A) given in Eq. (3). As

deg(F i
A(p)) ≤ 2 · n, Theorem 5.5 implies that τi(A) = O(nd). Summing over all n

stations yields the claim.

In the same manner we can also bound the number of connected cells in H∅(A),
where no station is received correctly.

Corollary 5.7 τ∅(A) = O(n2d).

Proof: We first show that for β ≥ 1, the characteristic polynomial ofH∅(A) (also known
as the noise polynomial) is

F ∅
A(p) = −

n∏

i=1

F i
A(p) . (24)

It is required to show that p ∈ H∅(A) iff F ∅
A(p) < 0. The first direction is trivial, as

if p ∈ H∅(A) then F i
A(p) > 0 for every i ∈ {1, . . . , n} and hence F ∅

A(p) < 0. For the

opposite direction, observe that if p /∈ H∅(A), then there exists exactly one station sj

such that p ∈ Hj(A) and F j(A, p) ≤ 0. This is due to the fact that when β ≥ 1,

reception zones for different stations do not overlap. Hence F i
A(p) > 0 for any i 6= j,

and therefore F ∅
A(p) ≥ 0 as required.

Consequently, the degree of the noise polynomial F ∅
A(p) is bounded by deg(F ∅

A(p)) ≤
2 · n2. By Theorem 5.5 it then follows that τ∅(d) < O(n2d).

Throughout the reminder of this section we consider the case where α = 2 and the

2-dimensional Euclidean plane, i.e., d = 2. We focus on the station s1 with transmission

power ψ1 and devise two construction schemes that aim to maximize the number of con-

nected cells τ1. These constructions achieve τ1 = Ω(n) and τ1 = Ω(logψ1) respectively.

We believe the first construction is close to the maximum possible, i.e., we suspect that∑n
i=1 τi = Θ(n), yet no proof is currently available.
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5.3 Construction of Ω(n) connected cells for a single station

The goal of the construction is as follows. Given n ≥ 1, find a placement of 4n + 1

stations S = {s0, . . . , s4n} and a power assignment ψ such that τ0 = n + 1, that is, s0 is

correctly received in n + 1 different connected cells.

Let us partition S \{s0} into n quadruples Si = {s4i+1, . . . , s4i+4}, 0 ≤ i ≤ n−1, each

corresponding to the vertices of an axis-aligned square. We assume the SINR parameters

α = 2, N = 1, β = 1 and ψi = 1 for i > 0. The value of ψ0 and the positions of S will be

determined later on. The resulting network is A = 〈d = 2, S, ψ,N = 1, β = 1, α = 2〉.
We next present the construction and then analyze the resulting structure.

5.3.1 Proposed scheme for station locations

Locate station s0 at the origin (0, 0) and draw a circle C̃ of radius R around it. Place n

points C0, . . . , Cn−1 at equidistant locations on C̃, with Ci =
〈
R cos

(
2π
n
i
)
, R sin

(
2π
n
i
)〉

for 0 ≤ i ≤ n − 1. Around each point Ci draw a unit circle. Locate the stations of Si

on the vertices of the axis-aligned
√
2×
√
2 square enclosed by ith unit-circle. Let Ŝi be

the square defined by its four vertices Si. See Figure 10.

1

S0

0C

C

0

s2

s4 s3

s

~

s

Figure 10: Geometric view of the construction

We make use of the following equalities.
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Fact 5.8 (a) dist(C0, Ci) = 2R sin
(
π
n
i
)
.

(b)
n−1∑

i=1

1

sin2
(
π
n
i
) =

n2 − 1

3
, [23].

Corollary 5.9

n−1∑

i=1

1

dist(C0, Ci)2
=

n2 − 1

12R2
.

Lemma 5.10 For every 0 ≤ i ≤ n− 1:

(a) For the center point Ci, I(Si, Ci) = 4.

(b) For any point p ∈ Φ(Ŝi), I(Si, p) ≥ 44
5
.

Proof: For convenience, let us translate the square Si to the origin, i.e., map Ci to (0, 0).

Let Si = {(−a, a), (a, a), (a,−a), (−a,−a)} be the vertices of the resulting 2a×2a square,
where a = 1/

√
2 (see Figure 11).

i

Mi s4i+2

s4i+4 s4i+3

s4i+1

Si
^

Si
^Φ(   )

1

(a,a)

(a,−a)

(−a,a)

C

(−a,−a)

Figure 11: Zoom into on the unit circle of Si and on the square Ŝi.

The interference of Si on the center point Ci = (0, 0) is given by I(Si, Ci) = I(Si, (0, 0)) =

4 ·
(
1/
(√

2a
)2)

= 4, implying part (a) of the lemma.

We next prove part (b). Due to symmetry, we may restrict attention to a single

square edge, say, the upper edge e = {p = (x, y) | −a ≤ x ≤ a , y = a}. The interference
of the four stations of Si on a point p = (x, y) ∈ e is given by

I(Si, (x, a)) =
1

(x− a)2 +
1

(x+ a)2
+

1

(x− a)2 + 4a2
+

1

(x+ a)2 + 4a2
. (25)
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Let Mi = (0, a) be the middle point on edge e. The point Mi is the only local optimum

of I(Si, (x, a)) in the range x ∈ (−a, a), as

∂I(Si, (x, a))

∂x
= − 2

(x− a)3
− 2

(x+ a)3
− 2 (x− a)
(
4a2 + (x− a)2

)2 −
2 (x+ a)(

4a2 + (x+ a)2
)
2

= 0

implies x = 0. Since the second derivative ∂2I(Si, (x = 0, a))/∂x2 = 1496/(125a2) > 0,

we conclude that Mi is indeed a local minimum (see Figure 12). In particular, we

get that I(Si,Mi) = I(Si, (0, a)) = 12/(5a2) = 24/5, and I(Si,Mi) ≤ I(Si, p) for any

p = (x, y) ∈ Φ(Ŝi), that is not an edge midpoint, establishing part (b) of the lemma.

à

-a
à

a-1.0 -0.5 0.5 1.0

-100

-50

50

100

Figure 12: Interference function along one square edge

5.3.2 Construction strategy

A desired construction should impose two requirements for each 0 ≤ i ≤ n− 1:

(R1) SINR(s0, Ci) ≥ 1,

(R2) SINR(s0, p) < 1 for every p ∈ Φ(Ŝi).

Requirement (R1) guarantees that s0 is correctly received at n regions, namely, the

immediate ε-neighborhoods of the points Ci for sufficiently small ǫ > 0, whereas require-

ment (R2) implies also that s0 is not received on any point on the perimeters of the n

squares, and hence guarantees the n reception regions to be disconnected cells.

Having fixed the station locations up to the choice of R, and the transmission powers

of all stations except s0, it remains to select values for R and ψ0 that will ensure (R1) and
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(R2). We employ the following strategy. For each p ∈ Φ(Ŝi), we establish an overestimate

for the energy received at Mi from s0, and an underestimate for the interference caused

by S \ {s0}. For each Ci, we establish an underestimate for the energy received at Ci

from s0, and an overestimate for the interference caused by S \ {s0}. We then select ψ0

and R that satisfy Requirements (R1) and (R2) under these stricter conditions.

5.3.3 Satisfying (R1) at the center points Ci

Lemma 5.11 If R ≥ sin−1(π/n) and ψ0 ≥ 5R2 + 4(n2 − 1)/3, then requirement (R1)

holds, namely, SINR(s0, Ci) ≥ 1 for every 0 ≤ i ≤ n− 1.

Proof: Let ŝj = s4j+k for some k ∈ {1, . . . , 4} be the closest station to Ci in Sj, i.e.,

such that dist(Ci, ŝj) = min1≤l≤4 {dist(Ci, s4j+l)}. To overestimate the interference of

Sj on Ci we eliminate the other three stations of Sj, and assign ŝj transmission power

ψ̂j = 4. By the triangle inequality, dist(ŝj , Ci) > dist(Ci, Cj)− 1, and therefore

I(S \ (Si ∪ {s0}) , Ci) =
∑

j 6=i
I(Sj , Ci) <

∑

j 6=i
I(ŝj, Ci) <

∑

j 6=i

4

(dist(Ci, Cj)− 1)2
.

By Fact 5.8 (a),

I(S \ (Si ∪ {s0}) , Ci) =
∑

i 6=0

4
(
2R · sin

(
π
n
i
)
− 1
)2 ≤

∑

i 6=0

4

(R · sin(π
n
i))2

,

where the last inequality follows by the fact that R · sin(π
n
i) ≥ 1 for every i (by the first

assumption of the lemma). By Corollary 5.9,

I(S \ (Si ∪ {s0}) , Ci) <
4(n2 − 1)

3R2
.

By Lemma 5.10 (a) it follows that I(S \ (Si ∪ {s0}) , Ci) < 4 + 4(n2 − 1)/(3R2). Finally,

by plugging this into Equation (1), recalling that N = 1, we get that

SINR(s0, Ci) ≥
ψ0 · R−2

5 + 4(n2 − 1)/(3R2)
> 1,

where the last inequality follows by the second assumption of the lemma. Hence require-

ment (R1) holds.
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5.3.4 Satisfying (R2) at the boundary points Φ(Ŝi)

We now turn to selecting R and ψ0 ensuring Requirement (R2) at every point p ∈ Φ(Ŝi).

By construction, R − 1 is the minimal distance from the origin to any point on a unit

circle centered at Ci. Hence we have the following.

Observation 5.12 E(s0, p) < ψ0/(R− 1)2, for every p ∈ Φ(Ŝi).

Lemma 5.13 If R ≥ sin−1(π/n) and ψ0 < (54
5
+ n2−1

27R2 ) · (R−1)2, then requirement (R2)

holds, namely, SINR(s0, p) < 1 for every p ∈ Φ(Ŝi), 0 ≤ i ≤ n− 1.

Proof: We underestimate I(Sj , p), p ∈ Φ(Ŝi) by considering only the station ŝj = s4j+k

(for some k ∈ {1, . . . , 4}) closest to p in Sj. The distance dist(ŝj, p) can be overestimated

by the distance between p and center Cj. Formally, we have:

I(Sj , p) > I(ŝj , p) > I(Cj , p) >
1

(dist(Cj , Ci) + 1)2
>

4

(3 · dist(Cj, Ci))2
. (26)

To see the last inequality, note that since R ≥ sin−1(π/n) by the first assumption of the

lemma, Fact 5.8(a) guarantees that dist(C0, C1) ≥ 2. As dist(C0, C1) = mini 6=j dist(Ci, Cj)

it follows that also dist(Ci, Cj) ≥ 2 for every i and j. We therefore have, by Inequality

(26) and by Fact 5.8 (b), that

I(S \ (Si ∪ {s0}) , p) =
∑

j 6=i
I(Sj , p) >

4

9
·
∑

j 6=i
dist(Cj , Ci)

−2 =
n2 − 1

27R2
.

Next, by combining Observation 5.12 and Equation (1), we have that

SINR(s0, p) ≤
ψ0 · (R− 1)−2

54
5
+ (n2 − 1)/(27R2)

< 1,

where last inequality follows by the second assumption of the lemma. The lemma follows.

5.3.5 Putting it all together

Finally, we combine the conditions developed in the previous subsections for of require-

ments (R1) and (R2) (Lemmas 5.11 and 5.13) and show that there exists a feasible

solution, namely, a choice of R and ψ0 such that both requirements hold. A summary

of the conditions is provided in Table 1.
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Point (q) E(s0, q) I(Si, q) +
∑

j 6=i
I(Sj, q) R ψ0

Ci ψ0/R
2 < 4 + 4(n2−1)

3R2 ≥ sin−1(π/n) ≥ 5R2 + 4(n2 − 1)/3

p ∈ Φ(Ŝi) < ψ0/(R− 1)2 > 44
5
+ (n2−1)

27R2 ≥ sin−1(π/n) < (54
5
+ n2−1

27R2 ) · (R− 1)2

Table 1: Summary of construction requirements

Clearly, R should be greater than sin−1(π/n). Let U =
(
54
5
+ n2−1

27R2

)
· (R − 1)2 and

L =

(
5 +

4(n2−1)
3R2

)
· R2. Then by Lemmas 5.11 and 5.13, ψ0 should be chosen to

satisfy ψ0 < U and ψ0 ≥ L. It is left to verify that for every n there exists a choice

of R > sin−1(π/n) such that U > L. If this holds, then any choice of ψ0 in the range

U > ψ0 ≥ L satisfies the requirements. Letting

∆ = U − L =

(
5
4

5
+
n2 − 1

27R2

)
· (R− 1)2 −

(
5 +

4 (n2 − 1)

3R2

)
·R2 , (27)

it suffices to show that ∆ > 0 for sufficiently large R. This is done by developing

Equation (27) taking into account leading factors. For ease of analysis, let n∗ = n2 −
1. Then by Equation (27) we need R to satisfy R2 · (4n∗/ (3R2) + 5) < (R − 1)2 ·
(n∗/ (27R2) + 29/5). Multiplying by R2 and rearranging, the requirement becomes

4

5
R4 − 58

5
R3 +

29

5
R2 >

(
35

27
R2 − 2

27
R +

1

27

)
n∗ .

For sufficiently large R, the left hand side expression is greater than 3/5R4 and the

right hand side expression is smaller than 12/5R2 · n∗, so it suffices to require that

3/5R4 > 12/5R2 · n∗, or after simplification, that R > 2n. We therefore established the

following.

Theorem 5.14 There exists a network A such that τ1 = Ω(n).
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6 Connectivity of reception zones in Rd+1

6.1 Hyperbolic convexity in SINR diagrams (α ≥ 2)

Let S = {s1, . . . , sn} be a set of stations embedded in the d-dimensional space Rd.

We consider on the network A = 〈d, S, ψ,N , β, 2α ≥ 2〉 in Rd and the reception map

H(Ad+1) created for it in Rd+1. We assume without loss of generality that the stations are

embedded in the hyperplane xd+1 = 0 in Rd+1, with positions (xsi1 , ..., x
si

d , 0). Throughout

this section we slightly abuse notation by occasionally considering a point p = (xp1, ..., x
p
d)

in Rd as a point in Rd+1, namely, (xp1, ..., x
p
d, 0). This section concerns what happens when

we go one dimension higher, and consider the SINR diagram in dimension d + 1 for S.

Recall that

Hi(Ad+1) = {p ∈ Rd+1 \ {S} | SINR(si, p) ≥ β} ∪ {si} .

The following theorem shows that the situation improves dramatically in this setting.

Theorem 6.1 Given a network A = 〈d, S, ψ,N, β, 2α ≥ 2〉, Hi(Ad+1) is connected for

every i ∈ {1, . . . , n}.

In what follows, we concentrate on s1 and show that H1(Ad+1) is connected. Let

p = (xp1, ..., x
p
d, x

p
d+1) ∈ Rd+1 be any point that correctly receives the transmission of

station s1 = (xs11 , ..., x
s1
d , 0). To prove that H1(Ad+1) is connected, we show that there

exists a continuous curve connecting s1 and p ∈ Rd+1 such that s1 is correctly received

at any point along this curve. In fact, we establish a stronger property, namely, that for

any two points p1 = (xp11 , ..., x
p1
d , x

p1
d+1) and p2 = (xp21 , ..., x

p2
d , x

p2
d+1) in H1(Ad+1), residing

on the same side of the hyperplane xd+1 = 0, i.e., satisfying

sign(xp1d+1) · sign(xp2d+1) ≥ 0 , (28)

there exists a continuous curve connecting p1 and p2 in Rd+1 such that s1 is correctly

received at any point along this curve. In particular, this curve corresponds to the

hyperbolic geodesic of p1 and p2 denoted by h(p1, p2). Note that this indeed guarantees

the connectivity of H1(Ad+1) by taking p1 = s1.

We begin by recalling some facts about hyperbolic geometry, see [20] for details.

Specifically, we consider a standard model of hyperbolic planes, namely, the upper half-

plane model. Under this model, the geodesic of two points p1, p2 ∈ Rd is either a vertical

line or an arc, as will be formulated later. A point set P is hyperbolic star-shaped with
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respect to point p1 ∈ P if the hyperbolic geodesic of p1 and every point p2 ∈ P , is

contained in the point-set P as well, e.g., h(p1, p2) ⊆ P (where p1 and p2 satisfy Ineq.

(28)). A point set P is hyperbolic convex if it is star-shaped with respect to any point

p1 ∈ P . In other words, for any two points p1, p2 ∈ P obeying (28), h(p1, p2) ⊆ P as

well. In this section we show that the reception zone H1(Ad+1) is hyperbolic convex and

therefore connected.

Figure 13: Hyperbolic convexity in R2. The stations s1 and s2 are embedded in R1. (a)

Convexity on a straight vertical line in R2, p1 p2. (b) Hyperbolic convexity on a circular arc

in R2, p̂1 p2.

We proceed by considering two cases, one for each type of hyperbolic geodesics.

Case HC1: xp1i = xp2i for i ∈ {1, . . . , d}; h(p1, p2) corresponds to a vertical line denoted

by p1 p2, see points p1 and p2 of Figure 14(a).

Case HC2: There exists some i ∈ {1, . . . , d} such that xp1i 6= xp2i ; h(p1, p2) corresponds

to an arc, denoted by p̂1 p2, see points p2 and p3 of Figure 14(b).

In Subsection 6.1.1, we consider Case HC1 and show that if p1 and p2 are inH1(Ad+1),

then so is any point on the segment p1 p2. In Subsection 6.1.2, we refer to Case HC2 and

show that if p1 and p2 are in H1(Ad+1), then there exists an arc p̂1 p2 fully contained in

H1(Ad+1). In particular, for p1 = s1, there exists an arc ŝ1 p2, for every reception point

p2 ∈ H1(Ad+1), such that ŝ1 p2 ⊆ H1(Ad+1), i.e., the zone is hyperbolic star-shaped with

respect to s1, hence it is connected.

6.1.1 Analysis of Case HC1

For Case HC1, we state the following lemma.
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p
′

p1 p2

(a)

s1

p1

p2

r

p1 p2

(b)

s1 q

r

p2

p1

Figure 14: The hyperbolic geodesic of points p1 and p2 corresponds to either (a) a vertical

line (case HC1), or (b) a hyperbolic arc (case HC2).

Lemma 6.2 Let p1, p2 ∈ H1(Ad+1) be points obeying Inequality (28) such that xp1j = xp2j
for j ∈ {1, . . . , d}. Then p1 p2 ∈ H1(Ad+1).

Proof: Assume without loss of generality that xp1d+1 < xp2d+1. Consider an internal point

p = (xp11 , ..., x
p1
d , x

p
d+1) ∈ p1 p2, i.e., x

p1
d+1 < xpd+1 < xp2d+1. Due to symmetry we may

restrict attention to xp1d+1 ≥ 0. (To simplify notations, when it is clear from the context,

we may omit p from xpd+1 and write xd+1.) Let p′ = (xp11 , ..., x
p1
d , 0). For ease of notation,

let ai = dist(si, p
′)2, bi(xd+1) = ai + x2d+1. Note that dist(si, p)

2α = bαi (xd+1), for every

i ∈ {1, ..., n}. Thus, the SINR function of s1 restricted to such point p is given by

SINR(s1, p) =

ψ1

b1(xd+1)α

n∑

i=2

ψi
bi(xd+1)α

+N

.

Let li(xd+1) = b1(xd+1)/bi(xd+1) and mi(xd+1) = (ai − a1) /bi(xd+1)
2. In this context, it

may be convenient to consider the reciprocal of the SINR function (Eq. (2)),

SINR−1(s1, p) =
n∑

i=2

ψi
ψ1
· lαi (xd+1) +

N · bα1 (xd+1)

ψ1
. (29)

We first show that this function is twice differentiable in xd+1 on p1 p2. In particular, it

is sufficient to show that it is continuous. Assume the contrary. Since the function is

undefined only at stations positions, discontinuity implies that there might exist some

station si ∈ p1 p2, where 2 ≤ i ≤ n. Since xsid+1 = 0, only p1 might correspond to such

si. But p1 is a reception point of s1, contradiction. To characterize the optimum points,

we next consider the first and second derivatives of the function SINR−1 on p1 p2.
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Note that,
∂li(xd+1)

∂xd+1
= 2xd+1 · mi(xd+1) ,

∂mi(xd+1)

∂xd+1
= −4xd+1mi(xd+1)/bi(xd+1) and

∂bi(xd+1)

∂xd+1
= 2xd+1. Thus,

∂SINR−1(s1, p)

∂xd+1
= 2α · xd+1

(
n∑

i=2

ψi
ψ1
· lα−1
i (xd+1) ·mi(xd+1) +

N · bα−1
1 (xd+1)

ψ1

)
,(30)

and

∂2SINR−1(s1, p)

∂x2d+1

= 2α

(
n∑

i=2

ψi
ψ1
· lα−1
i (xd+1) ·mi(xd+1) +

N · bα−1
1 (xd+1)

ψ1

)
(31)

+ 4α · (α− 1) · x2d+1 ·
(

n∑

i=2

ψi
ψ1

lα−2
i (xd+1) ·m2

i (xd+1) +
N · bα−2

1 (xd+1)

ψ1

)

− 8αx2d+1

n∑

i=2

ψi
ψ1

· lα−1
i (xd+1) ·

mi(xd+1)

bi(xd+1)
.

Let Jpos = {i ∈ {2, . . . , n} | ai ≥ a1} and Jneg = {i ∈ {2, . . . , n} | ai < a1}.
We distinguish between two cases.

Case 1: Jneg = ∅. In this case, mi(xd+1) ≥ 0, therefore, by Eq. (30) we get that
∂SINR−1(s1,p)

∂xd+1
≥ 0, for every p ∈ p1 p2. This implies that SINR−1(s1, p) ≤ SINR−1(s1, p2),

thus SINR(s1, p) ≥ SINR(s1, p2) ≥ β as required.

Case 2: Jneg 6= ∅. There exists some 2 ≤ i ≤ n such that ai < a1. This implies the

possible existence of other optimum points. Consider an optimum point of the form

popt = (xp11 , ..., x
p1
d , x

opt
d+1), where x

opt
d+1 6= 0. Thus by Eq. (30) we have that

∂SINR−1(s1, popt)

∂xoptd+1

= 2α·xoptd+1

(
n∑

i=2

(
ψi
ψ1
· lα−1
i (xoptd+1) ·mi(x

opt
d+1)

)
+
N · bα−1

1 (xoptd+1)

ψ1

)
= 0 .

(32)

In turn, this implies that

n∑

i=2

ψi
ψ1

(
lα−1
i (xoptd+1) ·mi(x

opt
d+1)

)
+
N · bα−1

1 (xoptd+1)

ψ1
= 0. (33)

Plugging this equality into Equation (32), the second derivative of SINR−1 at popt be-

comes

∂2SINR−1(s1, popt)

∂(xoptd+1)
2

= 4α(α− 1)(xoptd+1)
2

(
n∑

i=2

ψi
ψ1
lα−2
i (xoptd+1) ·m2

i (x
opt
d+1) +

N · bα−1
1 (xoptd+1)

ψ1

)
(34)

− 8α(xoptd+1)
2

n∑

i=2

ψi
ψ1
· lα−1
i (xoptd+1) ·

mi(x
opt
d+1)

bi(x
opt
d+1)

.
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To prove the lemma, we wish to show that the SINR function has no-local minimum

on the vertical line segment, p1 p2, or that the second derivative of SINR−1 restricted to

extreme internal points in the segment is non negative. Define

℘(xoptd+1) = −8α(xoptd+1)
2

n∑

i=2

ψi
ψ1

· lα−1
i (xoptd+1) ·

mi(xd+1)

bi(xd+1)
. (35)

Since α ≥ 1, li(x
opt
d+1) ≥ 0 and b1(x

opt
d+1) ≥ 0, thus by Eq. (34), it is sufficient to show that

℘(xoptd+1) ≥ 0. Note that, Jpos and Jneg separate Eq. (35) into its positive and negative

terms. Let

Spos =
∑

i∈Jpos

ψi
ψ1
· lα−1
i (xoptd+1) ·

mi(x
opt
d+1)

bi(x
opt
d+1)

and Sneg =
∑

i∈Jneg

ψi
ψ1
· lα−1
i (xoptd+1) ·

mi(x
opt
d+1)

bi(x
opt
d+1)

.

Then ℘(xoptd+1) = −8(xoptd+1)
2 (Spos + Sneg). Recall that by the definition of b1(x

opt
d+1), it

follows that

b1(x
opt
d+1) < bi(x

opt
d+1) iff ai > a1 ,

for any 1 ≤ i ≤ n. Since bi(x
opt
d+1) > 0 for every i, we have that

Spos ≤
∑

i∈Jpos

ψi
ψ1
· lα−1
i (xoptd+1) ·

mi(x
opt
d+1)

b1(x
opt
d+1)

and Sneg <
∑

i∈Jneg

ψi
ψ1
· lα−1
i (xoptd+1) ·

mi(x
opt
d+1)

b1(x
opt
d+1)

,

This implies that

Spos+Sneg <
1

b1(x
opt
d+1)
·
(

n∑

i=2

ψi
ψ1
· lα−1
i (xoptd+1) ·mi(x

opt
d+1)

)
=

1

b1(x
opt
d+1)
·−N · b

α−1
1 (xoptd+1)

ψ1
≤ 0,

where the right equality hold by Eq. (33). Thus, ℘(xoptd+1) ≥ 0 and also ∂2SINR−1(s1, popt)/∂(x
opt
d+1)

2 ≥
0. I.e., any local optimum point other than p′ = (xp11 , ..., x

p1
d , 0) is a local minimum.

Since Equation (29) is continuous and twice differentiable in p1 p2, this case corre-

sponds to three local optimum points: two local minima, namely, (xp11 , ..., x
p1
d , x

opt
d+1)

and (xp11 , ..., x
p1
d ,−xoptd+1), and one local maximum point, p′ = (xp11 , ..., x

p1
d , 0) in between.

In sum, there is no local maxima inside p1 p2, which implies that SINR−1(s1, p) ≤
max{(SINR−1(s1, p1)), SINR

−1(s1, p2)} and this implying that

SINR(s1, p) ≥ min{SINR(s1, p1), SINR(s1, p2)} ≥ β.

The lemma holds.

For a pictorial description of Lemma 6.2, see Figure 13a.

A direct consequences of this claim is the following.
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Corollary 6.3 Let p1, p2 ∈ H1(Ad+1) be points satisfying Equation (28) s.t xp1j = xp2j
for j ∈ {1, . . . , d}. Then the line L extrapolated by the segment p1 p2 intersects H1(Ad+1)

at most 4 times.

Proof: The proof follows immediately by the fact that L has at most three extremum

points. Note that in general, the number of intersections is bounded by O(n), due to

the degree of the SINR function.

6.1.2 Analysis of Case HC2

We next deal with the complementary case CH2. Let p1, p2 ∈ Rd+1 be two points

of interest such that xp1j 6= xp2j for some j ∈ {1, . . . , d} (recall that p1 and p2 obey

Inequality (28)). The hyperbolic geodesic of p1 and p2, p̂1 p2, is defined as follows. Let

pd1 = (xp11 , ..., x
p1
d , 0) and p

d
2 = (xp21 , ..., x

p2
d , 0) be the projection of the points p1 and p2 to

the hyperplane xd+1 = 0, respectively. Consider a point q ∈ Rd×{0} equidistant from p1

and p2 and positioned on the line defined by the points pd1 and pd2. Let r = dist(p1, q) =

dist(p2, q). The hyperbolic geodesic, p̂1 p2, corresponds to the shorter arc connecting p1

and p2 on the circumference Φ(Bd+1(q, r)).

Lemma 6.4 Let p1, p2 ∈ H1(Ad+1) obeying (28). Then p̂1 p2 ⊆ H1(Ad+1).

Proof: By Lemma 2.3, we may assume without loss of generality that xp1j = xp2j for

j ∈ {2, . . . , d} and by q definition it follows that xqj = xp1j for j ∈ {2, . . . , d}. Due to

symmetry, we may restrict attention to the case where xp1d+1 ≥ 0 and xp2d+1 ≥ 0. We

begin by showing that the SINR function has no local minimum on p̂1 p2. Recall that

r = dist(q, p1). The circumference Φ(Bd+1(q, r)) is defined by the equation

d∑

j=1

(xj − xqj)2 + x2d+1 = r2 . (36)

Equivalently, the xd+1 coordinate of points on the circumference can be expressed as

xd+1 = ±
√
r2 −∑d

j=1(xj − xqj)2 . Let g(x1, . . . , xd) =
√
r2 −∑d

j=1(xj − xqj)2 , for every

(x1, ..., xd) ∈ Rd. We consider the function SINR−1(s1, p) of Eq. (2), restricted to a point

p = (x1, ..., xd, g(x1, . . . , xd)) on Φ(Bd+1(q, r)). For ease of notation, let ai = (xsi1 − xq1)
and bi =

∑d
j=1

(
(xsij )

2 − (xqj)
2
)
− 2

∑d
j=2(x

si

j − xqj)xj + r2. We then have that

dist(si, p)
2 =

d+1∑

j=1

(
xsij − xj

)2
= bi − 2aix1. (37)
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Let li(x1) = dist(s1, p)
2/dist(si, p)

2. By plugging Equation (37) into the SINR−1 function

(Eq. (2)), we get that

SINR−1(s1, p) =
n∑

i=2

ψi
ψ1
· lαi (x1) +

N(b1 − 2a1x1)
α

ψ1
. (38)

Note that since xp1j = xp2j for j ∈ {2, . . . , d}, it follows by the definition of p̂1 p2, that

xpj = xp1j for j ∈ {2, . . . , d} for every p ∈ p̂1 p2. To characterize the optimum points,

it is sufficient, therefore, to consider the derivatives of Equation (38) with respect to

x1 only (i.e., treating xj for j ∈ {2, . . . , d} as constants). It is important to note that

Equation (38) is twice differentiable on p̂1 p2. To see this, it in enough to argue that

it is continuous or that no station si other than s1 belongs to p̂1 p2 (this is indeed a

sufficient condition for continuity). Assume, to the contrary, that there might be some

station si ∈ p̂1 p2 for 2 ≤ i ≤ n. Since the arc endpoints, p1 and p2, are in H1(Ad+1),

neither of them correspond to si, for i > 1. It follows that si occurs at some internal

point on the arc. Since p1 and p2 satisfy Inequality (28), it follows that xpd+1 > 0 for

every p ∈ p̂1 p2 \ {p1, p2} . Yet, xsid+1 = 0, for every si ∈ S, yielding a contradiction.

Define mi(x1) = 2 (aib1 − a1bi) / (b1 − 2a1x1)
2, e.g., mi(x1) = ∂li(x1)/∂x1. Note that,

∂mi(x1)/∂x1 =
4ai·mi(x1)
b1−2a1x1

= −4ai·mi(x1)
dist(si,p)2

.

Consider an optimum point popt ∈ p̂1 p2 \ {p1, p2}. This optimum point satisfy

∂SINR−1(s1, popt)

∂xopt1

= α

(
n∑

i=2

ψi
ψ1
· li(xopt1 )α−1 ·mi(x

opt
1 )− 2a1 ·N ·

(
b1 − 2a1x

opt
1

)α−1

ψ1

)
= 0 .

(39)

The second derivative with respect to xopt1 is given by

∂2SINR−1(s1, popt)

∂(xopt1 )2
= α(α− 1)

(
n∑

i=2

ψi
ψ1
· lα−2
i (xopt1 ) ·m2

i (x
opt
1 ) + 4a21 ·

N
(
b1 − 2a1x

opt
1

)α−2

ψ1

)

+ 4α
n∑

i=2

ψi
ψ1

· lα−1
i (xopt1 ) · ai ·mi(x

opt
1 )

dist(si, popt)2
.

Define

℘(popt) = 4α

n∑

i=2

ψi
ψ1
· lα−1
i (xopt1 ) · ai ·mi(x

opt
1 )

dist(si, popt)2
.

Since α ≥ 1, it is sufficient to show that ℘(popt) ≥ 0. We separate the summation

of Equation (40) into two parts, i.e., Spos and Sneg, the summation of elements that

correspond to positive (respectively, negative) elements in the left term of Equation
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(39). Formally, letting Jpos = {i ∈ {2, . . . , n} | aib1 ≥ a1bi} and Jneg = {i ∈ {2, . . . , n} |
aib1 < a1bi}, we have that ℘(popt) = 4α(Spos + Sneg), where

Spos =
∑

i∈Jpos

ψi
ψ1

·li(xopt1 )α−1· ai ·mi(x
opt
1 )

dist(si, popt)2
and Sneg =

∑

i∈Jneg

ψi
ψ1

·li(xopt1 )α−1· ai ·mi(x
opt
1 )

dist(si, popt)2
.

Let ci(x) = ai/dist(si, popt)
2. Then, sign(ci(x

p
1)) = sign(ai) for any p ∈ Φ(Bd+1(q, r)) \

{s1}. Therefore it follows that c1(x
opt
1 ) ≤ ci(x

opt
1 ) if aib1 ≥ a1bi (i.e., i ∈ Jpos), and that

c1(x
opt
1 ) > ci(x

opt
1 ) if aib1 < a1bi (i.e., i ∈ Jneg), implying that

Spos ≥
∑

i∈Jpos

ψi
ψ1
· lα−1
i (xopt1 ) · c1(xopt1 ) ·mi(x

opt
1 ) and Sneg >

∑

i∈Jneg

ψi
ψ1
· lα−1
i (xopt1 ) · c1(xopt1 ) ·mi(x

opt
1 ) .

Therefore,

℘(popt) ≥ 4α · c1(xopt1 )
n∑

i=2

ψi
ψ1
· lα−1
i (xopt1 ) ·mi(x

opt
1 )

= 8α · c1(xopt1 ) · a1 ·N · (b1 − 2a1x1)
α−1

ψ1

= 8α · a21 ·N
ψ1 · dist(s1, popt)4−2α

≥ 0,

where the second equality follows by Eq. (39). It therefore holds that ∂2SINR−1(s1, popt)/∂(x
opt
1 )2 ≥

0 as required. We showed that there is no local maximum point of SINR−1(s1, p)

on p̂1 p2. Thus, there is no local minimum point of SINR(s1, p) on p̂1 p2. Hence,

SINR(s1, p) ≥ min(SINR(s1, p1), SINR(s1, p2))) ≥ β for every point p ∈ p̂1 p2, as re-

quired.

For a pictorial description of Lemma 6.4, see Figure 13b.

Finally, we turn to complete the proof for Thm. 6.1. By Lemma 6.4, H1(Ad+1) is

hyperbolic convex. It follows that H1(Ad+1) is hyperbolic star-shaped with respect to

s1 and is therefore connected.

6.2 Application to testing reception conditions

We now describe a direct implication of the hyperbolic convexity property of Hi(Ad+1).

Let C ∈ Rd+1 be a closed shape (not necessarily convex) that does not contain any

station, C ∩ S = ∅, contained in the positive (or negative) half-plane xd+1 > 0 (resp.

xd+1 < 0), i.e., Inequality (28) is satisfied for every two points p1, p2 ∈ C. The follow-

ing corollary uses the hyperbolic convexity of Hi(Ad+1) to show that if Φ(C) receive
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the transmission by si successfully, so is any internal point p ∈ C. In addition, if no

point on the boundary, Φ(C), is able to receive the transmission by si successfully, then

SINR(si, p) < β for any internal point p ∈ C. In other words, for any closed shape C

such that Φ(C) ∩ Φ(Hi(Ad+1)) = ∅, by testing merely the boundary Φ(C) for reception

of si, one can deduce about the reception of an internal point p ∈ C.

Corollary 6.5 (a) if Φ(C) ⊆ Hi(Ad+1), then C ⊆ Hi(Ad+1). (b) if Φ(C)∩Hi(Ad+1) =

∅, then C ∩ Hi(Ad+1) = ∅.

Proof: Property (a) follows by Lemma 6.2. To prove property (b) assume, by way of

contradiction, that there exists a point p ∈ C such that SINRA(si, p) ≥ β. By Thm. 6.1,

Hi(Ad+1) is connected and is hyperbolic star-shaped with respect to si. This implies

that there exists an arc p̂ si such that p̂ si ⊆ Hi(Ad+1). Since p is an internal point and

si /∈ C, the arc p̂ si must intersect Φ(C), implying that there exists some point q ∈ Φ(C)

such that SINRA(si, q) ≥ β, contradiction.

7 Systems of infinitely many weak stations (wires)

7.1 Wire Stations

The next construction we present achieves τ1 = logψ1 zones. It is obtained by using

“wires” composed of infinitely many weak stations as described next. We assume R2

and α = 2.

Let Φ(B(q, r)) be the circumference of a ball of radius r > 0 centered at q ∈ R2.

To avoid cumbersome notation, without loss of generality, let q = (0, 0). Let p(r, θ) =

(r cos θ, r sin θ) be a point on Φ(B(q, r)). Consider a positive integer χ ≥ 1. Let ∆χ =

2π/χ and let θχi = i · ∆χ. Denote by Wχ the “discrete wire” composed of χ equally

spaced stations positioned on Φ(B(q, r)) with total energy ψ. That is, the stations of

the wire are positioned at the points {p(r, θχi ) | 0 ≤ i ≤ χ − 1}, and the power of each

such station is fixed to ψ/χ.

In what follows we extend and slightly abuse the notion of a station in a wire and its

geometric location. We define a continuous wire (or just a wire) W (q, r, ψ) as the limit

of the discrete wire Wχ(q, r, ψ) as ∆χ gets infinitesimally large. That is,

W (q, r, ψ) = lim
χ→∞

Wχ(q, r, ψ). (40)
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Let I(W, k) denote the interference experienced at point k due to the wire W (q, r, ψ). In

what follows we derive a formulation for I(W, k) and describe its geometric interpretation.

Finally, we present two tasks for which this formulation is found to be useful.

Claim 7.1 Let W = (q, r, ψ) be a continuous wire. Then I(W, k) = ψ/|r2 − dist(q, k)2|
for k /∈ Φ(B(q, r)).

Proof: Without loss of generality, let q = (0, 0) and k = (−x, 0). Note that generality

is maintained since the interference caused by the wire is equal in all directions (omnidi-

rectional). We begin with the case where x > r. The interference experienced at point

k = (−x, 0) due to the discrete wire Wχ is given by

I(Wχ, k) =

χ−1∑

i=0

I(p(r, θχi ), k) =
ψ

χ
·
χ−1∑

i=0

1

dist(p(r, θχi ), k)
2

=
ψ

2π
·
χ−1∑

i=0

∆χ

dist(p(r, θχi ), k)
2
. (41)

By Equation (40) it follows that for the continuous wire W ,

I(W, k) = lim
χ→∞

I(Wχ, k) =
ψ

2π
· lim
χ→∞

χ−1∑

i=0

∆χ

dist(p(r, θχi ), k)
2

=
ψ

2π
·
∫ 2π

0

dθ

dist(p(r, θ), k)2
, (42)

where the last equality holds by definition of the integral of Riemann , where ∆χ =

θχi+1 − θχi , for every 0 ≤ i ≤ χ− 1. Recalling that p(r, θ) = (r cos θ, r sin θ), we get that

dist(p(r, θ), k)2 = x2 + 2r · x · cos θ + r2 = 2r · x ·
(
x2 + r2

2r · x + cos θ

)
.

For simplicity of notation, let a = 2r · x and let b = (x2 + r2)/a. Then dist(p(r, θ), k)2 =

a · (b+ cos θ). Plugging this in Eq. (42) we get that

I(W, k) =
ψ

2π
·
∫ 2π

0

1

a
· 1

b+ cos θ
=

ψ

2π
· 1
a
· 2π√

b2 − 1

=
ψ√

a2 · b2 − a2
=

ψ√
(x2 + r2)2 − 4r2 · x2

=
ψ

x2 − r2 , (43)

as required. The complementary case, x < r, is analogous, details are omitted.
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It is noteworthy that this formulation has a nice geometric interpretation (see Figure

15). Given a point k, we say that W (q, r, ψ) is inner if k /∈ B(q, r) and outer otherwise.

Without loss of generality, let q = (0, 0) and k = (−x, 0). The interference of W (q, r, ψ)

on point k can be represented by placing a single station Sk(W ) with transmitting power

ψ as follows. When wire W (q, r, ψ) is outer with respect to k, the coordinates of Sk(W )

are given by (−x, r2 − x2). Similarly, when W (r, ψ) is inner with respect to p, the

coordinates of Sp(Wi) are given by (−r2/x, r
√
x2 − r2/x) (i.e., Sk(W ) corresponds to

the touching point of the straight line going through k and tangent to Φ(B(q, r))).

W3

W2S  (W )p     2S  (W )p     3

S  (W )p     1

1

W1

s

Figure 15: Schematic Representation of the Wires Construction. Each wire is composed

of infinitely many weak stations positioned on the circumference of a ball. The shadowed

area corresponds to reception cells of s1. Sp(Wi), i ∈ {1, 2, 3}, is a dummy station whose

interference on p is equivalent to that of Wi when transmitting with power ψi.

In the remainder of this section we present two applications of this formulation.

7.2 Construction of Ω(logψ1) reception zones for a single station

Let s1 be a station positioned at the origin q = (0, 0), with power ψ1. In this section

we show that one can induce ρ + 1 cells of s1 by using ρ wires, where ρ = Ω(logψ1).

Consider a collection of wires of increasing radii ri around s1 given by the sequence

W = {W1(q, r1, 1), . . . ,Wρ(q, rρ, 1)}, where ri = 4i. The network is given by A = 〈d =

2, {s1,W}, {ψ1, 1}, N, β, α = 2〉. In what follows, we show that this setting induces ρ+1

reception cells for s1. For a pictorial description of the generated cells see Figure 15. Let

pi = (xpi , 0) be such that xpi ∈ [ri−1, ri].
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Claim 7.2 There exists a sequence {pi} such that pi ∈ H1,i for i ∈ [1, ρ].

Proof: Let p1 = (0, 0) and let xpi = (2ri−1+ ri)/3, for i ∈ [2, ρ+1]. Note that by taking

ri = 4i it follows that pi = 2ri−1 = ri/2. We now verify that s1 is correctly received

at each pi. Note that any two points pi, pj are separated by at least one impenetrable

wire, in the sense that the weak stations of the wire cannot hear any other transmitter.

Consequently, any two points pi, pj indeed correspond to two disconnected cells of s1.

The case of p1 is trivial as it corresponds to the station itself. Next, consider pi for some

i ∈ {2, . . . , ρ + 1}. The interference by the wires experienced at pi can be divided into

two terms

I1(W, pi) =
i−1∑

j=1

I(Wj , pi), (44)

i.e., interference caused by wires Wj where rj < xpi, and in addition,

I2(W, pi) =

ρ∑

j=i

I(Wj , pi), (45)

corresponding to interference caused by wires Wj where rj > xpi. Clearly, I(W, pi) =

I1(W, pi) + I2(W, pi). By Claim 7.1, Equation (44) can be rewritten as

I1(W, pi) =
i−1∑

j=1

1

x2pi − r2j
<

i−1∑

j=1

1

3r2j
=

i−1∑

j=1

1

3 · 42j < 1, (46)

where the first inequality follows by the fact that xpi ≥ 2 · rj , j ∈ [1, i− 1]. In the same

manner, Eq. (45) can be rewritten as

I2(W, pi) =

ρ∑

j=i

1

r2j − x2pi
<

i−1∑

j=1

4

3r2j
=

i−1∑

j=1

4

3 · 42j < 5, (47)

where the first inequality follows by the fact that xpi ≤ 1/2 · rj , for every j ∈ {i, ..., ρ}.
Overall, we get that

SINRA(s1, pi) =
ψ1

x2pi · (I(W, pi) +N)
≥ ψ1

16i−2 · (6 +N)
>

ψ1

16ρ−1 · (7 +N)
≥ 1.

The claim follows.

7.3 The interference function and the maximum principle

We next show an interesting property of the interference function for which the tools pre-

sented in Section 7 become useful. Throughout this section we consider the 2-dimensional
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Euclidean plane and assume α = 2. Let f be a function defined on some connected closed

subset D of the Euclidean space Rd. Let Φ(D) denote the boundary of the domain. Then

f follows the maximum principle if the maximum of f in the domain D is attained on

its boundary Φ(D). In this section we establish the following theorem.

Theorem 7.3 The interference function I(S \ {s1}, p) follows the Maximum principle.

We begin by establishing an auxiliary claim. Let B = B(q, r) be a ball with radius

r and center q ∈ R2. Let si be a station positioned at (xi, yi) with power ψi where

si /∈ B(q, r). The average interference experienced at Φ(B) due to si is denoted by

εi(Φ(B)). Note that this scenario is the dual to the continuous wire scenario. In the

wire case, the boundary of the ball, B, corresponds to stations and q is the point where

we evaluate interference. Here, the single point corresponds to a transmitting station

and the circumference B is where we evaluate the interference caused by this station.

Claim 7.4 εi(Φ(B)) = ψi/|dist(si, p)− r2|.

Proof: Without loss of generality, let q = (0, 0). As before, we begin by considering the

discrete case. Consider a positive integral χ. Let ∆χ = 2π/χ and let θχj = j∆χ, for every

j ∈ {0, ..., χ− 1}. Denote by Φ(B, χ) a discrete circumference of B(q, r), corresponding

to a collection of χ equally spaced points on B given by {p(r, θχj ) | 0 ≤ j ≤ χ − 1}.
Note that in contrast to the construction of Claim 7.1, the points of Φ(B, χ) do not

correspond to stations. The expected interference on Φ(B, χ) is given by

εi(Φ(B, χ)) =

∑χ−1
j=0 I(si, p(r, θ

χ
j ))

χ
=

ψi
2π
·
χ−1∑

j=0

∆χ

dist(si, p(r, θ
χ
j ))

2
.

For the continuous case, the expected interference is given by

εi(Φ(B)) = lim
χ→∞

εi(Φ(B, χ))

=
ψi
2π
· lim
∆θ→0

χ−1∑

j

∆θ

dist(si, p(r, j ·∆θ))2

=
ψi
2π
·
∫ 2π

0

dθ

dist(si, p(r, θ))2
=

ψi
|dist(si, p)− r2|

,

where the last equality follows by Claim 7.1. The claim follows.

We now turn to prove Theorem 7.3.

Proof: Let D ⊆ Rd be a closed connected subset. We require f to be continuous on D,

and therefore D is empty of interfering stations, that is, D ∩ (S \ {s1}) = ∅. We then
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wish to show that

max
q∈D

I(S \ {s1}, q) ≤ max
q∈ΦD

I(S \ {s1}, q).

Assume toward contradiction that there exists an internal point p ∈ D \ Φ(D) such

that I(S \ {s1}, p) > maxq∈Φ(D) I(S \ {s1}, q). Let B(p, r) be the maximal ball inside D

centered at p (since p is an internal point of D, r > 0). Then by the maximality of p

and linearity of expectation

I(S \ {s1}, p) ≥
n∑

i=2

εi(Φ(B(p, r))).

Plugging Claim 7.4, we have that

I(S \ {s1}, p) ≥
n∑

i=2

ψi
|dist(si, p)2 − r2|

. (48)

In addition, the fact that D ∩ (S \ {s1}) = ∅, implies that dist(si, p) > r. Combining

this together with the the definition of interference I(S \{s1}, p) =
∑n

i=2
ψi

dist(si,p)2
, we get

a contradiction to Equation (48), which is contradiction to the maximality of p.

8 The fatness of the reception zones

In Section 6, we showed that the reception zone Hi(Ad+1) of each station si in a non-

uniform power network is hyperbolic-convex. In this section we develop a deeper un-

derstanding of the shape of the reception zones Hi and Hi(Ad+1) by analyzing their

fatness. Consider a non-uniform power network A = 〈d = 2, S, ψ,N , β, α = 2〉, where
S = {s1, . . . , sn} and α > 0 and β > 1 are constants. We focus on s1 and assume that its

location is not shared by any other station (otherwise, its reception zone is H1 = {s1}).
In addition, without loss of generality, we let the minimal transmission energy be 1 and

denote the maximal energy by Ψ.

In Section 8.1, we establish explicit bounds on the maximal and minimal radii

∆(s1,H1) and δ(s1,H1) of the zoneH1. In addition, we provide a bound on the perimeter

of Hi by bounding the length of the curve Φ(Hi).

8.1 Explicit bounds

The goal of this section is to establish an explicit lower bound on δ(s1,H1(A)) and an

explicit upper bound on ∆(s1,H1(A)).
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To avoid cumbersome notation, we assume a two-dimensional space (d = 2) through-

out this section; the proof is trivially generalized to arbitrary dimensions d.

Fix κ = min{dist(s1, si) | i > 1}. For establishing a lower bound on δ(s1,H1),

an extreme scenario (making δ as small as possible) would be to place s1 at (0, 0)

with ψ1 = 1 and all other n − 1 stations at (κ, 0) with ψi = Ψ for i ∈ {2, . . . , n}.
For the sake of analysis, let us replace the noise N by a new imaginary station sn+1

located at (κ, 0) whose power is N · κ2. This introduces the non-uniform power network

Aδ = 〈d = 2, {(0, 0), (κ, 0), . . . , (κ, 0)}, {1,Ψ, . . . ,Ψ, N · κ2}, 0, β, α = 2〉. Note that

the energy of the new station sn+1 at point (x, 0) satisfies (1) E(s , (x, 0)) > N for all

0 < x < κ; (2)E(sn+1, (x, 0)) = N for x = 0; and (3) E(sn+1, (x, 0)) < N for all

x < 0. Therefore, the value of δ(s1,H1) can only get smaller by this replacement, i.e.,

δ(s1,H1(Aδ)) < δ(s1,H1(A)). The point qδ whose distance to s1 realizes δ(s1,H1) is thus

located at (d̂, 0) for some 0 < d̂ < κ that satisfies the equation SINRAδ(s1, qδ) = β, or,

d̂−2

(Ψ(n− 1) + N · κ2)(κ− d̂)−2
= β .

Solving for d̂ yields

d̂ =
κ√

β(Ψ(n− 1) + N · κ2) + 1
≥ κ

2
√

2β ·Ψ · n)
, (49)

where the inequality follows by assuming that N ·κ2 ≤ Ψ·n. Hence we have the following.

Lemma 8.1 δ(s1,H1(A)) ≥ κ/
√
Ψ · n.

To establish an upper bound on ∆(s1,H1(A)), consider the case where s1 transmits with

power Ψ while the other stations remain silent (ψi = 0, for i > 1). The point q∆ whose

distance to s1 realizes ∆(s1,H1) is thus located at (±d̂, 0) such that d̂ ≤
√

Ψ/(β · N ) ,

hence we get the following.

Lemma 8.2 ∆(s1,H1) ≤
√
Ψ/(β ·N ).

The fatness parameter of H1(A) with respect to s1 thus satisfies

ϕ(H1(A)) ≤ O

(
Ψ

κ
·
√
n

N

)
. (50)
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8.2 Bounding the perimeter of H1(A)

In this section we provide an upper bound on the perimeter length per(H1(A)). The

perimeter of a cell H1,i(A) is the length of the closed curve given by Φ(H1,i(A)). The

perimeter length of a zone is the sum of the perimeters of the cells it contains. Again

we assume d = 2 for clarity of presentation, yet the bound can be naturally extended to

any dimension d. In the case of an uniform power network, a bound on the perimeter

of H1(A) is simply given by the perimeter of the large disk of radius ∆(s1,H1(A)). In

the case of a non-uniform power network, H1(A) is non-convex and therefore the trivial

bound of 2π · ∆(s1,H1(A)) = O(
√
Ψ/N ) does not hold. We begin by providing the

following useful fact in this context.

Fact 8.3 [18] Let Cout be a closed curve of length lout. Let Cin be a curve of length lin

enclosed by Cout. Let Y(L,C) be the number of intersection points between the straight

line L and the curve C. Then there exists a straight line L such that Y(L,Cin) ≥ 2lin/lout.

Corollary 8.4 per(H1(A)) ≤ 3π ·∆(s1,H1(A)) · n2.

Proof: We first bound from above the perimeter of a cell H1,i(A) ⊆ H1. Let f(L) be the

projection of F 1
A(p = (x, y)) on the line L = ax + b. Then deg(f) ≤ 2n (when N 6= 0)

and Y(L,Φ(H1,i(A))) ≤ 2n. Recall that any connected cell H1,i(A) is enclosed by a disk

of radius ∆(s1,H1(A)). Combining this with Fact 8.3, we have that there exists a line

L such that
2 · per(Φ(H1,i(A)))
2π ·∆(s1,H1(A))

≤ Y(L,Φ(H1,i(A))) ≤ 2n.

Hence for every i ∈ {1, . . . , O(n2)},

per(Φ(H1,i(A))) ≤ 2π ·∆(s1,H1(A)) · n .

Overall, summing over the connected cells of s1, whose number is at most O(n2) by

Theorem 5.5, we have that

per(Φ(H1(A))) ≤ O
(
∆(s1,H1(A)) · n3

)
. (51)

The claim follows.

In summary, in this section we achieved the following.

Theorem 8.5 In a non-uniform energy network A = 〈d = 2, S, ψ,N , β, α = 2〉, where
S = {s1, . . . , sn−1} and α > 0 and β > 1 are constants, if κ = min{dist(s1, si) | i > 1} >

50



0, then

Θ

(
κ2

Ψ · n

)
≤ area(H1(A)) ≤ O

(
Ψ

N

)
, (52)

Θ

(
κ√
Ψ · n

)
≤ per(H1(A)) ≤ O

(
n3 ·

√
Ψ

N

)
. (53)

9 Approximate point location

9.1 The Setting

Consider a non-uniform power network A = 〈d = 2, {s1, . . . , s ,Ψ,N , β, α = 2〉. Given

some point p ∈ R2, we are interested in the question: is s1 heard at p under the inter-

ference of S \ {s1} and background noise N ? One can directly compute SINRA(s1, p) in

time Θ(n) and answer the above question. However, typically, this question is asked for

many different points p, thus linear time computations may be too expensive. Our goal

in this section is to provide mechanisms that answers some approximated variants of the

above question much faster. In Section 9.2, we present point location scheme for the

case where all stations are aligned on a line. In Section 9.3, we provide several schemes

for point location for the general case where stations are embedded in Rd. Generally

speaking, the mechanisms we present construct an efficient data structure that main-

tains a partition of the Euclidean plane. We consider two types of data structures. The

first partitions the plane into three disjoint zones R2 = H+
1 ∪ H−

1 ∪ H?
1 such that (1)

H+
1 ⊆ H1; (2) H−

1 ∩ H1 = ∅; and (3) H?
1 is a bounded set determined by the requested

accuracy level of the algorithm. The second type partitions the plane into two disjoint

zones R2 = H+
1 ∪H−

1 such that the set of misclassified points is bounded. Given a query

point p ∈ R2, QDS1 answers in logarithmic time (with respect to the fatness parameter,

1/ǫ and number of stations) whether p is in H+
1 , H−

1 , or H?
1 (possible only for QDS1 of

first type). We construct a separate data structure QDSi for every 1 ≤ i ≤ n.

Recall that by Lemma 2.1, a point p cannot be inHi unless it belongs toWVori(VA),

where WVori(VA) is the weighted Voronoi cell of si with weight wi = ψ
1/α
i . Thus for

such a point p there is no need to query the data structure QDSj for any j 6= i.

Due to [2], a weighted Voronoi diagram of quadratic size for the n stations is con-

structed in O(n2) preprocessing time. Then given a query point p ∈ R2, the station

si such that p ∈ WVori(VA) can be identified in time O(logn). We then invoke the

appropriate data structure QDSi.
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We first provide some notation and then present the common framework for any

point-location schemes discussed next. For ease of notation, let the characteristic poly-

nomial of H1(A), namely, F 1
A(p), see Eq. (3), be given by Fβ(p). In the same manner,

the characteristic polynomial of H1(Aβ′), for β ′ 6= β, is given by Fβ′(p). Let QDS = QDS1.

In addition, for station si ∈ S, define ∆i as the upper bound on ∆(si,Hi), δi as the lower

bound on δ(si,Hi) and ϕi as the upper bound on ϕ(Hi) (i.e., ∆i/δi).

QDS is based upon imposing a γ ∈ R>0-spaced grid, denoted by Gγ , on the Euclidean

plane, γ is determined later on. The notions of grid columns, rows, vertices, edges, and

cells are defined in the natural manner. We assume that Gγ is aligned so that the point

s1 is a grid vertex.

The parameter γ is set to be sufficiently small so that the cell containing point s1 is

internal to the ball inscribed in H1, namely, B(s1, δ1).

In fact, we take γ ≤ min{δ1/(2
√
2)} so that the ball of radius δ1 centered at s1 is

guaranteed to contain Ω((∆1/δ1)
2) cells (all of them are internal by definition). The main

ingredient of our algorithm is a segment testing procedure [3], named hereafter Procedure

SegTest. Given a segment σ, the segment testing procedure returns the number of

distinct intersection points of σ and Φ(H1(A)). The segment test is implemented to

run in time O(n2) by employing Sturm condition [4] of the projection of the polynomial

Fβ(p) on σ and by direct calculation of the SINR function in the endpoints of σ. 2;

In particular, the segment testing allows one to decide whether σ ∩ H1(A) = ∅ or not.
Procedure SegTest, presented formally below, is common to all point location schemes

presented later on.

Given a grid Gγ , Procedure SegTest is invoked for each of the 4 edges for every

cell ci ∈ Gγ at distance at most ∆1 from s1. The overall number of invocations is

thus bounded by O (π ·∆2
1/γ

2). The difference between the schemes we present is in

the definition of the performance parameter ǫ. We conclude this section by evaluating

MA(QDS) respectively, TA(QDS) corresponding to the memory, respectively time costs of

the procedure and the schemes that use it, in terms of γ. Each of the schemes chooses γ

so that the error is controlled (where the precise notion of error is scheme-dependant).

We begin with bounding the size of the data structure QDS. Let Cγ denote the number

of cells in Gγ then due to area consideration Cγ = O

((
∆1

γ

)2)
. It is required to keep

2By applying advanced numerical techniques, segment test procedure can be implemented in

O(n log n)
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Procedure SegTest (σ, Fβ(p))

1. Employ Sturm condition on σ for Fβ(p),

let t be the number of distinct intersection points of σ and Fβ(p).

2. Evaluate Fβ(p) on σ endpoints, p1 and p2.

(a) If t = 0

• If Fβ(p1) > 0 and Fβ(p2) > 0 return −;
• Else, return +;

(b) Else, return ?;

the tag of each cell tag , therefore QDS is of size

MA(QDS) = O

((
∆1

γ

)2
)

. (54)

Note that it is sufficient to keep in QDS only cells in H+
1 ∪H?

1. Next we bound the time

complexity, TA(QDS). The dominating step is the invocations of Procedure SegTest. As

the cost of a single SegTest invocation is O(n2) and there are O(Cγ) invocations, the

processing time for QDS construction is given by

TA(QDS) = O

((
n ·∆1

γ

)2
)

. (55)

Finally, we analyze the cost for a single point location query. This is bounded by

T queryA (QDS) = O (logCγ) = O

(
log

(
∆1

γ

))
, (56)

which corresponds to the time for finding the cell to which p belongs. The latter can be

done by preforming binary search on Cγ cells. Recall that there is a prior step involving

an access to the weighted Voronoi diagram data structure. As mentioned, that step is

bounded by O(logn), which is dominated by O(logCγ).

9.2 Collinear networks

In this subsection we focus on the Euclidean plane R2 and consider a special type of

non-uniform power network. A network A = 〈d = 2, {s1, . . . , sn−1},Ψ,N , β, α = 2〉 is
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said to be collinear [3] if s1 = (0, 0) and si = (ai, 0) for ai ∈ R for every 1 ≤ i ≤ n − 1.

the point-location task is simpler for collinear networks due to the following lemma.

Lemma 9.1 Let A be a colinear non-uniform power network. Then H1 is hyperbolic-

convex and therefore connected.

Proof: The proof follows immediately by Thm. 6.1, in Section 6.1, setting d = 1. Specif-

ically, the stations of colinear network are essentially embedded in R1, and therefore their

2-dimensional reception zones Hi(Ad=2) are hyperbolic-convex.

Note that by Lemma 9.1, the reception zones H1 of colinear network follow the

property of Corollary 6.5. We now complete the description of the data-structure QDS.

Let ci ∈ Gγ be a grid cell. Procedure SturmCellB is a tagging mechanism invoked for

every cell ci ∈ Gγ (in fact, due to symmetry it is sufficient to restrict attention to the

half space y ≥ 0).

Algorithm SturmCellB (ci, Fβ(p))

1. For any edge ej of ci

• tj ← SegTest(ej , Fβ(p));

2. If tj = − for any j ∈ {1, ..., 4} return −;

3. If tj = + for any j ∈ {1, ..., 4} return +;

4. return ?;

QDS maintains the collection of H?
1 ∪ H+

1 cells, where ci ∈ H?
1 if SturmCellB(ci,H1)

returns ? and ci ∈ H+
1 if SturmCellB(c+,H1) returns +. We begin by bounding the

number of cells in H?
1. Let Cγ be the number of rows and columns in Gγ . Then

Cγ ≤ 4π∆1/γ. Since deg(Fβ) ≤ 2n, the number of intersection points of Fβ(p) with any

grid row or column is at most 2n (see Eq. (3 for definition). Overall, we get that the

total number of intersection points of Fβ(p) with any of the Cγ rows and columns in Gγ

is at most 3 2n · Cγ . Hence the total number of H?
1 cells is bounded by 2n · Cγ. Since

3Note that by the hyperbolic convexity property of H1 we have that the number of intersection

points of Fβ(p) and any vertical line (grid column) is at most 4, see Corollary 6.3; To keep things simple

we do not take it into account.

54



the area of each cell is γ2, it follows that

area(H?
1) ≤ 8π · n ·∆1 · γ . (57)

In order to guarantee that area(H?
1) ≤ ǫ ·area(H1), we demand that 8π ·n ·∆1 ·γ ≤ ǫ ·πδ21

(this is sufficient as area(H1) ≥ B(s1, δ1)). Therefore it is sufficient to fix

γ =
ǫδ1

8n · ϕ (58)

We are now ready to establish the correctness of Procedure SturmCellB.

Lemma 9.2 (a) If SturmCellB(ci,H1(A)) returns +, then ci ⊆ H1(A).
(b) If SturmCellB(ci,H1(A)) returns −, then ci ∩H1(A) = ∅.
(c) Let ci ⊆ B(s1,∆) be such that SturmCellB(ci, H(s1, β)) returns ?. Then the total area

of such ci cells is bounded from above by ǫ · area(H1).

Proof: (a) and (b) follow by Corollary 6.5, where the grid cell ci corresponds to a closed

shape whose circumference is tested. Finally (c) is guaranteed by the way we set γ.

Let ϕmax = maxni=1{ϕi} and ϕ4
sum =

∑n
i=1 ϕ

4
i . Throughout this section we established

the following theorem, by Eq. (55, 54, 56, and 58).

Theorem 9.3 Given a a colinear non-uniform power network A, it is possible to con-

struct, in Õ(n4 ·ϕ4
sum/ǫ

2) preprocessing time, a data structure DS of size O (n2 · ϕ4
sum/ǫ

2)

that imposes a (2n + 1)-wise partition H̄ =
〈
H+

1 , . . . ,H+
n ,H?

1, . . . ,H?
n,H−〉 of the Eu-

clidean plane R2 (that is, the zones in H̄ are pairwise disjoint and R2 =
⋃n
i=1H+

i ∪H−∪⋃n
i=1H?

i ), such that for every 1 ≤ i ≤ n:

(1)H+
i ⊆ Hi;

(2) H− ∩Hi = ∅;
(3)H?

i is bounded and its area is at most an ǫ-fraction of the area of Hi. Furthermore,

given a query point p ∈ R2, it is possible to extract from DS, in time O (log (n · ϕmax/ǫ)),

the zone in H̄ to which p belongs.

9.3 Different schemes for point location in general networks

In this section, we assume the general setting where stations are embedded in Rd and

therefore their reception zones Hi are not necessarily hyperbolic convex. Specifically,

we cannot assume our zones to satisfy the property of Corollary 6.5. We devise several
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approaches for point location in this setting. The key difference underlying the different

approaches is in the definition of the performance measure.

9.3.1 Scheme A

The first algorithm we present constructs a data structure QDS that partitions the Eu-

clidean plane to 2 disjoint zones R2 = H+
1 ∪ H−

1 . The accuracy of the grid γ is set such

that the fraction of area on which the algorithm might give a false result is bounded

by ǫ. We begin by presenting the tagging procedure (SturmCell) invoked on each cell

ci ∈ B(s1,∆1).

Algorithm SturmCell (ci, Fβ(p)))

1. For any edge ej of ci

• tj ← SegTest(ej , Fβ(p));

2. If tj = − for any j ∈ {1, ..., 4} return −;

3. Else return +;

We say that the point location algorithm fails for a point query q if it decides that

q hears s1 where in fact it does not and vice-verse. We wish to bound the total area of

points q for which such errors might occur. We begin with some notation. A cell in ci in

Gγ is referred to as easy if either ci ∈ H+
1 or ci ∩H1 = ∅ (see cells C1, C5 in Figure 16).

A non-easy cell ci is referred to as hard (see cells C2−4 in Figure 16). Note that a cell is

hard if there exist points p1, p2 ∈ ci such that SINR(s1, p1) ≥ β and SINR(s1, p2) < β.

It is easy to see that easy cells are tagged correctly by Procedure SturmCell (which tags

each cell based on its circumference). The algorithm might fail on a point query q only if

q ∈ ci where ci is hard. We now turn to bound the number of hard cells in Gγ . There are

essentially three types of hard cells corresponding to the type of mistake the algorithm

might make. Mistake type 1 (false-negative) occurs when ci ∈ H−
1 but there exists p ∈ ci

such that SINR(s1, p) ≥ β. Let M1 denote the number of cells for which the algorithm

might make a mistake of Type 1. Since ci ⊆ H−
1 only if Φ(ci) ∩ H1 = ∅, it follows that

the point p corresponds to a connected zone of s1 which is fully located in ci (see cell C2

at Figure 16). By Corollary 5.6, τ1 ≤ c1 · n2 hence M1 ≤ c1 · n2, for a constant c1 > 0.

We next bound the second type of mistake. Mistake type 2 (false-positive) occurs
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when ci ∈ H+
1 but there exists some point p ∈ ci such that SINR(s1, p) < β. Within the

class of type 2 mistakes there is a further division. LetM1
2 be the number of cells ci such

that Φ(ci)∩H1 = Φ(ci). Let M
2
2 be the number of cells ci such that Φ(ci)∩H1 6= Φ(ci).

We begin by boundingM1
2 . Since every point q ∈ Φ(ci) is a reception point, the existence

of non-reception point p ∈ ci corresponds to a connected cell of the zone H∅(A), where
no station is received correctly, which located entirely in ci (see cell C4 in Figure 16). By

Corollary 5.7, τ∅ = O(n4), hence M1
2 = c2 · n4 for a constant c2 > 0. Finally, it remains

to bound the number of cells that intersect Φ(H1) (see cell C3 in Figure 16). Note that

these cells are exactly the H?
1 cells of Procedure SturmCellB. The bound is then given

by Eq. (57). Overall, we have that the number of hard cells for which the Algorithm

SturmCell might fail is at most

M = M1 +M1
2 +M2

2 ≤ c1 · n2 + c2 · n4 + 8π · (n+ 1) ·∆1/γ

≤ 8π · (c1 + c2) · n4 ·∆1/γ ,

and their total area is at most

area(M) ≤ 8π · (c1 + c2) · n4 ·∆1 · γ .

In order to guarantee that area(M) ≤ ǫ · area(H1), we employ Inequality (52) and

demand that 8π · (c1 + c2) · n4 ·∆1 · γ ≤ ǫ · πδ21. Therefore it is sufficient to fix

γ =
ǫδ1

8 · (c1 + c2) · n4 · ϕ (59)

Let ϕmax = maxni=1{ϕi} and ϕ4
sum =

∑n
i=1 ϕ

4
i . By combining Eq. (55, 54,56, and 59)

we derive the following concluding theorem.

Theorem 9.4 It is possible to construct, in O (n10 · ϕ4
sum/ǫ

2) preprocessing time, a

data structure DS of size O (n8 · ϕ4
sum/ǫ

2) that imposes a (n + 1)-wise partition H̄ =〈
H+

1 , . . . ,H+
n ,H−〉 of the Euclidean plane R2 (that is, the zones in H̄ are pair-wise dis-

joint and R2 =
⋃n
i=1H+

i ∪H−) such that for every 1 ≤ i ≤ n:

(1) H+
i ⊆ Hi;

(2) H− ∩ Hi = ∅; and

(3) H?
i is bounded and its area is at most an ǫ-fraction of the area of Hi.

Furthermore, given a query point p ∈ R2, it is possible to extract from DS, in time

O (log (n · ϕmax/ǫ)), the zone in H̄ to which p belongs.
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C
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Figure 16: Cells Classification. Types of cells observed during QDS preparation. Dashed

area correspond to reception area of s1. White area correspond to an area where no station

is correctly received. Cells C1 and C5 are easy while others are hard.

9.3.2 Scheme B

Using a different definition for the performance measure, we can use Procedure SturmCellB

to devise a simpler (yet not as powerful) scheme. By applying Procedure SturmCellB to

each cell ci, we construct a data structure QDS that partitions the Euclidean plane into

two disjoint zones R2 = H+
1 ∪ H−

1 . The accuracy of the grid γ is set to ǫ/
√
2. We can

provide the following guarantee (taking no advantage of the properties we established

for H1). Let p ∈ R2 be a point query. Then if the algorithm (based on SturmCellB

tagging) claims that p ∈ H1, then there exists q ∈ B(p, ǫ) such that SINR(s1, q) ≥ β. In

addition, if algorithm claims that p /∈ H1, then there exists some q ∈ B(p, ǫ) such that

SINR(s1, q) < β. Note that this follows simply by the fact that we impose Gǫ/
√
2 on the

Euclidean plane and evaluate the circumference of each grid cell.

9.3.3 Scheme C

Let 0 < ǫ < 1 be a predetermined performance parameter. We construct in O(ϕ2 ·n2/ǫ2)

preprocessing time a data structure QDS of size O(ϕ2/ǫ2). QDS essentially partitions the

Euclidean plane into three disjoint zones R2 = H+
1 ∪H−

1 ∪H?
1, where (1) H+

1 ⊆ H1; (2)

H−
1 ∩ H1 = ∅; and (3) H?

1 ⊆ H1(β̂), for β̂ > (1 − ǫ)2α · β. Procedure TagCell tests Φ(ci)

for high and low β, namely, (1+ ǫ)αβ and (1− ǫ)α ·β respectively. If there exists at least

one point pΦ ∈ Φ(ci) such that SINR(s1, pΦ) ≥ (1 + ǫ)αβ the entire cell is declared to be
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in H1. In addition, if SINR(s1, pΦ) < (1−ǫ)α ·β, for any point pΦ ∈ Φ(ci) then the cell is

declared to be out of H1. Otherwise the cell ci is under question mark. Essentially, the

question mark cells correspond to the case where (1−ǫ)2α ·β ≤ SINR(s1, pin) ≤ (1+ǫ)2α·β
for any pin ∈ ci. For details see the code of Algorithm TagCell below.

Algorithm TagCell (ci, F (p)))

1. Let t1 = SturmCell(ci, F(1+ǫ)αβ(p));

2. If t1 6= − return +;

3. Let t2 = SturmCell(ci, F(1−ǫ)αβ(p));

4. If t2 = − return −;

5. Else, return ?;

Let γ (grid resolution) be given by

γ =
ǫδ1

3 ·
√
2

(60)

The rest of this section is dedicated for establishing the correctness of Procedure TagCell.

The following lemma shows that the SINR ratio of neighboring points within a grid cell

ci is similar. Let η = ǫ/3.

Lemma 9.5 Let SINR(s1, p) = β̂. Then SINR(s1, p̃) ∈
[(

1−η
1+η

)α
· β̂,
(

1+η
1−η

)α
· β̂
]
for any

p̃ ∈ B(p,
√
2γ).

Proof: Let γ′ =
√
2γ. Note that we are interesting in the points p such that p /∈ B(si, δ1)

for any si ∈ S (since for other points p, the location is determined easily). It then follows

that

E(si, p̃) = ψi · dist(s1, p̃)−α ≥ ψi · (dist(si, p) + γ′)−α = ψi · (dist(si, p) + η · δ1)−α

≥ ψi · ((η + 1) · dist(si, p))−α ≥
1

(η + 1)α
E(si, p) ,

relying on the equality of γ′ = η · δ1, which follows by Equation (60). In the same
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manner,

E(si, p̃) = ψi · dist(si, p̃)−α ≤ ψi · (dist(si, p)− γ′)−α ≤ ψi · (dist(si, p)− ηδ1)−α

≤ ψi · ((1− η) · dist(si, p))−α ≤
1

(1− η)αE(si, p) ,

obtained by using Equation (60) again. Overall we get that

SINR(s1, p̃) =
E(s1, p̃)

I(S \ {s1}, p̃) +N

⊆
[(

1− η
1 + η

)α
· E(s1, p)

I(S \ {s1}, p) + N
,

(
1 + η

1− η

)α
· E(s1, p)

I(S \ {s1}, p) + N

]

⊆
[(

1− η
1 + η

)α
· SINR (s1, p) ,

(
1 + η

1− η

)α
· SINR (s1, p)

]
,

yielding our claim.

We are now turn to prove the correctness of Procedure TagCell.

Lemma 9.6 (a) If TagCell(ci, Fβ(p)) returns +, then ci ⊆ H1. (b) If TagCell(ci, Fβ(p))

returns −, then ci∩H1 = ∅. (c) Let ci ⊆ B(s1,∆1) be such that TagCell(ci, Fβ(p)) returns

?. Then ci ⊆ H1((1− ǫ)2α · β), or SINR(s1, p) ∈ [(1− ǫ)2α, (1 + ǫ)2α], for every p ∈ ci;

Proof: We begin with property (a). Let ci be such that TagCell(ci, Fβ(p)) returns +.

That implies that there exists a point pΦ ∈ Φ(ci) such that SINR(s1, pΦ) ≥ (1 + ǫ)α · β.
By Lemma 9.5 it then follows that

SINR(s1, pin) ≥
(
1− η
1 + η

)α
(1 + ǫ)α · β

≥ β, for every pin ∈ B(pΦ,
√
2γ) ,

where the last inequality follows from the choice of η. In particular, this holds for any

point pin in ci, and (a) is established. Let ci be such that TagCell(ci, Fβ(p)) = −. That

implies that SINR(s1, pΦ) < (1 − ǫ)α · β, for every pΦ ∈ Φ(ci). Assume, by the way of

contradiction, that there exists some point pin ∈ ci such that SINR(s1, pin) ≥ β. Then

by Lemma 9.5 it must be the case that

SINR(s1, p) ≥
(
1− η
1 + η

)α
· β

≥ (1− ǫ)α · β, for every p ∈ B(pin,
√
2γ).

Thus SturmCell(ci, F(1−ǫ)α·β(p)) returns + and we end with contradiction which estab-

lishes (b). Finally, it is left to prove (c). As SturmCell(ci, F(1+ǫ)α·β(p)) does not return
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+, SINR(s1, pΦ) < (1 + ǫ)α, for every pΦ ∈ Φ(ci) and therefore

SINR(s1, pin) ≤ (1 + ǫ)α ·
(
1 + η

1− η

)α

≤ (1 + ǫ)2α · β for every pin ∈ ci.

Next, as SturmCell(ci, F(1−ǫ)α·β(p)) does not return −, there exists pΦ ∈ Φ(ci) such that

SINR(s1, pΦ) ≥ (1− ǫ)α. Therefore

SINR(s1, pin) ≥ (1− ǫ)α ·
(
1− η
1 + η

)α

≥ (1− ǫ)2α · β for every pin ∈ ci ,

establishing the claim.

Let ϕmax = maxni=1{ϕi} and ϕsum =
∑n

i=1 ϕ
2
i .

Theorem 9.7 It is possible to construct, in O(n2 · ϕsum/ǫ
2) preprocessing time, a data

structure DS of size O(ϕsum/ǫ
2) that imposes a (2n+ 1)-wise partition

H̄ =
〈
H+

1 , . . . ,H+
n ,H?

1, . . . ,H?
n,H−〉 of the Euclidean plane R2 (that is, the zones in H̄

are pair-wise disjoint and R2 =
⋃n
i=1H+

i ∪H− ∪⋃n
i=1H?

i ) such that for every 1 ≤ i ≤ n:

(1) H+
i ⊆ Hi;

(2) H− ∩ Hi = ∅; and

(3) H?
i ⊆ Hi((1− ǫ)2α · β)

Furthermore, given a query point p ∈ R2, it is possible to extract from DS, in time

O (log (ϕmax/ǫ)), the zone in H̄ to which p belongs.
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