
Abstract
We present a new algorithm for appearance-preserving simplifi-
cation. Not only does it generate a low-polygon-count approxi-
mation of a model, but it also preserves the appearance. This is
accomplished for a particular display resolution in the sense that
we properly sample the surface position, curvature, and color
attributes of the input surface. We convert the input surface to a
representation that decouples the sampling of these three attrib-
utes, storing the colors and normals in texture and normal maps,
respectively. Our simplification algorithm employs a new texture
deviation metric, which guarantees that these maps shift by no
more than a user-specified number of pixels on the screen. The
simplification process filters the surface position, while the run-
time system filters the colors and normals on a per-pixel basis. We
have applied our simplification technique to several large models
achieving significant amounts of simplification with little or no
loss in rendering quality.

CR Categories: I.3.5: Object hierarchies,  I.3.7: Color, shad-
ing, shadowing, and texture

Additional Keywords: simplification, attributes, parameteri-
zation, color, normal, texture, maps

1 INTRODUCTION
Simplification of polygonal surfaces has been an active area of
research in computer graphics. The main goal of simplification is
to generate a low-polygon-count approximation that maintains the
high fidelity of the original model. This involves preserving the
model’s main features and overall appearance. Typically, there are
three appearance attributes that contribute to the overall appear-
ance of a polygonal surface:

1. Surface position, represented by the coordinates of the
polygon vertices.

2. Surface curvature, represented by a field of normal
vectors across the polygons.

3. Surface color, also represented as a field across the
polygons.

The number of samples necessary to represent a surface accurately
depends on the nature of the model and its area in screen pixels
(which is related to its distance from the viewpoint). For a
simplification algorithm to preserve the appearance of the input
surface, it must guarantee adequate sampling of these three
attributes. If it does, we say that it has preserved the appearance
with respect to the display resolution.
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The majority of work in the field of simplification has focused
on surface approximation algorithms. These algorithms bound the
error in surface position only. Such bounds can be used to
guarantee a maximum deviation of the object’s silhouette in units
of pixels on the screen. While this guarantees that the object will
cover the correct pixels on the screen, it says nothing about the
final colors of these pixels.

Of the few simplification algorithms that deal with the remain-
ing two attributes, most provide some threshold on a maximum or
average deviation of these attribute values across the model.
While such measures do guarantee adequate sampling of all three
attributes, they do not generally allow increased simplification as
the object becomes smaller on the screen. These threshold metrics
do not incorporate information about the object’s distance from
the viewpoint or its area on the screen. As a result of these metrics
and of the way we typically represent these appearance attributes,
simplification algorithms have been quite restricted in their ability
to simplify a surface while preserving its appearance.

1.1 Main Contribution
We present a new algorithm for appearance-preserving simplifi-
cation. We convert our input surface to a decoupled representa-
tion. Surface position is represented in the typical way, by a set of
triangles with 3D coordinates stored at the vertices. Surface colors
and normals are stored in texture and normal maps, respectively.
These colors and normals are mapped to the surface with the aid
of a surface parameterization, represented as 2D texture coordi-
nates at the triangle vertices.

The surface position is filtered using a standard surface ap-
proximation algorithm that makes local, complexity-reducing
simplification operations (e.g. edge collapse, vertex removal, etc.).
The color and normal attributes are filtered by the run-time system
at the pixel level, using standard mip-mapping techniques [1].

Because the colors and normals are now decoupled from the
surface position, we employ a new texture deviation metric, which
effectively bounds the deviation of a mapped attribute value’s
position from its correct position on the original surface. We thus
guarantee that each attribute is appropriately sampled and mapped
to screen-space. The deviation metric necessarily constrains the
simplification algorithm somewhat, but it is much less restrictive
than retaining sufficient tessellation to accurately represent colors
and normals in a standard, per-vertex representation. The preser-
vation of colors using texture maps is possible on all current
graphics systems that supports real-time texture maps. The
preservation of normals using normal maps is possible on proto-
type machines today, and there are indications that hardware
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Figure 1: Bumpy Torus Model. Left: 44,252 triangles
full resolution mesh. Middle and Right: 5,531 triangles,
0.25 mm maximum image deviation. Middle: per-vertex
normals. Right: normal maps
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support for real-time normal maps will become more widespread
in the next several years.

One of the nice properties of this approach is that the user-
specified error tolerance, ε, is both simple and intuitive; it is a
screen-space deviation in pixel units. A particular point on the
surface, with some color and some normal, may appear to shift by
at most ε pixels on the screen.

We have applied our algorithm to several large models. Figure
1 clearly shows the improved quality of our appearance-
preserving simplification technique over a standard surface
approximation algorithm with per-vertex normals. By merely
controlling the switching distances properly, we can discretely
switch between a few statically-generated levels of detail (sampled
from a progressive mesh representation) with no perceptible
artifacts. Overall, we are able to achieve a significant speedup in
rendering large models with little or no loss in rendering quality.

1.2 Paper Organization
In Section 2, we review the related work from several areas.
Section 3 presents an overview of our appearance-preserving
simplification algorithm. Sections 4 through 6 describe the
components of this algorithm, followed by a discussion of our
particular implementation and results in Section 7. Finally, we
mention our ongoing work and conclude in Section 8.

2 RELATED WORK
Research areas related to this paper include geometric levels-of-
detail, preservation of appearance attributes, and map-based
representations. We now briefly survey these.

2.1 Geometric Levels-Of-Detail
Given a polygonal model, a number of algorithms have been
proposed for generating levels-of-detail. These methods differ
according to the local or global error metrics used for simplifica-
tion and the underlying data structures or representations. Some
approaches based on vertex clustering [2, 3] are applicable to all
polygonal models and do not preserve the topology of the original
models. Other algorithms assume that the input model is a valid
mesh. Algorithms based on vertex removal [4, 5] and local error
metrics have been proposed by [6-10]. Cohen et al. [11] and Eck
et al. [12] have presented algorithms that preserve topology and
use a global error bound. Our appearance-preserving simplifica-
tion algorithm can be combined with many of these.

Other simplification algorithms include decimation techniques
based on vertex removal [4], topology modification [13], and
controlled simplification of genus [14]. All of these algorithms
compute static levels-of-detail. Hoppe [15] has introduced an
incremental representation, called the progressive mesh, and
based on that representation view-dependent algorithms have been
proposed by [16, 17]. These algorithms use different view-
dependent criteria like local illumination, screen-space surface
approximation error, and silhouette edges to adaptively refine the
meshes. Our appearance preserving simplification algorithm
generates a progressive mesh, which can be used by these view-
dependent algorithms.

2.2 Preserving Appearance Attributes
Bajaj and Schikore [18] have presented an algorithm to simplify
meshes with associated scalar fields to within a given tolerance.
Hughes et al. [19] have presented an algorithm to simplify
radiositized meshes. Erikson and Manocha[20] grow error
volumes for appearance attributes as well as geometry. Many
algorithms based on multi-resolution analysis have been proposed
as well. Schroeder and Sweldens [21] have presented algorithms
for simplifying functions defined over a sphere. Eck et al. [12]

apply multi-resolution analysis to simplify arbitrary meshes, and
Certain et al. [22] extend this to colored meshes by separately
analyzing surface geometry and color. They make use of texture
mapping hardware to render the color at full resolution. It may be
possible to extend this approach to handle other functions on the
mesh. However, algorithms based on vertex removal and edge
collapses [11, 15] have been able to obtain more drastic simplifi-
cation (in terms of reducing the polygon count) and produce
better looking simplifications [15].

Hoppe [15] has used an optimization framework to preserve
discrete and scalar surface appearance attributes. Currently, this
algorithm measures a maximum or average deviation of the scalar
attributes across the model. Our approach can be incorporated
into this comprehensive optimization framework to preserve the
appearance of colors and normals, while allowing continued
simplification as an object's screen size is reduced.

2.3 Map-based Representations
Texture mapping is a common technique for defining color on a
surface. It is just one instance of mapping, a general technique for
defining attributes on a surface. Other forms of mapping use the
same texture coordinate parameterization, but with maps that
contain something other than surface color. Displacement maps
[23] contain perturbations of the surface position. They are
typically used to add surface detail to a simple model. Bump maps
[24] are similar, but instead give perturbations of the surface
normal. They can make a smooth surface appear bumpy, but will
not change the surface’s silhouette. Normal maps [25] can also
make a smooth surface appear bumpy, but contain the actual
normal instead of just a perturbation of the normal.

Texture mapping is available in most current graphics systems,
including workstations and PCs. We expect to see bump mapping
and similar surface shading techniques on graphics systems in the
near future [26]. In fact, many of these mapping techniques are
already possible using the procedural shading capabilities of
PixelFlow[27].

Several researchers have explored the possibility of replacing
geometric information with texture. Kajiya first introduced the
"hierarchy of scale" of geometric models, mapping, and light-
ing[28]. Cabral et. al. [29] addressed the transition between bump
mapping and lighting effects. Westin et. al. [30] generated BRDFs
from a Monte-Carlo ray tracing of an idealized piece of surface.
Becker and Max [31] handle transitions from geometric detail in
the form of displacement maps to shading in the form of bump
maps. Fournier [25] generates maps with normal and shading
information directly from surface geometry. Krishnamurthy and
Levoy [32] fit complex, scanned surfaces with a set of smooth B-
spline patches, then store some of the lost geometric information
in a displacement map or bump map. Many algorithms first
capture the geometric complexity of a scene in an image-based
representation by rendering several different views and then
render the scene using texture maps [33-36].
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Figure 2: Components of an appearance-preserving
simplification system.



3 OVERVIEW
We now present an overview of our appearance-preserving
simplification algorithm. Figure 2 presents a breakdown of the
algorithm into its components. The input to the algorithm is the
polygonal surface, M0, to be simplified. The surface may come
from one of a wide variety of sources, and thus may have a variety
of characteristics. The types of possible input models include:

• CAD models, with per-vertex normals and a single color
• Radiositized models, with per-vertex colors and no normals
• Scientific visualization models, with per-vertex normals and

per-vertex colors
• Textured models, with texture-mapped colors, with or

without per-vertex normals

To store the colors and normals in maps, we need a parameteriza-
tion of the surface, F0(X): M0→P, where P is a 2D texture domain
(texture plane), as shown in Figure 3. If the input model is already
textured, such a parameterization comes with the model. Other-
wise, we create one and store it in the form of per-vertex texture
coordinates. Using this parameterization, per-vertex colors and
normals are then stored in texture and normal maps.

The original surface and its texture coordinates are then fed to
the surface simplification algorithm. This algorithm is responsible
for choosing which simplification operations to perform and in
what order. It calls our texture deviation component to measure
the deviation of the texture coordinates caused by each proposed
operation. It uses the resulting error bound to help make its
choices of operations, and stores the bound with each operation in
its progressive mesh output.

We can use the resulting progressive mesh with error bounds to
create a static set of levels of detail with error bounds, or we can
use the progressive mesh directly with a view-dependent simplifi-
cation system at run-time. Either way, the error bound allows the
run-time system to choose or adjust the tessellation of the models
to meet a user-specified tolerance. It is also possible for the user
to choose a desired polygon count and have the run-time system
increase or decrease the error bound to meet that target.

4 REPRESENTATION CONVERSION
Before we apply the actual simplification component of our
algorithm, we perform a representation conversion (as shown in
Figure 2). The representation we choose for our surface has a
significant impact on the amount of simplification we can perform
for a given level of visual fidelity. To convert to a form which
decouples the sampling rates of the colors and normals from the
sampling rate of the surface, we first parameterize the surface,
then store the color and normal information in separate maps.

4.1 Surface Parameterization
To store a surface's color or normal attributes in a map, the
surface must first have a 2D parameterization. This function,
F0(X): M0→P, maps points, X, on the input surface, M0, to points,
x,∗ on the texture plane, P (see Figure 3). The surface is typically
decomposed into several polygonal patches, each with its own
parameterization. The creation of such parameterizations has been
an active area of research and is fundamental for shape transfor-
mation, multi-resolution analysis, approximation of meshes by
NURBS, and texture mapping. Though we do not present a new
algorithm for such parameterization here, it is useful to consider
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the desirable properties of such a parameterization for our algo-
rithm. They are:

1. Number of patches: The parameterization should use as few
patches as possible. The triangles of the simplified surface
must each lie in a single patch, so the number of patches places
a bound on the minimum mesh complexity.

2. Vertex distribution: The vertices should be as evenly distrib-
uted in the texture plane as possible. If the parameterization
causes too much area compression, we will require a greater
map resolution to capture all of our original per-vertex data.

3. One-to-one mapping: The mapping from the surface to the
texture plane should be one-to-one. If the surface has folds in
the texture plane, parts of the texture will be incorrectly stored
and mapped back to the surface

Our particular application of the parameterization makes us
somewhat less concerned with preserving aspect ratios than some
other applications are. For instance, many applications apply
F-1(x) to map a pre-synthesized texture map to an arbitrary
surface. In that case, distortions in the parameterization cause the
texture to look distorted when applied to the surface. However, in
our application, the color or normal data originates on the surface
itself. Any distortion created by applying F(X) to map this data
onto P is reversed when we apply F-1(x) to map it back to M.

Algorithms for computing such parameterizations have been
studied in the computer graphics and graph drawing literature.

Computer Graphics: In the recent computer graphics litera-
ture, [12, 37, 38] use a spring system with various energy terms to
distribute the vertices of a polygonal patch in the plane. [12, 32,
38, 39] provide methods for subdividing surfaces into separate
patches based on automatic criteria or user-guidance. This body of
research addresses the above properties one and two, but unfortu-
nately, parameterizations based on spring-system algorithms do
not generally guarantee a one-to-one mapping.

Graph Drawing: The field of graph drawing addresses the
issue of one-to-one mappings more rigorously. Relevant topics
include straight-line drawings on a grid [40] and convex straight-
line drawings [41]. Battista et al. [42] present a survey of the
field. These techniques produce guaranteed one-to-one mappings,
but the necessary grids for a graph with V vertices are worst case
(and typically) O(V) width and height, and the vertices are
generally unevenly spaced.

To break a surface into polygonal patches, we currently apply
an automatic subdivision algorithm like that presented in [12].
Their application requires a patch network with more constraints
than ours. We can generally subdivide the surface into fewer
patches. During this process, which grows Voronoi-like patches,
we simply require that each patch not expand far enough to touch
itself. To produce the parameterization for each patch, we employ
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Figure 3: A look at the ith edge collapse. Computing
Vgen determines the shape of the new mesh, Mi. Com-
puting vgen determines the new mapping Fi, to the tex-
ture plane, P.



a spring system with uniform weights. A side-by-side comparison
of various choices of weights in [12] shows that uniform weights
produce more evenly-distributed vertices than some other choices.
For parameterizations used only with one particular map, it is also
possible to allow more area compression where data values are
similar. While this technique will generally create reasonable
parameterizations, it would be better if there were a way to also
guarantee that F(X) is one-to-one, as in the graph drawing
literature.

4.2 Creating Texture and Normal Maps
Given a polygonal surface patch, M0, and its 2D parameterization,
F, it is straightforward to store per-vertex colors and normals into
the appropriate maps using standard rendering software. To create
a map, scan convert each triangle of M0, replacing each of its
vertex coordinates, Vj, with F(Vj), the texture coordinates of the
vertex. For a texture map, apply the Gouraud method for linearly
interpolating the colors across the triangles. For a normal map,
interpolate the per-vertex normals across the triangles instead
(Figure 4).

The most important question in creating these maps is what the
maximum resolution of the map images should be. To capture all
the information from the original mesh, each vertex's data should
be stored in a unique texel. We can guarantee this conservatively
by choosing 1/d x 1/d for our map resolution, where d is the
minimum distance between vertex texture coordinates:

d
i j i j

i j= −
∈ ≠

min ( ) ( )
, ,V V

F V F V
M 0

(1)

If the vertices of the polygonal surface patch happen to be a
uniform sampling of the texture space (e.g. if the polygonal
surface patch was generated from a parametric curved surface
patch), then the issues of scan conversion and resolution are
simplified considerably. Each vertex color (or normal) is simply
stored in an element of a 2D array of the appropriate dimensions,
and the array itself is the map image.

It is possible to trade off accuracy of the map data for run-time
texturing resources by scaling down the initial maps to a lower
resolution.

5 SIMPLIFICATION ALGORITHM
Once we have decomposed the surface into one or more parame-
terized polygonal patches with associated maps, we begin the
actual simplification process. Many simplification algorithms
perform a series of edge collapses or other local simplification
operations to gradually reduce the complexity of the input surface.

The order in which these operations are performed has a large
impact on the quality of the resulting surface, so simplification
algorithms typically choose the operations in order of increasing
error according to some metric. This metric may be local or global
in nature, and for surface approximation algorithms, it provides
some bound or estimate on the error in surface position. The
operations to be performed are typically maintained in a priority
queue, which is continually updated as the simplification pro-
gresses. This basic design is applied by many of the current
simplification algorithms, including [6-8, 15].

To incorporate our appearance-preservation approach into such
an algorithm, the original algorithm is modified to use our texture
deviation metric in addition to its usual error metric. When an
edge is collapsed, the error metric of the particular surface
approximation algorithm is used to compute a value for Vgen, the
surface position of the new vertex (see Figure 3). Our texture
deviation metric is then applied to compute a value for vgen, the
texture coordinates of the new vertex.

For the purpose of computing an edge’s priority, there are sev-
eral ways to combine the error metrics of surface approximation
along with the texture deviation metric, and the appropriate choice
depends on the algorithm in question. Several possibilities for
such a total error metric include a weighted combination of the
two error metrics, the maximum or minimum of the error metrics,
or one of the two error metrics taken alone. For instance, when
integrating with Garland and Heckbert’s algorithm [6], it would
be desirable to take a weighted combination in order to retain the
precedence their system accords the topology-preserving collapses
over the topology-modifying collapses. Similarly, a weighted
combination may be desirable for an integration with Hoppe’s
system [15], which already optimizes error terms corresponding to
various mesh attributes.

The interactive display system later uses the error metrics to
determine appropriate distances from the viewpoint either for
switching between static levels of detail or for collapsing/splitting
the edges dynamically to produce adaptive, view-dependent
tessellations. If the system intends to guarantee that certain
tolerances are met, the maximum of the error metrics is often an
appropriate choice.

6 TEXTURE DEVIATION METRIC
A key element of our approach to appearance-preservation is the
measurement of the texture coordinate deviation caused by the
simplification process. We provide a bound on this deviation, to

Figure 4: A patch from the leg
of an armadillo model and its
associated normal map.

Figure 5: Lion
model.

Figure 6: Texture coordinate deviation and correction
on the lion’s tail. Left: 1,740 triangles full resolution.
Middle and Right: 0.25 mm maximum image deviation.
Middle: 108 triangles, no texture deviation metric.
Right: 434 triangles with texture metric.



be used by the simplification algorithm to prioritize the potential
edge collapses and by the run-time visualization system to choose
appropriate levels of detail based on the current viewpoint. The
lion’s tail in Figure 6 demonstrates the need to measure texture
coordinate deviation. The center figure is simplified by a surface
approximation algorithm without using a texture deviation metric.
The distortions are visible in the areas marked by red circles. The
right tail is simplified using our texture deviation metric and does
not have visible distortions. The image-space deviation bound
now applies to the texture as well as to the surface.

For a given point, X, on simplified mesh Mi, this deviation is
the distance in 3D from X to the point on the input surface with
the same texture coordinates:

Ti i( ) F (F ( ))X X X= − −
0

1 (2)

We define the texture coordinate deviation of a whole triangle to
be the maximum deviation of all the points in the triangle, and
similarly for the whole surface:

T ( ) max T ( ); T ( ) max T ( )i i i i i
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To compute the texture coordinate deviation incurred by an edge
collapse operation, our algorithm takes as input the set of triangles
before the edge collapse and Vgen, the 3D coordinates of the new
vertex generated by the collapse operation. The algorithm outputs
vgen, the 2D texture coordinates for this generated vertex, and a
bound on Ti(∆) for each of the triangles after the collapse.

6.1 Computing New Texture Coordinates
We visualize the neighborhood of an edge to be collapsed in the
texture plane, P, as shown in Figure 3. The boundary of the edge
neighborhood is a polygon in P. The edge collapse causes us to
replace the two vertices of the edge with a single vertex. The 3D
coordinates, Vgen of this generated vertex are provided to us by the
surface approximation algorithm. The first task of the texture
deviation algorithm is to compute vgen, the 2D texture coordinates
of this generated vertex.

For vgen to be valid, it must lie in the convex kernel of our
polygon in the texture plane [43] (see Figure 7). Meeting this
criterion ensures that the set of triangles after the edge collapse
covers exactly the same portion of the texture plane as the set of
triangles before the collapse.

Given a candidate point in the texture plane, we efficiently test
the kernel criterion with a series of dot products to see if it lies on
the inward side of each polygon edge. We first test some heuristic
choices for the texture coordinates – the midpoint of the original
edge in the texture plane or one of the edge vertices. If the
heuristic choices fail we compute a point inside the kernel by
averaging three corners, found using linear programming tech-
niques [43].

6.2 Patch Borders & Continuity
Unlike an interior edge collapse, an edge collapse on a patch
border can change the coverage in the texture plane, either by
cutting off some of texture space or by extending into a portion of
texture space for which we have no map data. Since neither of

these is acceptable, we add additional constraints on the choice of
vgen at patch borders.

We assume that the area of texture space for which we have
map data is rectangular (though the method works for any map
that covers a polygonal area in texture space), and that the edges
of the patch are also the edges of the map. If the entire edge to be
collapsed lies on a border of the map, we restrict vgen to lie on the
edge. If one of the vertices of the edge lies on a corner of the map,
we further restrict vgen to lie at that vertex. If only one vertex is on
the border, we restrict vgen to lie at that vertex. If one vertex of the
edge lies on one border of the map and the other vertex lies on a
different border, we do not allow the edge collapse.

The surface parameterization component typically breaks the
input model into several connected patches. To preserve geomet-
ric and texture continuity across the boundary between them, we
add further restrictions on the simplifications that are performed
along the border. The shared border edges must be simplified on
both patches, with matching choices of Vgen and vgen.

6.3 Measuring Texture Deviation
Texture deviation is a measure of the parametric distortion caused
by the simplification process. We measure this deviation using a
method similar to the one presented to measure surface deviation
in [8]. The main difference is that we now measure the deviation
using our mapping in the texture plane, rather than in the plane of
some planar projection. While [8] presents an overview of this
technique, we present it more formally.

Given the overlay (see Figure 8(a)) in the texture plane, P, of
two simplified versions of the surface, Mi and Mj, we define the
incremental texture deviation between them:

E ( ) F ( ) F ( ),i j i jx x x= −− −1 1 (4)

This is the deviation between corresponding 3D points on the
surfaces, both with texture coordinates, x. Between any two
sequential surfaces, Mi and Mi-1, differing only by an edge col-
lapse, the incremental deviation, Ei,i-1(x), is only non-zero in the
neighborhood of the collapsed edge (i.e. only in the triangles that
actually move).

The edges on the overlay in P partition the region into a set of
convex, polygonal mapping cells (each identified by a dot in
Figure 8(b)). Within each mapping cell, the incremental deviation
function is linear, so the maximum incremental deviation for each
cell occurs at one of its boundary points. Thus, we bound the
incremental deviation using only the deviation at the cell vertices,
vk:

E ( ) max E ( ) max E ( ), , ,i i i i i i k
k

− ∈ − −= =1 1 1P
Px v

x v (5)

In terms of the incremental deviation, the total texture deviation,
defined in (2) (the distance from points on Mi to corresponding
points on the original surface, M0) is

( ) ( )( )T E Fi i, i=X X0 (6)

We approximate Ei,0(x) using a set of axis-aligned boxes. This
provides a convenient representation of a bound on Ti(X), which

(a) (b)

Figure 7: (a) An invalid choice for vgen in P, causing the
new triangles extend outside the polygon. (b) Valid
choices must lie in the shaded kernel.
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(a) (b)
Figure 8: (a) An overlay in P determines the mapping
between Mi-1 and Mi. (b) A set of polygonal mapping
cells, each containing a dot.



we can update from one simplified mesh to the next without
having to refer to the original mesh. Each triangle, ∆k in Mi, has its
own axis-aligned box, bi,k such that at every point on the triangle,
the Minkowski sum of the 3D point with the box gives a region
that contains the point on the original surface with the same
texture coordinates.

( )( )∀ ∈ ∈ ⊕−X X X∆k i i k, bF F ,0
1 (7)

Figure 9(a) shows an original surface (curve) in black and a
simplification of it, consisting of the thick blue and green lines.
The box associated with the blue line, bi,0, is shown in blue, while
the box for the green line, bi,1, is shown in green. The blue box
slides along the blue line; at every point of application, the point
on the base mesh with the same texture coordinate is contained
within the translated box. For example, one set of corresponding
points is shown in red, with its box also in red.

From (2) and (7), we produce T
~

i(X), a bound on the total tex-
ture deviation, Ti(X). This our texture deviation output.

( )T T maxii ( )
~

X X X X
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T
~

i(X) is the distance from X to the farthest corner of the box at X.
This will always bound the distance from X to F 0

-1(Fi(X)). The
maximum deviation over an edge collapse neighborhood is the
maximum T

~
i(X) for any cell vertex.

The boxes, bi,k, are the only information we keep about the
position of the original mesh as we simplify. We create a new set
of boxes, bi+1,k’, for mesh Mi+1 using an incremental computation
(described in Figure 10). Figure 9(b) shows the propagation from
Mi to Mi+1. The blue and green lines are simplified to the pink line.
The new box, bi+1,0 is constant as it slides across the pink line. The
size and offset is chosen so that, at every point of application, the
pink box, bi+1,0, contains the corresponding blue or green boxes,
bi,0 or bi,1.

If X is a point on Mi in triangle k, and Y is the point with the
same texture coordinate on Mi+1, the containment property of (7)
holds:

( )( )F F , ,0
1

1 1
−

+ + ′∈ ⊕ ⊆ ⊕i i k i kY X Yb b (9)

For example, all three red dots Figure 9(b) have the same texture
coordinates. The red point on Mo is contained in the smaller red
box, X ⊕ bi,0, which is contained in the larger red box, Y ⊕ bi+1,0.

Because each mapping cell in the overlay between Mi and Mi+1

is linear, we compute the sizes of the boxes, bi+1,k’, by considering

only the box correspondences at cell vertices. In Figure 9(b), there
are three places we must consider. If the magenta box contains the
blue and green boxes in all three places, it will contain them
everywhere.

Together, the propagation rules, which are simple to imple-
ment, and the box-based approximation to the texture deviation,
provide the tools we need to efficiently provide a texture devia-
tion for the simplification process.

7 IMPLEMENTATION AND RESULTS
In this section we present some details of our implementation of
the various components of our appearance-preserving simplifica-
tion algorithm. These include methods for representation conver-
sion, simplification and, finally, interactive display.

7.1 Representation Conversion
We have applied our technique to several large models, including
those listed in Table 1. The bumpy torus model (Figure 1) was
created from a parametric equation to demonstrate the need for
greater sampling of the normals than of the surface position. The
lion model (Figure 5) was designed from NURBS patches as part
of a much larger garden environment, and we chose to decorate it
with a marble texture (and a checkerboard texture to make texture
deviation more apparent in static images). Neither of these models
required the computation of a parameterization. The armadillo
(Figure 12) was constructed by merging several laser-scanned
meshes into a single, dense polygon mesh. It was decomposed
into polygonal patches and parameterized using the algorithm
presented in [32], which eventually converts the patches into a
NURBS representation with associated displacement maps.

Because all these models were not only parameterized, but
available in piecewise-rational parametric representations, we
generated polygonal patches by uniformly sampling these repre-
sentations in the parameter space. We chose the original tessella-
tion of the models to be high enough to capture all the detail
available in their smooth representations. Due to the uniform
sampling, we were able to use the simpler method of map creation
(described in Section 4.2), avoiding the need for a scan-
conversion process.

7.2 Simplification
We integrated our texture deviation metric with the successive
mapping algorithm for surface approximation [8]. The error
metric for the successive mapping algorithm is simply a 3D
surface deviation. We used this deviation only in the computation
of Vgen. Our total error metric for prioritizing edges and choosing
switching distances is just the texture deviation. This is sensible
because the texture deviation metric is also a measure of surface
deviation, whose particular mapping is the parameterization.
Thus, if the successive mapping metric is less than the texture
deviation metric, we must apply the texture deviation metric,
because it is the minimum bound we know that guarantees the
bound on our texture deviation. On the other hand, if the succes-
sive mapping metric is greater than the texture deviation metric,

Figure 9: 2D illustration of the box approximation to
total deviation error. a) A curve has been simplified to
two segment, each with an associated box to bound the
deviation. b) As we simplify one more step, the ap-
proximation is propagated to the newly created seg-
ment.

PropagateError():
foreach cell vertex, v

foreach triangle, Told, in Mi-1 touching v
foreach triangle, Tnew, in Mi touching v

PropagateBox(v, Told, Tnew)

PropagateBox(v, Told, Tnew):
Pold = Fi-1

-1(v), Pnew = Fi
-1(v)

Enlarge Told.box so that Told.box applied at
Pold contains Tnew.box applied at Pnew

Figure 10: Pseudo-code for the propagation of deviation
error from mesh Mi-1 to mesh Mi.



the texture deviation bound is still sufficient to guarantee a bound
on both the surface deviation and the texture.

To achieve a simple and efficient run-time system, we apply a
post-process to convert the progressive mesh output to a static set
of levels of detail, reducing the mesh complexity by a factor of
two at each level.

Our implementation can either treat each patch as an independ-
ent object or treat a connected set of patches as one object. If we
simplify the patches independently, we have the freedom to switch
their levels of detail independently, but we will see cracks be-
tween the patches when they are rendered at a sufficiently large
error tolerance. Simplifying the patches together allows us to
prevent cracks by switching the levels of detail simultaneously.

Table 1 gives the computation time to simplify several models,

as well as the resolution of each map image. Figure 11 and Figure
12 show results on the armadillo model. It should be noted that
the latter figure is not intended to imply equal computational costs
for rendering models with per-vertex normals and normal maps.
Simplification using the normal map representation provides
measurable quality and reduced triangle overhead, with an
additional overhead dependent on the screen resolution.

7.3 Interactive Display System
We have implemented two interactive display systems: one on top
of SGI’s IRIS Performer library, and one on top of a custom
library running on a PixelFlow system. The SGI system supports
color preservation using texture maps, and the PixelFlow system
supports color and normal preservation using texture and normal
maps, respectively. Both systems apply a bound on the distance
from the viewpoint to the object to convert the texture deviation
error in 3D to a number of pixels on the screen, and allow the user
to specify a tolerance for the number of pixels of deviation. The
tolerance is ultimately used to choose the primitives to render
from among the statically generated set of levels of detail.

Our custom shading function on the PixelFlow implementation
performs a mip-mapped look-up of the normal and applies a

Model Patches Input Tris Time Map Res.
Torus 1 44,252 4.4 512x128
Lion 49 86,844 7.4 N.A.

Armadillo 102 2,040,000 190 128x128

Table 1: Several models used to test appearance-
preserving simplification. Simplification time is in min-
utes on a MIPS R10000 processor.

Figure 11: Levels of detail of the armadillo model
shown with 1.0 mm maximum image deviation. Trian-
gle counts are: 7,809, 3,905, 1,951, 975, 488

249,924 triangles 62,480 triangles 7,809 triangles 975 triangles
0.05 mm max image deviation 0.25 mm max image deviation 1.3 mm max image deviation 6.6 mm max image deviation

Figure 12: Close-up of several levels of detail of the armadillo model. Top: normal maps Bottom: per-vertex normals



Phong lighting model to compute the output color of each pixel.
The current implementation looks up normals with 8 bits per
component, which seems sufficient in practice (using [44])

8 ONGOING WORK AND CONCLUSIONS
There are several directions to pursue to improve our system for
appearance-preserving simplification. We would like to experi-
ment more with techniques to generate parameterizations that
allow efficient representations of the mapped attributes as well as
guarantee a one-to-one mapping to the texture plane.

It would be nice for the simplification component to do a better
job of optimizing the 3D and texture coordinates of the generated
vertex for each edge collapse, both in 3D and the texture plane.
Also, it may be interesting to allow the attribute data of a map to
influence the error metric. We would also like to integrate our
technique with a simplification algorithm like [6] that deals well
with imperfect input meshes and allows some topological
changes. Finally, we want to display our resulting progressive
meshes in a system that performs dynamic, view-dependent
management of LODs.

Our current system demonstrates the feasibility and desirability
of our approach to appearance-preserving simplification. It
produces high-fidelity images using a small number of high-
quality triangles. This approach should complement future
graphics systems well as we strive for increasingly realistic real-
time computer graphics.
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