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ABSTRACT

In image-based rendering, images acquired from a scene are
used to represent the scene itself.  A number of reference images
are required to fully represent even the simplest scene.  This leads
to a number of problems during image acquisition and subsequent
reconstruction. We present the multiple-center-of-projection
image, a single image acquired from multiple locations, which
solves many of the problems of working with multiple range
images.

This work develops and discusses multiple-center-of-
projection images, and explains their advantages over
conventional range images for image-based rendering.  The
contributions include greater flexibility during image acquisition
and improved image reconstruction due to greater connectivity
information.  We discuss the acquisition and rendering of
multiple-center-of-projection datasets, and the associated
sampling issues.  We also discuss the unique epipolar and
correspondence properties of this class of image.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Generation –
Digitizing and scanning, Viewing algorithms; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism;  I.4.10 [Image Processing]:
Scene Analysis
Keywords: image-based rendering, multiple-center-of-projection images

1 INTRODUCTION

In recent years, image-based rendering (IBR) has emerged
as a powerful alternative to geometry-based representations of
3-D scenes.  Instead of geometric primitives, the dataset in IBR is
a collection of samples along viewing rays from discrete
locations.  Image-based methods have several advantages.  They
provide an alternative to laborious, error-prone geometric
modeling.  They can produce very realistic images when acquired
from the real world, and can improve image quality when
combined with geometry (e.g., texture mapping).  Furthermore,
the rendering time for an image-based dataset is dependent on the
image sampling density, rather than the underlying spatial
complexity of the scene.  This can yield significant rendering
speedups by replacing or augmenting traditional geometric
methods [7][23][26][4].

The number and quality of viewing samples limits the
quality of images reconstructed from an image-based dataset.

Clearly, if we sample from every possible viewing position and
along every possible viewing direction (thus sampling the entire
plenoptic function [19][1]), then any view of the scene can be
reconstructed perfectly.  In practice, however, it is impossible to
store or even acquire the complete plenoptic function, and so one
must sample from a finite number of discrete viewing locations,
thereby building a set of reference images.  To synthesize an
image from a new viewpoint, one must use data from multiple
reference images.  However, combining information from
different images poses a number of difficulties that may decrease
both image quality and representation efficiency.  The multiple-
center-of-projection (MCOP) image approaches these problems
by combining samples from multiple viewpoints into a single
image, which becomes the complete dataset.  Figure 1 is an
example MCOP image.

Figure 1 Example MCOP image of an elephant

The formal definition of multiple-center-of-projection
images encompasses a wide range of camera configurations.  This
paper mainly focuses on one particular instance, based on the
photographic strip camera [9].  This is a camera with a vertical
slit directly in front of a moving strip of film (shown in Figure 2
without the lens system).  As the film slides past the slit a
continuous image-slice of the scene is acquired.  If the camera is
moved through space while the film rolls by, then different
columns along the film are acquired from different vantage points.
This allows the single image to capture continuous information
from multiple viewpoints.  The strip camera has been used
extensively, e.g., in aerial photography.  In this work’s notion of a
digital strip camera, each pixel-wide column of the image is
acquired from a different center-of-projection.  This single image
becomes the complete dataset for IBR.

Features of multiple-center-of-projection images include:
• greater connectivity information compared with

collections of standard range images, resulting in
improved rendering quality,

• greater flexibility in the acquisition of image-based
datasets, for example by sampling different portions of
the scene at different resolutions, and

• a unique internal epipolar geometry which
characterizes optical flow within a single image.
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Furthermore, MCOP images retain the desirable properties of
conventional range images, such as fast incremental projection
and moderate storage requirements.

In this paper we formally develop the concept of multiple-
center-of-projection images, and discuss their acquisition and
reprojection for image-based rendering.  We describe different
data structures to maintain these images, and discuss the
implications of sampling during their acquisition.  We also show
how to perform point correspondence using a single MCOP
image.  We conclude by presenting several examples of MCOP
images, and demonstrate their advantage over conventional range
images.

2 PREVIOUS WORK

Early work in image-based rendering includes the rangeless
panoramas of Chen and Williams [3][4] and Regan and Pose[22],
which allow view reconstruction from a set of fixed eye locations.
Plenoptic modeling [19] adds range to panoramic images, thereby
allowing reprojection from arbitrary viewpoints.  The concept of
the plenoptic function is further explored by light slab methods
[10][16], which attempt to fully sample the function within a
subset of space.

Several methods exist for handling IBR range images from
multiple viewpoints. Layered depth images [23] store multiple
hits of a viewing ray in different layers of a single image,
allowing, e.g., the front and back of a surface to be kept in a single
data structure.  The delta tree [6] acquires a hierarchical set of
reference images on a sampling sphere around a target object,
discarding redundant information when possible.

The work most closely related to this paper is the
multiperspective panorama for cel animation [30].  This method
constructs an image from multiple viewpoints for use as a
backdrop in traditional cel animation.  A continuous set of views
along a pre-specified path can be extracted from this single
backdrop.  The construction of multiperspective panoramas is
similar to the use of manifold projections in computer vision [20].

Another related work is the extended camera for ray tracing
[11].  This method allows a ray-tracing camera to undergo
arbitrary transformations as it traverses each pixel of the output
image, thereby achieving a number of artistic effects.

Imaging devices similar to strip cameras have recently been
explored in computer vision by Zheng and Tsuji [31] and by
Hartley [13].  The former discusses their use in robot navigation,
while the latter discusses the pushbroom camera, used in satellite
imagery.  One-dimensional cameras are also the basis of
Cyberware scanners, which sweep a linear or circular path around
an object, and systems by 3D Scanners, Ltd., which attach a 1-D
scanning head to a Faro Technologies arm.

3 MULTIPLE-CENTER-OF-
PROJECTION IMAGES

3.1 Definition

A multiple-center-of-projection image is an extension of a
conventional image, characterized by having a set of cameras
contributing to it, rather than only a single camera.  Individual
pixels or sets of pixels are acquired by different cameras, subject
to certain constraints.

A multiple-center-of-projection image consists of a
two dimensional image and a parameterized set of
cameras, meeting the following conditions:

1) the cameras must lie on either a continuous
curve or a continuous surface

2) each pixel is acquired by a single camera
3) viewing rays vary continuously across

neighboring pixels
4) two neighboring pixels must either correspond

to the same camera or to neighboring cameras.

This definition states that the camera locations are not an
unorganized set of points, but rather define a continuous curve or
surface (condition 1).  Condition 2 states each pixel is from a
single camera, rather than a blend of samples from multiple
cameras.  Condition 3 imposes smoothness on the viewing rays,
thereby ensuring they do not vary discontinuously.  The last
condition imposes an organization on the mapping of camera
samples to the resulting image; it ensures we move smoothly from
camera to camera as we traverse from pixel to pixel in an image.
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Figure 3 A multiple-center-of-projection image acquired by
capturing a discrete number of image-slices along a curve.  This
single image (bottom) sees three sides of the house simultaneously.
A similar configuration was used to create Figure 1.

Note that while the definition contains several parts, a
continuous strip camera – along any continuous path –
automatically satisfies the four criteria (section 4.4 discusses the
sampling implications for discrete images).  The remainder of this
paper thus deals exclusively with the strip camera instance, unless
otherwise noted.

3.2 Distinctions From Other Methods

Before delving into the details of MCOP images, we should
clarify what these images are not.  For example, what is the
difference between an MCOP image and an arbitrary collection of
conventional images?  As will be shown in sections 4 and 5, the
four constraints on an MCOP image yield advantages not found
with conventional range images.  These include improved image
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Figure 2 A strip camera consists of a moving strip of film
behind a vertical slit.



reconstruction quality, greater flexibility during image acquisition,
and unique epipolar and correspondence properties.  MCOP
images are not a data structure for maintaining collections of
images.

What is the difference between an MCOP image and the
multiperspective panorama [30]?  Multiperspective panoramas
may be considered subsets of MCOP images, since they meet the
definition of section 3.1.  However, a multiperspective panorama
is not intended as a dataset for arbitrary view construction; it does
not permit 3D reprojection, and thus can only provide views along
a single predetermined path.  Also, a primary goal in
multiperspective panoramas is to minimize the local distortion in
the bitmap – otherwise, output images will suffer from perspective
errors.  This will not occur with MCOP images.

What is the difference between an MCOP dataset and a
polygonal mesh?  MCOP images retain the same desirable
characteristics that separate all image-based range datasets from
polygonal datasets.  Because of strong spatial coherence across
neighboring pixels, the projection of image points can be
computed incrementally using McMillan and Bishop's 3D
warping equations [19]. Also, since the image dataset is a regular
grid, the 2D pixel coordinates are implicit for all points – each
pixel only needs to contain intensity and range, in contrast with
intensity, x, y, and z.  Finally, an MCOP image has projective and
epipolar properties not found in polygonal meshes.

We must also distinguish between MCOP images and
images with arbitrary-manifold projection surfaces.  That is, we
can construct a single-COP image in which the projection surface
is not a plane, cylinder, or sphere, but rather an arbitrary manifold
surface.  Each pixel in this image is then given by an intersection
of a ray from the COP through the surface.  While MCOP images
do have curved image surfaces, the two are not equivalent, since
the arbitrary-manifold image can still only capture scene points
visible to the single center of projection, whereas MCOP images
can view from more than one location.

4 ACQUIRING MCOP IMAGES
Multiple-center-of-projection images are well-suited to

applications where a useful path can be defined through or around
a scene; by not tying every pixel in a reference image to the same
viewpoint, they allow greater flexibility during acquisition than
conventional images.  For example, sampling a nearly-convex
object (such as in Figure 4) results in several poorly-sampled
areas, as the cameras’ viewing rays approach grazing angle with
the object.  The MCOP image on the right, however, samples
every point at a near-normal angle, thus acquiring good samples
everywhere.  This occurs for both quantities being measured –
color and range.  Other relevant sampling issues are discussed in
section 4.4.

4.1 Data Structures for MCOP Images

Although each pixel in an MCOP image may conceptually
belong to a different camera, in practice we minimize storage
requirements by describing the cameras parametrically in a variety
of ways.  At the highest level, for example, we can divide the
camera curve into equally-spaced segments, then use the column
index of each pixel as an implicit curve coordinate to compute the
camera location.  At the next level, each column of the image may
explicitly store the parametric coordinate of the camera, thus
allowing irregular camera spacing along the curve.  Each column
may instead explicitly contain the complete camera model, thus
requiring n camera descriptions for an n×m-sized image.  Or, at
the extreme level, each pixel can explicitly store a camera model.
Clearly, the most compact method should be selected given a
particular application.

4.2 Synthesizing From a 3D Model

To synthesize an MCOP image from a 3D model, we first
define a path through the 3D scene.  This path need not be closed,
nor do the viewing rays need to be normal to the curve.  We then
smoothly animate a camera along this curve, extracting a single-
pixel-wide color image and depth map at each frame of the
animation.  As each slice is captured, we concatenate the color
image and range map into a rectangular buffer, and store the
camera information for that column (four vectors, described in
5.1) in an array.  Since there is much coherence from one camera
position to the next along the path, a method such as multiple
viewpoint rendering [12] may be used to accelerate the rendering.

Figures 5 through 8 show a rendered 1000×500 MCOP
image of a castle model.  Details of the rendering process are
given in section 8.  Note that the single image captures the
complete exterior of the model, which is then rendered as a single
mesh.  This demonstrates the increased acquisition flexibility and
improved connectivity properties of the MCOP technique.

4.3 Acquiring From Real-World Scenes

We can acquire an MCOP image of the real world by
constructing the digital equivalent of a strip camera.  For example,
we can use a 1-D CCD camera, translated along a path.  One-
dimensional image-strips are captured at discrete points on the
path and concatenated into the image buffer.  The CCD camera
must be accurately tracked to prevent errors during reprojection,
using for example the techniques in [28].

This method has the disadvantage of introducing a temporal
element into the image, since every 1-D strip is captured at a
different time.  This may lead to mismatched data unless the scene
is static (static scenes are a common assumption in IBR
[4][19][16][10]).

Active range-finding techniques, such as laser range-
finders, can be applied to MCOP images almost exactly as with
regular images: simply register the laser scanner with the color
camera.  A Cyberware scanner, for example, is a 1-D laser range-
finder registered with a 1-D linear camera.  Section 6 discusses
how the epipolar constraint - critical to passive range-finding
methods - can be extended to MCOP images.
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Figure 4 The three regular cameras on the left have difficulty
sampling the object well.  The MCOP image on the right can
easily sample well the complete object.



4.4 Sampling Issues

The construction of an MCOP image is inherently a
sampling process; there are two primary questions that must be
asked.  First, how much of the plenoptic function does an MCOP
image capture?  The light field and Lumigraph methods approach
this by attempting to fully sample the function, but only over a
subset of space.  The MCOP method is better suited to the
opposite approach - sampling the plenoptic function only partially
(specifically, not capturing view-dependent lighting), but over
large regions.  Furthermore, MCOP range images are not bound
by the free space assumption of light slab methods, since the
range at each pixel is used to resolve visibility.  Thus, MCOP
images can contain both foreground and background objects (by
sweeping the camera over both areas), and the reprojection
viewpoint is not limited to lying between the camera path and the
projection surface.

Second, how well does an MCOP image sample the
plenoptic function?  Since the functions being sampled (color and
range) are not bandlimited, aliasing is inevitable.  To minimize it,
we must prefilter the signals (that is, perform area sampling rather
than point sampling) as we must with light field rendering [16].
In that work the camera spacing is constant, and thus also the
filtering kernel.  However, in MCOP images the camera spacing
and orientation may vary across the image.  Therefore, a larger
filtering kernel is required in regions of greater camera translation
or rotation.  However, as the filtering kernel is increased, the
resolution of each sample is effectively reduced, since a greater
portion of the scene is blurred into each sample.  To avoid

excessively-large kernels (that is, excessive blurring), the
sampling rate should be increased in regions of fast camera
motion.

5 REPROJECTING MCOP IMAGES

This section describes how to render a new viewpoint using
an MCOP reference image.  This consists of two steps: computing
each pixel’s reprojected location in world-space, and rendering
the reprojected points using an appropriate reconstruction method.
Alternatively, we may skip the reprojection into world-space,
instead projecting from the 2D reference image directly into the
2D output image, as described in [18].

5.1 Reprojection Formula

Since an MCOP image conceptually contains a full camera
description plus range for each pixel, the reprojection step is
straightforward (in the strip camera case, we need only one
camera model per column).  Our implementation stores the
camera information for each column i as four vectors: a center of
projection Ci, a vector Oi from Ci to the image plane origin, a Ui
vector defining the horizontal axis of the projection plane, and a Vi
vector defining the vertical axis. Each pixel (i,j) contains disparity
rather then depth, defined here as the distance from Ci to the
image plane at a given pixel, divided by the distance from Ci to
the pixel’s corresponding world-space point.  Thus disparity is
inversely proportional to range.

Figure 5 Castle model.  The red curve is the
path the camera was swept on, and the arrows
indicate the direction of motion.  The blue
triangles are the thin frusta of each camera.
Every 64th camera is shown.

Figure 6 The resulting 1000×500 MCOP image.  The first fourth of the image, on the left
side, is from the camera sweeping over the roof.  Note how the courtyard was sampled
more finely, for added resolution.

Figure 7 The projection surface (image
plane) of the camera curve.

Figure 8 Three views of the castle, reconstructed solely from the single MCOP image above.  This dataset
captures the complete exterior of the castle.



Given this camera model and the disparity δi,j for a pixel
(i,  j), the 3-space reprojection (x, y, z) is:

 If the dataset is rendered in column-major order, we can
reproject the pixels incrementally, since Ci, Oi, Ui, and Vi are
constant for each column.  Also note the (i, j) coordinates of a
pixel are implicit (since the image is a regular grid) and do not
have to be explicitly maintained.

5.2 Image Reconstruction

After calculating the reprojected coordinates of each pixel
in the reference image, there are two common methods for
reconstructing a conventional range image from a new viewpoint:
splatting and meshing.  Splatting consists of directly rendering
each point using a variable-size reconstruction kernel (e.g., a
Gaussian blob), with size dependent on distance from the eye to
the point [25][29].  Meshing consists of connecting adjacent
pixels with triangles, quadrilaterals, or some higher-order surface.
Visibility can be determined for both methods by z-buffering.

Splatting with MCOP images is exactly as with
conventional images, since each point is rendered independently:
we compute each pixel’s 3-space location, then render that point
with an appropriate reconstruction kernel.  Meshing can also be
employed as with conventional images; although neighboring
pixels may come from different cameras, the constraints of the
MCOP definition ensure that neighboring pixels in the image
represent neighboring points in space.

For proper meshing of conventional or MCOP images,
discontinuities in the range image must first be detected.  For
example, three adjacent pixels with one belonging to a foreground
object and the others belonging to the background should not be
connected in the rendered image.  Methods for detecting these
silhouette edges are discussed in [17][7][27].  Such algorithms can
be easily extended to the MCOP domain.  For example, our
silhouette-detection implementation for a single-COP image will
not connect adjacent pixels if the surface they define is sampled
by a nearly parallel ray (see Figure 9).  It assumes these points
probably span empty space, rather than a real surface.  This
method is directly extended to MCOP images by testing each
triangle (from three adjacent pixels) against the rays of the two or
three cameras that contribute to it: if the triangle is nearly parallel
to them all, it is not rendered; otherwise, it is rendered.  This
comparison is only performed once, as a preprocess.

MCOP images have an advantage over conventional images
when rendering with meshes.  In the conventional case a large
number of separate images may be required to fully sample an
object.  One can only easily connect adjacent pixels within each
image, but points from different images cannot be connected with
a mesh unless a “zippering” preprocess [5] is performed.  The
amount of zippering required increases with the number of
images, since each image's boundaries will tend to produce
additional seams.  With the MCOP method, this problem is
minimized, since there is only one image in the dataset.  By
reducing the number of boundaries to consider, MCOP images
can greatly reduce the amount of zippering necessary to fully
connect a scene.

5.3 Multiple Sampling of Scene Points

An MCOP image may contain multiple samplings of the
same scene point.  Since these samples map to the same area in
the new, reconstructed image, simple meshing or splatting
methods leave only the last-rendered of the frontmost samples in
the image.  This, however, may not be the best sample.  A better
method is to blend successive samples as they are written to the
image buffer, as described in [7] and [21].

6 EPIPOLAR GEOMETRY

A fundamental relationship between a pair of conventional
images is the epipolar geometry they define: a pixel with
unknown range in one image will map to a line in the other
(planar) image [8][2].  This property characterizes the optical flow
between the two images, and aids in solving the correspondence
problem - if one image's pixel views a feature x, then to find that
feature in the other image, we need only search the corresponding
line that the pixel maps to.  This property has led to the

Figure 9 In the single-COP case the surface s is nearly parallel to
the rays of camera c, and so is not rendered.  In the MCOP case, s
is not parallel to the ray from the second camera, and therefore is
rendered.

         
Figure 10  Internal epipolar geometry for an MCOP image.  a) Elephant model.  The camera first sweeps the head in one direction, then in the other
direction  b) the MCOP image   c) rays cast by a camera, and acquired by every other camera.  Positive rays are yellow, negative rays green.    d) the
epipolar curves induced by the rays of the leftmost eye’s camera, marked in red.  Note how the curve that crosses the first viewing of the eye also
crosses the second viewing of the eye.  Given these two corresponding points, we can find the range of the eye by triangulation.
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development of occlusion-compatible rendering order for range
images and layered depth images [19][23], and greatly simplifies
passive range-finding methods based on correspondence.

We can similarly define an epipolar geometry between an
MCOP image and a conventional image, or between two MCOP
images, by merely projecting the rays of one image's pixels into
the other image.  However, these will usually map to curves in an
MCOP image, rather than to lines.

We can also define an internal epipolar geometry using only
a single MCOP image.  Pick some camera ci of the MCOP image,
and project its rays into every other camera of the image (Figure
10).   The result will be a family of curves, which characterizes
the optical flow between ci and the other cameras.  If some feature
x is seen multiple times in the image (e.g., the elephant's eye in
the image, which is seen twice), then all sightings must lie along
an epipolar curve.  Thus the epipolar constraint holds for MCOP
images, although it remains as future work whether the internal
epipolar geometry will lead to useful correspondence algorithms.

7 CAMERAS ALONG A SURFACE
This paper has dealt exclusively with MCOP images

constructed by placing cameras along a curve.  However, the
definition of multiple-center-of-projection images also allows the
cameras to define a surface.  This approach allows more
independence among viewing locations and rays by providing an
additional dimension of parameterization for the cameras.  We
can, for example, parameterize a 3D surface by s and t, then
define a camera for m and n discrete points along s and t,
respectively.  The viewing rays need not be normal to the surface,
but must vary smoothly across neighboring pixels.

A useful case where the cameras define a surface can be
constructed as follows: consider a static rig in the shape of an arc,
lined with a curved one-dimensional CCD array on the inside
(Figure 12).  This rig is then rotated around a target object (the
CCDs need not point directly at the center of rotation).  Since
each CCD is considered a camera, this case constructs an MCOP
image where the camera forms a surface, rather than a curve.
Note that although the camera locations and orientations now
differ for every pixel in the resulting image, they can be efficiently
described by a parametric surface, and thus do not significantly
increase the dataset size.

Figure 12 Cameras along an arc (left) define a surface of
revolution when rotated, and may be used to capture a greater solid
angle compared to conventional cylindrical scanners (right)

This configuration is very similar to Cyberware scanners,
except their rig is not curved, so all of their viewing rays are
parallel.  A limitation of non-curved scanners is that they cannot
appropriately sample the tops or bottom of many commonly
scanned objects, such as the human head.  The curved camera
surface, however, will adequately handle this.

8 RESULTS
Figures 5 through 8 and 13 through 17 show the multiple-

center-of-projection method applied to two synthetic scenes.
Each MCOP image was rendered in 3D Studio MAX as described
in section 4.2: we defined one curve around the model for the
camera location, another curve for the camera's lookat point, and
then rendered a single-pixel-wide image at each step along these
curves.  We used a custom plug-in to extract the Z-buffer and
camera information (C, O, U, and V vectors) for each pixel-wide
image.  The color, range, and camera information were then
concatenated into a rectangular color image, a rectangular
disparity map, and an array of camera descriptors.

The castle model demonstrates the MCOP method's
improved connectivity by rendering the entire image with a single
mesh.  The Titanic model demonstrates the method's flexible
image acquisition, by sampling the flag at a higher resolution than
the rest of the ship.

Figure 11 shows the results of an early experiment to
acquire real-world data.  A UNC HiBall optoelectronic tracker
was rigidly attached to an Acuity Research AccuRange4000 laser
range finder, which reflected from a rotating mirror.  This rig was
moved along the path shown in Figure 11b, sweeping out columns
of range and reflectance at discrete points on the path.  The
camera swept over the scene a total of six times (note that the
scene photographed is a recreation of that which the laser actually

(a)   (b)

(c) 

(d) 

(e)    

Figure 11  Results of early experiment (see section 8 for details).  (a) Scene.
(b) Camera path used to acquire it.  (c) The grayscale acquired image.  (d)
Color mask applied to it.  (e) Reprojected views.



scanned, since equipment was moved between the day of the
experiment and the day of the photographs).  The MCOP image
shown in (c) is the grayscale reflectance reported by the laser.
The color mask was hand-created to better distinguish the separate
objects.  Two reprojections of the entire dataset.  The results from
this early experiment were reasonable, and proved the feasibility
of the MCOP method for real-world usage.  The main problems
encountered were static misregistration between the tracker and
laser, and poor range data resulting from specular surfaces.

9 LIMITATIONS AND FUTURE WORK

The tradeoffs and limitations of MCOP images are similar
to those of conventional images.  In order to capture view-
dependent lighting in an MCOP image, we must acquire a feature
multiple times; this is analogous to sampling a point from
different locations with conventional images.  As with all image-
based methods, the rendering quality is limited by the original
image sampling; this is in contrast with geometric methods, which
can represent objects as continuous entities.  Also, since the
number of viewpoints in an MCOP image tends to be larger than
in a set of conventional images, there are more opportunities for
error to be introduced by the camera tracking.  Finally, while
MCOP images allow greater acquisition flexibility, they do not
solve the problem of finding a set of viewpoints that fully cover a
scene, or sample it at some optimal quality.

Conventional range images can be rendered in occlusion-
compatible order [19], a scene-independent list-priority technique
that eliminates the need for z-buffering with a single reference
image.  This cannot be applied directly to multiple-center-of-
projection images, however, due to their complex epipolar
geometries.  It remains as future work to classify what subsets of
all possible MCOP configurations can be rendered in occlusion
compatible order.

Another area of future work concerns the construction of
complete polygonal meshes for CAD or geometric rendering
[5][27], given an MCOP range image.  The problem is simplified
somewhat in the MCOP domain since we have connectivity
information across all neighboring pixels, as opposed to dealing
with an unorganized set of points, or multiple reference images
which only contain connectivity information within themselves.
Nonetheless, while MCOP images may reduce the number of
seams that must be stitched, they are not altogether eliminated.
Whenever a surface is viewed multiple times, the spatial
connectivity across the different viewings must still be
determined.

10 CONCLUSION
In this paper we have developed and discussed the multiple-

center-of-projection image for image-based rendering.  MCOP
images alleviate many problems of image-based rendering by
maintaining a single image, containing information from multiple
viewpoints.  They allow for better image reconstruction than
conventional range images.  They are capable of sampling
different portions of a scene at different resolutions.  They provide
greater control over the sampling process, allowing the directions
of viewing rays to vary over the image, thereby acquiring better
samples than if all were bound to the same COP.  They also
posses a unique internal epipolar geometry that defines how
multiple viewings of scene points relate to each other.

Multiple-center-of-projection images have already proven
their usefulness in real-world domains, though under different
names.  The strip camera, for example, has existed for almost a

hundred years, and has been used for such important tasks as
aerial photography for the last fifty.  The Cyberware scanner,
another MCOP device, has proven invaluable to a wide range of
computer graphics applications.  This paper presents a framework
by which these existing methods can be exploited further.  More
importantly, it extends the notion of what it means to be an
“image” in image-based rendering.
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Figure 13  Titanic.  We sample the fore and aft more closely than
the midsection, for better reconstruction at those areas.  The
camera moves very close at the end of the path, to capture a
small flag at the rear of the ship.

Figure 14  The resulting 1000×500 MCOP image.  Because the fore and aft
of the ship were sampled at a higher resolution, they occupy a larger
portion of the image.  The right side of the image shows the finely-sampled
flag.

Figure 15  The image on the left is constructed by splatting every
fourth column in the MCOP dataset.  This shows the image-slices
acquired by each camera on the curve.  On the right is the dataset
rendered by connecting adjacent points with triangles.

Figure 16  A full view of the reprojected dataset.  The back sides of
the funnels are not seen, because they were not sampled by the
cameras (see Figure 13).

Figure 17  The rear of the ship.  The flag was sampled at the highest resolution of the image (Figure 14), allowing an extreme close-up of it.


