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Abstract

The identification of reputable entities is an important task in business, education,
and in many other fields. In general, the reputation of an entity reflects its public
perception, which touches upon a variety of aspects that may impact the identity of
the entity, such as its prowess, integrity, and trustworthiness. Indeed, more reputable
entities are presumably a better fit for most purposes. Thus, while reputation is a
widespread notion in society, it is albeit an arguably ill-defined one. As a consequence,
quantifying reputation is challenging. Indeed, existing attempts to quantify reputation
rely on either manual assessments or on a restrictive definition of reputation.

In this thesis, instead of relying on a single and precise definition of reputation, we
propose to exploit the transference of reputation among entities in order to identify the
most reputable ones. To this end, we introduce a conceptual framework of reputation
flows and propose a metric based on it, which we call P-score. This framework consists
of a random walk model that allows inferring the reputation of a target set of entities
with respect to suitable sources of reputation. By using it, we can better understand
how reputation flows between distinct entities in a reputation graph.

We instantiate our model in an academic search setting to address three common
ranking tasks namely, research group ranking, author ranking, and publication venue
ranking. By relying on publishing behavior as a reputation signal, we demonstrate the
effectiveness of our model in contrast to standard citation-based approaches for iden-
tifying reputable venues, authors, and research groups in the broad area of Computer
Science. In addition, we demonstrate the robustness of our model to perturbations in
the selection of reputation sources. Finally, we show that effective reputation sources
can be chosen via the proposed model itself in a fully automatic fashion.
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Chapter 1

Introduction

Reputation is a widespread notion in society, albeit an arguably ill-defined one. In
general, the reputation of an entity reflects the public perception about this entity
developed over time. This public perception may be either good or bad, and touches a
variety of aspects that may impact the identity of the entity before the public, such as
its prowess, integrity, and trustworthiness. Moreover, the reputation of an entity can
change rapidly following an event in which the entity is involved, by means of word-
of-mouth dissemination—whether traditional or electronic. As a result, reputation
management is actively pursued by public relations departments of corporations and
institutes. Further, it is a topic of continuous interest of online communities, such as
question-answering forums and online marketplaces [Hutton et al., 2001].

The identification of reputable entities is an important task in many fields. In-
deed, more reputable entities are presumably a better fit for most purposes. However,
the subjective nature of reputation makes its quantification—and hence the identifi-
cation of reputable entities—challenging. As a result, existing attempts to quantify
the reputation of an entity rely on either manual assessments or on a restrictive def-
inition of reputation, e.g., in terms of authority [Kleinberg, 1999; Page et al., 1998],
influence [Bakshy et al., 2012], or expertise [Balog, 2012]. In contrast, in this thesis,
we take an agnostic view of reputation. In particular, instead of relying on a single,
precise definition of reputation, we propose to exploit the transference of reputation
among entities in order to identify the most reputable ones.
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2 Chapter 1. Introduction

1.1 Thesis Statement

The statement of this thesis is that effective rankings of entities can be attained by
explicitly representing the transference of reputation among them. Modelling the trans-
ference of reputation, instead of assigning to it a single and precise definition, may offer
additional standpoints when compared to existing metrics over an application scenario.
In particular, by investigating how reputation flows from one entity to another, one can
grasp interesting insights regarding the relative importance of each one. To illustrate,
by adopting highly reputable entities as sources of reputation, it is possible to infer or
reason about the relative importance of directly or indirectly related entities.

1.2 Thesis Contributions

The key contributions of this thesis can be summarized as follows:

A Conceptual Framework of Reputation Flows. We propose a conceptual framework of
reputation flows, which consists of a novel random walk model for ranking entities
according to the reputation collectively transferred to them from a set of reputation
sources. In this framework, reputation flows through the nodes of a special graph,
so-called the reputation graph, which has three types of nodes: the reputation sources,
the reputation targets, and the reputation collaterals. This special graph allows us to
model flows of reputation among distinct entity types, which we use to compute the
P-score metric for ranking entities in a reputation graph.

Reputation Flows in Academia. We instantiate our conceptual framework of reputa-
tion flows in the academic search setting. To evaluate our instantiation, we perform
an empirical validation on the effectiveness and robustness of the model by applying
it to three academic search tasks, namely: venue ranking, author ranking, and re-
search group ranking. Our results suggest that our reputation-based metric P-score
can indeed be used as an alternative method to produce academic rankings. Indeed, its
experimental results led to more effective rankings than those produced using classic
citation-based metrics.

Automatic Selection of Reputation Sources. We characterize the impact of choosing
distinct sets of reputation sources in the academic search setting and use the acquired
knowledge to investigate the suitability of automatically choosing effective sets of rep-
utation sources. In particular, we discuss a variety of methods to perform such choices.
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One of them uses the P-score itself through a randomized process, and leads to results
that closely resemble those produced by human experts.

1.3 Publications
Most of the material presented in this thesis appears in the following publications:

1. Sabir Ribas, Berthier Ribeiro-Neto, Rodrygo L.T. Santos, Edmundo de Souza e
Silva, Alberto Ueda, Nivio Ziviani, Marlon Dias. “Reputation flows in academia.”
Journal of American Society for Information Science and Technology, submitted.
Feb, 2017.

2. Sabir Ribas, Alberto Ueda, Rodrygo L.T. Santos, Berthier Ribeiro-Neto,
Nivio Ziviani. “Simplified Relative Citation Ratio for Static Paper Ranking:
UFMG/LATIN at WSDM Cup 2016.” ACM International Conference on Web
Search and Data Mining, WSDM Cup. San Francisco, USA. Feb 22-25, 2016.

3. Sabir Ribas, Berthier Ribeiro-Neto, Rodrygo L.T. Santos, Edmundo de Souza
e Silva, Alberto Ueda, Nivio Ziviani. “Random walks on the reputation
graph.” ACM International Conference on the Theory of Information Retrieval.
Northampton, Massachusetts, USA. Sep 27-30, 2015.

4. Sabir Ribas, Berthier Ribeiro-Neto, Edmundo de Souza e Silva, Alberto Ueda,
Nivio Ziviani. “Using reference groups to assess academic productivity in com-
puter science.” Proceedings of the International World Wide Web Conference,
BigScholar. Florence, Italy. May 18-22, 2015.

5. Sabir Ribas, Berthier A. Ribeiro-Neto, Edmundo de Souza e Silva, Alberto Ueda,
Nivio Ziviani. “P-score: A Publication-based Metric for Academic Productivity.”
Technical Report: CoRR, Vol. abs/1503.07496. Mar, 2015.

6. Sabir Ribas, Berthier A. Ribeiro-Neto, Edmundo de Souza e Silva, Nivio Zi-
viani. “R-Score: Reputation-based Scoring of Research Groups.” Technical Re-
port: CoRR, Vol. abs/1308.5286. Aug, 2013.

Among the aforementioned publications, the only work that does not focus on
the P-score metric is the one that describes our participation in the WSDM Cup
2016. In that work, we have proposed the S-RCR metric to rank academic papers, see
Appendix G. The interesting point here is that a single well-designed feature was able
to produce effective results, promoting our team to the 3rd place of the competition.



4 Chapter 1. Introduction

1.4 Thesis Outline
The remainder of this thesis is organized as follows:

• Chapter 2 provides a background and a related work discussion. It starts by
presenting a background material on random walks, from the basic concepts
behind random walks to Markov Chains and PageRank. Next, it discusses core
related works on random walks, on academic search, as well as on the use of
random walks to address academic search tasks.

• Chapter 3 introduces our proposed random walk model for reputation-oriented
ranking i.e., our conceptual framework of reputation flows. In this chapter, we
model the flow of reputation through a stochastic process. We start by defining
the structure of the so-called reputation graph, which has three types of nodes:
the reputation sources, the reputation targets, and the reputation collaterals.
We then formalize how we model the interaction between nodes of distinct types
in a reputation graph and define the P-score metric as a means to rank these
nodes. Finally, we discuss how to select the set of entities to be used as sources
of reputation to rank other entities in a reputation graph.

• Chapter 4 discusses possible instantiations of our conceptual framework of repu-
tation flows in academic search settings. We start by showing how it can be used
to model the transference of reputation between authors and papers, as well as
between research groups and publication venues. The argument here is that the
relations between these scientific entities may be captured through distinct met-
rics and, as far as we know, the most important ones (including citation-based
metrics) fit well in our conceptual framework. Next, we highlight our assump-
tions when instantiating the conceptual framework in an academic search setting.
An example is used to facilitate the understanding. Finally, we provide sugges-
tions on how to instantiate the reputation graph to solve three common academic
search tasks, as detailed in our experiments.

• Chapter 5 describes the experimental setup that supports the empirical evaluation
of our proposed model for reputation-oriented ranking. The discussion starts by
specifying three research questions regarding the effectiveness and robustness of
the proposed model, as well as a research question regarding the suitability of
automatically choosing entities to compose the set of reputation sources. Then,
we discuss our dataset and present the ground-truths, a dataset description, and
the baselines. Finally, we conclude the definition of our evaluation procedure.
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• Chapter 6 validates the effectiveness of the conceptual framework of reputation
flows to address three academic search tasks, namely: ranking research groups,
ranking individual researchers, and ranking publication venues. For each task,
we compute P-scores using research groups as reputation sources, authors as
reputation sources, and venues as reputation sources. That is, all configurations
suggested in Chapter 4 are explored. We compare distinct instantiations of P-
score against classic citation based metrics and we provide evidences regarding the
effectiveness of distinct instantiations of P-score to address these three ranking
tasks. These evidences allow us to verify the effectiveness of the proposed model
to address distinct ranking tasks.

• Chapter 7 discusses a critical step of our method, the selection of the reputation
sources. This chapter aims to address the robustness of our proposal with regard
to the of reputation sources, and on the suitability of automatically choosing
reputation sources. We start by discussing manual and automatic approaches to
choose entities to compose the set of reputation sources, and whether the manual
approach should be considered whether automatic approaches are desirable. We
also explore distinct sets of reputation sources by providing a characterization of
these sets, by investigating intuitive sets, and by measuring the impact of their
sizes. Finally, we analyse the coverage and the robustness of P-scores when used
with distinct reputation sources.

• Chapter 8 closes this thesis by providing a summary of the contributions and
the conclusions obtained throughout the chapters. Finally, it presents some fu-
ture directions regarding the conceptual framework of reputation flows and its
instantiation in the academic search setting.





Chapter 2

Background and Related Work

In this chapter, we discuss background and related work. Our objective here is to
provide a contextual overview of the theoretical basis of our method and also regarding
applications of the notion of reputation and various attempts to quantify it.

2.1 Background
Link Analysis techniques explore associations between objects to model or explain
a network behavior. It comprises a set of techniques of network analysis for studing
graphs built to represent relations between objects. While graph theorists are interested
in arbitrary questions about graphs, network theorists are more interested in questions
that are relevant to situations modeled by graphs (as in this work). Some well-known
link analysis algorithms include PageRank [Page et al., 1998] and HITS [Kleinberg,
1999], discussed further in this chapter.

In the immediately following, we provide a brief discussion of random walks and
Markov chains, techniques that offer the theoretical basis to our proposed method.

7



8 Chapter 2. Background and Related Work

2.1.1 Random Walks
The term random walk was introduced by Karl Pearson, an English mathematician
and biostatistician. In 1905, Pearson stated the random walk problem and appealed
to the readers of Nature for a solution, as follows.

The Random Walk Problem. A man starts from a point O and walks l yards in
a straight line; he then turns through any angle whatever and walks another l

yards in a second straight line. He repeats this process n times. I require the
probability that after these n stretches he is at a distance between r and r + dr

from his starting point, O. (Pearson [1905])

Since then, the term random walk has been used to refer, in short, to a mathemat-
ical formalization of a path that consists of a succession of random steps. Nowadays,
the applications of random walks are diverse and many types of them are of interest.

While in the original statement of the random walk problem the man walks a
fixed distance (l yards) at each step, there is a different type of random walk where
the step size is variable, not fixed. In this case, the distance walked in each step can
be a function or even a random step size. Another variant considers that the time
between each step is not discrete, but continuous. In continuous-time random walks,
the next step is performed at a random amount of time after finishing the current step,
where this random value may follow (or be sampled from) a given distribution, e.g. the
exponential distribution. Also, some random walks, like the original proposal, consider
that an object moves with equal probability in any direction, but not all random walks
follow this rule, some of them are biased. A biased random walk is a random walk that
is biased in some direction. One way to have a biased random walk is to consider that
instead of an equal probability of choosing the next direction to move, there is a higher
probability of moving to a given direction. Another way is to retain equal probabilities
of choosing the next direction, but whenever the object moves to the west, it moves
two units, and when it moves to the east, it only moves one unit.

All those aforementioned random walk variants are useful to model specific sce-
narios and are not limited to only objects in a 2-dimensional space (as Pearson asked
for). They can also be used to model particles in 3-dimensional space (think about gas
particles bouncing around) or to model a network behaviour using graphs. Indeed, one
of the most important/famous applications of random walk nowadays is the PageRank
algorithm, which has a huge impact in Web search, as discussed further.

The method we propose in this thesis, the P-score metric, consists on a random
walk on a graph which has a special structure, and which we call the reputation graph.
It can also be defined as a Markov Chain, as we now discuss.
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2.1.2 Markov Chains

In 1913, the Russian mathematician Andrei Markov founded a new branch of probabil-
ity theory by applying mathematics to poetry [Markov, 2006] through the investigation
of the patterns of consonants and vowels. While his analysis did not alter the under-
standing of the poem, the technique he developed extended the theory of probability
in a new direction. His methodology went beyond coin-flipping and dice-rolling, where
each event is independent of all others, to chains of linked events, where what happens
next depends on the current state of the system [Hayes et al., 2013].

A Markov Chain is defined as a stochastic process that satisfies the Markov
property, denoted as “memoryless”, and a process satisfies the Markov property if one
can make predictions for the future of a process based exclusively on its present state.
That is, the probabilities must depend only on the present state of the system, not on
its earlier history. Also, to be considered a proper Markov Chain, a system must have
a set of distinct states with identifiable transitions between them.

To illustrate, a graph made up of nodes and directed edges shows the structure
of a Markov Chain. Nodes represent states and edges indicate transitions. Each edge
has an associated number, which gives the probability of that transition. Given that
these numbers are probabilities, they must lie between 0 and 1, and all the probabilities
emanating from a node must add up to exactly 1.

For instance, consider a three-state Markov Chain. Its transition probabilities
can be arranged in a three-by-three matrix. Notice that we can trace a pathway that
defines a sequence of states in this graph. The probability of a specific sequence can be
obtained by multiplying the probabilities associated with the corresponding transition
edges, which makes the process for computing multi-stage transitions equivalent to
a matrix multiplication. Concretely, let’s consider a matrix P representing a Markov
Chain in the context of weather forecast — possible states are: sunny, rainy, and cloudy.
The matrix P itself predicts tomorrow’s weather, while P2 gives weather probabilities
for the day after tomorrow, P3 defines the probabilities for three days hence, and so
on. The future of the system unfolds from this one matrix. If the chain is ergodic,
the successive powers of the matrix rapidly converge to a stationary configuration in
which all the rows are identical and all the columns consist of a single repeated value.
The interpretation of this outcome is that if you let the system evolve long enough, the
probability of a given state no longer depends on the initial state.

The method we propose in this thesis, the P-score metric, can be defined as
a Markov Chain where the states and transitions are represented by the reputation
graph. Also, in this case our interest is on the steady state probability distribution.
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2.2 Related Work

In this chapter, we review the related literature on ranking based on random walks, as
well as approaches devoted to generating rankings in an academic search setting.

2.2.1 Ranking with Random Walks

Page et al. [1998] designed the PageRank algorithm to calculate the importance of
pages on the Web. PageRank simulates a web surfer’s behavior. In particular, with
probability p < 1, the surfer randomly chooses one of the hyperlinks of the current
page and jumps to the page it links to; otherwise, with probability 1 − p, the user
jumps to a web page chosen uniformly at random from the collection. This defines a
Markov chain on the web graph, where each probability of the stationary distribution
corresponds to the rank of a web page, referred to as its pagerank.

Kleinberg [1999] divided the notion of “importance” of a web page into two related
attributes: hub, measured by the authority score of other pages that the page links
to, and authority, measured by the hub score of the pages that link to the page.
These attributes are calculated in his Hyperlinked-Induced Topic Search (HITS). Both
algorithms, PageRank and HITS, have been successfully applied to rank the importance
of different web pages through analyzing the link structure of the web graph.

Extensions of the random walk model were also studied for scoring several types
of objects—e.g., products, people and organizations—in different applications. For in-
stance, Nie et al. [2005] presented PopRank, a domain-independent object-level link
analysis model to rank objects within a specific domain, by assigning a popularity
propagation factor to each type of object relationship. Different popularity propaga-
tion factors for these heterogeneous relationships were assessed with respect to their
impact on the global popularity ranking. Xi et al. [2004] proposed a unified link analysis
framework, called Link Fusion, which considers two different categories of links: intra-
type links, which represent the relationship of data objects of a homogeneous data type
(e.g., web pages), and inter-type links, which represent the relationship of data objects
of different data types (e.g., between users and web pages). Regarding the recom-
mendation of generic types of object, Jamali and Ester [2009] proposed TrustWalker,
a random walk method that combines trust-based and item-based recommendation,
considering not only ratings of the target item, but also those of similar items.

Under the context of social networking systems, social friendship and random
walks have been shown to be beneficial for collaborative filtering-based recommendation
systems. These works argue that social friends—for instance, in Facebook or Twitter—
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tend to share common interests and thus their relationships should be considered in the
process of collaborative filtering [Ye et al., 2011]. In this context, a random walk sees
a social network as a graph with probabilistically weighted links that represent social
relations and thus is able to accurately predict users’ preferences to items and their
social influence with respect to other users. Backstrom and Leskovec [2011] proposed
an algorithm based on supervised random walks that combines the information from
the network structure with node and edge level attributes, using these attributes to
guide the random walk on the graph. Konstas et al. [2009] showed that extra knowledge
provided by the users’ social activity can improve the performance of a recommendation
system using random walk with restarts. Weng et al. [2010] proposed TwitterRank
to measure the influence of users in Twitter, considering both the topical similarity
between users and the link structure of the social network.

2.2.2 Ranking in Academic Search

Ranking has traditionally played an important role in academic search, particularly for
tasks related to assessing the scientific productivity of academic entities. In particular,
one of the earliest metrics proposed to quantify academic impact was Garfield’s Impact
Factor [Garfield, 1955]. Despite its wide usage since it was proposed in 1955, it has been
largely criticized [Saha et al., 2003]. As a result, many alternatives have been proposed
in the literature, such as other citation-based metrics like the H-Index [Hirsch, 2005],
download-based metrics [Bollen et al., 2005], and PageRank-like metrics [Yan and Lee,
2007]. However, as argued by Leydesdorff [2009], each metric has its own bias and
there are both advantages and disadvantages associated with each one.

Citation-based metrics have been applied to rank computer and information sci-
ence journals [Katerattanakul et al., 2003; Nerur et al., 2005]. Also, several citation-
based metrics have been proposed to measure the quality of a small set of conferences
and journals in the database field [Rahm and Thor, 2005], and to rank documents
retrieved from a digital library [Larsen and Ingwersen, 2006]. Mann et al. [2006] in-
troduced topic modeling to further complement the citation-based bibliometric indi-
cators, producing more fine-grained impact measures. Yan and Lee [2007] proposed
two measures for ranking the impact of academic venues which aim at efficiency and
at mimicking the results of the widely accepted Impact Factor. An alternative method
was presented by Zhuang et al. [2007], who proposed a set of heuristics to automati-
cally discover prestigious and low-quality conferences by mining the characteristics of
program committee members.

Given the importance of citations in academic environments, some works try to
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predict future citation counts. Castillo et al. [2007] study the problem of predicting the
popularity of items in a dynamic environment in which authors post continuously new
items and provide feedback on existing items. As a case study, authors show how to
estimate the number of citations for an academic paper using information about past
articles written by the same author(s) of the paper. Nezhadbiglari et al. [2016] tackle
the problem of predicting the popularity trend (e.g., number of citations) of scholars
as a classification problem by applying K-Spectral Clustering and regression models.

Piwowar [2013] recently claimed that citation-based metrics are useful, but not
sufficient to evaluate research. In particular, he observed that metrics like the H-Index
are slow. Indeed, the first citation of a scientific article can take years. As a result, he
argued for the development of alternative metrics to complement citation analysis. In
a similar vein, Pradhan et al. [2016] argued that citation-based metrics such as H-index
and its popular variants are mostly effective in ranking highly-cited authors, thus fail
to resolve ties while ranking medium-cited and low-cited authors who are majority in
number. Also, they discuss that these metrics are inefficient to predict the ability of
promising young researchers at the beginning of their career. In the same way, Lima
et al. [2013] argued that productivity indices should account for the singularities of
the publication patterns of different research areas, in order to produce an unbiased
assessment of the impact of academic output. Accordingly, they proposed to assess a
researcher’s productivity by aggregating his or her impact indicators across multiple
areas. Finally, Gonçalves et al. [2014] investigated the importance of various academic
features to scholar popularity and concluded that only two features are needed to
explain all the variation in popularity across different scholars: (i) the number of
publications and (ii) the average quality of the scholar’s publication venues. In this
work, we validate our proposed approach by exploiting exactly these these two features
to rank different venues and different researchers.

The idea of reputation, instead of citations, was discussed by Nelakuditi et al.
[2011]. In particular, they proposed a metric called peers’ reputation, which measures
the selectivity of a publication venue based upon the reputation of its authors’ insti-
tutions. The proposed metric was shown to be a better indicator of selectivity than
the acceptance ratio. In addition, the authors observed that many conferences have
similar or better peers’ reputation than journals. Another approach related to ours was
proposed by Cormode et al. [2014], who attempted to rank authors according to their
similarity with respect to a reference author. To allow the identification of compara-
ble people in similar research areas, they first represented a researcher as a sequence
of her publication records, based on research topic similarity and venue quality, and
estimated the distance between any two researchers using sequence matching. As we
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will discuss in Chapter 3, our approach also explores the notion of a reference source
of reputation. However, in contrast to the aforementioned approaches, we allow for
multiple entities—as opposed to a single one—to serve as a source of reputation. More
importantly, instead of identifying similar entities from whom to propagate reputation,
we explore the notion of reputation sources as part of a stochastic Markov process.
As a result, our approach is able to produce a global reputation-oriented ranking of
multiple interconnected entities.

2.2.2.1 Other Models

Next, we briefly describe some selected works recently published on ranking in aca-
demic search. Sastry et al. [2016] present an author ranking algorithm that interleaves
the ranking of papers and authors. The algorithm is based on the idea that an author’s
rank is determined by the quality or rank of papers which cite him while the ranks
of the papers in turn depend on the quality of its authors. Kim et al. [2016] provide
a new lens to analyze the topical relationship embedded in the citation sentences in
an integrated manner. To this end, authors extract citation sentences from full-text
articles. By applying Author-Journal-Topic model, they identify which are the ma-
jor topics shared among researchers in Oncology field and which authors and journals
lead the idea exchange in its sub-disciplines. García-Romero et al. [2016] introduce
an aggregation of different performance measures to build an alternative ranking of
journals. Their approach is based on a pure output-oriented Free Disposal Hull. They
analyze four indicators — Journal Impact Factor, Discounted Impact Factor, h-index,
and Article Influence — for a set of 232 journals in Economics. Liang and Jiang
[2016] propose a mutual ranking algorithm based on the multinomial heterogeneous
academic hypernetwork, which serves as a generalized model of a scientific literature
database. Mangaravite and Santos [2016] address expert search in academia by mod-
eling document-person associations as non-boolean variables, reflecting the probability
that a document is informative of the expertise of a candidate. Authors demonstrate
the suitability of the proposed association and normalization schemes to improve the ef-
fectiveness of a state-of-the-art expert search approach. Boongoen et al. [2011] present
a fuzzy qualitative classification system for academic performance evaluation using a
link analysis methodology. The proposed model considers involving variables, classes
and their relations as elements of a social network that can be modelled as a weighted
graph. Franceschini and Maisano [2011] propose a structured method to compare aca-
demic research groups within the same discipline using some Hirsch based bibliometric
indicators. Five different topologies of indicators are used so as to depict groups’
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bibliometric positioning within the scientific community. SimRank [Jeh and Widom,
2002] is a well-known link-based similarity measure that can be applied on a citation
graph to compute similarity of academic literature data. The intuition behind Sim-
Rank is that two objects are similar if they are referenced by similar objects. SimRank
has attracted a growing interest in the areas of data mining and information retrieval
recently. Despite the current success of SimRank, authors claim that it has some prob-
lems that negatively affect its effectiveness in similarity computation. Hamedani and
Kim [2016] discuss existing problems of SimRank, present SimRank variants that have
been proposed to solve those problems, and evaluate the effectiveness of SimRank and
its variants in similarity computation for academic literature.

2.2.2.2 Academic Analysis

The analysis of academic indicators is of great importance and receives attention in
literature. Some of the most recent works on it are briefly describe here.

Gonçalves [2016] correlate a popularity ranking of scholars (built by sorting schol-
ars according to their h-index and then by their total citation count) with various
academic features such as number of publications, years after doctorate, number of
supervised students, as well as other popularity metrics across different areas of knowl-
edge. Silva et al. [2016] discuss the importance of characterizing the trajectories of
faculty members in their academic education and their impact on the quality of the
graduate programs they are associated with. Authors analyze the mobility of faculty
members from top Brazilian Computer Science graduate programs as they progress
through their academic education. Classen et al. [2015] study the evolution of publi-
cation activity and citation impact in Brazil during 1991-2003. Besides the analysis
of trends in publication and citation patterns and of national publication profiles, an
attempt is made to find statistical evidences of the relation between international co-
authorship and both research profile and citation impact in the Latin American region.
Lima et al. [2015] perform a data-driven assessment of the performance of top Brazil-
ian computer science researchers considering three central dimensions: career length,
number of students mentored, and volume of publications and citations. Authors also
demonstrate that it is necessary to go beyond counting publications to assess research
quality and show the importance of considering the peculiarities of different areas of
expertise while carrying out such an assessment. Figueira et al. [2015] use correla-
tion analysis to assess the relative importance of academic factors (conference papers,
journal articles and student supervisions) to the popularity of individual scholars and
groups of scholars. Authors rely on curriculum vitae data of almost 700 scholars affil-
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iated to 17 top quality graduate programs of two of the largest universities in Brazil.
Delgado-Garcia et al. [2014b] present a preliminary analysis of the scientific production
of Latin American Computer Science research groups. Results show a clear improve-
ment in the publication output of these groups in the last 10 years, particularly in
Argentina, Chile and Mexico. Delgado-Garcia et al. [2014a] analyze the co-authorship
networks of Latin American Computer Science research groups. Results show that be-
tween 2004-2013 there has been an increase in terms of publications and collaborations
in Latin America. Authors also identify the influential authors in the area according
to complex network metrics and analyze the research networks originated from the
co-authorships. Benevenuto et al. [2016b] investigate if computer science conferences
are really able to create collaborative research communities by analyzing the structure
of the communities formed by the flagship conferences of several ACM SIGs. Authors
show that most of these flagship conferences are able to connect their main authors in
large and well-structured communities. However, they noted that in a few ACM SIG
flagship conferences authors do not collaborate over the years, creating a structure with
several small disconnected components. According to Benevenuto et al. [2016a], it is
likely that a researcher may use her coauthors’ H-indexes as a way to infer whether
her own H-index is adequate in her research area. Nevertheless, the authors show
that the average H-index of a researcher’s coauthors is usually higher than her own
H-index. They also present empirical evidence of it and discuss some of its potential
consequences.

To perform analysis similar to the aforementioned ones, researchers may create
their own repository by collecting data from the web or, better, researchers may collect
data from some reliable academic repository. Some well known repositories include
Google Scholar, Microsoft Academic Search, DBLP, and others. Besides those well
known academic repositories, there are also initiatives to build repositories for more
specific tasks, like expert search. Some of them include ground-truths, which allows
other researchers to validate their methods. Mangaravite et al. [2016] present the Lattes
Expertise Retrieval test collection for research on academic expertise retrieval, which
provides graded relevance judgements performed by expert judges and encompasses
candidate experts from various areas of knowledge working in research institutions in
Brazil. Dores et al. [2016] give a first step towards building a large repository that
records the academic genealogy of researchers across fields and countries. Authors
crawled data from the Networked Digital Library of Theses and Dissertations and
develop a framework to extract academic genealogy trees from this data and provide
a series of analyses that describe the main properties of the academic genealogy trees.
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2.2.3 Random Walks in Academic Search

Earlier works have studied the application of random walks for ranking authors, pa-
pers and venues in an academic setting. For instance, Sun and Giles [2007] proposed
a popularity weighted ranking algorithm for academic digital libraries that uses the
popularity factor of a publication venue. Their approach overcomes some limitations
of the Impact Factor and performs better than PageRank, citation counting and HITS.
Relatedly, Zhou et al. [2007] proposed a method for co-ranking authors and their publi-
cations using several networks. Similarly, Yan et al. [2011] presented a new informetric
indicator, P-Rank, for measuring prestige in heterogeneous scholarly networks contain-
ing articles, authors and journals. P-Rank differentiates the weight of each citation
based on its citing papers, citing journals and citing authors.

In a narrower perspective, random walks have also been used for the task of
expert finding in academic search collections. For instance, Deng et al. [2012] pro-
posed a joint regularization framework to enhance expertise retrieval in academia by
modeling heterogeneous networks as regularization constraints on top of a document-
centric model [Balog, 2012]. Relatedly, Wu et al. [2009] proposed to model authors
and publications as nodes of a publication network, with additional edges representing
co-authorship information (author-author edges). In a similar vein, Tang et al. [2008]
proposed a probabilistic topic modeling approach to enrich a heterogeneous graph com-
prising multiple academic entities as nodes, including authors, papers, and publication
venues, with directed edges representing a variety of relationships such as “written by”
and “published in”. The stationary distribution computed after a random walk on this
graph was then used to rank these entities with respect to an input query. A very
similar approach was proposed by Gollapalli et al. [2011], by assigning topics to nodes
and then computing the unique stationary distribution of the associated Markov chain.

Recent research on random walks applied to academic search include the follow-
ing. Pradhan et al. [2016] propose C3-index that combines the effect of citations and
collaborations of an author in a systematic way using a weighted multi-layered net-
work to rank authors. Dhanjal and Clémençon [2014] propose to use Latent Semantic
Indexing and Latent Dirichlet Allocation to find authors who have worked in a query
field. Authors then construct a coauthorship graph and motivate the use of a variety of
graph centrality measures to obtain a ranked list of experts. The ranked lists are fur-
ther improved using a Markov Chain-based rank aggregation approach. Gkorou et al.
[2013] show that the properties of a node indicate accurately its reliability, and that
random walks exploiting these properties are more resilient than simple random walks.
Authors model reputation systems in growing synthetic random and scale-free graphs,
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and in real-world graphs derived from the Bartercast reputation system [Delaviz et al.,
2010] which is used in the BitTorrent client Tribler [Pouwelse et al., 2008], from the
citation network of Physical Review E journal, and from Facebook [Viswanath et al.,
2009]. Yu and Chen [2012] present a PageRank-like algorithm that can be used to eval-
uate reputation of literatures and researchers. The basic idea is that there are some
relationships among literatures, its author, periodicals and readers. The relationship
can be regard as recommendation for each other that is similar to web links. Another
metric based on random walks is the Eigenfactor Score [Bergstrom et al., 2008], which
can be viewed as the result of a random walk through the scientific literature. This
algorithm models readers following chains of citations as they move from journal to
journal. The frequency with which researchers visit each journal gives a measure of
that journal’s importance within network of academic citations.

In contrast to the aforementioned works, we use random walks to model the
transference of reputation from multiple reference sources to selected targets in a repu-
tation graph, as discussed in Chapter 3. To validate our model, we instantiate it in an
academic search setting by adopting distinct configurations of the reputation graph.
To illustrate, in some configurations, we use research groups as reputation sources and
publication venues as reputation targets. Moreover, while previous approaches have ex-
ploited multiple ranking signals, we demonstrate the power of the notion of reputation
transfer by relying on publishing behavior as the only reputation signal.





Chapter 3

Reputation Flows

Identifying reputable entities is an important task in many domains. While quanti-
fying the reputation of a given entity is a challenging task, we argue that the flow of
reputation among entities can be accurately modeled as a stochastic process. To this
end, we propose here a conceptual framework for ranking entities that interact with
(and hence convey reputation to) one another in some manner.

To formalize our approach, in Section 3.1 we introduce the reputation graph, a
data structure that models the flow of reputation from selected sources to multiple
targets. In Section 3.2, we formalize a stochastic process to estimate the amount of
reputation transferred to target entities. Lastly, in Section 3.3, we discuss a simple
mechanism to rank entities according to their inferred reputation.

3.1 The Reputation Graph

We define a reputation graph as a graph with three node types: reputation sources, rep-
utation targets, and reputation collaterals, as illustrated in Figure 3.1. The reputation
graph models the transference of reputation from a reference set of reputation sources
to reputation targets, and then to reputation collaterals. To refer to the reputation
graph, we adopt the following notation: S is the set of reputation sources, T is the set
of reputation targets, and C is the set of reputation collaterals.

Figure 3.1: Structure of the reputation graph.
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The reputation of source nodes influences the reputation of target nodes as much
as the reputation of target nodes influences the reputation of source nodes. Note
that the reputation of target nodes also influences the reputation of collaterals, but
the reputation of collaterals has no impact in the reputation of sources and targets.
The use of collaterals allows us to isolate the impact of a set of arbitrary nodes on
the reputation graph, fixing reputation sources as the only set of nodes providing
reputation. While this design choice aimed primarily at effectiveness, it also contributes
to the efficiency of our approach, as a random walk is only performed on the selected
source and target nodes. This way, the overall cost of our approach remains the same
even for large sets of collateral nodes. To illustrate, in Chapter 4, we apply these
concepts to model reputation flows in academia. Specifically, we instantiate research
groups as reputation sources, publication venues as reputation targets, and individual
researchers as collaterals.

Given that the reputation of collaterals has no effect on the reputation of nodes
of other types, we can split the model in two phases. In the first phase, we propagate
the reputation of the sources to the targets. In the second phase, we propagate the
reputation of the targets to the collaterals. These phases are discussed following.

3.2 Reputation Flows

The interaction between reputation sources and reputation targets is inspired by the
notion of eigenvalue centrality in complex networks [Newman, 2010], which also pro-
vides the foundation to PageRank [LangVille and Meyer, 2006; Brin and Page, 1998].

In the reputation graph, if we consider only sources and targets, it is easy to
identify reputation flows from sources to sources, from sources to targets, from targets
to sources, and from targets to targets. These reputation flows can be modeled as a
stochastic process as we now discuss. In particular, let P be a right stochastic matrix
of size (|S|+ |T |)× (|S|+ |T |) with the following structure:

P =
 (d〈S〉).P〈SS〉 (1− d〈S〉).P〈ST 〉

(1− d〈T 〉).P〈T S〉 (d〈T 〉).P〈T T 〉

 , (3.1)

where each quadrant represents a distinct type of reputation flow. Matrix P depends
on the following matrices:

P〈SS〉: right stochastic matrix of size |S|×|S| representing the transition probabilities
between reputation sources;
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P〈ST 〉: matrix of size |S|×|T | representing the transition probabilities from reputation
sources to targets;

P〈T S〉: matrix of size |T |×|S| representing the transition probabilities from reputation
targets to sources;

P〈T T 〉: right stochastic matrix of size |T |×|T | representing the transition probabilities
between reputation targets.

The parameters d〈S〉 and d〈T 〉 control the relative importance of the reputation
sources and targets, which are modeled in the four matrices above. Specifically, d〈S〉 is
the fraction of reputation one wants to transfer between source nodes and d〈T 〉 is the
fraction of reputation one wants to transfer between target nodes. These are useful
parameters and the ability to set them is important to calibrate the impact of different
reputation flows in the final score. If we do not want to consider reputation flows
between nodes of the same type, it is sufficient to set both parameters to zero. If,
instead, we want to consider reputation flows between nodes of the same type, we may
increase these parameters according to the desired relative importance. Note that,
as (i) the sub-matrices P〈SS〉 and P〈T T 〉 are right stochastic, (ii) each of the rows of
matrices P〈ST 〉 and P〈T S〉 sums to 1, and (iii) the parameters d〈S〉 and d〈T 〉 are both in
the range [0,1), then P defines a Markov chain. Assuming that the transition matrix
P is ergodic — recall that, in an ergodic process, the state of the process after a long
time is nearly independent of its initial state [Walters, 2000] —, we can compute the
steady state probability of each node and use it as a reputation score. Specifically, we
can obtain values for ranking the set of nodes by solving:

γ = γP, (3.2)

where γ is a row matrix with |S|+ |T | elements, where each one represents the proba-
bility of a node in the set S∪T . This system of linear equations can be easily solved by
standard Markov chain techniques. Then, from Equation (3.2), we obtain the steady
state probabilities of all nodes in S ∪ T , a.k.a. reputation sources and reputation
targets.

3.2.1 Flow Equations

We recursively define the reputation of sources in terms of the reputation of targets,
and the reputation of targets in terms of the reputation of sources. Specifically, the
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reputation γs of a source s is defined as:

γs =
∑
t∈T

(1− d〈T 〉).Pts
〈T S〉γt +

∑
s′∈S

(d〈S〉).Ps′s
〈SS〉γs′ . (3.3)

In the summation, Pts
〈T S〉 is the transition probability from t to s, given by

Pts
〈T S〉 = nts/nt, where nts is the number of edges running from t to s and nt is the

total number of edges running from t. Finally, γt is the reputation of target t, defined
recursively as:

γt =
∑
s∈S

(1− d〈S〉).Pst
〈ST 〉γs +

∑
t′∈T

(d〈T 〉).Pt′t
〈T T 〉γt′ . (3.4)

Similarly, in the summation, Pst
〈ST 〉 is the transition probability from s to t,

given by Pst
〈ST 〉 = nst/ns, where nst is the number of edges running from s to t and ns

is the total number of edges running from s. Recall that γs is the reputation of source
s, defined according to Equation (3.3).

3.2.2 Bipartite Reputation Graph

Some scenarios can be represented as a bipartite reputation graph. In these cases, the
transition matrix P is reduced to a periodic Markov chain with the following structure:

P =
 0 P〈ST 〉

P〈T S〉 0

 . (3.5)

From decomposition theory [Meyer, 1989], we can obtain values for ranking the
set of reputation sources by solving:

γ〈S〉 = γ〈S〉P′, (3.6)

where P′ = P〈ST 〉 × P〈T S〉 is a stochastic matrix and γ〈S〉 is a row matrix with |S|
elements, where each one represents the probability of a node in the set S of reputation
sources. Note that matrix P′ has dimension |S| × |S| only and can be easily solved by
standard Markov chain techniques. Then, we can obtain the reputation of all reputation
targets linked by the reputation sources, as follows:

γ〈T 〉 = γ〈S〉 ×P〈ST 〉. (3.7)

By modeling a scenario as a bipartite reputation graph instead of a general rep-
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utation graph, we reduce the network from a graph of size (|S|+ |T |)× (|S|+ |T |) to a
graph of size |S| × |S|, which allows us to compute the steady state probabilities much
more efficiently. However, by using a bipartite graph, we are certainly losing some
information, which may be critical for some applications. It is important to consider
this trade-off when instantiating our framework.

3.3 Reputation-based Ranking
The steady state probability of a node can be interpreted as its relative reputation, as
transferred from other nodes in the reputation graph. Thus, we can directly use the
value of this probability to rank reputation sources or reputation targets. Additionally,
this probability can be further propagated to nodes we want to compare, which are
in the collateral set. This propagation depends on a matrix P〈T C〉 of size |T | × |C|
representing the transitions from reputation targets to collateral nodes. More generally,
we can define the reputation score of an entity e according to:

P-score(e) =


∑

t∈T Pte
〈T C〉γt if e ∈ C,

γe otherwise
(3.8)

where Pte
〈T C〉 is the transition weight from a target node t to a collateral node e ∈ C.

The P-score of all candidate entities (targets or collaterals) can then be used to produce
an overall reputation-oriented ranking of these entities.





Chapter 4

Reputation Flows in Academia

In this chapter, we discuss the instantiation of our conceptual framework of reputation
flows in the context of academia to model the transference of reputation between
authors, papers, research groups and publication venues. The relations between these
academic entities may be captured through distinct metrics and, as far as we know,
the most important ones (including citation-based metrics) fit well in our conceptual
framework. In particular, let us start by defining the relations between authors and
papers. It is easy to identify reputation flows from authors to authors, from authors
to papers, from papers to authors, and from papers to papers. Each one of these
reputation flows is associated with a specific quadrant of an Author-Paper × Author-
Paper relation matrix, as illustrated in Figure 4.1.

Author

P aper [
Author

Author → Author

Paper → Author

P aper

Author → Paper

Paper → Paper ]
Figure 4.1: Reputation flows between authors and papers.

In the first quadrant, the framework represents the reputation flow from authors
to authors, which can be expressed in terms of co-authorship relations or citations from
an author to another. In the second and third quadrants, the framework represents
author-paper and paper-author relations, respectively. An author who publishes a
paper somehow transfers its own reputation to that paper or the converse, a paper may
transfer its reputation or acceptance by the community to the authors who published it.
In the fourth quadrant, the framework represents the reputation flow between papers.
When a paper cites another, it is somehow transferring part of its reputation to the
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cited paper.
This last quadrant, Paper → Paper, has received much more attention by the

academic community than the other ones. The raw number of citations among papers,
as well as well known citation-based metrics such as H-Index and Impact Factor can
be represented in this quadrant. Additionally, there are further indicators such as the
number of downloads of a paper. It is an indicator intrinsically related to the papers
and has nothing to do with the reputation flow from authors to papers. In other words,
the number of downloads is a reputation flow from the audience of paper readers to
the papers. These external indicators can be expressed as bias variables.

The idea of reputation flows is broad and encompasses a large amount of indi-
cators. Here, we define a more specific concept called publication flows to refer to the
study of reputation flows where the transference of reputation is made by using only
publication volume and without using citation data. In some of our experiments, we
study how the reputation of a reference set of research groups is propagated to the
venues they publish in and to other individual researchers by applying the concept of
publication flows. In this conceptual framework, publication venues are aggregations of
papers and research groups are aggregations of authors, as shown in Figure 4.2. These
aggregations are sufficient to establish core relations that allow ranking these entities.

Group

V enue [
Group

Group→ Group

V enue→ Group

V enue

Group→ V enue

V enue→ V enue ]
Figure 4.2: Reputation flows between groups and venues.

4.1 Overview and Assumptions
The instantiation of reputation flows in academia is based on a role model concept, in
which one should take as reference the most reputable individuals in a community. We
start by stating our main assumptions.

Assumption 1 The reputation of a graduate program is strongly influenced by the
reputation of its faculty, which is largely dependent on their publication track records.

As a consequence of this assumption, the graduate programs in the source set employ
the most prestigious faculty. The more prestigious is a program the better chances it
has to attract the most prominent PhD graduates and senior renowned scientists.
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Assumption 2 A researcher, or member of a graduate program, conveys reputation
to a venue proportionally to their own reputation.

This assumption is a consequence of what we call the role-model effect. Reputable
scientists usually choose prestigious venues to publish at and, as such, the reputation
of a venue is positively correlated with the reputation of the individuals that publish
in that venue. As more prestigious researchers of an area choose a venue to publish
their work, the venue becomes increasingly known by peer researchers and, as a conse-
quence, attracts even more distinguished researchers and young scientists, building up
its reputation.

Assumption 3 The reputation of a faculty member is positively correlated with the
reputation of the venues in which he/she publishes.

One of the most used metrics to promote a faculty member in any reputable department
or graduate program is the number of papers in prestigious venues where the faculty
under consideration publishes. Clearly, if a given scientist has a reasonable number of
papers in the most prestigious venues in their field of study then it is reasonable to
assume he/she is a prestigious scientist. These three assumptions form the cornerstone
of our reputation-based ranking model.

4.2 Instantiation Example
Figure 4.3 shows an example with two research groups used as reputation sources
and three publication venues used as reputation targets. Notice that, in this simple

Figure 4.3: Markov chain for an example with 2 research groups and 3 venues.
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example, we have not modelled co-authorships, nor have we considered paper to paper
citations.

From Figure 4.3, Group 1 published 3 papers in Venue 1, 2 papers in Venue 2,
and 1 paper in Venue 3. The total number of publications of Group 1 is therefore
6. Venue 1 is composed of 3 papers from Group 1 and 2 papers from Group 2. The
fractions of publications from groups to venues and from venues to groups are the edge
weights, as follows:

P =



0 0 3/6 2/6 1/6
0 0 2/8 4/8 2/8

3/5 2/5 0 0 0
2/6 4/6 0 0 0
1/3 2/3 0 0 0


The stochastic matrix P corresponds to the Markov chain displayed in Figure 4.3,
which can be immediately aggregated to a two-state Markov chain, yielding:

P′ =
 0.467 0.533

0.400 0.600


This is the stochastic matrix we use in the solution of Equation (3.6). Solving Equation
(3.6) and applying Equation (3.7), we obtain the weights γ for our three venues:

γ〈T 〉 = 〈0.36, 0.43, 0.21〉. (4.1)

Venue 2 has the highest weight, followed by Venue 1, and then by Venue 3. We remark
that the individual weights give the relative reputation of each publication venue, when
Group 1 and Group 2 are taken as reputation sources. Then, we can apply Equation
(3.8) to compute the P-score of each entity in the reputation graph.



Chapter 5

Experimental Setup

In this chapter, we describe the setup we used to evaluate our reputation flows model
in the context of academia. We illustrate the effectiveness of our model by address-
ing three academic search tasks, namely ranking of publication venues, ranking of
individual researchers, and ranking of academic departments, all in the broad area of
Computer Science.

5.1 Research Questions
Let us proceed by stating the key research questions we focus on.

RQ1. How effective is our proposed random walk model for reputation-
oriented ranking of publication venues and academic groups?

RQ2. How robust is our model with respect to perturbations in the chosen set
of reputation sources?

RQ3. Can we alleviate the cost of selecting reputation sources manually
within our model?

5.2 Academic Dataset
Our academic search dataset is an extension of the DBLP1 repository. The dataset
we built has all 5,000 publication venues and all 1.5 million authors which compose
DBLP. We enrich the DBLP dataset by adding information regarding research groups
and our ground-truths. To do so, we manually collected information about 126 graduate

1http://dblp.uni-trier.de/
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programs from the United States and 25 graduate programs from Brazil. The author
names of each North American program were collected from their Web pages (we built
126 parsers for that end) and, in the Brazilian case, we used the official lists of professors
given by CAPES2, a government agency linked to the Brazilian Ministry of Education.
Salient statistics on our dataset are shown in Table 5.1.

Table 5.1: Salient statistics of the dataset used in our evaluation.

Type of Entity Total Number of Instances
US CS Depts 126
BR Authors 383
CS Venues 1,083

To encourage the reuse of our research, we have made the full dataset available
on GitHub3 and we have developed a Web tool4 based on our reputation flows model
which allows users to quickly grasp insights about publication venues, authors, and
research groups in Computer Science.

5.3 Ground-Truths

While ground-truths for the tasks of interest here may raise concern and controversy,
our purpose is not to dictate a ranking of individuals and groups. Instead, we aim
at showing that our reputation flows model produces results that approximate those
produced by much more complex and costlier procedures. This is important because
P-scores can be computed conveniently and can be updated quickly (by changing the
reputation sources) to provide distinct views and insights into the reputation of the
entities one intends to compare.

For the venue ranking task, we considered as ground-truth the set of venues in
Computer Science classified by the Qualis system, maintained by agency CAPES, in the
year of 2013. The agency assigns a committee of experts to each area of knowledge and
these experts are responsible for evaluating all information acquired about the venues in
that area, as well as producing a classification of venues. This classification is updated
periodically and follows a set of criteria, such as: the number of publications in each
venue, the number of repositories in which it is indexed, the amount of institutions
publishing in it, citation information whenever available, among others. According

2http://www.capes.gov.br
3https://github.com/pscore
4http://pscore.dcc.ufmg.br

http://www.capes.gov.br
https://github.com/pscore
http://pscore.dcc.ufmg.br
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to Qualis, the venues in each area of knowledge are classified (in decreasing order of
importance) as A1, A2, B1, B2, B3, B4, B5. In here, we adopt the classification of
venues released by CAPES in 2013.

For the individual researcher ranking task, we considered as ground-truth the
set of researchers with an active (as of 2014) productivity grant awarded by CNPq,5

the Brazilian National Council for Scientific and Technological Development. That is,
we restricted our evaluation to researchers in Brazil. We did so because this is one
classification of individual researchers that is based on their productivity and that is
repeated consistently. Indeed, to apply for a productivity grant, researchers working
in Brazil must submit detailed information about their academic career to CNPq,
including a research project to be conducted over the coming years. To award the
grants, CNPq evaluates a set of productivity indicators including academic output,
contribution to the formation of human resources, academic leadership, among others,
and classifies researchers in five different levels of productivity in descending order of
prestige: 1A, 1B, 1C, 1D, and 2. The starting point for any newly awarded researcher
is the productivity level 2.

For the research group ranking task, we rank CS departments from the United
States. For this, we considered as ground-truth the CS ranking provided by the Na-
tional Research Council (NRC). The NRC issues a ranking of the graduate programs
in US in many areas of knowledge, aiming at providing a general guideline for students
and administrators. While these rankings raise a lot of controversy, we again emphasize
that our proposal here is not to use P-scores do rank departments directly. Instead,
we argue that a reputation flows model allows university administrators, government
officials, and prospect students to gain alternative insights into the productivity of
research groups through the proper selection of reputation sources.

In the area of Computer Science, the NRC classified the major 126 graduate
programs in the US. To produce the rankings, NRC asked a sample of faculty to rate
a sample of programs in their field. These rankings were then used to assign weights
to a set of 20 features (such as number of publications, number of citations per paper,
percentage of faculty with grants) through regression analysis. The weighted features
were then used to rank all programs.

To account for uncertainty and variability in the surveys data, the regression
analysis process was repeated by NRC 500 times, each time using as input a random
sample of half of the surveys. As a result, 500 ranks were produced for each one of the
126 programs. Following, for each program, the top 5% and the bottom 5% ranks were

5http://www.cnpq.br/

http://www.cnpq.br/
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disregarded, leaving each program with 450 ranks which were sorted. The top rank is
what is referred to as the program rank at the 5th percentile. The rank at the bottom
is what is referred to as the program rank at the 95th percentile. At the 5th percentile,
there are 21 programs with a rank position smaller or equal than 10 in the area of
Computer Science.6 We map the NRC ranking of all CS departments into 5 levels of
relevance, as shown in Table 5.2.

5.4 Evaluation Procedure

We compare our P-score based method with a citation baseline, namely the well known
H-Index. Our choice of this baseline is motivated by its wide adoption in academia. To
compare the rankings of research groups, venues and individual authors produced by P-
scores and H-indices, we use the discounted cumulative gain (DCG) metric introduced
by Järvelin and Kekäläinen [2002].

DCG adopts a non-binary notion of relevance and allows assessing relevance on a
graded scale. The metric also uses a log-based discount factor that reduces the impact
of the score as we move lower in the ranking. Let li be the non-binary relevance level
associated with the item ranked at the i-th position. The DCG at a rank position k is
defined as:

DCG@k =
k∑

i=1

2li − 1
log2(i+ 1) . (5.1)

To bind the results within the interval [0,1], we use the normalized version of DCG,
denoted nDCG, which is obtained by dividing the DCG@k value by the maximum
possible value at the same ranking cutoff k.

As relevance levels, we consider a linear mapping from the classes defined by
each of our ground-truths, see Table 5.2. We map the CS departments in the US into
5 relevance levels with the departments classified in positions 1-10 according to the 5th

percentile (there are 21 such departments) mapped into relevance level 5. Next, the
departments classified in positions 11-20 (there are 11 such departments) are mapped
into relevance level 4, and so on. There is nothing particular to our mapping. And
again, the point we make here is not one about ranking departments using P-scores
directly. Instead, we argue that reputation flows are useful to provide alternative
insights into the productivity of the departments when we vary the reputation sources.

6Notice that more than one department might appear in a same position of the NRC ranking.
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In Table 5.2, we illustrate all mappings of entity types into their ground-truths.
Also, we map the classifications provided by each ground-truth with their corresponding
nDCG relevance levels. The row of numbers underneath each mapping is composed of
the respective count of instances.

Table 5.2: Mapping from ground-truths to the nDCG relevance levels.

nDCG relevance level
Type of Entity Ground-truth 7 6 5 4 3 2 1

US CS Dept NRC 5th perc 1-10 11-20 21-40 41-80 81-126
21 11 24 42 28

BR Authors CNPq class 1A 1B 1C 1D 2
22 21 30 70 240

Venues Qualis class A1 A2 B1 B2 B3 B4 B5
195 182 315 158 106 105 22





Chapter 6

Framework Validation

In this chapter, we validate the effectiveness of the conceptual framework of reputation
flows by applying it to three academic search tasks, discussed in Section 6.1, and by
measuring their correlations with citations, as detailed in Section 6.2.

6.1 Ranking of Venues, Authors, and CS Departments

In this section, we validate the effectiveness of the conceptual framework of reputation
flows to address the following three academic search tasks: ranking publication venues,
ranking individual researchers (or authors), and ranking research groups (or CS De-
partments). Our intent is to show that reputation flows can be used to gain insight into
the productivity of individual researchers and of research groups, not that a ranking
based on a single metric should be taken at face value. Instead, the decision on how to
classify or rank individual researchers and research groups can only be made by com-
mittees composed of human specialists. However, even under this light, committees of
specialists need data and metrics that can be used to support their decisions.

To solve the aforementioned tasks using P-score, we can use distinct types of
entities as reputation sources. While using research groups as reputation sources and
publication venues as reputation targets seems to be a reasonable approach to in-
stantiate the reputation graph (as illustrated in previous sections), it is not the only
one. In fact, there are many alternatives on how to instantiate the proposed metric in
the academic context. In here, we experiment with the following types of reputation
sources: research groups, individual researchers, and publication venues. These entities
can also be used as reputation targets and collaterals, which leads us to a variety of
configurations. To facilitate the discussion, we adopt the following notation:
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• G∗ is a subset of the set G of all research groups, which has been selected as
reputation source,

• A∗ is a subset of the set A of all individual paper authors, which has been selected
as reputation source,

• V ∗ is a subset of the set V of all publication venues, which has been selected as
reputation source.

In Table 6.1, we show 9 suggested configurations for the reputation graph. The
sources and collaterals can be any of the three types of entities we consider i.e., venues,
authors, and research groups. The targets, however, must always be entities of type
venues. That is, we always use the reputation of venues as the key feature for classifying
venues, research groups, and individual authors (or researchers).

Table 6.1: Suggested configurations for three academic search tasks: ranking publica-
tion venues, ranking individual researchers, and ranking research groups.

Venues Authors Groups

Groups G∗ 
 V → V G∗ 
 V → A G∗ 
 V → G

Authors A∗ 
 V → V A∗ 
 V → A A∗ 
 V → G

Venues V ∗ 
 A ∴ A∗ 
 V → V V ∗ 
 A ∴ A∗ 
 V → A V ∗ 
 A ∴ A∗ 
 V → G

The configuration G∗ 
 V → G should be read as: a subset G∗ of the set G of
all research groups, adopted as reputation sources, transfers reputation to the publi-
cation venues in V , the reputation targets. These transfers are modeled as transition
probabilities in the corresponding Markov network. The steady state probabilities of
this network are taken as weights assigned to each venue in V . These weights are then
used to compute P-scores for all research groups in G, the reputation collaterals.

The configuration V ∗ 
 A ∴ A∗ 
 V → V should be read as: a subset V ∗ of all
venues, selected as reputation sources, transfers reputation to the set A of all authors.
These transfers are modeled as transition probabilities in the corresponding Markov
network. The steady state probabilities of this network are taken as weights assigned to
each author in A. Following, a subset A∗ ⊆ A, composed of those authors with highest
weights, is selected as reputation sources and used to transfer reputation to the set V of
all venues, using a second Markov network model. In this second network, the steady
state probabilities are taken as weights assigned to each venue in V . These weights are
then used to compute P-scores for all venues in V , the reputation collaterals. In this
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Table 6.2: Denomination of the reputation sources used in our validation.

12 Groups RandProc The set of 12 graduate programs generated by running Al-
gorithm 1, described in Section 7.2.2, 100 times.

Most Cited Authors The set composed of the 1,000 most cited authors in the area
of Computer Science.

Top Venues of Sub-areas The set composed of the 4 most cited conferences and 4 most
cited journals of each one of the 24 sub-areas in Computer
Science, according to Microsoft Academic Search.1

particular case, the mapping between the collaterals, which are venues, and V is the
identity matrix. Thus, the venue P-scores are simply the venue weights.

For each aforementioned task, we compute P-scores using selected research groups
as reputation sources, selected paper authors as reputation sources, and selected venues
as reputation sources, as detailed in Table 6.2. While somewhat simplistic, these sets
of reputation sources provide enough evidence to our model and allow it to produce
P-scores that lead to effective rankings.

6.1.1 Ranking Publication Venues

In this section, we discuss the effectiveness of P-score to rank publication venues.
Specifically, we rank 1,083 publication venues using the three suggested configurations
for this task. We display results for the first 600 positions in our ranking of venues.
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Figure 6.1: Ranking venues using as reputation sources: 12 groups identified through
our randomization process (G∗ 
 V → V ), most cited authors (A∗ 
 V → V ), and
most cited venues in sub-areas (V ∗ 
 A ∴ A∗ 
 V → V ). These are compared with
a ranking of venues based on H-Index.
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Figure 6.1 illustrates the nDCG results for the ranking of venues when we selected
as reputation sources a subset of venues, a subset of authors, and a subset of research
groups (i.e., CS departments). It also displays nDCG results for a ranking of venues
based on H-index. We make two key observations.

First, the three alternatives for selecting reputation sources produce almost iden-
tical results. However, while the adoption of “top venues in sub-areas” and “most
cited authors” as reputation sources depend on citation information, the adoption of
“12 groups randproc” generated by Algorithm 1 as reputation sources relies neither on
citation nor in manual intervention. This is an important result, i.e., our reputation
flows model allows ranking venues without citation information or human intervention.

Second, the ranking of venues produced by our model consistently outperforms
the ranking of venues produced by H-index scores, which rely on citation data.

6.1.2 Ranking Individual Researchers

In this section, we discuss the effectiveness of P-scores to rank individual researchers.
Specifically, we rank the 383 Brazilian researchers awarded with an individual research
grant by CNPq.

Figure 6.2 illustrates the nDCG results of ranking individual researchers when
we use as reputation sources 12 selected groups, most cited authors, and top venues in
sub-areas. It also displays nDCG results when we rank the researchers by H-Index. We
observe that all curves are rather similar. Thus, in this case, the adoption of selected
groups, obtained in fully automatic fashion, as reputation sources produced results
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Figure 6.2: Ranking authors using as reputation sources: 12 groups selected using our
randomization process, most cited authors, and top venues in sub-areas.
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that are analogous to the other three alternatives, all of which depend on citation
information.

We also observe that results are not as good as before with room for improvement.
Fact of the matter is that the evaluation of individual researchers by CNPq is based on a
conservative view of the overall production of the researcher throughout his professional
life. Further, demotion of researchers to lower levels due to reduced productivity is
almost never done. As a result, old timers tend to be maintained in the system at
relatively high levels even when they are no longer productive in terms of research.
This suggests that looking at a metric such as P-score might provide insights into how
well the current evaluation system is working and how to improve the overall process.

6.1.3 Ranking Research Groups

In this section, we discuss the effectiveness of P-scores to rank research groups from
the United States.

Specifically, we rank 126 CS graduate programs from the US using as reputation
sources: 12 selected research groups (CS departments) produced by our randomization
process, most cited authors, and top venues in each of the 24 sub-areas of CS identified
by Microsoft Academic Search, as illustrated in Figure 6.3.

We observe that our reputation flows framework again yields results analogous to
those produced using citation data. Further, in this case the results are quite effective
and provide a good approximation of the results produced by NRC through a much
more complex and costly process. We also repeated this experiment for the 25 CS
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Figure 6.3: Ranking CS deparments from the US using as reputation sources: 12
selected research groups, most cited authors, and top venues in sub-areas.
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departments in Brazil that are part of our dataset and obtained similar results.
The high quality of the results is a direct consequence of the fact that the highly

productive departments are also those of highest reputation. That is, the departments
that publish in top venues in large numbers are naturally the departments with highest
reputation. Thus, given P-scores are computed as a function of venue weights and
publication volume, it should not be a surprise that results are so effective. It is good
news, however, in the sense that it shows that a relatively simple reputation flows
model can be used to provide quick insights into the overall picture on the reputation
of research groups out there.

6.2 Correlation Between P-Score and Citation Counts

Figure 6.4 presents the correlation between P-score venue weights and citation counts
of all CS venues in our dataset.2 For that we adopted as reputation sources the 12
research groups listed in Table 7.1. The correlation between venue P-score and venue
citations, measured by the Kendall Tau coefficient, is 0.51 in this case, which is high
given it varies between −1 and +1. This correlation shows that we can use P-scores
to reason about the impact of publication venues, even when we do not take citations
in consideration in the reputation graph.

Figure 6.4: Correlation between P-score weights and citation counts

This result sheds light into the effective results presented in Section 6.1. The rea-
son P-score weights work well for ranking publication venues, individual researchers,
and whole departments in Computer Science is that they preserve a strong correlation

2Citation counts for whole venues were obtained from http://scholar.google.com.
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with citation counts, which are a good indicator of reputation. Additionally, the frame-
work of reputation flows provides a complementary view on the reputation of academic
entities which allows implementation of new features, such as notification alerts on new
venues with rising reputation, as discussed in Ribas et al. [2017].





Chapter 7

Selecting Reputation Sources

In this chapter, we discuss an important part of our model, the selection of reputation
sources. As stated in Chapter 3, the proposed model scores entities based on how the
reputation of a pre-selected set of reputation sources flows through a reputation graph.
The reputation sources guide the network and any ranking produced by our model is
relative to a given set of reputation sources, meaning that when we change the set of
reputation sources, the results change as well. This way, the reputation sources assume
a central role in our model and their selection is critical to produce effective results.

The selection of reputation sources may be performed manually, as discussed in
Section 7.1, or automatically, as discussed in Section 7.2. After describing manual
and automatic approaches to select reputation sources, we provide, in Section 7.3, an
exploratory analysis on distinct sets of reputation sources. The main objective of this
section is to better understand the impact that the choice of reputation sources with
distinct properties has in the final rankings. Finally, in Section 7.4, we discuss the
robustness of our proposed model.

7.1 Manual Selection of Reputation Sources

A natural approach to compose the set of reputation sources is through manual selec-
tion. By manually selecting the entities to compose the set of reputation sources, a user
can quickly grasp insights about an application domain. We say that a manual selec-
tion happens when the user exerts direct influence in the composition of the reputation
source set. We also say a selection process is manual when the user defines a feature
to guide the process e.g., use top entities of that feature as reputation sources. Manual
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approaches generally use information from outside the reputation graph, like the user’s
domain knowledge. An advantage of manually selecting reputation sources is that a
user can take different views of an application domain by selecting thoughtful reputa-
tion sources, or reputation sources that make sense for a particular purpose. Manual
selection is advised whenever the user has relevant information regarding the applica-
tion domain and reliable information on the reputation of a set of entities. However,
given that manual selection is often subjective, any ranking based on manual choices
is prone to bias and thus might be hard to justify — in fact, our experience in this
research is that people simple do not like it.

7.1.1 Subjective, Context-Dependent

Our conceptual framework of reputation flows was designed to be a tool that allows
analysing the propagation of reputation from selected sources in the reputation graph.
While effective rankings can be produced by using the most reputable entities, the
framework is not limited to this end. In fact, the main purpose of this framework is to
allow studing how reputation is propagated from certain nodes chosen by a given user
with a given task or information need.

We say that a reputation source choice is subjective and context-dependent when
the user explicitly chooses the reputation sources based on their own knowledge, which
is often related to previous knowledge of the entities. To illustrate, lets consider the fol-
lowing academic example. If we ask someone to give examples of good CS departments,
common answers would be Stanford and MIT. Often these answers are not based on a
well defined criteria, but on word of mouth dissemination (or reputation). Despite the
subjectivity associated with this process, it can provide valuable information about an
area of knowledge.

7.1.2 Top Entities According to a Given Feature

An alternative to select reputation sources less subjectively is to use a feature of the
entities which are candidates to reputation sources to guide the selection process. To
illustrate, if we ask someone to provide features related to reputation, common choices
would be citation counts or number of publications. The reason is that there is a
correlation between citations and reputation, that is reputation frequently overlaps
with citations.
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7.2 Automatic Selection of Reputation Sources

We define a selection of reputation sources as automatic when it does not take any
information from outside the reputation graph into account i.e., the user is not part of
the process. The main advantage of automatic methods of selecting reputation sources
is subjectivity avoidance. People often do not like ranking based on subjective choices.
Thus, it is important to provide automatic selection techniques alongside our model.
Additionally, automatic techniques are better indicated when the user has no (or little)
information regarding the application domain.

Following, we discuss some approaches to automatically choose reputation
sources. The first one is based on the idea of node centrality. The second is a random-
ized algorithm referred to in previous sections. Finally, we discuss how clustering the
candidate entities can help selecting reasonable reputation sources.

7.2.1 Top Entities According to a Centrality Measure

A natural approach to automatically choose reasonable reputation sources, given an
instantiation of the reputation graph, is to compute the centrality of each reputation
source candidate. To do so, we place all entity candidates in the set of reputation
sources and select the top k entities, according to a given centrality measure, to compose
the set of reputation sources. Notice that this is similar to the procedure discussed in
Section 7.1.2, the difference is that here no information from outside the reputation
graph is used. Some examples of centrality measures are: degree, betweeness, closeness,
eigenvector and PageRank. To illustrate, we could compute the PageRank of the nodes
in a reputation graph composed by all research groups and publication venues of a given
domain and use the entities with highest PageRank as the set of reputation sources.

7.2.2 A Randomized Process

An alternative to the use of top entities according to a centrality measure is to adopt
a randomization process, which we first described in Ribas et al. [2015b] and which we
review in greater detail in the immediately following.

Consider that we intend to use whole university departments as reputation
sources. The motivation is that good university departments have a brand and a rep-
utation that is widely known and respected. Initially, the set S of reputation sources
is populated with a small random sample of all academic departments of interest. For
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instance, this could be a sample of the 126 CS departments1 (and their graduate pro-
grams) considered in the 2011 study done by the US National Research Council (NRC).
Further, the set T of targets is populated with all venues in which professors (i.e., re-
searchers) of these departments published in. In this context, Algorithm 1 presents a
randomized process to select a subset S∗ of all CS departments as reputation sources.

Algorithm 1: RandProc(S, T, k)
S: sources (all university departments);
k: input parameter, an integer, k < |S|;
S∗ = random sample of k elements of S;
T : targets (all venues);
d〈S〉 = 0.5 (fraction of reputation transfer between source nodes);
d〈T 〉 = 0 (do not consider citation information);
C = S (the set of all collaterals to rank);
repeat

P-score(S∗, T, d〈S〉, d〈T 〉, C);
S∗ = top k elements of C;

until convergence;
return S∗

In Algorithm 1, each university department is modeled as a source node and each
venue is modeled as a target node. We start by randomly sampling a small subset of
all university departments in consideration. Experimentation indicated that restricting
the sample size k to 10 departments suffices. We also set parameter d〈S〉 = 0.5, a value
we determined empirically, and d〈T 〉 = 0, which implies that we do not use citation
information here. Next, we use this random sample of CS departments as reputation
sources to compute steady state probabilities for all venues modelled as targets. These
probabilities are then used to compute P-scores, as defined by Equation (3.8), for all
university departments taken as collateral nodes. The P-scores define a ranking of the
departments. The top departments in this ranking are then used as reputation sources
in the next iteration. This process is repeated until convergence, i.e. until there is
no change in the set of reputation sources. To avoid falling into a local minimum,
we run this method many times (e.g., 100 times) and count the number of times each
department appeared in the final reputation source set.

We applied Algorithm 1 considering a sample size k = 10, which we determined
empirically. Once convergence was achieved, the 10 reputation sources produced were

1For each CS department, we retrieved the list of its members and their publications, which were
then reconciled against the DBLP repository, see http://dblp.uni-trier.de/.

http://dblp.uni-trier.de/
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annotated on the side. Following, application of Algorithm 1 was repeated 99 times.
At the end of each run, the 10 reputation sources produced were annotated on the side.

Table 7.1 lists the 12 CS departments that appeared at least once in the list of
10 reputation departments produced at the end of each run. We observe that all 12
departments are among the top 5th percentile in the ranking produced by NRC. This
suggests that our recursive procedure, as detailed in Algorithm 1, was able to take
advantage of patterns in the publication streams of the various CS departments to
determine the most reputable ones in fully automatic fashion.

Table 7.1: CS Departments that appeared at least once among the top 10 reputation
sources after 100 runs of Algorithm 1.

1 Carnegie Mellon University
2 Georgia Institute of Technology
3 Massachusetts Institute of Technology
4 Stanford University
5 University of California-Berkeley
6 University of California-Los Angeles
7 University of California-San Diego
8 University of Illinois at Urbana-Champaign
9 University of Maryland College Park

10 University of Southern California
11 University of Michigan-Ann Arbor
12 Cornell University

7.2.3 Clustering Reputation Source Candidates

To understand how clustering helps the automatic selection of reputation sources, con-
sider an academic search setting in which publication venues are the reputation sources.
We call V the set of reputation source candidates, i.e. the set of all venues of a given
domain. Consider also the 2-dimensional space of Figure 7.1 (a) where venues are
plotted according to their topics so that the distance between venues represent topic
distance. Thus, venues are closer when they have similar topics.

To produce our rankings using P-score, we need a set V ∗ which is a subset of V .
Notice that, in this interpretation, if all venues are in the area of Computer Science,
clusters represent sub-areas of knowledge, such as information retrieval or databases. It
is noteworthy that some sub-areas are more popular than others. If we run a centrality
measure in this scenario, popular sub-areas would be in advantage, which is the case
in Figure 7.1 (b). In this figure, the set of reputation sources is composed by the three
black venues. Notice that one of the sub-areas is not covered in this case.
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By clustering the set of reputation source candidates, we can alleviate this popu-
larity issue. Instead of selecting the top candidates as reputation sources, we can select
the top candidates in each cluster. To illustrate, in Figure 7.1 (c) we select the top
venue in each sub-area. Notice that in this case, the set of reputation sources covers
all sub-areas. In addition to help automatic selection of reputation sources, clustering
also helps when ranking in specific sub-areas. Also, we could use clustering to enhance
manual selection of reputation sources through visualization.

Example: Venue Topics Using LDA

To illustrate these ideas, let’s provide a concrete example by performing the following
experiment. We build an algorithm whose objective is to find effective publication
venues to compose the set of reputation sources by clustering them in order to keep
the coverage of sub-areas. The final set of reputation sources should thus be composed
of publication venues that cover a certain number of sub-areas of Computer Science.
At the end of the algorithm, we verify whether the set of reputation sources satisfy
this property.

There are many ways to identify a venue’s sub-areas. For example, we can apply
a variety of clustering algorithms available in the literature. In this experiment, we
adopt Latent Dirichlet Allocation (LDA) [Blei et al., 2003], a generative probabilistic
model for collections of discrete data. LDA is a three-level (documents, words and
topics) hierarchical Bayesian model, in which each item of a collection is modeled as
a finite mixture over an underlying set of topics. Each topic is modeled as an infinite
mixture over an underlying set of topic probabilities. In the context of text modeling,
the topic probabilities provide an explicit representation of a document.

The most natural way to represent the input data of LDA in this context is to
adopt venues as documents and paper words as venue words e.g., to represent a venue
as a document composed by all words in the papers published by that venue. However,
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Figure 7.1: (a) Publication venues in a 2-dimentional space. (b) Top 3 venues (in black),
considered as reputation sources. (c) Reputation sources in a clustered environment.



7.2. Automatic Selection of Reputation Sources 49

by doing so, the input data would be large. Thus, we modelled it in a different way
that requires much less data and produces effective results. We represent venues as
documents and authors as words. This way, each venue (or document) is represented
by the set of authors that published papers in that venue.

In Table 7.2, we show the venues most likely to belong to each topic (or sub-area)
according to LDA. By observing this table, we conclude that the desired property is
valid, because each cluster represents a sub-area of Computer Science.

Once clustered, we can select a subset of publication venues in each cluster to
compose the final set of reputation sources, ensuring that each cluster/sub-area is
properly represented. As discussed previously, one way to make this choice is by
adopting the probabilities returned by LDA itself or by applying a centrality measure
inside each cluster. Applying the randomized method inside each cluster is also an
option.

Table 7.2: Most likely venues of each sub-area according to LDA

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

TCS AAAI ICASSP ICSE GECCO
DM ATAL InterSpeech ENTCS CEC
STOC IJCAI TSP TSE IJCNN
SIAMComp SemWeb NIPS TCS ISCI
SODA ECAI ACL JSS FUZZ-IEEE

Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

IACR CDC IPPS ICIP MICCAI
TIT Automatica TPDS ICPR ISBI
IGARSS TAC ICPP CVPR CAISE
ISIT AMC EuroPAR ICMCS ICEIS
CCS FSKD AINA TIP TMI

Topic 11 Topic 12 Topic 13 Topic 14 Topic 15

ICDE CHI ICC ISCAS ICRA
CIKM HICSS Globecom DATE IROS
SIGMOD TOG VTC DAC TROB
WWW AMIA Infocom TCAD ROBIO
SIGIR CGF WCNC ICCAD AR
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7.3 Exploring Reputation Sources

As we discussed, the composition of the set of reputation sources affects the final
rankings. But, how exactly does the set of reputation sources affect the final results?

Let us start our discussion by analysing the results produced by intuitive sets of
reputation sources. In Figure 7.2, we compare the effectiveness of venue rankings given
distinct sets of reputation sources composed by individual researchers. Specifically, we
adopted configuration: A∗ 
 V . This figure is similar to the ones in Chapter 6, where
we plot the nDCG values relative to a ranking of venues. An interesting effect occurs
when we adopt Turing Awards as the set of reputation sources. While these are among
the most reputable researchers in Computer Science, there are not enough of them, or
their publications are not in enough numbers, to ensure proper transfer of reputation
to publication venues.

Figure 7.2: Results for distinct types of reputation sources

In Sections 7.3.1 to 7.3.3, we provide an exploratory analysis on distinct sets of
reputation sources. Specifically, we seek to understand how distinct choices of repu-
tation sources affect the final rankings and also what makes a good set of reputation
sources. As the results in Section 7.3.1 suggest, one of the reasons for this strange
effect regarding the Turing Awards as reputation sources is that the number of Turing
Awards is quite small when compared to the other sets of reputation sources used to
rank venues in Figure 7.2, which may result in a coverage issue. One alternative to
address this issue is to increase the number of reputation sources.
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7.3.1 Characterization

In this section, we investigate the following question: What makes a good set of repu-
tation sources? To address this question, we start by rephrasing it as: What features
Fi make an effective set of reputation sources according to a specific quality measure
Q? This last question allow us to objectively formulate an experimental evaluation.
To answer this question, we can analyze the plots Fi×Q, for each feature Fi. The next
thing we need to do is to define the set of features F and the quality measure Q.

In a general application of the framework we may be interested in evaluating
the impact of features like the number of reputation sources, the number of reputa-
tion targets, and the number of source out-links. Those features will be present in
any instantiation of the reputation graph. In contrast, we may also be interested in
analysing features that are specific to the application context, in our case, the number
of citations received by authors in a reputation source set may be of interest. Here, our
set of features is F = { # sources, # targets, # source out-links, # source citations }.

In Figures 7.3 to 7.6, we plot Fi × Q, for each feature Fi, where the quality
measure Q is nDCG@10 applied to the ranking of venues, given a set of authors as
reputation sources. Each point in these plots represents a pair composed by a single
set of reputation sources and the corresponding target ranking. The x-axis is the value
of feature Fi of a set of reputation sources, while the y-axis is the value of the quality
measure Q of the ranked venues. The number of distinct sets of reputation sources
is 2N , where N is the number of reputation source candidates (here, the number of
authors). Given that it is not possible to plot the 2N sets of reputation sources (there
are more than 2 million authors in DBLP), we sample it. We observed that all analysed
features have a positive correlation with ranking quality.

Figure 7.3: Number of reputation sources
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Figure 7.4: Number of reputation targets

Figure 7.5: Number of source outlinks

Figure 7.6: Citations received by reputation source members
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7.3.2 Length Impact

To better understand the impact of the reputation sources, we analyze BPref results of
venue rankings (produced by P-score), see Baeza-Yates and Ribeiro-Neto [2011], when
we vary their size. To compute BPref, we consider that a venue classified by Qualis
as A1 or A2 is relevant, venues with other classifications are non-relevant, and venues
not classified by Qualis are unknown. In Figures 7.7, 7.8 and 7.9, the vertical axis
show BPref measures relative to Qualis venue rankings and, in the horizontal axis,
each integer i represents the group (or graduate program) ranked in the i-th position
of the NRC ranking for Computer Science.

In Figure 7.7, we investigate the minimum size of the reference set. Using refer-
ence sets of size 1, 2, · · · , N (N = 126), i.e., we increase the size of the reference set
by 1 with each experiment, and we do so by following the NRC ranking (start with
the top graduate program). By looking at the result, we observe that there is no need
to choose more than 10 research groups (and we only do so to cover enough venues).
After that, the ranking of venues worsens.

In Figure 7.8, we run a complementary set of experiments in which we start with
a reference set of size 126 and reduce it by 1 in each new experiment, but start with the
top graduate program in the NRC ranking. The reference sets are then {1, · · · , N},
{2, · · · , N}, · · · , {N}. The results show that the quality of the rankings (in terms of
BPref) decreases as we gradually remove the top groups from the reference set. Also,
the quality of the ranking drops sharply at the bottom part of the graph, specifically
when there are less than 10 groups in the reference set.

Since 10 seems to be a good number for the size of the reference set, in Figure 7.9
we study rankings produced using different reference sets of size 10. From this figure
we observe the behavior of P-score through a sliding window of size W , here W = 10
and thus the reference sets are {1, · · · , 10}, {2, · · · , 11}, · · · , {N − 9, · · · , N}. The
results show that the method becomes less stable when we choose reference sets of size
10 in arbitrary positions of the NRC Ranking. There is clearly a trend of getting worse
BPref values as we slide the reference set towards the bottom of the NRC ranking.

Our overall conclusion is that, as expected, using top groups as reference set is
better than using non-top groups and that we need no more than 10 graduate programs
in the reference set. This fact supports our claim that the reputation of venues is
inherited from the reputation of groups publishing in them. It also makes easier the
use of P-scores to rank venues of other areas, since it is not necessary to get data from
a large amount of groups to produce reliable rankings of venues.
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Figure 7.7: BPref of P-score venue rankings relative to Qualis produced by reference
sets in the range [1, i].
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Figure 7.8: BPref of P-score venue rankings relative to Qualis produced by reference
sets in the range [i, N ].
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Figure 7.9: BPref of P-score venue rankings relative to Qualis produced by reference
sets of size 10.
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7.3.3 Coverage Analysis

In this section, we perform a coverage analysis. The objective here is to characterize the
amount of reputation targets a given set of reputation sources can directly reach. As the
proposed method is based on propagating reputation from a given set of reputation
sources, it is important to know what is the expected size of the set of reputation
sources. Such characterization is helpful to establish a better understanding of the
method and of the application domain.

An intuitive approach to perform a coverage analysis would be plotting the num-
ber of reputation targets reached for each one of the compositions of the reputation
sources. However, enumerating all the possible compositions of reputation sources is
not viable — with N reputation source candidates, the number of distinct sets is 2N−1.
One alternative is to sample compositions of reputation sources. To provide a more
concrete analysis, let us consider individual items such as authors and venues instead
of sets of items.

In Figures 7.10 and 7.11, we consider authors as reputation sources and we inspect
the number of venues (or targets) they reach. The x-axis in Figure 7.10 is the number
of publications of a given author and the y-axis is the number of venues this author
has published on. Notice that, as expected, the number of venues directly reached by
authors with more publications is likely to be greater. Each dot in this graph represents
an author and the line corresponds to the linear regression fitted using all authors. The
slope of this line indicates how fast (on average) the number of venues increases with
the number of publications. Specifically, the number of venues increases with a rate of
0.40 regarding the number of publications.

Considering all 5,213 venues and all 771,069 authors who have more than one
publication in DBLP, Figure 7.11 displays the fraction of venues directly reached when
we vary the sets of authors taken as reputation sources. The x-axis represents the
fraction of authors (size of the set of reputation sources divided by the total number
of authors in DBLP) and the y-axis consists of the fraction of venues directly reached
when using a given set of reputation sources. To generate the values of x-axis, we sorted
the set of authors in DBLP by their number of publications and a value in this axis
represents a set of reputation sources composed of x% authors with most publications.
Notice that it is possible to reach 80% of the venues using only 0.07% of the authors in
the database — that is, 578 out of the 771,069 authors. Also, observe that this number
of authors is an upper bound given that it may exist a set with a smaller number of
authors with the same coverage. In fact, the minimum number of authors that reach
all venues can be determined by modeling this problem as a set cover problem.
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In Figure 7.12 and 7.13, we perform experiments that are similar to the aforemen-
tioned ones, considering however publication venues as reputation sources and measur-
ing the number of authors directly reached. Specifically, the number of directly reached
authors increases with a rate of 1.47 regarding the number of publication venues. No-
tice also that it is possible to reach 80% of the authors using just 1.75% of all venues
in the dataset — that is, 91 out of 5,213 venues.

Figure 7.10: Relation between the number of publications and the number of distinct
venues for all authors

Figure 7.11: Fraction of venues reached by authors sorted by publication count
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Figure 7.12: Relation between the number of publications and the number of distinct
venues

Figure 7.13: Fraction of authors reached by venues sorted by publication count

7.4 Ranking Robustness

The results in Chapter 6 attested the effectiveness of our proposed model for ranking
academic entities when careful selections of reputation sources are performed. Never-
theless, any such selections may eventually include noisy reputation sources, making it
sub-optimal. To address the robustness of our model, we assess the robustness of the
rankings produced by P-scores with respect to random perturbations in the selected
reputation sources.

Figure 7.14 shows the results of this investigation for venue rankings. In par-
ticular, the x-axis denotes the amount of noise randomly injected into a reference set
of reputation sources—in our case, the top k research groups ranked by the NRC, for
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k ∈ {5, 10, 20}. For instance, x = 0.2 indicates that 20% of the reputation sources
are replaced by research groups randomly chosen from outside the reference set. Ac-
cordingly, x = 0.0 indicates no noise (i.e., the untouched top k NRC groups), whereas
x = 1.0 indicates maximum noise (i.e., a random set of k research groups). On the
y-axis, we show mean nDCG@100 figures averaged across 30 repetitions of this per-
turbation process, with shaded areas denoting the observed standard deviation from
the mean. An additional curve including all 126 NRC groups as reputation sources is
shown as a reference for comparison.

Figure 7.14: Venue ranking robustness with respect to random perturbations of the
selected reputation sources.

From Figure 7.14, we observe that larger sets of reputation sources are generally
more robust to noise, as demonstrated by the green curve (NRC 20). Indeed, this
setting delivers nearly the same ranking effectiveness as the one achieved when using all
126 NRC groups as reputation sources. More importantly, all venue rankings produced
by our model are relatively stable up to a noise level around 0.3 (i.e., when 30% of the
reputation sources are randomly chosen). These results attest to the robustness of the
rankings produced by our model with respect to random perturbations in the set of
selected reputation sources.

7.5 Discussion on Reputation Sources

A reasonable question that may emerge is how this idea of reputation sources or refer-
ence items, impact reality. That is, are few entities, selected to compose a reputation
set, sufficient to represent the overall scenario?
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Figure 7.15: Citation count time series of IR publication venues

To better understand the implications of this question, consider the universe of
publication venues in the sub-area of Information Retrieval. Specifically, let us analyze
how the number of citations, one key variable of major interest in academia, varies
overtime. In Figure 7.15, we show a time series with the accumulated number of
citations of conferences in the sub-area of Information Retrieval. It is noteworthy how
evident is the fact that just a few venues outgrow the other venues and dominate the
sub-area, in terms of the accumulated number of citations received.

This fact is not an exclusivity of the Information Retrieval area, it can be observed
in many other areas and sub-areas as well. Additionally, this kind of outgrowth or
domination can be observed not only when looking at publication venues, but also
when we analyze authors or even groups of authors. In fact, in most real life scenarios,
including scenarios outside the academic ones, we can observe the fact that “few have
much and many have little”, see Pareto’s Principle [Newman, 2005].

Another interesting aspect of P-score is that it is less prone to gaming. That
is, while it is relatively easy for authors to hack some academic indicators, hacking
P-score is not that easy (when the reputation sources are highly reputable entities).
To illustrate, researchers can publish a high volume of papers in less restrictive venues
to increase their total number of publications or, to boost their citation-based met-
rics, researchers can build citation farms with their colleagues. However, consistently
publishing papers at the most reputable venues in a given area is a much harder task.





Chapter 8

Conclusions and Future Work

In this thesis, we have proposed a novel random walk model to identify the most rep-
utable entities of a domain, based on a conceptual framework of reputation flows. Our
model overcomes the challenges of quantifying reputation (arguably, a subjective and
multi-faceted concept) by focusing on the transference of reputation among different
entities. We instantiated our model in an academic search setting and empirically vali-
dated its effectiveness and robustness for three academic search tasks in the broad area
of Computer Science, namely publication venues, individual researchers and research
groups ranking. Specifically, we demonstrated the effectiveness of our model in contrast
to standard citation-based approaches for identifying reputable venues, authors, and
research groups, as well as its robustness to perturbations in the selection of reputation
sources. Furthermore, we showed that effective reputation sources can be chosen in an
automatic fashion using our proposed random walk model itself.

8.1 Summary of Contributions

In the following, we summarize the main contributions of this thesis.

A conceptual framework of reputation flows. In Chapter 3, we proposed a conceptual
framework of reputation flows and a metric based on it, the P-score metric. This frame-
work allow us to model the transference of reputation between distinct entities. To that
end, the framework encodes the information of a given application scenario in what
we call a reputation graph, which is composed of three types of nodes: the reputation
sources, the reputation targets, and the reputation collaterals. The basic idea behind
this framework, and its derived P-score metric, is to propagate the reputation from
the reputation sources to the reputation targets through a random walk approach, and
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then propagate the reputation from the targets to the reputation collaterals using a
weighted sum.

A reputation-based method to rank academic entities. In Chapter 4, we proposed a
reputation-based method to rank publication venues, individual researchers, and re-
search groups, by instantiating our conceptual framework of reputation flows. In par-
ticular, we proposed distinct academic instantiations and we showed how to use the
proposed P-score metric to produce rankings in such academic search settings. P-scores
were able to produce consistently good results in the academic context. By using P-
score we could produce rankings that are more effective than the ones produced by
classic citation-based methods. This is of interest because citation-based metrics are
used as a core feature in the assessment of academic productivity and also because
retrieving the data necessary to compute P-score is easier than retrieving the data
necessary to compute citation-based metrics.

An experimental evaluation on the properties of P-score. In Chapter 6 and Chap-
ter 7, we provided an in depth evaluation of our conceptual framework by analysing its
academic search instantiation. First, we evaluated the effectiveness of P-scores in three
academic search tasks namely, venues ranking, authors ranking, and research groups
ranking. To address these tasks, we used distinct configurations of our framework,
as follows: using research groups as reputation sources, using authors as reputation
sources, or using publication venues as reputation sources. Our intention of testing
P-scores in many tasks and using many configurations is to better understand how
our method behaves in distinct scenarios. Next, we evaluated the robustness of our
method. To do so, we introduced some noise in the set of reputation sources and
measured the impact of each noise level in the quality of the final ranking. Also, we
explored distinct sets of reputation sources in order to characterize what defines a good
set of reputation sources. Using the knowledge learned in the aforementioned charac-
terization, we evaluated distinct approaches to select effective reputation sources in an
automatic fashion.

8.2 Summary of Conclusions
In the following, we summarise the conclusions of this thesis.

On the effectiveness of P-score. In Chapter 6, we provide some evidences regarding
the effectiveness of the proposed model. Specifically, we instantiated our model in an
academic search setting and empirically validated its effectiveness for three academic
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search tasks in the broad area of Computer Science, namely ranking of publication
venues, ranking of individual researchers, and ranking of research groups. For this, we
ran extensive experimentation in which we explored the adoption of selected research
groups, selected individual authors, and selected venues as reputation sources for each
of the three search tasks of our interest, in a total of 9 configurations. While the use of
selected individual authors and selected venues as reputation sources relies on citation
data, the use of selected research groups as reputation sources does not depend on
citation data nor in manual intervention.

On the robustness of P-score. In Chapter 6, we attest the effectiveness of our pro-
posed model for careful selections of reputation sources. Nevertheless, this selection
may eventually include noisy reputation sources, making it sub-optimal. In Chapter 7,
we provide some evidences regarding the robustness of P-score in an academic search
setting. Our results suggest that the model is indeed robust to random perturbations,
all rankings produced by our model were relatively stable up to a noise level around
0.3 (when 30% of the reputation sources are randomly chosen). We also observed that
larger sets of reputation sources are generally more robust to noise. These results
attest the robustness of the rankings produced by our model with respect to random
perturbations in the selected reputation sources. Moreover, they open up an interesting
direction towards automatically identifying a robust set of reputation sources.

On the selection of reputation sources. Motivated by the effectiveness and robustness
of P-score, in Chapter 7, we discuss a critical step of our method, the selection of
the reputation sources. While our model was primarily developed to study how the
reputation from a manually pre-selected set of reputation sources is transferred to other
entities in a reputation graph, in this chapter, we show how to automatically emerge
with effective reputation sources from the data, without manual effort.

8.3 Directions for Future Research
Both the conceptual framework and its instantiation in an academic context open
opportunities for future work.

Model Level. In this thesis, we show how distinct entities of an academic search setting
can be consistently modeled as a reputation graph. However, this is not the only
possible application scenario that can be modeled by our framework. Indeed, our
conceptual framework allows the modeling of any context in which we could identify
flows of reputation between distinct types of entities. Therefore, at the model level,
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a future direction is to verify the generality of the concept of reputation flows when
applied to other domains, such as enterprise search.

Another direction is to deeper explore visualization and clustering techniques to help
both manual and automatic approaches to identify suitable reputation sources. By
better visualizing a reputation graph, one could improve her manual selection of repu-
tation sources. Clustering techniques may be applied to enhance automatic selections
of reputation sources. In many applications it is desirable that the set of reputation
sources covers as many regions as possible of the reputation graph.

Instantiation Level. At the instantiation level, a future direction is to test our model
for academic search tasks in areas other than Computer Science, like Biochemistry,
Economics, History, among others. Applying our model in Computer Science sub-areas
is important as well, some examples are: Information Retrieval, Databases, Computer
Networks, and others.
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Appendix A

Web Tool

We developed a web tool that allows users to quickly grasp insights about publication
venues, academics and research groups by using P-score. To use the tool, access:

http://pscore.dcc.ufmg.br

The URL above gives access to the web page shown in Figure A.1.

Figure A.1: P-score web tool
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Next we provide a brief tutorial one may follow to use our P-score tool to analyse
how reputation flows through the network:

1. Select whether the set of reputation sources will be composed by research groups,
authors, or publication venues.

2. Choose the set of reputation sources using the search box at the left hand side.

3. Select the time range to be considered in the analysis.

4. Click the Rank button.

Once the Rank button is clicked, the corresponding reputation graph is instanti-
ated and the rankings of venues, authors and groups are produced using P-score. The
interface shows the top 5 positions of each ranking, to see more positions just click in
the ranking you want to take a closer look. To illustrate, in Figure A.1, the rankings
were produced by choosing the SIGIR conference as the only venue to compose the set
of reputation sources. Notice that other conferences could be easily added to the set.



Appendix B

Academic Repositories

There are publication repositories in the Web from which we can collect academic data.
In some cases we can retrieve the values of certain indicators directly from a publication
repository and, in others, we may need to derive the values of an indicator from existing
data in a repository (e.g., there is no authors’ H-Index in Microsoft Academic Search,
but we can compute this value by collecting the list of publications of an author with
their corresponding citation counts). In this section, we point out some facts in regard
to citation data in existing repositories.

In here, we focus our analysis in Google Scholar1 (GS) and Microsoft Academic
Search2 (MAS) because they are largely adopted as source of academic data. One of
the main advantages of MAS, in comparison with GS, is that it provides a dump of the
entire database3. However, MAS has not being properly updated since 2010. That is,
we can download an outdated MAS repository. It may be a good dataset for studying
behavioural aspects of a certain method (e.g. for citation prediction), but it is not a
good data source if our intent is to evaluate current scientific production of academics
or to predict the number of citations an author, paper or venue will receive in the
next year. While there is no GS dump available for download, the repository has being
properly updated over the years. This fact makes GS a better choice in some scenarios.

In Table B.1, we compare some features of the two major repositories in regard
to the availability of venue data. We check-marked a cell when the feature in the
corresponding column is present in the repository. We notice that we can directly
retrieve the number of citations of publication venues from MAS. From GS, we can
directly retrieve the H-Index of publication venues. Neither MAS nor GS provides

1http://scholar.google.com
2http://academic.research.microsoft.com
3http://datamarket.azure.com/dataset/mrc/microsoftacademic
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the Impact Factor of publication venues. Both repositories present a list with the top
ranked venues.

Table B.1: Venue data availability in academic repositories

Repository Cits H-Index IF List Dump Updated
GS
MAS

In Table B.2, we illustrate the metadata of the two most cited journals and
conferences in Computer Science according to Microsoft Academic Search. The number
of publications and the number of citations were collected from MAS, while the H-Index
was collected from GS. The year of the first publication were collected from DBLP and
the Impact Factor of the journals was collected from Cite Factor4 and Impact Factor
Search5, which are mirrors of Thomson Reuters6. We notice, currently, that Thomson
Reuters do not compute the Impact Factor for conferences and, as far as we know,
there is no repository with conferences’ Impact Factor.

Table B.2: Metadata collected from various data sources of the two most cited journals
and conferences in Computer Science according to Microsoft Academic Search

Venue Pubs Cits H5-Index7 1st year IF

TIT 14742 387985 93 1953 2.650
CACM 13102 361257 77 1958 2.863
INFOCOM 6556 190568 76 1982
ICRA 17210 181834 61 1984

In Table B.3, we compare some features of the two major publication repositories
in regard to the availability of author data. We check-marked a cell when the feature in
the corresponding column is present in the repository. We notice that we can directly
retrieve the number of citations of publication authors from both repositories. The
H-Index of authors can be directly retrieved from GS. Only MAS presents a list with
the top ranked authors.

While both the GS and MAS repositories provide the number of citations of indi-
vidual researchers, we observe relatively large differences between the values presented
by each. While citation counts are underestimated in MAS, they are inflated in GS.

4http://www.citefactor.org
5http://www.impactfactorsearch.com
6http://thomsonreuters.com/journal-citation-reports
7 H5-Index is the specification of H-Index provided by Google Scholar in which only publications of

the last 5 years are considered: http://scholar.google.com.br/citations?view_op=top_venues

http://www.citefactor.org
http://www.impactfactorsearch.com
http://thomsonreuters.com/journal-citation-reports
http://scholar.google.com.br/citations?view_op=top_venues
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Table B.3: Author data availability in academic repositories

Repository Cits H-Index List Dump Updated
GS
MAS

For example, while W. Bruce Croft has 13,733 citations in MAS, in GS he has 34,354.
Another example is Andrei Shleifer who has 44,758 in MAS and 182,944 in GS. MAS
considers citations from a set of selected venues only, while GS counts all types of
citations — for example, citations from a technical report or from a web page. Despite
that, there is an argument that while GS citations are more inflated, they are more
consistent if we restrict the counting to GS.

When ranking venues, Impact Factor (IF) is an important metric to be considered.
The reason we do not use it here is that we could not get the official IF values reported
by Thomson Reuters for most publication venues in our analysis. Although in theory,
nothing prevents us from calculating this metric, the input data needed to compute
it is hard to obtain. Even Thomson Reuters uses only a small fraction of the needed
data. This fact leads to rough approximations and many venues with missing IF.

There is no standard repository for research groups, and probably it will never
happen. The reason is that the definition of what configure a research group may
vary according to the context. Despite that, for some definitions of research groups, it
is possible to retrieve from existing repositories the list of their publications, or even
the values of some metrics (including citation-based ones), by directly using the group
names. Repositories like Microsoft Academic Search may lead us from the group name
to distinct bibliometric measures if we define that research groups are represented by all
people related to an university, for instance, that published in a given area or sub-area
of knowledge. To illustrate, in MAS repository, if we search for “information retrieval”
we may find institutions like Stanford, MIT, CMU, and others, and we can treat
them as research groups. But, publication repositories may not work if we increase
the granularity and ask for more precise definitions of research groups, such as the
professors of graduate programs that work in an arbitrary area of knowledge. In this
case, data like publication lists or citation counts needs to be derived from the names
of the researchers that compose the groups of interest.

As we discuss in this chapter, there are many citation-based metrics proposed in
the literature. Each one of them tries to solve (or to soften) the problems of previously
proposed ones, or to capture some unexplored semantics. However, these indicators
can not be used when the existing repositories fail to provide citation data.





Appendix C

Governmental Evaluations

This chapter is composed of four sections, each of which discusses a governmental
effort of evaluating research in the context of academia. In the first three sections,
we detail governmental evaluations of publication venues, researchers and graduate
programs run by funding agencies in Brazil. In the last section, we detail how the
National Research Council evaluates graduate programs in the United States. This
chapter is important because we compare the results of the proposed metric with these
governmental evaluations, which are produced through much more complex processes.

C.1 Qualis Classification of Publication Venues
The Brazilian funding agency CAPES1 maintains a method of systematically evaluating
publication venues and provides a classification called Qualis. The venue evaluations
provide estimates of the relative importance of publication venues in a given area of
knowledge. CAPES assigns a committee of experts to each area of knowledge and these
experts are responsible for evaluating all information acquired about the venues and
produce a classification. According to the Qualis method, for each area of knowledge,
the venues are classified (in order of importance) as A1, A2, B1, B2, B3, B4, B5 or C.

The classifications are updated annually and follow a set of criteria, such as: the
number of publications in the venue, the number of databases in which it is indexed, the
amount of institutions publishing in the venue, citation information whenever available,
among others. Each committee decides which criteria to be considered when evaluating
their respective knowledge area. For the area of Computer Science, the classification of
journals is heavily influenced by citation data (whenever available) and the classification
of venues is heavily influenced by H-Index information (whenever available).

1http://www.capes.gov.br
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Table C.1: Classification of venues in Computer Science (CS) according to Qualis

Qualis Conferences Journals

A1 115 38
A2 140 40
B1 294 72
B2 203 77
B3 246 37
B4 464 24
B5 192 29

Total 1654 317

In Table C.1, we show the distribution of the publication venues in Qualis2 clas-
sification for the area of Computer Science in the year of 2013.

C.2 CNPq Productivity Levels for Researchers

The CNPq is a well established agency dedicated to the promotion of scientific and
technological research and to the formation of human resources for research in Brazil.
One of the programs of CNPq is to distribute research productivity grants to individual
researchers, with the main goal of stimulating research in the country. To distribute
the grants, CNPq classifies researchers in 5 different levels of productivity: 1A, 1B, 1C,
1D, and 2, in descending order of prestige.

In Table C.2, we show the distribution of researchers according to CNPq produc-
tivity levels3 for the area of Computer Science and for all areas evaluated for CNPq.
The data in this table is based on all researchers with active grants in the year of 2014.

To receive a productivity grant, a researcher needs to submit to CNPq information
about him/her academic career, including a research project to be developed during
the next years. The starting point for any new researcher is the productivity level 2. To
assign a research grant to a researcher, CNPq evaluates a set criteria and productivity
indicators such academic output, contribution to the formation of human resources,
academic leadership, among others.

2 The current Qualis classification of distinct areas is available at the official web page of CAPES:
http://qualis.capes.gov.br/webqualis/publico/documentosDeArea.seam?
conversationPropagation=begin

3The current CNPq productivity levels of researchers is available at: http://plsql1.cnpq.
br/divulg/RESULTADO_PQ_102003.prc_comp_cmt_links?V_COD_DEMANDA=200310&V_TPO_RESULT=
CURSO&V_COD_AREA_CONHEC=10300007&V_COD_CMT_ASSESSOR=CC

http://qualis.capes.gov.br/webqualis/publico/documentosDeArea.seam?conversationPropagation=begin
http://qualis.capes.gov.br/webqualis/publico/documentosDeArea.seam?conversationPropagation=begin
http://plsql1.cnpq.br/divulg/RESULTADO_PQ_102003.prc_comp_cmt_links?V_COD_DEMANDA=200310&V_TPO_RESULT=CURSO&V_COD_AREA_CONHEC=10300007&V_COD_CMT_ASSESSOR=CC
http://plsql1.cnpq.br/divulg/RESULTADO_PQ_102003.prc_comp_cmt_links?V_COD_DEMANDA=200310&V_TPO_RESULT=CURSO&V_COD_AREA_CONHEC=10300007&V_COD_CMT_ASSESSOR=CC
http://plsql1.cnpq.br/divulg/RESULTADO_PQ_102003.prc_comp_cmt_links?V_COD_DEMANDA=200310&V_TPO_RESULT=CURSO&V_COD_AREA_CONHEC=10300007&V_COD_CMT_ASSESSOR=CC
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Table C.2: Distribution of researchers according to CNPq productivity levels for the
area of Computer Science (CS)

Level Researchers
CS All Areas

1A 23 1320
1B 22 1308
1C 31 1376
1D 70 2386
2 244 7933

Total 390 14323

C.3 CAPES Classification of Graduate Programs

A well structured effort to evaluate graduate programs is the CAPES ranking in Brazil,
which has been evaluating and comparing graduate programs since 1977, on a triennial
basis [Laender et al., 2008]. The process conducted by CAPES takes into account
various quantitative and qualitative parameters such as coverage of courses’ contents,
curriculum vitae of professors, international reputation, and publication records. One
of the key parameters is the publication records both in volume and in quality.

CAPES committees run a thorough comparative analysis of the publication
records (based on the Qualis classification of publication venues) of the professors in
each major department in Brazil to establish a classification of the graduate programs.
Each graduate program receives a grading in a scale of 1-7, where 7 is the highest
classification. CAPES considers that programs with a rank of 5 or higher are elite, i.e.,
the ones that are awarded with funds from special programs.

In Table C.3, we show the CAPES classification4 of Brazilian graduate programs
in the area of Computer Science and in all areas for the year of 2013. In that year,
CAPES classified 3,337 graduate programs in Brazil, with 68 of them belonging to
the area of Computer Science. That is, the graduate programs in Computer Science
correspond to approximately 2% of the total number of graduate programs evaluated.
Of these graduate programs, only 13 programs have a CAPES classification of 5 or
higher, as shown in Table C.4.

4The CAPES classification is available at: http://www.capes.gov.br/cursos-recomendados

http://www.capes.gov.br/cursos-recomendados
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Table C.3: CAPES classification of graduate programs in Computer Science (CS)

Class Programs
CS All Areas

7 5 145
6 3 270
5 5 610
4 21 1216
3 33 1047
2 1 43
1 0 6

Total 68 3,337

Table C.4: Top ranked graduate programs in Brazil for the area of Computer Science,
according to CAPES

Class Programs

7 PUC-Rio, UFMG, UFRGS, UFRJ, UNICAMP
6 UFPE, USP, USP-SC
5 PUC-RS, UFAM, UFC, UFF, UFRN

C.4 Rankings of the US National Research Council

The National Research Council (NRC) issues a ranking of the graduate programs in
US in many areas of knowledge, aiming at providing a guideline for students and
administrators.5 In the area of Computer Science, the NRC classified the major 126
graduate programs in the US using two approaches: S-rankings and R-rankings [NRC,
2010]. We will focus on the R-rankings here, it suffices for our purposes.

For R-rankings, NRC asked a sample of faculty to rate a sample of programs in
their field. These rankings were then used to assign weights to a set of 20 features
(such as number of publications, number of citations per paper, percentage of faculty
with grants) through regression analysis. The weighted features were then used to
rank all programs. To account for uncertainty and variability in the surveys data, the
regression analysis process was repeated 500 times, each time using as input a random
sample of half of the surveys. As a result, 500 ranks were produced for each one of the
126 programs. Following, for each program, the top 5% and the bottom 5% ranks were
disregarded, leaving each program with 450 ranks which were sorted. The top rank is

5 According to the NRC report, “These illustrative rankings should not be interpreted as definitive
conclusions about the relative quality of doctoral programs, nor are they endorsed as such by the
National Research Council. Rather, they demonstrate how the data can be used to rank programs
based on the importance of particular characteristics to various users.”
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Table C.5: CS programs likely to be at top 10 in the R-ranking of NRC.

Rank Program
5thperc. 95thperc.

1 2 Stanford University
1 2 University of California-Berkeley
3 5 Massachusetts Institute of Technology
3 10 Carnegie Mellon University
3 18 University of Illinois at Urbana-Champaign
4 14 Princeton University
5 17 Cornell University
5 17 University of California-Santa Barbara
5 17 University of North Carolina at Chapel Hill
5 29 University of California-Los Angeles
6 22 University of Texas at Austin
6 28 Georgia Institute of Technology
6 28 Michigan State University
7 25 University of Maryland College Park
8 27 University of California-San Diego
8 27 University of Michigan-Ann Arbor
8 30 University of Southern California
8 26 Penn State University
9 36 University of Massachusetts, Amherst
10 27 University of Wisconsin-Madison
10 35 Harvard University

what is referred as the program rank at the 5th percentile. The rank at the bottom is
what is referred to as the program rank at the 95th percentile.

To illustrate, in Table C.5 we list the programs with ranks smaller than 10 (i.e.,
the programs likely to be at top 10) at the 5th percentile in the year of 2010. That
is, at the 5th percentile, there are 21 programs with a rank smaller or equal than 10
in the area of Computer Science. In addition, either Stanford or Berkeley may occupy
the top position, while MIT, CMU or Illinois may occupy position 3 in the ranking.





Appendix D

P-score in Computer Science

In this appendix we take a closer look in the application of P-score in the computer
science domain.

Given that our method is based on reference groups, it is appropriate at this
point to recall and keep in mind the answer to the following question: Why to use
reference groups and how to choose them? We use reference groups because they
provide a natural way to produce relative comparisons. By computing the similarity of
the research output of a group of authors with reference groups, we can gain insights
on the productivity of these authors in a certain area or sub-area of knowledge.

The choice of a reference group depends on what we want to measure. In the
following sections of this appendix, we discuss how the reputation of reliable research
groups is transferred to publication venues, other authors and research groups in the
broad area of Computer Science. In Sections D.1 and D.2, we discuss how the reputa-
tion of top research groups and highly cited authors in many sub-areas of Computer
Science is transferred to publication venues, other authors and research groups. Next,
in Appendix E, we discuss how the reputation of highly cited authors in the sub-area of
Information Retrieval is transferred to publication venues, other authors and research
groups. Thus, we choose reference groups appropriately for these purposes.

D.1 Top Research Groups as Reputation Sources
In this section we adopt the top research groups according to the randomized process
proposed in Section 7.2.2 as shown in Table 7.1. We use the set of 12 research groups
in Table 7.1 as the set of reputation sources to rank publication venues, individual
researchers and other research groups. Recall that those groups are the ones that
appeared among the top 10 at least once in a given run, after the process stabilized.
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D.1.1 Publication Venues

In Table D.1, we present the top 25 venues in the ranking produced by P-score using,
as reference, the research groups discussed in the previous section. We notice that only
one of these top 25 venues according to P-score did not receive a Qualis classification
— a precision of 96% at position 25 (P@25), if we consider A1 as relevant and other
classifications as non-relevant. Also, we observed P@50, P@100, and P@200 values
of 88%, 73%, and 59%, respectively. In the first 50, 100 and 200 positions of the P-
score ranking, we notice that 4, 9 and 25 publication venues have no Qualis evaluation,
respectively. Notice that if we consider only publication venues that received a Qualis
classification, then P@25 goes up to 100%. These results show that P-score is able to
consistently place high impact venues (as classified by experts and highly influenced
by citation data) in the top positions of its ranking.

Table D.1: Top 25 CS venues according to P-score

Rank Venue P-score Qualis

1 AAAI (C) 1.000 A1
2 CACM (J) 0.949 A1
3 FOCS (C) 0.949 A1
4 STOC (C) 0.934 A1
5 NIPS (C) 0.895 A1
6 CVPR (C) 0.891 A1
7 ICRA (C) 0.886 A1
8 IJCAI (C) 0.758 A1
9 CHI (C) 0.738 A1
10 DAC (C) 0.683 A1
11 INFOCOM (C) 0.661 A1
12 SODA (C) 0.652 A1
13 SIGMOD (C) 0.642 A1

Rank Venue P-score Qualis

14 SIAMCOMP (J) 0.632 A1
15 IPPS (C) 0.608 A1
16 PAMI (J) 0.581 A1
17 ICDE (C) 0.578 A1
18 TOG (J) 0.575 A1
19 TC (J) 0.539 A1
20 JACM (J) 0.528 A1
21 TCAD (J) 0.527 A1
22 COMPUTER (J) 0.520
23 ICCV (C) 0.504 A1
24 ICML (C) 0.489 A1
25 ICSE (C) 0.483 A1

We also ran analogous experiments considering the top 10 Computer Science
graduate programs in Brazil, according to CAPES, as reference groups. In this case,
for the ranking of venues we observed P@25, P@50, P@100, and P@200 values of 12%,
24%, 29%, and 29.5%, respectively. As we see, P-scores are heavily influenced by the
selection of the reference groups, but work well when the right groups are selected. Most
important, despite a great increase in volume, these results show that, the Brazilian
output of research papers has lots of room to improve in terms of quality and impact.
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D.1.2 Individual Researchers

In Table D.2, we present the top 25 academics in the ranking produced by P-score us-
ing, as reference, the research groups discussed in Section D.1. Given that the method
is based on reference groups, which are composed by academics, using academics affil-
iated with reference groups as target may guide the analysis. Thus, we highlight the
academics affiliated with the reference groups. An author that is not in a reference
group and that appears before a reference author is a great signal of high productivity.
The authors in positions one to four of our ranking are good reference candidates, after
all they are ranked higher than any author of the reference groups.

Table D.2: Top 25 CS academics according to P-score

RankExpert Pubs Cits P-score

1 Toshio Fukuda 501 3861 1.000
2 Thomas S. Huang 1172 19988 0.913
3 Philip S. Yu 788 18005 0.874
4 A. L. S.-Vincentelli 1006 23094 0.809
5 Jiawei Han 655 28942 0.726
6 Vijay Kumar 413 6480 0.715
7 Gerd Hirzinger 478 4745 0.712
8 Avi Wigderson 308 11337 0.699
9 Oded Goldreich 379 18551 0.693
10 Takeo Kanade 743 32788 0.692
11 C. Papadimitriou 506 28181 0.672
12 Noga Alon 708 15106 0.666
13 Micha Sharir 584 14685 0.665

RankExpert Pubs Cits P-score

14 Sebastian Thrun 445 21664 0.662
15 Kang G. Shin 731 14293 0.661
16 Michael I. Jordan 501 30735 0.657
17 Sudhakar Reddy 659 8119 0.650
18 Luc J. Van Gool 548 12539 0.633
19 Moshe Y. Vardi 556 17698 0.611
20 Rama Chellappa 602 13608 0.604
21 Wolfram Burgard 395 13896 0.598
22 Robert E. Tarjan 405 29613 0.597
23 Irith Pomeranz 552 5563 0.597
24 Xiaoou Tang 283 3275 0.582
25 Massoud Pedram 606 8532 0.581

In Table D.3, we filter the aforementioned ranking and present the top 25 Brazil-
ian researchers that receive a productivity grant from CNPq. The last column presents
the CNPq Level of each researcher. From this ranking we can extract some insights
about the relative productivity of these authors in the national context. Many well
known authors in Brazil appear at the top of the ranking. The correlation between
P-score and the CNPq Levels are not so straightforward as the first 25 positions of the
ranking of academics. Among the top 25, 8 researchers are 1A, which seems right. The
fact that there are 1D researchers way up there, such as Marcos Gonçalves, is due to the
fact that CNPq conditions the evolution in level to a minimum time period (which, for
some people, makes little sense). When we compare the scores of Brazilian researchers
with the scores of researchers from US, we notice that the score of Brazilian researchers
is much lower. In fact, the score of the most productive Brazilian researcher, according
to P-score, is approximately 10% of the score of the most productive researcher from
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Table D.3: Top 25 CS academics from Brazil according to P-score

RankExpert P-score Level

1 Carlos J. P. de Lucena 1.000 1A
2 Luigi Carro 0.884 1B
3 Mário F. M. Campos 0.838 1B
4 Antonio A. F. Loureiro 0.807 1B
5 Wagner Meira Jr 0.756 1C
6 Jayme L. Szwarcfiter 0.751 1A
7 Marcos A. Gonçalves 0.721 1D
8 Nelson L. S. da Fonseca 0.718 1B
9 Paulo S. L. M. Barreto 0.677 1D
10 Alessandro F. Garcia 0.658 1D
11 Luís da C. Lamb 0.655 1C
12 Fabio G. Cozman 0.655 1C
13 Marco A. Casanova 0.636 1B

RankExpert P-score Level

14 Agma J. M. Traina 0.627 1B
15 Eduardo S. Laber 0.626 1C
16 Caetano Traina Jr 0.619 1B
17 Virgilio A. F. Almeida 0.619 1A
18 Celina de Figueiredo 0.592 1A
19 Ana L. C. Bazzan 0.583 1C
20 Alberto H. F. Laender 0.575 1A
21 Edmundo Souza e Silva 0.564 1A
22 Jussara M. de Almeida 0.526 1D
23 Jorge Stolfi 0.525 1A
24 Yoshiharu Kohayakawa 0.508 1A
25 Alba C. M. A. de Melo 0.501 1D

US. The fact that P-scores for Brazilian researchers is so low is due to the fact that
researchers in Brazil continue to publish a lot in local venues.

Additionally, we notice that 8 of these top 25 academics according to P-score
receive the maximum CAPES Level — a precision of 32% at position 25 (P@25), if
we consider 1A as relevant and other levels as non-relevant. Also, we observed P@50,
P@100, and P@200 values of 24%, 15%, and 10%, respectively.

D.1.3 Research Groups

In Table D.4, we present the top 25 research groups according to P-score by using, as
reference, the research groups discussed in Section D.1. The NRC Rank 5th percentile
is shown in the last column and does not include the graduate programs used as
reference. From Table D.4, we notice that 6 out of 10 top groups according to P-score
are considered as belonging to the top 10 graduate programs in USA according to NRC;
20 out of 25 top groups according to P-score are considered as belonging to the top
25 graduate programs in USA according to NRC; 5 European groups where considered
in our analysis, two of them are at the top positions. The correlation between the
rankings of P-score and NRC is of 0.58, with a p-value near to zero; and many well
known research groups appear at the top of the ranking.

In Table D.5, we filter the ranking and present the top 25 Brazilian research
groups in CS. In the last column, we show the CAPES Classification of each group.
From Table D.5, we notice that all the groups classified by CAPES as 7 appear before
the ones that are classified as 6, which appear before the other groups in the P-score
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Table D.4: Top 25 CS groups according to P-score

RankGroup P-score NRC

1 Un. of Michigan (AA) 1.000 8
2 Cornell Un. 0.997 5
3 UMass (Amherst) 0.888 9
4 Un. of Pennsylvania 0.883 9
5 Un. of Texas at Austin 0.882 6
6 Princeton Un. 0.778 4
7 Purdue Un. (MC) 0.751 15
8 UC-Irvine 0.743 22
9 Columbia Un. (NY) 0.729 26
10 Duke Un. 0.623 16
11 ETH Zurich 0.619
12 Rutgers 0.596 52
13 Northwestern Un. 0.595 49

RankGroup P-score NRC

14 Un. of Wisconsin (M) 0.574 10
15 Un. of Minnesota (TC) 0.541 19
16 UC-Santa Barbara 0.536 5
17 Ohio State Un. (MC) 0.536 22
18 Arizona State Un. 0.498 25
19 Brown Un. 0.494 21
20 New York Un. 0.493 16
21 UNC at Chapel Hill 0.473 5
22 Un. of Rochester 0.413 11
23 Imperial College London 0.396
24 Un. of Illinois (Chicago) 0.391 67
25 State Un. of NY 0.388 17

Table D.5: Top 25 CS groups from Brazil according to P-score

Rank Group P-score Class

1 UFRGS 0.119 7
2 UFMG 0.098 7
3 PUC-RIO 0.090 7
4 Unicamp 0.086 7
5 UFRJ 0.082 7
6 UFPE 0.065 6
7 USP/SC 0.063 6
8 USP 0.056 6
9 UFF 0.039 5
10 PUC/RS 0.028 5
11 UFPR 0.025 4
12 UFCG 0.024 4
13 UFSCar 0.022 4

Rank Group P-score Class

14 UFRN 0.019 5
15 UFAM 0.019 5
16 UFSC 0.019 4
17 UnB 0.017 4
18 PUC/PR 0.012 4
19 UFC 0.009 5
20 UFES 0.009 4
21 UFBA 0.008 4
22 UFMS 0.008 4
23 UNIFOR 0.008 4
24 UFU 0.007 4
25 UNISINOS 0.005 4

ranking. There are some small swaps between groups classified as 4 and 5. The Kendall
Tau correlation between the P-score and CAPES is of 0.76, with a p-value near to
zero. The difference of P-score value between the last 7-classified group and the first
6-classified group (UFRJ and UFPE) is relatively large, this is also true between the
last group classified as 6 and the first group classified as 5.
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D.2 Inherited Reputation from Top Authors of
Distinct Sub-areas

The original proposal of P-score is to rely on top research groups as source of repu-
tation to rank publication venues, academics and other research groups one want to
get insights about. There are many ways to define a research group, and the proposed
method is based on this choice. Despite defining graduate programs as seed research
groups and trusting on their faculty members is a reasonable approach, a coverage issue
may arise. Specifically, the problem is we have no guarantee about the coverage of the
sub-areas that compose the major knowledge area under analysis.

In this section, we discuss the application of P-score to rank publication venues,
academics and research groups in the knowledge area of Computer Science. Here,
instead of relying on the top graduate programs according to the randomized procedure
as we made in Section D.1, we compose a research group with the top 10 researchers for
a series of Computer Science sub-areas. This alternative smooths this coverage issue
by relying on small groups of top researchers in each sub-area we want to cover.

In Table D.6, we list the 24 sub-areas of Computer Science we consider in this
analysis. These sub-areas are based on the list of Computer Science sub-areas extracted
from Microsoft Academic Search (October 2014). To include another sub-area, one just
need to get data of a small set of top researchers in this sub-area. It is sufficient to
identify top 10 researchers and their corresponding entities in DBLP (see Section A).

Table D.6: Main sub-areas of Computer Science

# Subarea

1 Algorithms & Theory
2 Artificial Intelligence
3 Bioinformatics & Computational Biology
4 Computer Vision
5 Data Mining
6 Databases
7 Distributed & Parallel Computing
8 Graphics
9 Hardware & Architecture
10 Human-Computer Interaction
11 Information Retrieval
12 Machine Learning & Pattern Recognition

# Subarea

13 Multimedia
14 Natural Language & Speech
15 Networks & Communications
17 Operating Systems
18 Programming Languages
19 Real-Time & Embedded Systems
20 Scientific Computing
21 Security & Privacy
22 Simulation
23 Software Engineering
24 World Wide Web
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D.2.1 Publication Venues

In Table D.7, we present the top 25 venues in the ranking produced by P-score using,
as reference, the 24 groups composed by the top 10 researchers according to Microsoft
Academic Search in each sub-area of Computer Science.

We notice that, many important venues in the sub-area appears at the top posi-
tions of this ranking. In terms of workload, by collecting data from only 10 researchers
for some sub-areas one can produce a reasonable ranking of venues in Computer Science
though our metric. If we consider as relevant publication venues classified by Qualis
as A1, we observe P@25, P@50, P@100, and P@200 values of 92%, 84%, 75%, and
56%, respectively. We also notice that some publication venues of Computer Science
are not evaluated in Qualis. Some of them are important for the area: out of the top
25 publication venues according to P-score in this sub-area, one is not evaluated in
Qualis, 3 among the top 50, 10 among the top 100, and 31 among the top 200.

Table D.7: Top 25 CS venues according to P-score, top researchers as reference

Rank Venue P-score Qualis

1 ICIP (C) 1.000 A1
2 ICASSP (C) 0.927 A1
3 CACM (J) 0.926 A1
4 SIGMOD (C) 0.912 A1
5 STOC (C) 0.887 A1
6 CVPR (C) 0.868 A1
7 SIAMCOMP (J) 0.842 A1
8 NIPS (C) 0.808 A1
9 FOCS (C) 0.793 A1
10 CHI (C) 0.769 A1
11 ICDE (C) 0.767 A1
12 INFOCOM (C) 0.757 A1
13 VLDB (C) 0.751 A1

Rank Venue P-score Qualis

14 DAC (C) 0.734 A1
15 PAMI (J) 0.719 A1
16 WSC (C) 0.688 A1
17 JACM (J) 0.660 A1
18 KDD (C) 0.628 A1
19 COMPGEOM (C) 0.616 A2
20 TCAD (J) 0.606 A1
21 TC (J) 0.589 A1
22 IACR (J) 0.582
23 TSE (J) 0.572 A1
24 AAAI (C) 0.565 A1
25 ICCV (C) 0.536 A1

D.2.2 Individual Researchers

In Table D.8, we present the top 25 academics in the ranking produced by P-score
using, as reference, the 24 groups composed by the top 10 researchers according to
Microsoft Academic Search in each sub-area of Computer Science. Reference authors
are highlighted in this table. A non-reference author appearing before a reference is a
great signal about this non-reference. The authors in positions three and four of this
ranking are good reference candidates, after all they are ranked higher than any author
of the reference groups.
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Table D.8: Top 25 CS academics according to P-score

RankExpert Pubs Cits P-score

1 Thomas S. Huang 1172 19988 1.000
2 Philip S. Yu 788 18005 0.809
3 Rama Chellappa 602 13608 0.679
4 Wen Gao 907 4412 0.663
5 Jiawei Han 655 28942 0.663
6 Aggelos Katsaggelos 503 5184 0.569
7 Micha Sharir 584 14685 0.542
8 A. L. S.-Vincentelli 1006 23094 0.532
9 Anil K. Jain 588 29175 0.529
10 Georgios Giannakis 932 21128 0.525
11 Kang G. Shin 731 14293 0.492
12 Truong Q. Nguyen 496 2986 0.470
13 K. J. Ray Liu 672 7397 0.465

RankExpert Pubs Cits P-score

14 Christos Faloutsos 484 19778 0.461
15 Edwin R. Hancock 636 3878 0.443
16 Hermann Ney 581 11206 0.433
17 Xiaoou Tang 283 3275 0.432
18 Tsuhan Chen 341 3178 0.431
19 Martin Vetterli 547 19351 0.430
20 H. Garcia-Molina 605 29773 0.429
21 Moshe Y. Vardi 556 17698 0.418
22 C. Papadimitriou 506 28181 0.413
23 Luc J. Van Gool 548 12539 0.407
24 Xin Li 550 4815 0.407
25 Oded Goldreich 379 18551 0.403

Table D.9: Top 25 CS academics from Brazil according to P-score

RankExpert P-score Level

1 Marcos A. Goncalves 0.161 1D
2 Carlos J. P. de Lucena 0.156 1A
3 Wagner Meira Jr 0.128 1C
4 Luigi Carro 0.124 1B
5 Berthier Ribeiro-Neto 0.115
6 Agma J. M. Traina 0.111 1B
7 Caetano Traina Jr 0.108 1B
8 Marco A. Casanova 0.103 1B
9 Alberto H. F. Laender 0.103 1A
10 Altigran S. da Silva 0.102 1D
11 Jorge Stolfi 0.099 1A
12 Jayme L. Szwarcfiter 0.097 1A
13 Antonio A. F. Loureiro 0.096 1B

RankExpert P-score Level

14 Nelson L. S. da Fonseca 0.096 1B
15 Nivio Ziviani 0.093 1A
16 Zhao Liang 0.093 1C
17 Alexandre X. Falcao 0.092 1C
18 Virgilio A. F. Almeida 0.092 1A
19 Edmundo Souza e Silva 0.090 1A
20 Edleno S. de Moura 0.090 1D
21 Antonio L. Furtado 0.089
22 Celina de Figueiredo 0.086 1A
23 Eduardo S. Laber 0.085 1C
24 Olga R. P. Bellon 0.081 1D
25 Alessandro F. Garcia 0.081 1D

In Table D.9, we present the top 25 academics from Brazil in the ranking produced
by P-score using, as reference, the 24 groups with the top 10 researchers according to
Microsoft Academic Search in each sub-area of Computer Science. We notice that 8 of
these top 25 academics according to P-score receive the maximum CNPq Level — a
precision of 32% at position 25 (P@25), if we consider 1A as relevant and other levels
as non-relevant. Also, we observed P@50, P@100, and P@200 values of 22%, 15%, and
10%, respectively In the first 25, 50, 100 and 200 positions of the P-score ranking, we
notice that 2, 6, 12 and 42 academics have no CNPq Level, respectively.
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D.2.3 Research Groups

In Table D.10, we present the top 25 research groups in the ranking produced by P-
score using, as reference, the 24 groups composed by the top 10 researchers according
to Microsoft Academic Search in each sub-area of Computer Science. We notice that
7 out of top 10 groups according P-score are considered as belonging to the top 10
graduate programs in USA according to NRC; 19 out of top 25 groups according P-
score are considered as belonging to the top 25 graduate programs in USA according
to NRC. The Kendall Tau correlation between the rankings of P-score and NRC is
of 0.624, with a p-value near to zero. These numbers are smaller than the ones in
Section D.1.3, which is expected because research groups of a major area of knowledge
may be stronger (or weaker) in distinct sub-areas.

In Table D.11, we present the top 25 research groups from Brazil in the ranking
produced by P-score using, as reference, the 24 artificial groups composed by the top
10 researchers according to Microsoft Academic Search in each sub-area of Computer
Science. We notice that all the groups classified by CAPES as 7 appear before the ones
that are classified as 6, which appear before the other groups in the P-score ranking.
There are some small swaps between groups classified as 4 and 5. The Kendall Tau
correlation between the rankings of P-score and CAPES is of 0.839, with a p-value
near to zero. The nDCG of this ranking is of 0.998, while it is of 0.997 when using
the randomized process to produce reference groups (in Appendix D.1). Despite the
groups classified by CAPES as 6 and 7 appear at the top 10 positions of the ranking,
here there is not a clear separation between them as in general Computer Science (see
Table D.5).
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Table D.10: Top 25 CS groups according to P-score, top researchers as reference

RankGroup P-score NRC

1 Georgia Tech 1.000 12
2 MIT 0.949 3
3 UC-Berkeley 0.918 1
4 Un. of Illinois (UC) 0.884 5
5 Stanford Un. 0.877 1
6 Carnegie Mellon Un. 0.841 4
7 UC-San Diego 0.711 15
8 UC-Los Angeles 0.700 10
9 Un. of Maryland (CP) 0.658 14
10 Cornell Un. 0.615 7
11 Un. of Michigan (AA) 0.612 15
12 Un. of Southern California 0.557 17
13 UMass (Amherst) 0.536 19

RankGroup P-score NRC

14 Un. of Pennsylvania 0.518 18
15 Purdue Un. (MC) 0.499 24
16 Un. of Texas at Austin 0.490 11
17 UC-Irvine 0.480 35
18 Princeton Un. 0.465 6
19 Columbia Un. (NY) 0.443 40
20 Northwestern Un. 0.435 70
21 ETH Zurich 0.424
22 UC-Santa Barbara 0.401 7
23 Duke Un. 0.388 25
24 Rutgers 0.357 74
25 Ohio State Un. (MC) 0.353 36

Table D.11: Top 25 CS groups from Brazil according to P-score, top researchers as
reference

Rank Group P-score Class

1 UFRGS 0.086 7
2 UFMG 0.072 7
3 Unicamp 0.071 7
4 PUC-RIO 0.064 7
5 UFRJ 0.058 7
6 USP/SC 0.048 6
7 UFPE 0.047 6
8 USP 0.039 6
9 UFF 0.028 5
10 UFPR 0.023 4
11 PUC/RS 0.020 5
12 UFSCar 0.018 4
13 UFAM 0.018 5

Rank Group P-score Class

14 UFCG 0.017 4
15 UFSC 0.015 4
16 UFRN 0.013 5
17 PUC/PR 0.012 4
18 UnB 0.010 4
19 UFC 0.007 5
20 UFES 0.006 4
21 UNISINOS 0.006 4
22 UFU 0.006 4
23 UFBA 0.006 4
24 UNIFOR 0.005 4
25 UFMS 0.005 4



Appendix E

P-score in Information Retrieval

In this appendix, we discuss the application of P-score in the sub-area of Information
Retrieval to rank publication venues, academics and research groups.

To produce these rankings, we build an artificial group composed of the top 10
researchers in the sub-area of Information Retrieval according to Microsoft Academic
Search (MAS), as presented in Table E.1. The results we present in this appendix were
produced using this single group as reference in P-score.

Table E.1: Reference group for the sub-area of Information Retrieval

Top 10 researchers of IR according to Microsoft Academic Search

W. Bruce Croft, Gerard Salton, Ellen Voorhees, Chris Buckley, Stephen E. Robertson,
Jamie Callan, Susan Dumais, James Allan, Hsinchun Chen, Justin Zobel

E.1 Publication Venues in Information Retrieval
In Table E.2, we present the top 25 venues in the ranking produced by P-score using, as
reference, a group composed by the top 10 researchers in the sub-area of Information
Retrieval according to Microsoft Academic Search (see Table E.1). We notice that,
the most important conference in the area of Information Retrieval appears at the
first position of the ranking produced by P-score. Indeed, many important venues in
the sub-area appears at the top positions of this ranking. In terms of workload, by
collecting data from only 10 researchers one can produce a reasonable ranking of venues
in Information Retrieval though our metric.

If we consider as relevant publication venues classified by Qualis as A1, we observe
P@25, P@50, P@100, and P@200 values of 48%, 56%, 42%, and 24%, respectively. We
also notice that many publication venues of the sub-area of Information Retrieval (and
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Table E.2: Top 25 IR venues according to P-score

Rank Venue P-score Qualis

1 SIGIR (C) 1.000 A1
2 TREC (C) 0.573 A2
3 CIKM (C) 0.449 A1
4 SIGIR (J) 0.310
5 JASIS (J) 0.284 A1
6 IPM (J) 0.266 A2
7 ISI (C) 0.257 B1
8 CACM (J) 0.223 A1
9 DSS (J) 0.173 A1
10 DGO (C) 0.172 B1
11 IR (J) 0.134 B1
12 TOIS (J) 0.133 A2
13 ECIR (C) 0.109 A2

Rank Venue P-score Qualis

14 COMPUTER (J) 0.108
15 EXPERT (J) 0.104 A1
16 JCDL (C) 0.102 A2
17 HICSS (C) 0.098 A1
18 JACM (J) 0.084 A1
19 CHI (C) 0.081 A1
20 AAAI (C) 0.071 A1
21 NAACL (C) 0.070 A1
22 WSDM (C) 0.067 B1
23 TKDE (J) 0.065 A1
24 RIAO (C) 0.065
25 IPL (J) 0.062 A2

others sub-areas, as we will see later) are not evaluated in Qualis. Some of them are
quite important for the sub-area: out of the top 25 publication venues according to
P-score in this sub-area, 4 are not evaluated in Qualis, 8 among the top 50, 21 among
the top 100, and 75 among the top 200.

E.2 Academics in Information Retrieval

In Table E.3, we present the top 25 academics in the ranking produced by P-score
using the reference group presented in Table E.1, reference authors are highlighted.

Table E.3: Top 25 IR academics according to P-score

RankExpert Pubs Cits P-score

1 W. Bruce Croft 389 13733 1.000
2 James Allan 343 6664 0.588
3 ChengXiang Zhai 243 4645 0.584
4 Maarten de Rijke 410 3890 0.576
5 Hsinchun Chen 555 6351 0.508
6 Iadh Ounis 164 1251 0.473
7 Ryen W. White 141 1080 0.457
8 Mark Sanderson 212 2502 0.420
9 Charles Clarke 193 2025 0.396
10 Justin Zobel 255 5127 0.378
11 Ellen M. Voorhees 169 7401 0.375
12 Susan T. Dumais 229 15645 0.372
13 Craig Macdonald 75 709 0.366

RankExpert Pubs Cits P-score

14 Gerard Salton 290 22981 0.365
15 Joemon M. Jose 221 1037 0.361
16 Edward A. Fox 494 6288 0.356
17 Leif Azzopardi 111 496 0.353
18 Douglas W. Oard 208 2245 0.349
19 Nicholas J. Belkin 193 3467 0.348
20 Ophir Frieder 338 4835 0.347
21 Luo Si 106 944 0.339
22 Jaap Kamps 224 1029 0.321
23 Stephen Robertson 320 8767 0.316
24 Clement T. Yu 357 5300 0.308
25 Mounia Lalmas 250 1997 0.307
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When we rank reference authors together with the authors we want to compare,
we can uncover new reliable authors. A non-reference author appearing before a refer-
ence author is a great signal about this non-reference. The authors in third and fourth
positions of this ranking are good reference candidates, after all only two out of ten
references appear before them. Another notable event is the appearence of an author
that have only 75 publications and 709 citations according to MAS before 4 out of 10
reference authors in position 13 (which is very high). The number of publications of
Craig Macdonald is higher in DBLP repository, 128 publications, which is lower than
any author in the top 25 positions of this ranking. According to Google Scholar, he
had 2,284 citations until 2012. This value seems to be more coherent with the citation
counts of the top 25 authors in the P-score ranking.

While citation counts are underestimated in MAS, in Scholar they are inflated.
For example, while W. Bruce Croft has 13,733 in MAS, in Google Scholar he has 34,354.
Another example is Andrei Shleifer that has 44758 in MAS and 182,944 in Scholar.

Microsoft Academic Search considers citations from a set of selected venues only,
while Google Scholar counts all types of citations (for example, citations from a tech-
nical report). There is an argument that the Scholar citations are more inflated, but
that they are consistent if we restrict the counting to Scholar. Another argument is
that the impact of venues that are not strictly academic matters. For example, a re-
searcher who has thousands of tweets about a result of his research, or has thousands
of downloads of a technical report or a software available on the Web that produced a
result of impact and should be accounted for this. If we consider this interpretation,
the citation counts from Google Scholar is most appropriate.

E.3 Research Groups in Information Retrieval

In Table E.4, we present the top 25 research groups in the ranking produced by P-score
using, as reference, an artificial group composed by the top 10 researchers in the sub-
area of Information Retrieval according to Microsoft Academic Search. The NRC Rank
is shown in the last column. We observe that the first position seems to be coherent
since UMass (Amherst) is well known in the sub-area of Information Retrieval. Many
well known research groups in this sub-area appear at the top of the ranking. 15 out
of top 25 groups according P-score are considered as belonging to the top 25 graduate
programs in USA according to NRC. The Kendall Tau correlation between the rankings
of P-score and NRC is of 0.47, with a p-value near to zero. These numbers are smaller
than the ones in Section D.1.3, which is expected because research groups of a major
area of knowledge may be stronger (or weaker) in distinct sub-areas.
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Table E.4: Top 25 IR groups according to P-score

RankGroup P-score NRC

1 UMass (Amherst) 1.000 19
2 Un. of Illinois (UC) 0.663 5
3 Georgia Tech 0.579 12
4 Carnegie Mellon Un. 0.517 4
5 UC-Berkeley 0.461 2
6 Stanford Un. 0.445 1
7 Un. of Maryland (CP) 0.402 14
8 Purdue Un. (MC) 0.394 24
9 Un. of Southern California 0.382 17
10 MIT 0.361 3
11 Un. of Illinois (Chicago) 0.347 91
12 Un. of Michigan (AA) 0.342 15
13 Virginia Poly. 0.325 53

RankGroup P-score NRC

14 Cornell Un. 0.323 7
15 Columbia Un. (NY) 0.236 40
16 Arizona State Un. 0.219 38
17 Florida International Un. 0.219 104
18 UC-Los Angeles 0.214 10
19 UC-Irvine 0.210 35
20 Un. of Rochester 0.206 22
21 Un. of Texas at Austin 0.205 11
22 UFMG 0.204
23 Un. of Pennsylvania 0.204 18
24 Un. of Minnesota (TC) 0.200 32
25 Northeastern Un. 0.192 85

We need to be cautious when evaluating productivity indicators of research groups
in major areas, when that is the case and a group A is better evaluated than group B,
there is no guarantee that A is better than B in all sub-areas, after all B may be much
more productive than A in specific sub-areas and this effect may not be captured when
looking at indicators of the broad area. Despite the Brazilian graduate programs are
not the top ones when compared with programs from USA and Europe in the broad
area of Computer Science (see Section D.1.3), these groups may appear among the top
ones when the comparison is made in sub-areas like in Information Retrieval. Indeed,
there is a group from Brazil in position 22.

In Table E.5, we filter the aforementioned ranking and present the top 25 Brazil-
ian graduate programs in the sub-area of Information Retrieval. In the last column,
we show the CAPES Classification of each group. We notice that the Kendall Tau
correlation between the rankings of P-score and CAPES classification is of 0.763, with
a p-value near to zero. The nDCG of this ranking is of 0.940, while in general CS is
of 0.997. Despite the groups classified by CAPES as 6 and 7 appear at the top 10
positions of the ranking, here there is not a clear separation between them as in gen-
eral Computer Science (see Table D.5). UFAM is classified as 5, but has respectable
production in Information Retrieval. We finish this section with the following question:
Should a student choose his future program based on a broad classification of the area,
or based on insights about the productivity in the sub-area he is interested in?
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Table E.5: Top 25 IR groups from Brazil according to P-score

Rank Group P-score Class

1 UFMG 0.204 7
2 UFAM 0.091 5
3 Unicamp 0.037 7
4 PUC-RIO 0.036 7
5 UFRGS 0.024 7
6 USP/SC 0.023 6
7 UFRJ 0.018 7
8 UFPE 0.016 6
9 UFF 0.009 5
10 USP 0.009 6
11 UFES 0.009 4
12 PUC/RS 0.008 5
13 UFU 0.007 4

Rank Group P-score Class

14 UFSCar 0.006 4
15 UNIFOR 0.005 4
16 UFPR 0.005 4
17 UFSC 0.005 4
18 UFCG 0.005 4
19 UFC 0.002 5
20 UnB 0.002 4
21 UFMS 0.001 4
22 PUC/PR 0.001 4
23 UFRN 0.001 5
24 UFBA 0.001 4
25 UNISINOS 0.001 4





Appendix F

Counting Proof

In a bipartite reputation graph P (see Section 3.2.2) composed by sources and targets,
if the number of edges nst (see Section 3.2.1) from source s to target t equals the number
of edges nts from target t to source s for all sources and targets, then the steady state
probability of each node is proportional to its total number of edges in the reputation
network. Formally, in a bipartite reputation graph P, for all s ∈ S and t ∈ T :

nst = nts =⇒ γs ∝ ns ∧ γt ∝ nt. (F.1)

A practical implication of it is that, in scenarios like the aforementioned one,
it is not necessary to compute the steady state probabilities γ of the network using
techniques like the Power Method, we can simply count the number of edges between
sources and targets. Thus, by making such kind of model, one can reason about how
the reputation flows through the network with much less computation effort.

Proof

γ = γP (F.2)

=
[

P〈S〉 P〈T 〉
]  0 P〈ST 〉

P〈T S〉 0

 (F.3)

=
[

P〈S〉0 + P〈T 〉P〈T S〉 P〈S〉P〈ST 〉 + P〈T 〉0
]

(F.4)

=
[

P〈T 〉P〈T S〉 P〈S〉P〈ST 〉
]

(F.5)

=
[
n1
〈S〉 · · ·n|S|〈S〉 n1

〈T 〉 · · ·n|T |〈T 〉
]
× C (F.6)

where C is a constant value defined as C = 1/(∑
s∈S ns + ∑

t∈T nt).
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A careful reader would notice that, the proof is not complete and that the next
step is to prove that P〈T 〉P〈T S〉 equals [n1

〈S〉 · · ·n|S|〈S〉], necessary to go from equa-
tion D.5 to equation D.6:

P〈T 〉P〈T S〉 =
[
n1
〈T 〉 · · · n|T |

〈T 〉
]


n1,1〈T S〉

n1〈T 〉 · · · n1,|S|
〈T S〉

n1〈T 〉

... . . . ...
n|T |,1

〈T S〉

n|T |
〈T 〉 · · · n|T |,|S|

〈T S〉

n|T |
〈T 〉

 (F.7)

=
[∑

t∈T nt
〈T 〉 nt,1〈T S〉

nt
〈T 〉 · · · ∑

t∈T nt
〈T 〉 nt,|S|

〈T S〉

nt
〈T 〉

]
(F.8)

=
[∑

t∈T nt,1
〈T S〉 · · · ∑

t∈T nt,|S|
〈T S〉

]
(F.9)

P〈T 〉P〈T S〉 =
[
n1
〈S〉 · · · n|S|

〈S〉
]

(F.10)

Finally, to conclude the proof, it is necessary to prove that P〈S〉P〈ST 〉 equals
[n1
〈T 〉 · · ·n|T |〈T 〉]. It can be done by a similar process from equation D.7 to D.10.



Appendix G

WSDM Cup 2016

Static rankings of papers play a key role in the academic search setting. Many fea-
tures are commonly used in the literature to produce such rankings, some examples
are citation-based metrics, distinct applications of PageRank, among others. More
recently, learning to rank techniques have been successfully applied to combine sets
of features producing effective results. In this work, we propose the metric S-RCR,
which is a simplified version of a metric called Relative Citation Ratio — both based
on the idea of a co-citation network. When compared to the classical version, our
simplification S-RCR leads to improved efficiency with a reasonable effectiveness. We
use S-RCR to rank over 120 million papers in the Microsoft Academic Graph dataset.
By using this single feature, which has no parameters and does not need to be tuned,
our team was able to reach the 3rd position in the first phase of the WSDM Cup 2016.

G.1 Ranking Papers

Finding the most relevant papers of a field of knowledge is a task with many motiva-
tions. From the researcher’s perspective, it is important for instance to quickly discern
the papers with major impact in his/her study area from those with less relevance.
On the other hand, from an academic search engine perspective, a common task is
to present the papers by using rankings, which demands a sort criterion as relevance.
Also, establishing a relative order of importance of papers could help in other tasks
such as providing grants or research awards for individual researchers and graduate
programs. The problem of ranking papers was addressed in the WSDM Cup 2016, a
competition that brought together 32 research teams from all over the world.
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G.1.1 The Competition — WSDM Cup 2016

The WSDM Cup Ranker Challenge1 was created by the WSDM2 organizers and sup-
ported by Microsoft Research.

G.1.1.1 The Task

The task for each competitor in WSDM Cup 2016 was to provide the best static rank
values for publication entities in the Microsoft Academic Graph3 (MAG) [Sinha et al.,
2015]. The goal behind it was to assess the query-independent importance of academic
papers.

G.1.1.2 Evaluation

The evaluation in WSDM Cup 2016 was conducted in two phases, as we now describe.
During Phase 1, submissions were scored based on the agreements with human judge-
ment data. A group of Computer Science researchers were invited by the organizers
to conduct a pairwise ranking of papers in the fields they actively conduct research.
The pairwise judgement data were then randomly segregated into an Evaluation and
a Test set. Submissions during Phase 1 were automatically scored against the Evalu-
ation set and added to a public leaderboard that was sorted based on the percentage
of agreements with the judgement data. At the end of Phase 1, the most recent sub-
mission from each team was evaluated against the Test set and the scores (ranked by
the percentage agreements with the Test set) were announced to the leaderboard.

The top eight teams on the leaderboard at the end of Phase 1 were invited to
participate in Phase 2. Each participant of Phase 2 was asked to re-run the algorithms
over an updated graph and to submit the final rank values. Phase 2 of the Challenge
was conducted by Microsoft Research in cooperation with Bing. Each of the finalist
results was applied to Bing search results and powered the ranker used by Bing for
academic queries.

G.1.2 This Report

In this work, we report the participation of our team, named UFMG/LATIN, in the
WSDM Cup 2016. Before getting into the final model, we performed a set of tests con-
sidering distinct approaches, which include distinct citation-based metrics, PageRank,

1http://wsdmcupchallenge.azurewebsites.net
2http://www.wsdm-conference.org/2016/
3http://research.microsoft.com/en-us/projects/mag/

http://wsdmcupchallenge.azurewebsites.net
http://www.wsdm-conference.org/2016/
http://research.microsoft.com/en-us/projects/mag/
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among others. Our final approach was based on a simplified version of a metric called
Relative Citation Ratio [Hutchins et al., 2016]. In here, we describe this metric, how
and why we choose to run a simplified version.

The remainder of this work is organized as follows. In Section G.2, we present
the related works on paper rankings. In Section G.3, we describe the RCR metric as
well as our simplified version, the S-RCR. In Section G.4, we discuss some additional
techniques we applied to rank papers. In Section G.5, we report our experiments.
Finally, in Section G.6, we provide a final discussion and concluding remarks.

G.2 Literature on Paper Rankings

The most common approach to produce paper rankings in the literature is by using
citation-based metrics. These metrics provide a natural way to reason about the rel-
ative quality of academic entities, such as scientific papers, individual researchers and
publication venues. One of the earliest metrics proposed to quantify academic impact
was the Impact Factor [Garfield, 1955]. Since them, many alternatives have been pro-
posed, including other citation-based metrics like the H-Index [Hirsch, 2005], random
walks and machine learning techniques.

Another common approach to rank academic entities is by considering the struc-
tural information. The structure of the citation network can be used to produce aca-
demic rankings by applying random walk techniques, such as the PageRank [Page
et al., 1998]. A natural approach is to apply random walks in the paper-paper citation
network. However, some authors also apply random walks in heterogeneous graphs.
In [Ribas et al., 2015b], for example, the authors propose a novel random walk model
to identify the most reputable entities of a domain based on a conceptual framework
of reputation flows.

Another concept that is worth mentioning is the Altmetrics movement, which
points out the need for novel evaluation metrics as alternative to classic citation-based
metrics. According to Piwowar [2013], citation-based metrics are useful, but not suffi-
cient to evaluate research. In particular, they observe that citations are slow — their
main argument is the fact that a paper’s first citation can take years.

Learning to rank techniques [Li, 2011] have been used over the last few years to
improve the quality of rankings by effectively combining multiple sources of evidence.
The large amount of available features related to some ranking tasks motivates the
adoption of learning to rank methods in distinct contexts, including in academic search.

Our approach is inspired by the work of Hutchins et al. [2016], which proposes a
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metric called Relative Citation Ratio. It is a paper-level and field-independent score
that provides an alternative to classic citation-based metrics to identify influential
papers. They show that the rankings produced by their metric strongly correlate with
the opinions of experts in biomedical research and suggest that the same approach
should be generally applicable in all areas of science.

While complex models, such as heterogeneous random walks or learning to rank
methods, are able to produce effective results, in this work, we investigate a single
well-designed feature to rank papers given its citation network.

G.3 Relative Citation Ratio

In this section, we describe the metric we propose, the S-RCR, which is a simplifica-
tion of a metric called Relative Citation Ratio (RCR) [Hutchins et al., 2016]. Before
describing S-RCR it is worth reasoning about the basic concepts of the original RCR
metric. The RCR metric is based upon the idea of using the co-citation network of each
paper to normalize it in terms of time and area of study, by calculating an expected
citation rate of the target paper from the aggregated citation behavior of its neighbor-
hood. Basically, this strategy consists of computing the average citation rate of this
neighborhood which is used as the RCR denominator; the numerator is the citation
rate of the target paper.

G.3.1 Co-citation Network

The basis of the RCR metric and our proposed simplification is the notion of co-
citation network. Hutchins et al. [2016] define this co-citation network as the papers’
area of influence. As described in Hutchins et al. [2016], when a paper is first cited,
the other papers appearing in the reference list along with this work comprise its
co-citation network, see Figure G.1. As the paper continues to be cited, the papers
appearing in the new reference lists alongside it are added to its co-citation network.
This network provides a dynamic view of the paper’s field of research, taking advantage
of information provided by the experts who have found the study useful enough to cite.
The co-citation network of a paper can be viewed as a representative sample of its area
of research allowing us to perform a reasonable cross-field evaluation of papers.

In Figure G.1, we present the schematic view of a co-citation network for the
RCR computation. The Reference Article (RA, in red) cites previous papers from the
literature (in orange) and other papers (in blue) cite the RA. The co-citation network



G.3. Relative Citation Ratio 107

R
ef

er
en

ce
 A

rt
ic

le

Papers 

citing RA

Co-citation

network

Papers 

cited by RA

RA

RA

NN N N

Figure G.1: Schematic view of a co-citation network 2015relative

(or neighborhood) of the Reference Article is the set of papers (in green) that appear
alongside the RA.

G.3.2 Article Citation Ratio

The Article Citation Ratio (ACR) of a given paper p is defined as:

ACR(p) = Citations(p)
Age(p) + 1 , (G.1)

where Citations(p) is the total number of citations paper p received since its publication
and Age(p) is the time in years since the publication date of paper p.

By keeping a counter of citations and paper ages, we can store the data in a hash
table and compute the ACR of a paper p in Θ(1) time complexity.

G.3.3 The Simplified RCR

To produce field independent rankings, RCR metrics normalize the ACR of a pa-
per p based on the information of its co-citation network. In the original version of
RCR [Hutchins et al., 2016], this information is used through a complex normalization
process. Computing the original RCR of a single paper p depends on performing a
linear regression on its co-citation network using the journal citation ratio [Garfield,
1972] of the venues p’s neighbors were published. For a full description of the RCR
metric, we refer the reader to the work of [Hutchins et al., 2016].

In particular, we define the Simplified Relative Citation Ratio (S-RCR) of a given
paper p as follows:

S-RCR(p) = ACR(p)
(1/|Np|)

∑
p′∈Np

ACR(p′) , (G.2)

where ACR(p) is the Article Citation Ratio (see Section G.3.2) of paper p and Np is
the set of neighbors of paper p (see Section G.3.1). Similarly to the classic RCR, the
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numerator is the ACR of paper p and the denominator acts as a normalizer, forcing
the ACR of paper p to be relative to its neighbors.

The main difference between our proposal and the original RCR is its normaliza-
tion step, which, in our metric, is much simpler. Specifically, we normalize the ACR of
a paper p by the average of the ACR values of p’s neighbors. While this simplification
is briefly mentioned in the original paper, the authors discard it for its numerical limi-
tations, e.g., for papers with no neighbors. In contrast, we overcome these limitations
by smoothing Eq. (G.2) via additive smoothing.

If, for example, a target paper has the same ACR than the average of its neigh-
borhood, its S-RCR value is equal to 1. An S-RCR higher than 1 indicates that the
paper has a relevance signal stronger than its co-citation network. Similarly, an S-RCR
value lower than 1 indicates low relevance of the paper within its neighborhood.

Since the ACR function can be computed in Θ(1), the time complexity to compute
the S-RCR of a given paper p is Θ(|Np|), where |Np| is the neighborhood size of paper
p. This time complexity is lower than the time complexity of the classic RCR since,
to compute the classic version of RCR, we need to perform a linear regression on p’s
neighborhood.

G.4 Other Features

Besides the S-RCR metric, we performed a set of tests using features that ended up
not being used in our final ranking. These features include paper raw citation counts
and normalizations, distinct aggregations of citation-based metrics of authors and pub-
lication venues, among others. We also tried some Random Walk techniques, like an
application of PageRank on the paper citation graph and a Random Walk on a het-
erogeneous Pseudo-Tripartite graph composed by paper, author and venue nodes. In
this last approach, there is an edge between an author a and a paper p if author a is
one of the authors of paper p. Also, there is an edge between paper p and venue v if
paper p was published in venue v. The interaction between papers was given by the
paper citation graph. While we believe that a proper investigation of this last approach
would lead to effective results, it depends on the calibration of the parameters needed
to control the amount of probability mass between nodes of distinct types. A plus of
our final approach based on the proposed S-RCR metric is that it produces effective
results without the need of any parameter tuning.
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G.5 Experiments

In this section, we report some experiments performed by our team during the 1st
phase of the WSDM Cup 2016.

G.5.1 Dataset Description

The Microsoft Academic Graph (MAG) [Sinha et al., 2015] is a heterogeneous graph
containing scientific publication records, citation relationships between publications –
as well as authors, institutions, journals, conferences, and fields of study. The file size
(zipped) is 37GB and it contains individual information about more than 120 million
papers. During the competition, three versions of this dataset were released. Here, we
describe only the last one (version of Nov. 6, 2015).

Table G.1: Relevant statistics

Papers with citation information 49,870,036
Papers without citation information 71,017,797
Total number of papers 120,887,833
Average neighborhood size 891

In Table G.1, we present some statistics of the MAG dataset that are relevant
to this work. Notice that a large fraction (59%) of the papers in this dataset have no
information on citations, that is, the paper can be represented as a node in the citation
graph that has neither inlinks nor outlinks. There are two possible reasons for this
to happen. The first alternative is the zero degree (i.e., both in- and out-degree) is a
true representation of reality, it is a paper that in fact does not receive any citation yet
and does not cite any other paper. The second alternative is due to the fact that any
big repository offers an approximation of the reality, which also happens in the MAG
dataset. Collecting and organizing a real-world dataset of such size is not a trivial task.
In fact, it is a process that involves the treatment of huge amounts of semi-structured
data, which usually causes some inconsistencies.

In Figure G.2, we plot the distribution of neighborhood sizes. To compute this
distribution, we consider only the approximately 50 million papers that have informa-
tion on citations. This figure helps us to characterize the neighborhood sizes of the
graph. We notice that the neighborhood sizes follow a long tail distribution, there are
many papers with just a few neighbors and few papers with large neighborhoods.
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Figure G.2: Distribution of neighborhood sizes

G.5.2 Submissions

Our team made many submissions in the first phase of the competition. In this section,
we discuss some of them. As mentioned previously, each submission is a ranking where
each item is a paper ID and a probability of that paper being important. The only
evaluation sign available was the score reported by the competition’s page for each
submission, a value between zero and one representing the quality of the submitted
ranking — the higher the better. While we know that the evaluation score is based on
previously computed pair-wise expert judgments, the exact evaluation metric was not
disclosed by the organizers.

In Table G.2, we present the evaluation scores our rankings received in the first
phase of the competition and also the time elapsed to produce each submission file.

Table G.2: Our ranking scores in the 1st phase of WSDM Cup

Leaderboard
Feature Public Private Time
Citations 0.675 - 0h08m
PageRank 0.687 - 1h29m
ACR 0.685 - 0h16m
S-RCR 0.697 0.671 1h50m

A first guess for one who is somehow familiar with the problem is to count paper
citations in order to rank them. It was our first submission and received the score
of 0.675 in the public leaderboard. Using PageRank is also a natural approach to
rank papers in a citation graph. Our PageRank-based submission scored 0.687, which
represents an improvement of 1.8% over citation counts. Before submitting the S-RCR,
we submitted the ranking produced by its component ACR (see Section G.3.2). The
ACR submission was scored higher than citation counts but lower than PageRank.
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Finally, our highest scored submission was based on the S-RCR metric. Scoring 0.697
in the public leaderboard, it corresponds to an improvement of 3.3% over citations.

Since the ranking produced by S-RCR received the highest public score among
our submissions, we used it as the final ranking of the first phase. As part of the
competition, it was evaluated using a private test set and received the score of 0.671,
which was sufficient to bring our team UFMG/LATIN to the 3rd position at the end
of the first phase. Eight teams were promoted to the second phase of the competition:
the score of the 1st-placed team was 0.684, while the score of the 8th-placed team was
0.642. It is noteworthy that our score dropped a little in the final evaluation of the 1st
phase, from 0.697 to 0.671. Some teams experienced higher drops, apparently due to
overfitting.

We ran our experiments on a machine with 64 GB RAM, 24 processors of 3.33GHz
— Intel(R) Xeon(R) CPU X5680 — under Ubuntu 14.04.2 LTS. While we did not take
advantage of the full computational power available (by not using parallelism in a 24-
cored machine), the processing times were pretty low for a graph of such size. The
time elapsed to produce our final submission file was of only 1h50m.

Critical parts of our approach, like graph processing, were implemented in C++,
while other parts, like intermediate analysis or file treating/formatting, were imple-
mented in Python — Pandas and Jupyter were useful tools.

G.6 Discussion
In this work, we have proposed the S-RCR metric and applied it to produce static
rankings of academic papers in the Microsoft Academic Search dataset. The interesting
point here is that a single well-designed feature (which is a simplification of a more
complex one) was able to produce effective results, promoting our team to the 3rd
place in the first phase of the WSDM Cup 2016 competition. This fact reinforces the
argument that feature engineering is at least as important as complex models, since we
apply a single well-designed feature that leads to better results than complex models
with the advantage of less tuning and less computational effort. Also, single features
tend to be more interpretable. A future direction that is worth investigating is the
impact of using the S-RCR metric together with other features in learning to rank
techniques. Another direction is to study approaches to address ranking ties, specially
how to break ties between papers with no information on citations. Using reputation-
based metrics [Ribas et al., 2015a,b] seems to be a reasonable approach to address
these issues.
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