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ABSTRACT
In multi-class text classification, the performance (effective-
ness) of a classifier is usually measured by micro-averaged
and macro-averaged F1 scores. However, the scores them-
selves do not tell us how reliable they are in terms of fore-
casting the classifier’s future performance on unseen data.
In this paper, we propose a novel approach to explicitly mod-
elling the uncertainty of average F1 scores through Bayesian
reasoning.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—performance evaluation (efficiency and effec-
tiveness); I.5.2 [Pattern Recognition]: Design Methodol-
ogy—classifier design and evaluation

General Terms
Experimentation, Measurement, Performance

Keywords
Text Classification; Performance Evaluation; Bayesian In-
ference

1. INTRODUCTION
Automatic text classification [7] is a fundamental tech-

nique in information retrieval (IR) [4]. It has many impor-
tant applications, including topic categorisation, spam filter-
ing, sentiment analysis, message routing, language identifi-
cation, genre detection, authorship attribution, and so on.
In fact, most modern IR systems for search, recommenda-
tion, or advertising contain multiple components that use
some form of text classification.

The most widely used performance measure for text clas-
sification is the F1 score [8] which is defined as the harmonic
mean of precision and recall. It is known to be more infor-
mative and more useful than classification accuracy etc. due
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to the prevalent phenomenon of class imbalance in text clas-
sification. When multiple classes exist in the document col-
lection (such as Reuters-21578 with its 118 classes), we often
want to compute a single aggregate measure that combines
the F1 scores for individual classes. There are two meth-
ods to do this: micro-averaging and macro-averaging [4].
The former pools per-document decisions across classes, and
then computes the overall F1 score on the pooled contin-
gency table. The latter just computes a simple average of
the F1 scores over classes. The differences between these
two averaging methods can be large: micro-averaging gives
equal weight to each per-document classification decision
and therefore is dominated by large classes, whereas macro-
averaging gives equal weight to each class. It is nowadays a
common practice for IR researchers to evaluate a multi-class
text classifier using both the micro-averaged F1 score (de-
noted as miF1) and the macro-averaged F1 score (denoted as
maF1), since their introduction by Yang and Liu’s seminal
SIGIR-1999 paper [9].

However, the average F1 scores themselves only reflect a
text classifier’s performance on the given test data. How can
we be sure that it will work well on unseen data? Given any
finite amount of test results, we can never be guaranteed that
one classifier’s performance will definitely achieve a certain
acceptable level (say 0.80) in practice. For example, suppose
that a classifier got miF1 0.81 on 100 test documents. Due
to the small number of test documents, we probably do not
have much confidence in pronouncing that its future perfor-
mance will definitely be above 0.80. If instead the classifier
got miF1 0.81 on 100,000 test documents, we can be more
confident than in the previous case. Nevertheless, there will
always be some degree of uncertainty. The central question
here is how to assess the uncertainty of a classifier’s perfor-
mance as measured by miF1 and maF1, given a set of test
results.

In this paper, we address this problem by appealing to
Bayesian reasoning [3], and demonstrate that our approach
provides rich information about a multi-class text classifiers’
performance.

2. OUR APPROACH

2.1 Model
Let us consider a multi-class classifier which has been

tested on a collection of N labelled test documents, D. Here
we focus on the setting of multi-class single-label (aka “one-
of”) classification where one document belongs to one and
only one class [4, 7]. For each document xi (i = 1, . . . , N),
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Figure 1: A schematic diagram of confusion matrix.

we have its true class label yi as well as its predicted class
label ŷi. Given that there are M different classes, the clas-
sification results could be fully summarised into an M ×M
confusion matrix C where the element cjk at the j-th row
and the k-th column represents the number of documents
with true class label j but predicted class label k, as shown
in Figure 1.

The performance measures miF1 and maF1 can be calcu-
lated straightforwardly based on such a confusion matrix.
However, as we have explained earlier, we are not satisfied
with knowing only a single score value of the performance
measure, but instead would like to treat the performance
measure (either miF1 or maF1) as a random variable ψ and
estimate its uncertainty by examining its posterior proba-
bility distribution.

The test documents can be considered as “independent
trials”, i.e., their true class labels yi are independent and
identically distributed (i.i.d.). For each test document, we
use μ = (μ1, . . . , μM ) to represent the probabilities that it
truly belongs to each class: μj = Pr[yi = j] (j = 1, . . . ,M),∑M

j=1 μj = 1. This means that the class sizes n = (n1, . . . , nM )
would follow a Multinomial distribution with parameter N
and μ: n ∼ Mult(N,μ), i.e.,

Pr[n|N,μ] =
N !

n1! . . . nM !
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nj
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It would then be convenient to use the Dirichlet distribution
(which is conjugate to the Multinomial distribution) as the
prior distribution of parameter μ. More specifically, μ ∼
Dir(β), i.e.,

Pr[μ] =
Γ
(∑M

j=1 βj

)
∏M

j=1 Γ(βj)

M∏
j=1

μ
βj−1

j ,

where the hyper-parameter β = (β1, . . . , βM ) encodes our
prior belief about each class’s proportion in the test docu-
ment collection. If we do not have any prior knowledge, we
can simply set β = (1, . . . , 1) that yields a uniform distribu-
tion, as we did in our experiments.

Furthermore, let cj = (cj1, . . . , cjM ) denote the j-th row
of the confusion matrix. In other words, cj shows how those
documents belonging to class j are classified. For each test
document from that class j, we use θj = (θj1, . . . , θjM ) to
represent the probabilities that it is classified into different
classes: θjk = Pr[ŷi = k|yi = j] (k = 1, . . . ,M),

∑M
k=1 θjk =

1. This means that for each class j, the corresponding vector
cj would follow a Multinomial distribution with parameter

nj and θj : cj ∼ Mult(nj ,θj), i.e.,

Pr[cj |nj ,θj ] =
nj !

cj1! . . . cjM !

M∏
k=1

θ
cjk
jk

=
Γ
(∑M

k=1(cjk + 1)
)

∏M
k=1 Γ(cjk + 1)

M∏
k=1

θ
cjk
jk .

It would then be convenient to use the Dirichlet distribution
(which is conjugate to the Multinomial distribution) as the
prior distribution of parameter θj . More specifically, θj ∼
Dir(αj), i.e.,

Pr[θj ] =
Γ
(∑M

k=1 αjk

)
∏M

k=1 Γ(αjk)

M∏
k=1

θ
αjk−1

jk ,

where the hyper-parameter αj = (αj1, . . . , αjM ) encodes
our prior belief about a classifier’s prediction accuracy for
class j. If we do not have any prior knowledge, we can
simply set for each classαj = (1, . . . , 1) that yields a uniform
distribution, as we did in our experiments.

Once the parameters μ and θj (j = 1, . . . ,M) have been
estimated, it will be easy to calculate, for each class, the
contingency table of “expected” prediction results: true pos-
itive (tp), false positive (fp), true negative (tn), and false
negative (fn). For example, the anticipated number of true
positive predictions, for class j, should be the number of test
documents belonging to that class Nμj times the rate of be-
ing predicted by the classifier into that class as well θjj . The
equations to calculate the contingency table for each class j
are listed as follows.

tpj=Nμjθjj fpj=
∑
u �=j

Nμuθuj

fnj=
∑
v �=j

Nμjθjv tnj=
∑
u �=j

∑
v �=j

Nμuθuv

In micro-averaging, we pool the per-document predictions
across classes, and then use the pooled contingency table
to compute the micro-averaged precision P , micro-averaged
recall R, and finally their harmonic mean miF1 as follows.

P =

∑M
j=1 tpj∑M

j=1(tpj + fpj)
=

M∑
j=1

μjθjj

R =

∑M
j=1 tpj∑M

j=1(tpj + fnj)
=

M∑
j=1

μjθjj

miF1 =
2PR

P +R
=

M∑
j=1

μjθjj

It is a well-known fact that in multi-class single-label (aka
“one-of”) classification, miF1 = P = R which is actually
identical to the overall accuracy of classification [4].

In macro-averaging, we use the contingency table of each
individual class j to compute that particular class’s precision
Pj as well as recall Rj , and finally compute a simple average
of the F1 scores over classes to get maF1 as follows.

Pj =
tpj

tpj + fpj
=

μjθjj∑M
u=1 μuθuj

Rj =
tpj

tpj + fnj
= θjj
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Figure 2: The probabilistic graphical model for estimating
the uncertainty of average F1 scores.

maF1 =

(
M∑
j=1

2PjRj

Pj +Rj

)
/M

In the above calculation of miF1 and maF1, N has been
cancelled out so it does not appear in the final formulae.
Therefore the deterministic variable ψ for the performance
measure of interest (either miF1 or maF1) is a function that
depends on μ and θ1, . . . ,θM only:

ψ = f(μ,θ1, . . . ,θM ) .

The above model describes the generative mechanism of
a multi-class classifier’s test results (i.e., confusion matrix).
It is summarised as follows, and also depicted in Figure 2
as a probabilistic graphical model (PGM) [2] using common
notations.

μ ∼ Dir(β)

n ∼ Mult(N,μ)

θj ∼ Dir(αj) for j = 1, . . . ,M

cj ∼ Mult(nj ,θj) for j = 1, . . . ,M

ψ = f(μ,θ1, . . . ,θM )

Our model can be considered as a generalisation of the
two-class F1 score model proposed by Goutte and Gaussier
[1] to multiple classes. More importantly, it opens up many
possibilities for adaptation or extension.

2.2 Implementation
The purpose of building the above model for classifica-

tion results is to assess the Bayesian posterior probability
of ψ that represents either miF1 or maF1. An approximate
estimation of ψ can be obtained by sampling from its poste-
rior probability distribution via Markov Chain Monte Carlo
(MCMC) [3] techniques.

We have implemented our model with an MCMC method
Metropolis-Hastings sampling [3]. The default configuration
is to generate 50,000 samples, with no “burn-in”, “lag”, or
“multiple-chains”. The program is written in Python utilis-
ing the module PyMC31 [5] for MCMC based Bayesian model
fitting. The source code will be made open to the research
community on the first author’s homepage.

3. EXPERIMENTS
In order to demonstrate the usage of our model for esti-

mating the uncertainty of average F1 scores, we have con-
ducted experiments on the confusion matrix given by the
test results from a multi-class classifier on a real-world text
dataset. The confusion matrix provides all the data that

1http://pymc-devs.github.io/pymc3/

Figure 3: The confusion matrix used for our experiments.

our model requires. It is shown in Figure 3 to ensure the
reproducibility of experiments.

Our proposed Bayesian estimation approach offers rich in-
formation about the given classifier’s average F1 scores, as
shown in Table 1. In addition to the original performance
score (miF1 or maF1), we have shown its posterior mean,
standard deviation (std), Monte Carlo error (MC error), the
percentage lower or greater than the reference performance
score 0.8 (LG pct), and the 95% Highest Density Interval
(HDI). In particular, the 95% HDI is a useful summary of
where the bulk of the most credible values of ψ falls: by
definition, every value inside the HDI has higher probability
density than any value outside the HDI, and the total mass
of points inside the 95% HDI is 95% of the distribution [3].

The Bayesian estimations of miF1 and maF1 are visualised
in Figure 4 and 5 respectively. The left component in each
figure plots the posterior probability distribution of the per-
formance measure variable ψ, while the right component
plots the corresponding MCMC trace which proves the con-
vergence of sampling.

4. CONCLUSIONS
The main contribution of this paper is a Bayesian esti-

mation approach to assessing the uncertainty of average F1

scores in the context of multi-class text classification. Ob-
viously the more general Fβ measure (β ≥ 0) [4, 8] can be
dealt with in the same way.

Our model for estimating the uncertainty of average F1

scores has been described in the multi-class single-label (aka
“one-of”) classification setting, but it is readily extensible to
the multi-class multi-label (aka “any-of”) classification set-
ting [4, 7]. In that case, the Dirichlet/Multinomial distribu-
tions should simply be replaced by multiple Beta/Binomial
distributions each of which corresponds to one specific target
class, because a multi-class multi-label classifier is nothing
more than a composition of independent binary classifiers.

By modelling the full posterior probability distribution
of miF1 or maF1, we are able to make meaningful interval
estimation (e.g., the 95% HDI) instead of simplistic point



Table 1: Bayesian estimation of the average F1 scores.

score mean std MC error LG pct HDI

miF1 0.814 0.803 0.011 0.000 39.6%<0.8<60.4% [0.782, 0.823]
maF1 0.828 0.815 0.010 0.000 6.1%<0.8<93.9% [0.796, 0.835]

(a) posterior plot (b) trace plot

Figure 4: Bayesian estimation of miF1.

(a) posterior plot (b) trace plot

Figure 5: Bayesian estimation of maF1.

estimation of a text classifier’s future performance on un-
seen data. The rich information provided by our model will
allow us to make comprehensive performance comparisons
between text classifiers, by taking the uncertainty of average
F1 scores into account. It would be interesting to conduct
more extensive experiments to verify whether the proposed
Bayesian approach has advantages over traditional hypoth-
esis testing [6, 9].
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