
Adaptive Just-In-Time Code Diversification

Abhinav Jangda
IIT (BHU) Varanasi

Varanasi, UP 221005
India

abhinav.student.apm11@iitbhu.ac.in

Mohit Mishra
IIT (BHU) Varanasi

Varanasi, UP 221005
India

mohit.mishra.cse11@iitbhu.ac.in

Bjorn De Sutter
Ghent University

Sint-Pietersnieuwstraat 41
9000 Gent, Belgium

bjorn.desutter@elis.ugent.be

ABSTRACT
We present a method to regenerate diversified code dynamically
in a Java bytecode JIT compiler, and to update the diversification
frequently during the execution of the program. This way, we can
significantly reduce the time frame in which attackers can let a
program leak useful address space information and subsequently
use the leaked information in memory exploits. A proof of con-
cept implementation is evaluated, showing that even though code
is recompiled frequently, we can achieved smaller overheads than
the previous state of the art, which generated diversity only once
during the whole execution of a program.
Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—code generation,
optimization;K.6.5[Management of Computing and Infor-
mation Systems]: Security and Protection—unauthorized access

General Terms
 Algorithms, Performance, Experimentation, Security.

Keywords
Recompilation, profiles, NOP insertion.

1. INTRODUCTION
The widespread software monoculture is a major facilitator of

cyber attacks. Adversaries can target many users with a single
exploit because they all run the same binaries. One type of code
reuse attacks, return-oriented programming (ROP) attacks, are
particularly hard to defeat [1]. Instead of injecting new code into a
binary, ROP attacks exploit a software vulnerability to execute a
chain of reusable code snippets called gadgets, thus obtaining
execution of any wanted functionality. In response, software di-
versity has been proposed [2,12,15]. By randomizing a binary's
code layout, a memory vulnerability is moved to an a priori un-
known location in the binary, thereby bringing down the probabil-
ity of return-to-libc and return-oriented attacks [1, 2, 6, 21].

Many of the current defense practices are passive and static in
nature. Despite techniques such as Address Space Layout Ran-
domization (ASLR) and Data Execution Prevention (DEP) [3], the
cat and mouse games between the attackers and defenders there-
fore still go on. In many recent attacks, an attacker first lets the
program leak information about the code locations in a process'

memory space, in order to engineer an adapted attack on the fly.
Just-In-Time (JIT) compilers generate code during the execution

of the program. This is, e.g., the case for Java, which is first pre-
compiled to bytecode and then later compiled JIT to machine
code. Similarly, LLVM can first compile code to bitcode, which is
then later compiled JIT to native code.

The predictability of JIT compilers makes their security ques-
tionable. In practice, minimal variation is introduced into their
code generation, e.g., by noise due to sampling-based profiling.
So every time the same high-level language code is presented to
the compiler, it emits the same native code. The attackers exploit
this to their advantage. As JIT compilation fundamentally uses
executable memory of which the content is dependent on the input
of the users, i.e., the program to be JIT compiled as well as its
data, it poses a big security threat.

In this paper, we propose to harden the security of a Java
bytecode JIT compiler by regenerating diversified code dynami-
cally. This way, we can significantly reduce the time frame in
which attackers can let a program leak useful address space in-
formation and subsequently use the leaked information. There are
two critical timestamps for an attacker in a typical attack model:
• Time of leakage of useful address space information,
• Time of use of the leaked information in an exploit.
If we can randomize either of the timestamps by making use of

diversity, the attacker will likely fail to build an exploit. We con-
sider two aspects of the randomization:
• Security: We adaptively insert NOPs to create diversity.
• Performance: Profile information helps in reducing the

overhead while pushing the adaptive diversification.
Using frequent live diversification at random timestamps, we

intend to randomize the time frame between the above two
timestamps, as well as regenerate a different diversified variant of
the binary at these timestamps. With a proof-of-concept imple-
mentation in JikesRVM, we show that while securing the JIT
compiler further, we also incur smaller overheads as compared to
static diversification and static re-diversification by making good
use of profile information of the program.

While software diversity helps in protecting “diversified” bina-
ries while “one” is compromised, the idea here is to “protect the
one” too that is risking to be compromised.

The paper is structured as follows: Section 2 provides back-
ground on code-reuse attacks, Java JIT spraying and memory
corruption, and software diversity. Section 3 describes the design
of the framework and the proposed solution. Section 4 provides an
evaluation and presents results of the conducted. Related work on
JIT diversification is discussed in Section 5. Finally, Section 6
draws conclusions and discusses some future work.

2. BACKGROUND
Code reuse attacks allow attackers to execute arbitrary code on a

compromised machine. In this, the attacker directs the control
flow through existing code without injecting new executable code.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Ab-
stracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MTD'15, October 12 2015, Denver, CO, USA © 2015 ACM.
ISBN 978-1-4503-3823-3/15/10…$15.00
DOI: http://dx.doi.org/10.1145/2808475.2808487

Examples include ROP attacks and return-into-libc attacks. ROP
attacks, introduced by Shacham [1], allow attackers to execute
arbitrary code by overflowing the stack with a sequence of return
addresses pointing to specific parts of the code, called gadgets, in
the vulnerable program. A gadget is a valid code sequence that
ends with a return instruction. This allows Turing-complete be-
havior in the target program without injecting and circumvents
current code injection defenses such as W^X [25].

In the context of JIT compilers, JIT spraying [17] and similar
attacks rely on the constants present in the source code emitted
into the native code by the JIT compiler directly. The current
state-of-the-art involves encrypting and decrypting these constants
[14]. Though this avoids JIT spraying, however, adversaries can
still make use of code-reuse techniques. An attacker can easily
make use of the ubiquitous JIT compilers to generate new binary
code having the necessary gadgets to make a malicious attack
successful. The predictability of the native code produced by the
JIT compiler, which fundamentally uses executable data, becomes
a liability for developers, and an advantage for an adversary, that
has been demonstrated in several attacks on Java run-time envi-
ronments [13,23]. These kinds of attacks can lead to overwriting
of the stack without actually going beyond the bounds of the data
structures involved, and rely on the leakage of address space in-
formation as mentioned earlier. To thwart this leakage, we can
leverage software diversity.

Software diversification involves the production of functionally
identical, but syntactically different binaries of the same software.
A simple, but effective form is code layout randomization. This
raises the bar for ROP and return-into-libc attacks. Similarly,
software diversity can prevent collusion attacks that identify new
functionality or security fixes in updates [22]. Code layout ran-
domization introduces uncertainty in the binary and hence, it
drives up the complexity of attacks on diversified binaries.

Diversification can be introduced at various levels of granulari-
ty: instructions, basic blocks, loops, functions, programs, and
finally systems. Techniques include NOP insertion, instruction
randomization, stack layout randomization, function permutation,
block reordering and splitting, heap randomization and so on [12].

A simple NOP insertion is every effective in the face of a ROP
attacks, since its insertion shifts the address space information,
and being completely randomized, it makes it difficult for attack-
ers to chain the gadgets and deploy identical exploits.

The code layout is randomized by the compiler [2,3,4], using
virtual machines [5] or through static binary rewriting [6,7]. How-
ever, most such defense techniques rely on static compilers or
statically generated binaries. Homescu et al. [8] introduced the
first concept of JIT diversification to support diversification for
dynamically generated code. Our work is built upon their concept
and extends it further to support adaptive live dynamic diversifi-
cation. Whereas Homescu et al. randomize code only once, thus
potentially still allowing attacks based on first leaking addresses
and then exploiting those addresses, we close this hole by ran-
domizing the code frequently during the program's execution.

3. DESIGN
The framework of the adaptive JIT diversification consists of

two components: First, it builds on profile information generation
and hot/cold method classification. Secondly, it inserts NOPs
adaptively. From a security point of view, it suffices to inserts
NOPs randomly. However, inserting them completely randomly,
i.e., as frequently on hot code paths as on cold code paths, will
introduce significant performance overhead. To avoid this, we
want to concentrate more NOPs in cold code.

It is rather expensive, however, to collect fine-grained profile
information to distinguish between hot and code cold blocks with-
in methods already being JIT compiled based on coarse-grained,
often sample-based information that the VM & JIT already collect
by default. In fact, letting the JIT compiler insert execution coun-
ters to collect the profile information will typically be much more
costly than introducing NOPs.

To prevent this, a key insight is that methods for which suffi-
cient profile information is already available at some point in
time, no longer need to be profiled. In other words, when methods
have been recognized as hot enough, they no longer need to be
profiled. From then on, when such a method is recompiled at ran-
dom intervals to insert NOPs at new randomized places, the JIT
compiler will insert no more execution counters.

Diversifica*on-Component-

Recompila*on-

Generate-random-*me-stamp-

Profile-Info-Genera*on--
&-Hot/Cold-Methods-Classifica*on-

Recompila*on-thread-
Program-Execu*on-

in-a-different-
thread-

Fig. 1: Design Framework of Adaptive JIT Diversification

Fig. 1 shows a schematic diagram of the design. With the pro-

gram executing, profile information is generated at random
timestamps and hot and cold methods are classified. The recompi-
lation component has a diversification component in it that per-
forms adaptive NOP insertion. Note that the recompilation step
does not stop the world. The recompilation occurs in a separate
recompilation thread while the program is still executing. This
further helps in reducing overheads, and makes the design useful
for server-side scenarios, where programs are running indefinitely
and one doesn’t want to deploy stop-the-world techniques to ap-
ply diversification frequently. The recompilation process is cyclic
and happens at time random timestamps.

3.1 Classification of Hot and Cold Methods
Basic blocks execution counting takes 5 instructions on x86: 2

for spilling and restoring a register, 2 for loading and storing a
block's counter value, and 1 for incrementing it. The 4 memory
operations cause a lot of overhead. Therefore, it makes sense to
remove the counters as soon as possible. But of course that itself
requires the generation of profile information.

Once we are able to “decide” that some method is hot, we have
ample information, and hence we can at least remove the counters
for that method’s basic blocks. But how do we decide if a method
is hot or cold? To do this, we defined a threshold of execution
counts. If the execution count overshoots this threshold value, the
method is classified as hot, else it is considered cold.

Also, readers must note that the order of recompilation of meth-
ods is important. The hot methods are recompiled first, followed
by the cold methods, while the program is executing. This order
of recompilation will lead to better adaptive diversification, as
well as enhanced security and performance. The latter is explained
in Fig. 2. Suppose method C is hotter than B, which in turn is
hotter than A. So method C will be classified as hot first. Suppose
that has happened some time before ti, while the other methods are
not (yet) classified as hot. In the compilation order of case 1, the
execution counters in C will be omitted starting at time ti. In the
order of case 2, they will only be omitted at time tj. By recompil-
ing the hottest methods first, we hence loose less time.

Though sorting itself can involve significant overheads, experi-
ments showed that we achieved a slight improvement overall be-
cause the sorting helped in getting the classification done quickly.

A" B" C"

C" B" A"

ti" tj"

Case"1"

Case"2"

recompila3on"thread"

Fig. 2: Order of the methods’ compilation

3.2 Adaptive NOP Insertion
 We use a similar technique of adaptive NOP insertion as
Homescu et al. [4]. A NOP normally takes 1 CPU cycle. Hence, if
NOP insertion occurs in a basic block that executes a high number
of times, it leads to high performance overhead. To deal with this,
the idea is to insert less NOPs in hot basic blocks and relatively
more NOPs in cold blocks. As compared to a single probability of
NOP insertion, we replace this with a range of probabilities. The
hottest block eventually gets the lowest probability of NOP inser-
tion, and the coldest block gets the highest probability of NOP
insertion. The intermediate blocks get their NOP insertion proba-
bility based on the following logarithmic function:

pNOP (x) = pmax − (pmax − pmin)
log(1+ x)
log(1+ xmax)

 (1)

where x is the execution count of the current basic block, xmax is
the maximum execution count in the program and [pmin, pmax] is
the probability range. For more details, we refer to [4].
Our randomized NOP insertion algorithm then is the following:

numNOPs = |NOP Table|
for i ∈ InstList do
 gen_rand = random(0.0,1.0)
 if gen_rand < pNOP(count(i)) then
 whichNOP = random (0, numNOPs)
 insert(i, NOP Table [whichNOP])

The x86 architecture provides 1 to 9 byte-sized NOP codes (Ta-

ble 1), we also use 6 more variants of NOP (Table 2). These 6
variants preserve the processor state, while minimizing the proba-
bility of creating new gadgets, as the second byte decodes to an
unusable operand or opcode. For instance, IN (read from an input
port) requires privileged mode, and hence renders unprivileged
code to return faults.

Table 1: 1-9 byte sized NOP instructions

Instruction Encoding
NOP 90
66 NOP 66 90
NOP DWORD ptr [EAX] 0f 1f 00
NOP DWORD ptr [EAX + 00H] 0f 1f 40 00
NOP DWORD ptr [EAX + EAX*1 + 00H] 0f 1f 44 00 00
66 NOP DWORD ptr [EAX + EAX*1 + 00H] 66 0f 1f 44 00 00
NOP DWORD ptr [EAX + 00000000H] 0f 1f 80 00 00 00 00
NOP DWORD ptr [EAX + EAX*1 + 00000000H] 0f 1f 84 00 00 00 00 00
66 NOP DWORD ptr [EAX + EAX*1 + 00000000H] 66 0f 1f 84 00 00 00 00 00

Table 2: Extra NOP variants

Instruction Encoding Second Byte Decoding
MOV ESP, ESP 89 E4 IN
MOV EBP, EBP 89 ED IN
LEA ESI, [ESI] 8D 36 SS:
LEA EDI, [EDI] 8D 3F ASS

XCHG ESP, ESP 87 E4 IN
XCHG EBP, EBP 87 ED IN

3.3 Adaptive JIT Diversification
The following recompilation algorithm runs in a separate recom-
pilation thread:

while True do
 sleep for random(0.0,1.0)*sleepTime
 sort all methods based on the execution counts
 for every method in all methods do
 if method.count > threshold the
 method.insertBBExecutionCount=False
 compile method in recompilation thread

This algorithm performs the following steps:
1. Sleep for random amount of time to randomize diversification

timestamps.
2. Sort the unclassified methods in order of execution counts.
3. Compile them in the sorted order, inserting NOPs while doing

so using the profile information as discussed above.
4. If execution counts exceeds threshold value, classify the

method as hot, and remove its execution counters.

4. EVALUATION
We implemented our concept the Jikes Research Virtual Ma-

chine [24]. JikesRVM contains a baseline compiler, which is a
fast compiler to convert bytecode into native code. We imple-
mented our NOP insertion algorithm in this phase. We intend to
adapt our solution to the optimizing compiler in our future work.

The diversifying JIT compiler was tested using the DaCapo
2009 Benchmarks [9] on a system containing an Intel Core i7-
3610QM CPU @ 2.30GHz with HyperThreading enabled and
6GB RAM running Fedora 17 with Linux Kernel 3.6.11-
5.fc17.x86_64. Table 3 presents the parameters and compiler op-
tions we added to the JIT compiler used in the experiment.

Table 3: JIT Compiler options added to JikesRVM
pNOP Probability of NOP insertion in NOP randomization
pMax Maximum probability of adaptive NOP insertion
pMin Minimum probability of adaptive NOP insertion
profile_edgecounters Enable or Disable Basic Block Execution Counters
sleepTime Maximum interval time limit between two recompilations
Threshold Threshold value of Hot/Cold classification
startTime Time before starting recompilation for the first time
enableRecompile Enable/Disable Recompilation

We evaluated three version of JIT diversification:
• V1: Random NOP insertion in one-time JIT diversification
• V2: Random NOP insertion in dynamic JIT diversification
• V3: Adaptive NOP insertion in dynamic JIT diversification

It is important to note that in this paper, we only present a per-
formance evaluation of the proposed approach. The security eval-
uation for no-op insertion has been studied extensively in litera-
ture [2, 4, 8].

We varied the NOP insertion probability [pmin, pmax] between 0-
30%, 10-50% and 25-50% for dynamic JIT diversification for
versions 2 and 3, while for version 1, we fixed pNOP at 30% and
50%. We varied the random sleep time and threshold values as
follows:

sleep time = {500, 1000, 1500, 2000}
threshold = {100, 500, 1000, 1500, 2000}
To find the best configuration for our method for benchmark

performance evaluation, we averaged out the performance over-
heads for each configuration. To do that, we first fixed pmin and
pmax as 25% and 50% respectively, and varied the sleep time and
threshold parameters, keeping one fixed and varying the other.
For a sleep time value of 1000 and thresholds varying over the

interval [100, 2000], we observed that all benchmarks showed an
inverted bell shaped performance overhead curve, i.e., the perfor-
mance overhead first decreases and then increases. We observed
similar performance overhead patterns for sleep time = 1500 ex-
cept for lusearch which showed strictly decreasing curve. There is
a considerable change in pattern from sleep time = 500 to sleep
time = 2000, where the bell shape pattern gets reversed for xalan,
pmd and sunflow, while jython and luindex exhibited similar pat-
terns of performance overheads. From these observations, we
computed the sleep time and threshold values where minimal
overhead was incurred. The best values achieved were sleep time
= 1000 and threshold = 1000 for a minimal average overhead of
7.44%.

We used Eq. (1) to insert the pNOP in the adaptive configuration
of version 3. For version 2, we take the value of sleep time to be
1000 because this the value of sleep time for the best configura-
tion in the adaptive system of version 3. The initial pNOP for the
adaptive version 3, i.e., the pNOP value used for the first compila-
tion when code is not yet known to be hot or cold, was set to 0.1.

Overall results are shown in Fig 3, in which ST stands for sleep
time, and T for threshold. The performance overheads for version
1 are 6.7% and 5.3% for pNOP = 50% and pNOP = 30% respective-
ly. Although version 2 increases this overhead to 10% and 9%,
version 3 decreases it to 6% and 5% for pNOP = 10-50% and pNOP
= 0-30% respectively, a reduction of 2x times as compared to
version 2. It should be noted that the runtime overhead may look
high for certain benchmarks like xalan. However that is the upper
limit as observed in extreme cases. Also, the overhead in xalan in
case of version 3 is comparable to version 2 (~16%). Except for
jython, observe that adaptive no-op insertion in dynamic JIT di-
versification for pNOP = 0-30% and sleep time and threshold val-
ues of 1000, provides the best performance results among all ver-
sions. In jython, version 1 incurs the least overhead. In all other
cases, we achieved significant performance improvement with
version 3, our approach, as compared to version 1 and 2.

5. RELATED WORK
Various methods have been proposed to harden JIT compilers

against code reuse attacks. In this section, we briefly discuss these
methods and approaches proposed.

JITSafe [13] applies immediate value elimination and obfusca-
tion to protect against JIT Spray attacks. It reduces the time win-
dow of the JIT compiled code in the executable pages, applies
immediate value elimination, followed by obfuscation of JIT
compiled code. The evaluation by the authors show no false posi-
tives, while incurring upon low performance overhead.

In JITDefender [14], the code pages are marked non-executable
at the code compilation point. Shortly before the code execution
point, the pages are marked executable, and shortly after again,
they are marked back as non-executable. Now, if the attacker
hijacks the control flow and tries to perform JIT spraying attack,
the access will be blocked since the VM keeps the code pages
non-executable.

INSert, proposed by Wei et al [10] randomized register assign-
ment, randomly transforms all immediate operands, parameters
and local variables. It also randomly injects trapping snippets into
the target code to alert the user of intrusion (JIT spraying) besides
adding randomization as well.

Yee at al [11] introduced Native Client, a sandboxed execution
environment, uses fault isolation and a secure runtime. NaCl man-
ages the interfaces through which the system interaction and side
effects are directed. NaCl originally did not allow dynamic code
generation. However, this was later introduced in [16] by provid-
ing a more flexible form of software fault isolation.

 Fine-grained address space layout randomization has been
proposed to thwart runtime attacks. However, Snow et al [20]
demonstrated just-in-time code reuse strategy that circumvents
fine grained ASLR by frequently corrupting a memory disclosure
to map an application’s memory layout on-the-fly while also dis-
covering gadgets at runtime. Thus a JIT based attack renders
ASLR useless.

librando [8] is the first comprehensive work on hardening JIT
compilers using concept of software diversity. It provides trans-
parent code randomization in JIT compilers. It hooks itself to the
the memory protection areas of the OS under consideration and
randomizes newly generated code on the fly, while still preserving
the calling stack’s contents. Our work is very much based on the
grounds of this work.

Niu and Tan proposed a control flow integrity (CFI) approach to
harden JIT compilers, called RockJIT [19]. RockJIT is built upon
modular control flow integrity. RockJIT build control flow graph
from the JIT compiler’s source and updates the control-flow poli-
cy of the JIT compiler dynamically when new code is generated
on the fly.

Chobham [21] adopts RockJIT [19] to secure the browser’s
code and the JIT-compiled code since enforcement of control flow
integrity (CFI) makes ROP gadget chaining difficult. Build on
grounds of RockJIT, Chobam further constitutes three methods of
further hardening of JIT compilers: first, it to improve the preci-
sion of the control flow graph generated by RockJIT, it deploys
input triggered CGF generation; second, randomizing the order in
which the callee-saved registers are restored; and third, it allocates

0"

5"

10"

15"

20"

25"

lusearch" jython" luindex" xalan" pmd" sunflow" average"

O
v
e
rh
e
a
d
"(
%
)"

V1:"pNOP=50%" V1:"pNOP=30%" V2:"ST=1000"pNOP=50%"

V2:"ST=1000"pNOP=30%" V3:"ST=1000"T=1000"pNOP=25H50%" V3:"ST=1000"T=1000"pNOP=10H50%"

V3:"ST=1000"T=1000"pNOP=0H30%"

Fig. 3: Performance overheads comparison of best results obtained from all three versions evaluated

a completely separate heap zone for all critical Javascript objects
and adding checks to bound the access to these objects.

Isomeron [20] combines fine-grained code randomization with
execution path randomization to mitigate typical ROP and JIT-
ROP attacks. The authors further showed that Isomeron exponen-
tially reduces the probability of the attacker to predict the correct
runtime address of a target ROP gadget. Even usage of a randomi-
zation offset by a single byte reduces the attack success rate to
50%, even though it provides low entropy.

6. CONCLUSIONS AND FUTURE WORK
We presented a technique for adaptive just-in-time code diversi-

fication while re-randomizing binaries at random time stamps.
This makes it much harder for adversaries to gain useful layout
knowledge from leaked information and to exploit that
knowledge.

With our experiments, we were able to diversify and re-
diversify programs dynamically and at random timestamps, mak-
ing use of collected profile information as we learn. Still our ap-
proach incurs small overheads, as it performs just as well as one-
time diversification.

We currently used the baseline compiler in JikesRVM to im-
plement our techniques. As a part of our future work, we intend to
port the implementation to its advanced optimization system and
compiler as well. This will allow us to study the overhead of the
presented technique on fully optimized, hot code. At the same
time, we will be able to leverage the profile information implicitly
available when hot code is recompiled by the advanced optimiza-
tion system.

In addition, we intend to research additional forms of diversifi-
cation, such as basic block reordering and layout, and memory
layout randomization.

Acknowledgment
Part of this research was funded by the Fund for Scientific Re-

search - Flanders (FWO) under project grant 3G013013.

7. REFERENCES
[1] H. Shacham. The geometry of innocent flesh on the bone:

Return-into-libc without function calls (on the x86). In Proc.
ACM CCS, p. 552–561, 2007.

[2] T. Jackson, et al. Compiler-generated software diversity.
Moving Target Defense, volume 54 of Advances in Infor-
mation Security, pages 77–98. Springer New York, 2011.

[3] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Enhanced
operating system security through efficient and fine-grained
address space randomization. In Proc. USENIX Security
Symp, p. 475–490, 2012

[4] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler and M.
Franz. Profile-guided automated software diversity. In Proc.
CGO, p. 1–11, 2013.

[5] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Da-
vidson. ILR: Where’d my gadgets go? In Proc. IEEE S&P,
p.571–585, 2012.

[6] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smash-
ing the gadgets: Hindering return-oriented programming us-

ing in-place code randomization. In Proc. IEEE S&P, p. 601–
615, 2012.

[7] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary
stirring: Self-randomizing instruction addresses of legacy
x86 binary code. In Proc. ACM CCS, p. 157–168, 2012.

[8] A. Homescu, S. Brunthaler, P. Larsen and M. Franz. libran-
do: Transparent Code Randomization for Just-in-Time Com-
pilers. In Proc. ACM CCS, p. 993–1004, 2013

[9] Blackburn, S. M, et al. The DaCapo Benchmarks: Java
Benchmarking Development and Analysis, Proc. ACM
OOPSLA, p. 169–190, 2006.

[10] T. Wei, T. Wang, L. Duan, and J. Luo. INSeRT: Protect dy-
namic code generation against spraying. In Proc. ICIST, p.
323–328, 2011.

[11] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Orman-
dy, S. Okasaka, N. Narula, and N. Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In Proc.
IEEE S&P, p. 79–93, 2009.

[12] P. Larsen, S. Brunthaler, M. Franz. SoK: Automatic Software
Diversity. In Proc. IEEE S&P, p. 276–291, 2014.

[13] Chen, P., Wu, R., Mao, B. JITSafe: a framework against
Just-in-time spraying attacks. IET Information Security,
7(4):283-292, 2013.

[14] P. Chen, Y. Fang, B. Mao, and L. Xie. JITDefender: A de-
fense against JIT spraying attacks. In Proc. IFIP TC SEC, p.
142–153, 2011.

[15] F. Cohen. Operating system protection through program
evolution. Computers and Security, 12(6):565–584, 1993.

[16] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and
D. Boneh. On the effectiveness of address-space randomiza-
tion. In Proc. ACM CCS, p. 298–307, 2004.

[17] D. Blazakis. Interpreter exploitation. In Proc. USENIX
Workshop on Offensive technologies (WOOT), 2010.

[18] T. Bletsch, X. Jiang, V. Freeh, and Z. Liang. Jump-oriented
programming: a new class of code-reuse attack. In Proc.
ACM ASIACCS, p. 30–40, 2011

[19] B. Niu, G. Tan. RockJIT: Securing Just-In-Time Compilation
Using Modular Control-Flow Integrity. In Proc. ACM CCS,
p. 1317–1328, 2014.

[20] L. Davi, C. Liebchen, A. Sadeghi, K.Z. Snow, F. Monrose.
Isomeron: Code Randomization Resilient to (Just-In-Time)
Return Oriented-Programming. In Proc. NDSS, p. 1–15,
2015

[21] B. Niu, G. Tan. Chobham: Taming JIT-ROP Attacks (Post-
er). In Proc. NDSS, 2015.

[22] B. Coppens, B. De Sutter, K. De Bosschere. Protecting Your
Software Updates. IEEE Security and Privacy, 11(2):47–54,
2013.

[23] Java 7 SE Memory Corruption. Pwn2Own 2013. Accuvant
Labs. Online whitepaper.

[24] B. Alpern et al. The JikesRVM Project: Building an open
source research community. IBM System Journal,
44(2):399–418, 2005.

[25] PaX non-executable pages design & implementation.
http://pax.grsecurity.net/docs/noexec.txt. (2004)

