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ABSTRACT 

Inferring regulatory relationships between genes, including the direction and the nature of 

influence between them, is the foremost problem in the field of genetics. One classical 

approach to this problem is epistasis analysis. Broadly speaking, epistasis analysis infers 

the regulatory relationships between a pair of genes in a genetic pathway by considering 

the patterns of change in an observable trait resulting from single and double deletion of 

genes. More specifically, a “surprising” situation occurs when the phenotype of a double 

mutant has a similar, aggravating or alleviating effect compared to the phenotype 

resulting from the single deletion of either one of the genes. As useful as this broad 

approach has been, there are limits to its ability to discriminate alternative pathway 

structures, meaning it is not always possible to infer the relationship between the genes. 

Here, we explore the possibility of dynamic epistasis analysis. In addition to performing 

genetic perturbations, we drive a genetic pathway with a dynamic, time-varying upstream 

signal, where the phenotypic consequence is measured at each time step. We explore the 

theoretical power of dynamic epistasis analysis by conducting an identifiability analysis 

of Boolean models of genetic pathways, comparing static and dynamic approaches. We 

also explore the identifiability of individual links in the pathway. Through these 

evaluations, we quantify how helpful the addition of dynamics is. We believe that a 

dynamic input in addition to epistasis analysis is a powerful tool to discriminate between 

different networks. Our primary findings show that the use of a dynamic input signal 

alone, without genetic perturbations, appears to be very weak in comparison with the 

more traditional genetic approaches based on the deletion of genes. However, the 

combination of dynamical input with genetic perturbations is far more powerful than the 

classical epistasis analysis approach. In all cases, we find that even relatively simple 

input dynamics with gene deletions greatly increases the power of epistasis analysis to 

discriminate alternative network structures and to confidently identify individual links in 

a network. Our positive results show the potential value of dynamics in epistasis analysis. 
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1 INTRODUCTION 

This thesis presents a theoretical investigation of how to design experiments aimed at 

revealing the structure of gene regulatory networks (GRNs). In order to better understand 

the motivation of this study, we first briefly describe the meaning of a gene and a GRN. 

Genetic information in the human cell is stored in the form of DNA (or deoxyribonucleic 

acid). DNA is a biomolecule that is composed of billions of the nitrogen bases (or 

nucleotides): adenine (A), guanine (G), cytosine (C) and thymine (T). Different 

sequences of these nucleotides correspond to different genes (where a gene is part of the 

DNA). A gene (See Figure 1.1A) consists of coding regions (equivalently exons), which 

translate to a sequence of amino acids, non-coding regions (equivalently introns), which 

do not specify amino acids, and regulatory sequences, which determine when and where 

the protein is synthesized. Different genes are made of different sequences of nucleotides, 

which code for different proteins, and in turn perform different functions. The functions 

have many critical roles, such as the maintenance, survival, growth, replication, and 

movement of the cell [1]. 

 

Imagine that a human cell is a computer, where the software of the cell is the DNA. 

Similar to any computer, to be able to execute tasks, the sequences which make up the 

DNA (software instructions), more specifically the genes, need to be interpreted and 

decoded by the cell’s hardware. The interpretation and conversion of a sequence of 

nucleotides into protein is known as gene expression. There are two major steps in the 

process of gene expression: transcription and translation [1, 2]. 
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Figure 1.1: Simple gene expression.  

A) An example of the structure of a gene is shown. The gene is composed of exons, introns, 

untranslated regions (UTRs) and a regulatory sequence known as the promoter. The 5’ and 

3’ denote the directionality of the gene. B) DNA composed of genes is found in the nucleus 

of the cell. (The chemical backbone of DNA is composed of sugar and phosphate 

molecules.) A gene is transcribed into RNA, and then spliced into mRNA. The sequence of 

nucleotides in the mRNA is complementary to those in the gene (where A pairs with T, G 

pairs with C, C pairs with G, and U pairs with A). The mRNA molecule enters the 

cytoplasm and is translated into a chain of amino acids (A1, A2 and A3), constituting a 

protein. The protein may be a transcription factor involved in the regulation of another 

gene, including Gene1 itself.  
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During the process of transcription (See Figure 1.1B), the production of RNA 

(ribonucleic acid) sequence from the DNA sequence takes place, such that information 

stored in the DNA is transferred to the RNA. Like DNA, the RNA is made of 

nucleotides. The building blocks of RNA are the nucleotides adenine, guanine, cytosine, 

and uracil (U). Proteins, more specifically transcription factors, bind to a regulatory 

sequence of the gene known as the promoter region to initiate the transcription process 

and assist in the binding of the enzyme RNA polymerase. The RNA polymerase then 

assists in the synthesis of RNA [2]. 

 

After transcription, the RNA molecule may consist of coding and non-coding regions. 

The RNA that is eventually translated into protein is known as messenger RNA (mRNA). 

Thus, to produce a single sequence of amino acids needed for protein synthesis, the 

mRNA is processed by removing the non-coding regions and keeping the coding regions 

together to produce a mature mRNA molecule. (The process is called splicing.) The gene 

may also code for other types of RNA which assist in the process of translation: transfer 

RNA (tRNA) and ribosomal RNA. 

 

Each group of three nucleotides in the mRNA codes for a single amino acid. (Amino 

acids are the building blocks of proteins.) The aim in the translation process, as shown in 

Figure 1.1B, is to read the mRNA and assemble all the amino acids that it codes for in the 

exact order as they appear in the mRNA. The end product is a linear sequence of amino 

acids, known as a polypeptide. The process of translation occurs in an organelle in the 

cytoplasm of the cell called the ribosome. The ribosome, with the assistance of tRNA 
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molecules, puts together the corresponding chain of amino acids from the mRNA 

molecule template. The polypeptide then "folds" to produce a very specific 3-dimensional 

shape, which is now known as a protein. Each polypeptide chain folds in a specific 

manner to deliver its unique functionality [2]. 

 

However, the protein may still not be ready to perform its function. Some additional post-

translational modifications [1, 2] are further required to make the protein functional. This 

includes the addition of chemical functional groups to the protein, such as the addition of 

carbohydrates in glycosylation, the addition of lipids in lipidation, or the addition of 

phosphate groups in phosphorylation. In the case of glycosylation, for example, the 

carbohydrate groups act as identification tags which assist in cell to cell recognition.  

 

We have briefly described the process of gene expression. The control of gene expression 

can be achieved by regulating any of the steps in the gene expression process. Much of 

the regulation depends on the control of the rate of transcription initiation. As discussed 

above, transcription factors are required to facilitate the transcription process. The 

different transcription factors that bind to the promoter region of a gene affect the binding 

ability of RNA polymerase to the promoter region, which in turn affects the rate of 

transcription. Gene expression can also be controlled by regulating the processing of 

mRNA. For example, the faster the non-coding regions of the mRNA are removed, the 

faster the mRNA is processed and the greater the quantity of gene product produced. 

Additionally, gene expression can be regulated by the rate at which the mRNA leaves the 

nucleus and enters the cytoplasm for the translational process. Moreover, the rate of gene 
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expression can be modulated by the rate of translation (the rate of protein synthesis), 

which is affected by the availability of amino acids or proteins [2]. Another means of 

RNA regulation is small interfering RNAs, which target specific RNAs after transcription 

and cause them to be degraded (thus pre-empting translation).  

 

So, how is a gene’s expression regulated such that it is only expressed when its 

corresponding protein is needed? As we know, each cell in the human body contains a 

complete strand of DNA, which contains all the genes present. However, not all the genes 

are expressed in all the cells. Depending on a cell’s specialization, some genes are 

expressed, while others are not. As mentioned above, transcription factors affect the rate 

of gene expression (and thus the activity level of a gene). The transcription factors are 

themselves products of other genes in the DNA, which are also regulated by other 

transcription factors. Thus, certain genes are responsible for regulating the expression of 

other genes, and they may also regulate themselves. In this way, all the genes and 

proteins can be combined together to form a gene regulatory network (GRN). As seen in 

Figure 1.1A, each gene has a promoter, located upstream of the gene. Transcription 

factors which bind to the promoter region may either activate or repress the activity of the 

gene. Some genes may also be regulated by regions that are more distant from the 

transcription site. Distant regulatory sites may activate or repress (and thus can be called 

enhancers or silencers) or both (depending on what factors are bound there). A gene is 

turned on (or expressed) when the process of gene expression occurs and a protein 

product is produced. The turning off of a gene means that the gene is no longer able to 

synthesize its products. 
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Learning the structures of GRNs--that is, which genes which regulate which others--is an 

important and challenging problem in the field of genetics. The accumulation of data due 

to either the advancement of next generation sequencing technologies, RNA-seq or mass 

spectrometry, has made it possible to understand the organization of genes in genetic 

pathways. The data produced offers an insight of the genes’ activities under various 

biochemical and physiological circumstances. Using the data collected, scientists are able 

to reverse engineer or infer the structure of the gene networks [3-9].   

 

A GRN [10] describes a group of interacting genes, and is often conceptualized as a 

directed graph in which links indicate direct regulatory effect, and may be further 

categorized into activating or repressing. The absence or presence of genes in a network 

and their response to external stimuli (if any) influence the behavior of the network. To 

predict the behavior of a network, scientists may observe an output trait (or phenotypic 

consequence) produced by the genetic pathway in response to an external stimuli [11, 19, 

20, 21, 22]. While many genes have been discovered, there still exists situations where 

the activity of the genes and the direction of regulation remain unknown. GRNs can be 

modeled in different ways depending on the features the researcher is investigating. They 

can be discrete or continuous, stochastic or deterministic, with feedback loops or without 

feedback loops and directed or undirected. In our work, each regulatory gene is regarded 

as a logic processing unit, which receives input and generates output. The combination of 

genes produces a gene network, i.e. a logical processing system. The architecture of the 

GRN, or the causal structure of the network, refers to the type and direction of the 

relationships between the genes. Although a genetic pathway may be composed of 
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different network substructures, each performing a different function, we consider a 

substructure composed of two genes.  

 

There are many computational methods for the mapping of GRNS. One such technique 

known as epistasis analysis infers the network structure by considering patterns of change 

in an observable trait resulting from single and double gene deletions. Other techniques 

not in context of epistasis analysis for GRN inference do exist. However, while epistasis 

analysis limits the discrimination of networks to only the observation of the phenotypic 

consequence, other approaches involve the measurement of the expressions of all of the 

genes in the genetic pathway under study using methods such as microarrays or RNA-

seq. One could argue about the possibility of observing the activity of the genes to 

discriminate between the networks. However, gene expression can be modulated by 

different factors, such as the transcriptional initiation, RNA processing and post-

translational modification of a protein. Each of these factors may result in different forms 

of gene expression. Thus, the notion that is relevant to the function of a particular GRN is 

unknown. If one does not know which factor is relevant, the wrong form of the gene’s 

expression may be measured, such that one may conclude that the gene does not affect 

the observable output trait of interest, when it really does.  

 

Another reason the measurement of genome wide expression is not assumed in epistasis 

analysis is that epistasis analysis is often applied in the context of large screening 

experiments. In epistasis analysis, many single and double deletion mutants are tested, 

while for some of the proposed GRN inference methods double gene deletions are not 
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accommodated for. We have previously discussed the ability of microarrays, RNA-seq or 

mass spectrometry to measure the expressions of genes along the entire genome. 

However, measuring the expression of all the potentially relevant genes in their various 

conditions is not a feasible solution that could be performed by a present day lab. For 

example, let us assume that our two gene pathway structure is driven by an external 

stimuli. Naturally, expressions of normal genes in response to the presence or absence of 

the stimuli are measured. In epistasis analysis, additional expressions of genetically 

perturbed genes under single and double mutant deletions are also measured. Thus, in this 

case, each gene needs to be measured under 8 different conditions. While it may seem 

feasible for our substructure, GRNs are usually composed of many more genes. The 

number of combinations to be tested is exponential depending on the number of genes in 

the network and the number of external stimuli considered. As a result, in epistasis 

analysis, to infer the structure of the genetic pathway, we assume that we can only 

observe the activity of the output trait. Targeted follow up experiments of desired 

pathways could be conducted to directly observe the activity of every gene. The more 

accurate the pathway estimates, the more reliable the follow up experiments.  

 

Avery and Wasserman [11] proposed the notion of epistasis analysis as a logical 

framework for the identification of biological pathways from the data collected. Figure 

1.2 [26] displays the logic behind the standard epistasis analysis approach.  As seen in the 

figure, epistasis analysis refers to the use of gene deletions to identify the interactions 

between genes. More specifically, it refers to situations where the outcome of deleting 

two genes is “surprising” compared to the results of deleting each gene individually. 
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Figure 1.2: Classical epistasis analysis. 

In the first row, both genes X and Y are in their wild-

type forms. The middle rows represent the phenotype 

produced in the case of single knockout of each gene 

individually. In, the last row both genes are knocked 

out. One notion of epistasis occurs if the phenotype 

produced by the double mutant (Z2) is similar to that 

produced by one of the single mutants, but not the 

other. (Source: [26]) 

 

Consider Figure 1.2, for example. With no gene deletions, both genes X and Y are in their 

wild-type form, producing an expected phenotype Z. Individual gene deletions of X and Y 

result in phenotypes Z1 and Z2 respectively. Knowing the phenotypic consequences 

resulting from the single gene deletions, but not knowing the relationship between X and 

Y, we would not have any clear expectation of what might result when both X and Y are 

deleted. Suppose we observe, however, that the double deletion phenotype is Z2. In this 

case, genes X and Y are said to be epistatic to each other, as the outcome of deleting both 

genes is similar to the results of deleting Y. This is one notion of surprise in epistasis — 
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one gene's deletion masks the effect of the other's deletion. (Although as we will see in 

the next chapter, interpreting masking epistasis is not always as easy as in this example.) 

Another notion of surprise refers to situations where double deletions aggravate or 

alleviate the effect of one of the single gene deletions. 

 

While classical epistasis has yielded deeper insights on numerous genetic pathways [11-

29], it is not without limitations. One limitation is that it is not always possible to infer 

the relationship between a pair of genes using epistasis analysis. Similar input-output 

relationships can be generated by quite different networks, even when subjected to gene 

deletions.  

 

Let us first consider the three hypothetical networks in Figure 1.3, which illustrate the 

relationship between an input signal S, two intermediate genes X and Y, and an output 

trait Z. An arrow in the figure represents activation. For example, the link S→X means S 

activates X. The signal S can either be on or off. Activating the signal eventually leads to 

the signal propagating to the output trait Z, and turning it on. Similarly, deactivating the 

signal results in the output trait being off.  The deletion of either one of the intermediate 

genes (X or Y) detaches the signal from the output trait. The output trait is off for all the 

networks regardless of the signal state upon the deletion of the either one or both of the 

genes. Thus, these three networks cannot be uniquely identified using classical epistasis 

analysis. 
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What happens if dynamics is introduced into the analysis? Suppose we drive the genetic 

pathways in Figure 1.3 with a dynamic signal S that is turned off for a long time, 

activated for the same period of time, then turned off again. Figure 1.4 displays the 

transitions of the output trait Z at each time step for the three network structures. For all 

the networks when the signal turns on, the output trait Z turns on three time steps later (at 

time step 7). However, there is a difference in when the output signal turns off again. The 

output trait in the first two networks (Figure 1.3A and B) takes longer to turn off. The 

signal has to propagate through three links before reaching Z. The direct link between 

gene Y and the output trait Z in Figure 1.3C, however, allows the signal S to propagate 

more quickly to the trait as it only passes through two links. Thus, dynamics alone 

 

Figure 1.3:  Example of three genetic 

pathway structures. 

 

Three different genetic pathway structures 

that cannot be discriminated using static 

epistasis analysis or dynamics alone. 
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without any genetic perturbations could be used to discriminate the first two networks 

from the last network in Figure 1.3. However, dynamics alone still cannot be used to 

discriminate between Figures 1.3A and B, as in both cases, the signal flows through three 

links before finally turning off Z. We can conclude that neither classical epistasis analysis 

nor dynamics alone can discriminate between these two networks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Epistasis analysis has virtually always been applied to static data. The inference rules of 

Avery and Wasserman do not acknowledge the importance of dynamics in the input 

 

 

 

 

 

 

 

 

Figure 1.4: Line graphs to describe the effects of a time-varying input signal S on 

the three networks in Figure 1.3. 

The signal is off for four time steps, then turned on for the next four time steps, and 

finally turned off. Graph A, B and C correspond to Figures 1.3A, B and C respectively. 
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signal S. The signal S is assumed to be constant in time, and thus the state of output trait 

Z has a constant steady state for the given input.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Another example of a pair of hypothetical networks that cannot be discriminated by 

either approach is shown in Figure 1.5. A horizontal bar in the figure represents 

suppression. In Figure 1.5A, turning on the signal S results in turning gene Y on, which 

suppresses gene X and then turns off Z. Gene X is only activated when both the signal S is 

on and gene Y is off. Similarly, if the signal is off, Z is turned off. Figure 1.5B also results 

in the same input-output relationship. If the signal is on, gene X is activated, which in 

turn suppresses gene Y and turns off Z. If the signal is off, the output Z is also off. In 

Figure 1.5A and B, Z is on only when both X and Y are activated due to the presence of 

 

Figure 1.5:  Example of a pair of 

networks.  

A pair of networks that cannot be 

discriminated against using either 

epistasis analysis or dynamics alone.  
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the logical AND at Z. Thus, using epistasis analysis does not help us distinguish between 

the two network pairs. Both networks display the same behavior towards the input S. 

Dynamics alone also does not help, as in both networks, the output trait Z behaves in the 

same way as the signal propagates. In Figure 1.5A, when the signal is on and both genes 

are off, genes X and Y are activated at the next time step. (Gene X is activated because the 

signal is on and gene Y is off at the previous time step.) Gene X turns on briefly for one 

time step (until Y turns on), which causes the output trait Z to turn on briefly as well. 

Similar observations are seen in Figure 1.5B.  

 

To our knowledge, only Azpetia et al. [26] have investigated epistasis in the context of 

dynamical networks with feedback. The authors argue that classical epistasis analysis 

may lead to wrong inferences when, in fact, there are dynamical feedbacks. The GRN in 

Figure 1.6 [26] is used to demonstrate this claim. Both genes X and Y receive input 

signals which activate them separately and both genes can activate themselves (with 

feedback loops). For example, after gene X activates itself, gene Y and the output trait are 

deactivated. Correspondingly, gene Y also activates itself, which leads to the suppression 

of gene X and activation of Z. The authors demonstrate that a steady signal for both X and 

Y (with the input signal for X always being off and the signal for Y always on) results in a 

fixed activated state for Z, which does not assist in identifying the network structure. 

Fluctuating the input signals for both X and Y, however, leads to variations in the activity 

of Z, which is determined by the state of the genes at the previous time step. Xu et al. 

[27] also describe a notion of dynamic epistasis, but not in the sense of temporal network 
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dynamics. Rather, their focus is on the distinct behaviour of different mutant alleles of 

genes, and the evolution epistatic interactions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

We believe that a dynamic input in addition to epistasis analysis is a powerful tool to 

discriminate between networks. The above observations motivate the main question of 

this study: How powerful is epistasis analysis if we are allowed to integrate dynamics 

into the experiment? We extend the classical approach by using a time-varying input 

signal, where the phenotypic consequence is measured at each time step, and quantify 

how helpful the addition of dynamics is by studying identifiability of two-gene pathway 

structures and individual links in those pathways.  

 

Figure 1.6:  Example of genetic 

network. 

A GRN which produces a 

different Z output pattern when 

either epistasis analysis or 

dynamic epitasis is used. INy and 

INx are input signals for the 

genes Y and X respectively. 

(Source: [26]) 
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The subsequent chapters are divided as follows. We begin with a literature review 

discussing previous related work on computational methods for GRN inference not in 

context with epistasis analysis. We then describe the related work on the classical 

epistasis analysis approach. Next, we define the theoretical framework used for 

identifiability analysis under different models of epistasis—static or dynamic, allowing or 

not allowing gene deletions (knockouts), and allowing or not allowing over-expression 

(knockins). We then use that framework to study identifiability of whole network 

structures, as well as individual network links, within different classes of networks. In the 

final chapter, we summarize our primary findings and point out avenues for future work. 
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2 BACKGROUND  

In this chapter, we first refer to related work on GRN inference techniques not in 

reference to epistasis analysis. Then we describe the related work on epistasis analysis.  

 

2.1 GRN Inference 

Identifying the regulatory relationships between genes, including the direction of 

influence and the type of the relationship, is a fundamental challenge in molecular 

genetics. There are numerous computational methods for estimating GRN models, 

depending on the nature of the data available and the modeling formalism chosen [3-9].  

 

Previous studies have investigated the possibility of using the unique input-output 

relationship of genes in a GRN to completely infer the structure of the network from time 

series data [3-9]. For instance, the expression levels of genes are experimentally 

measured as they change over time in response to an external stimuli, then transcriptional 

networks are reengineered from the data.   

 

In Liang et al. [3], the authors conduct a simulation study of GRNS and develop a 

computational method, called REVerse Engineering ALgorithm (REVEAL), which 

models the simulated gene networks as Boolean models. A state transition table, which 

represents the expression of genes at each time step, is constructed for each model.  The 

expression of genes at time 𝑡 is compared to its expression at time 𝑡 + 1, which 

corresponds to their input and output states respectively. The state transitions of each 
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gene are analyzed by using the information theoretic principles of mutual information 

analysis for the gene’s input and output states. The activity of a gene at 𝑡 + 1 may be 

affected by more than one input gene. As a result, if the mutual information analysis 

cannot explain all the state transitions with one input, the number of inputs per unsolved 

gene is increased iteratively until the state transitions of the gene can be explained with 

the maximum number of inputs per gene equal to the number of total genes in the 

network. The performance of the tool is tested by varying the number of genes and the 

number of inputs per gene in the randomly generated Boolean networks. The authors 

observe that the algorithm performs well with networks of smaller number of inputs (< 3) 

per gene. Inferring the network structure with a higher number of inputs is difficult and 

computationally intensive.  

 

As gene expression is sometimes stochastic in nature, others have proposed learning a 

more general model system from the data, specifically a dynamic Bayesian network, 

which can model stochasticity, incorporate prior knowledge and handle hidden variables 

and missing data [4, 8]. Another approach which aims to construct the first draft of the 

topology of the entire gene network involves the use of singular value decomposition 

which generates a set of feasible solutions (i.e. networks) and the selection of the sparsest 

network using robust regression [5]. The assumption that naturally occurring GRNs in 

most biological systems are sparse such that each gene interacts with a small percentage 

of genes is made. However, since small gene networks cannot be regarded as sparse, this 

approach is not suitable for the fine tuning of small subnetworks which have a biological 

function. The increased complexity of cellular gene, protein and metabolite networks 
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motivated Gardner et al. [6] to develop a method called the network identification by 

multiple regression (NIR) for the rapid and scalable identification of the structure of 

GRNs with the use of no prior information on the network structure. NIR is a form of 

system identification based on multiple linear regression analysis of steady-state 

transcriptional profiles [6]. The authors claim that the algorithm is robust to high levels of 

measurement noise and correctly identifies key regulatory connections in a network.  

 

Margolin et al. [7] develop an additional computational method, namely The Algorithm 

for the Reconstruction of Accurate Cellular Networks (ARACNE). The authors claim the 

available approaches suffer from limitations such as over-fitting, high computational 

complexity, dependence on non-realistic network models, or the need for additional data, 

and thus are only able to uncover interactions in simple prokaryotic organisms, such as 

the yeast Saccharomyces cerevisiae. As a result, the authors design ARACNE to 

specifically recover direct transcriptional interactions in more complex topologies, such 

as the mammalian GRNs, with high confidence from microarray expression profiles. 

ARACNE relies on the computation of the mutual information for all the gene pairs in a 

dataset and the elimination of most indirect interactions using a co-expression method, 

namely data processing inequality (DPI). DPI states that if two genes X and Y only 

interact through a third gene W, such that there is no alternative path between X and Y, 

then the least mutual information between all the gene pairs arises from the indirect 

interaction between X and Y. ARACNE utilizes this logic by examining each gene triplet 

and removing the edge with the smallest mutual information value.  
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Within the context of the DREAM (Dialogue on Reverse Engineering Assessment and 

Methods) project, Marbach et al. [9] conduct a critical performance assessment 

comparing numerous inference algorithms. The participants of the project were asked to 

predict the structure of gene networks using only synthetic gene expression data with no 

knowledge of the multiple benchmark networks (i.e. target networks). Gaussian noise 

was also added to the expression data. In addition to time series data, data on the 

knockouts and knockdowns of every gene were provided. The overall accuracy and 

performance of the methods on individual motifs were then calculated. In their summary, 

Marbach et al. [9] did not go into detail on how the different algorithms were developed. 

However, their overall results are the following observations. The authors claim that 

sophisticated techniques are not required to reliably infer the network structure and the 

outstanding quality of the winning team’s predictions is mainly due to the performance of 

a simple method based on the model of the noise. The network motif analysis also 

showed that the overall quality of the network predictions are influenced differently by 

systematic prediction errors, such as the failure to distinguish between direct and indirect 

regulations or accurately infer the multiple regulatory inputs of genes. The overall results 

suggest that correctly inferring the structure of a network from gene expression data 

remains an unsolved issue. According to the authors, however, potential ways of 

improvement may include the use of a combination of reconstruction network methods. 
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2.2 Epistasis Analysis  

Up to this point, a brief review of the many computational methods used for the 

reconstruction of GRN models from gene expression data was given. We now examine a 

classical method from genetics, which in its simplest form can be performed by hand —

epistasis analysis [11, 12, 13]. Epistasis is a vital tool in functional genomics to enhance 

our understanding of the GRN components and their order of action [11-29]. 

 

In this subsection, we first describe the different notions of epistasis analysis: as masking 

or as aggravating/alleviating the effect of a gene. We then describe the different 

biological elements previous studies have considered in epistasis analysis. Finally, we list 

computational methods used for epistasis analysis. 

 

2.2.1 Epistasis as Masking 

As formalized by Avery and Wasserman [11], and as stated previously, classical epistasis 

is the identification of the structures of GRNs and the regulatory interactions between 

genes by examining the relationship between some “signal” and some “trait” or 

phenotype that we can observe. The trait is observed in different signal states in a wild-

type organism and under conditions of single and double knockouts of genes in a 

pathway controlling the trait. Avery and Wasserman studied how the gene deletions 

impact the trait in the absence or presence of a signal to infer which gene is upstream of 

the other and whether it activates or represses the downstream gene. They also showed 

some cases in which the relationships between genes in a GRN can be inferred.  
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Consider a GRN with two intermediate genes X and Y, where the output trait Z is 

observed in the absence or presence of a signal. The two genes and signal can either be 

on or off, with no intermediate levels of activity. Avery and Wasserman deduced a set of 

general rules for epistasis analysis. According to their definition, epistasis occurs when 

the deletion of the genes X and Y looks identical to the deletion of one of the genes (say, 

X) but not the deletion of the other gene (Y). Hence, the notion of “surprise” here is that 

the single deletion of X masks, or obscures, the deletion of Y. 

 

Avery and Wasserman illustrated their formulation in two examples (See Figure 2.1). 

They showed how one can correctly determine the ordering of genes in the sex 

determination and programmed cell death pathways of Caenorhabditis elegans using the 

inference rules they propose. Because their examples are so informative, and show the 

subtlety of inferring network structure from gene deletions, we reprise their arguments 

here.  

 

Figure 2.1A, shows how the gene knockouts of tra-1 and/or her-1 produce different 

phenotypes which can be used to examine the effects of epistasis on a GRN. Sex 

determination in C. elegans is determined by X chromosome dosage. When there is only 

one X chromosome (XO), her-1 is activated and tra-1 suppressed, leading to the male 

development. Increasing the X dosage with two X chromosomes, however, (XX) results 

in the suppression of her-1 and activation of tra-1, resulting in hermaphrodite 

development. 
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The gene tra-1 is required for direct hermaphrodite formation. The knockout of tra-1 

leads to the formation of only males (both XO and XX are males), while the knockout of 

her-1 produces only hermaphrodites. The knockout of both gene results in phenotypes 

produced similar to the phenotype of tra-1 single mutants, i.e. only males are produced. 

In this case, the phenotypes of the individual mutants are different from the wild-type and 

from each other. Also, the phenotype of the double knockout is similar to one of the 

single knockout phenotypes. Examining the phenotypes generated, we can say that tra-1 

is epistatic to her-1, meaning that tra-1 masks the effect of her-1. Thus, in this case, the 

downstream mutation is epistatic to the upstream mutation.  

 

 

Figure 2.1: Examples of pathways 

examined by Avery and Wasserman. 

(Source: [11]) 
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In contrast, Figure 2.1B show a network in which the upstream mutation is epistatic to 

the downstream mutation. The activation of ced-3 leads to the activation of ced-1 which 

results in cell death and engulfment. The knockout of ced-3 leads to the cell remaining 

alive and unengulfed. Alternatively, the knockout of ced-1 still results in cell death, but 

the cell is not engulfed as ced-1 is required for engulfment. Double gene deletion of ced-1 

and ced-3 results in the same phenotype as knocking out ced-3. Since ced-1 cannot be 

activated without ced-3, we can say that ced-3 is epistatic to ced-1. In the model of 

programmed cell death in C. elegans, the knockout of the ced-3 gene masks the effect of 

the downstream gene, ced-1, in its pathway, yielding a different output than expected.  

 

Avery and Wasserman illustrate the different epistatic effects of gene deletions on the 

output of a network. They also demonstrated that genetic knockins, which permanently 

activate a gene, can provide useful information for determining pathway structure. 

 

2.2.2 Epistasis as Aggravating or Alleviating Double Deletions 

A quite different notion of epistasis is when the double deletion produces an effect much 

stronger than we might expect from the outcomes of the single deletions. An example of 

this notion of epistasis can be found in the work of Tong et al. [14, 15]. Utilizing the gene 

deletion mutations for each of the known genes in Saccharomyces cerevisiae created by 

the yeast genome project [16], Tong et al. experimentally study epistasis by using 

synthetic genetic arrays (SGAs) to identify synthetic lethal interactions (SSL) between 

individual genes. The SGA methodology involves the crossing of a mutated gene of 

interest into the entire genome of deletion mutants to produce a double mutant [14]. SSL 
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occurs when the combination of two mutations lead to cell death, when each single 

mutation alone does not. They conducted a large scale application of SGA, where 132 

different genes mostly involved in actin-based cell polarity, cell wall biosynthesis and 

DNA synthesis and repair, were crossed into a set 4700 viable gene deletion mutants [14, 

15]. The resulting double mutant descendant was then scored for fitness defects. SSL 

occurs when the fitness of the double mutant shows a significant deviation from the 

single mutants. The results of their experiment suggests that functionally related genes 

often tend to interact with each other. Also, genes which constitute the same genetic 

pathway or biological process tend to have similar patterns of genetic interactions. 

Similar results were observed when the SGA approach was further extended by 

Constanzo et al. [25] to examine 30% of the yeast genome.  

 

The scope of quantitative epistasis analysis was later widened by the experimental 

investigation of other types of genetic interactions [17, 18].  SSL analysis is a specific 

case of a wider epistasis phenomenon. While synthetic lethality represents a qualitative 

feature (a double deletion results in death or it does not), synthetic sickness is quantitative 

(for instance, if growth rate is taken as a measure of cellular health). To further sub-

classify the types of interactions, epistasis can either be positive (equivalently alleviating, 

antagonistic or buffering) or negative (equivalently aggravating, synergistic or synthetic). 

Positive interactions describe cases where a double mutation generates a phenotypic 

consequence less severe than expected. In this case, the double phenotype is healthier 

than the sickest single mutant and the genes which act together in a single complex or 

pathway will often have buffering interactions with each other. Negative interactions, on 
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the other hand, which include SSL, include cases where the double mutation produces a 

phenotypic consequence more severe than expected. In the specific case of SSL, as 

mentioned above, the phenotype of a double mutant results in cell death, an effect more 

severe than the phenotypes of the single mutants.  

 

2.2.3 Phenotype, Input Signal and Species  

The logical modeling of a gene network to infer the structure of individual genes or gene 

modules is made from purely phenotypic measurements, be it qualitative or quantitative. 

In addition to cell death [11], qualitative measures may also include the activation or 

inhibition of cell development [19] or the gender type [11]. Traditional uses of epistasis 

to order genes within a pathway have become progressively quantitative. Quantitative 

phenotypic measures involves using a method to quantify and measure genetic 

interactions for various phenotypic traits, such as growth rate (fitness) [20, 21], gene 

expression [21, 22] or unfolded protein response in endoplasmic reticulum of yeast [23].  

 

Additionally, in the investigation of epistasis in a pathway, researchers need to decide the 

type of input signals to manipulate, such as the use of DNA damaging agents like MMS 

[20], cell starvation or the availability or scarcity of certain nutrients (such as the absence 

or presence of galactose [24]). While many explicitly integrate the signal in their study, 

some only exploit gene deletions to investigate the epistatic nature of the network. For 

example, Jonikas et al. [23] used gene mutations as a form of cell stress to characterize 

their functional dependencies. 
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Scientists have also embarked on cases of GRNs in different species. Yeast S. cerevisiae 

has been extensively explored [17, 18, 20, 22, 24, 25, 27, 28]. Other studies include 

growth and development of amoeba Dictyostelium discoideum [19, 22] and programmed 

cell death, sex determination or vulval development in C. elegans [11, 13]. In addition, 

research on epistatic interactions of genes in different conditional environments has been 

explored, such as the study of genes in yeast in glucose abundant and nutrient limiting 

conditions [24].  

 

2.2.4 Computational Methods 

The issue of increased complexity of data (phenotypes of single and double mutants) and 

lack of inference rules prompted the development of computational methods, which 

involve the use of the phenotypic consequence produced by the mutant organisms for the 

automatic inference of the structure of the gene network. Genepath [19] first 

implemented the genetic logic proposed by Avery and Wasserman using logic 

programming to construct gene networks based on qualitative phenotypes. Additionally, 

many have resorted to the use of the hierarchical clustering approach which exploits 

quantitative phenotypic measures to group genes with similar phenotypic consequences 

together and then identify the type of relationships between the groups of related genes 

[17, 18, 20, 22, 23]. Methods have advanced from roughly grouping the genes based on 

their phenotype into functional groups to analyzing detailed structures of the relationships 

between genes and revealing the functional dependencies. For a more detailed analysis of 

the gene pathways, others adopt a Bayesian learning approach [29, 30] where a large set 

of genes and their functional dependencies are represented by an ensemble of activity 



 

28 

pathway networks (APNs) and APNs with the highest confidence are selected for further 

analysis. Many have also adopted the utilization of mathematical and logical models to 

represent the genotypic-phenotypic relationship, such as flux balance analysis [17, 24, 

27], generalized linear model regression [20] and multi linear regression [21].  
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3 THEORETICAL FRAMEWORK 

Here, we describe the theoretical framework used in our comparative study of static and 

dynamic epistasis. The chapter is divided as follows. We first explain Boolean network 

models and how they are used to represent GRNs. Next, we give details on the different 

classes of networks generated for our analysis. After which we describe how to run a 

simulated experiment on a network. We then explain the set of experiments conducted on 

each network structure. Finally, we describe the types of identifiability analysis 

performed to quantify how helpful the addition of dynamics is to epistasis analysis.  

 

3.1 Boolean network model 

There are many methods to model GRNs [11-31]. GRN models can either be: stochastic 

or deterministic, directed or undirected, with discrete or continuous expression, with 

discrete or continuous time, and with feedback loops or without feedback loops. The 

main interest for this thesis is to determine the advantage of using a time varying signal in 

epistasis analysis. Thus, in our theoretical investigation, we model GRNs in one of their 

simplest forms--as Boolean networks. Kaufmann [31], in the 1970s, investigated the 

organization and dynamic properties of Boolean networks as random models of GRNs. 

Many studies then further investigated the use of Boolean models to represent molecular 

and genetic networks [32-36]. For example, Boolean network models were used to 

analyze normal and neoplastic cells' cycles in cancer biology [33] and yeast 

transcriptional networks [35].  
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The Boolean network is advantageous for many reasons. Being a fully discrete model, the 

Boolean model makes it possible to enumerate all possible networks of a given size. 

Additionally, as a deterministic model, our main concern is whether a network is 

consistent or not with experimental observations. There is no “degree of match” as we 

would have with a probabilistic and/or continuous model. Moreover, as time is discrete, 

we can enumerate dynamic signals. With a Boolean model, we also do not need to 

account for noise or observation accuracy, as we would with a continuous model. We 

believe that the use of a Boolean model can be the first step to determining relevant 

global features that may be found in real biological data (gene expression). The simplicity 

of the Boolean network model to represent GRN may provide a dependable guide to the 

behaviour of similar systems with more complex behaviour (with continuous, 

probabilistic functions, etc.) [31-36]. Studies suggest that while the gene expression may 

be continuous, there is usually a cutoff which can be used to classify genes as on or off 

[32, 34]. Many studies have also used Boolean variables to represent genes to accurately 

infer the structure of GRNs [11-36].  

 

A Boolean network [34] 𝐺 = (𝑉, 𝐹) is a directed graph which consists of a set of nodes 

𝑉 = {𝑣1, 𝑣2 , … , 𝑣𝑛} together with a set of Boolean functions 𝐹 = {𝑓1, 𝑓2 , … , 𝑓𝑛}, such 

that for 𝑘 ≤ 𝑛: 

𝑓𝑖 : {0,1}𝑘 → {0,1} 

Each node 𝑣𝑖 has a Boolean function 𝑓𝑖 associated with it. A function determines the state 

of each node 𝑣𝑖 . If a particular node 𝑣𝑖 does not have any k inputs, then the state of the 

node will remain unchanged. If k > 0, the inputs of the Boolean function 𝑓𝑖  for the node 
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𝑣𝑖 are the set of input nodes directly connected to it and thus the state of 𝑣𝑖  is determined 

by its inputs. The nodes of a Boolean network are deterministic, meaning that for a given 

input, the same output is always produced. The topology of a network, which refers to the 

nodes and the connections between them, can be determined from the set of functions of 

all the nodes in the network. Consider Figure 3.1, the network consists of three nodes 𝐴, 

𝐵 and 𝐶. The set of functions per node (𝑓𝐴(∅) = ∅, 𝑓𝐵(𝐴, 𝐶) = 𝐴 𝐴𝑁𝐷 𝐶, 𝑓𝐶(𝐴) = 𝐴),  

give an indication to the number of inputs per node and the type of relationship between 

them. With these functions, for example, we know that 𝐴 has no inputs and 𝐵 receives 

input from 𝐴 and 𝐶, such that both 𝐴 and 𝐶 need to have a value of one, for 𝐵 to be one.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1:  Example of a Boolean graph. 
This Boolean graph has nodes  𝑨, 𝑩 and 𝑪 , 

where 𝒇𝑨(∅) = ∅, 𝒇𝑩(𝑨, 𝑪) =
𝑨 𝑨𝑵𝑫 𝑪, 𝒇𝑪(𝑨) = 𝑨. 
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The time and state variables of a Boolean network are discrete. For any Boolean network, 

if the state of a node 𝑣𝑖 at time 𝑡 is given as 𝑥𝑖 (𝑡). The state of the same node at time 𝑡 +

1 is denoted as  

𝑥𝑖 (𝑡 + 1) =  𝑓𝑖 (𝑥𝑖1 , 𝑥𝑖2, … , 𝑥𝑖𝑘  ) 

where 𝑥𝑖𝑗 are the states of the input nodes directly connected to 𝑣𝑖 . The equation above 

implies that the state variable updates are done synchronously, which is the case for 

classical epistasis. 

 

As mentioned previously, epistasis analysis involves the observation of an output trait 𝑍 

in response to an input signal 𝑆 and genetic perturbations of the intermediate genes 𝑋 and 

𝑌. Although these may comprise a subnetwork which is part of a larger network, our 

study investigates only the elements of the subnetwork: 𝑆, 𝑋, 𝑌and 𝑍. The nodes in our 

Boolean model are the biological variables: 𝑆, 𝑋, 𝑌and 𝑍, the directed edges demonstrate 

the relationship between them and the logical functions determine the state values of the 

variables depending on the states of their inputs.  

 

In our study, we assume that we can control the input signal 𝑆 in an arbitrary time-

dependent manner, so that the input to the network is the time-varying 𝑆(𝑡). We also 

assume that the time takes discrete values, = 1, 2, 3 … , and at each time step, each of the 

four state variables takes a Boolean value. In the case of classical epistasis analysis, the 

input signal 𝑆 is fixed in any given experiment, meaning that the signal is either always 

on or always off. The control of the signal 𝑆 is experimentally possible when the signal 
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represents an experimental variable (or external stimuli) that is easily manipulated, such 

as the presence or absence of a drug or nutrient source in the medium in which cells are 

being grown. To represent cases with limited control over 𝑆(𝑡) we also investigate the 

extent to which limited dynamical changes in 𝑆 can be beneficial to epistasis analysis. 

 

The four state variables can have the value of 1 or 0. In the case of 𝑆, 1 denotes that the 

signal is on, while 0 means that it’s off. For example, in an experiment where the drug 

dosage represents the signal, in the absence of the drug, the signal is off, and in the 

presence of the drug, the signal is on. The values of the intermediate genes 𝑋 and 𝑌 

represent the activity of the genes, where an active or inactive gene can have the value of 

1 or 0 respectively. A knocked in (KI) gene is gene that is over expressed (always on). 

We assume that a gene can be in one of three forms: inherent (or wild-type), deleted or 

knocked out (KO), or knocked in. Inherent genes represent the typical forms of the genes 

as they appear in nature. The activity of each inherent gene in our model can be 

expressed as follows: 

𝑋(𝑡 + 1) =  𝑓𝑥(𝑆(𝑡), 𝑌(𝑡)) , 

𝑌(𝑡 + 1) =  𝑓𝑦(𝑆(𝑡), 𝑋(𝑡)) , 

where the expression of a gene is determined by the gene or signal directly affecting it.  

As stated above, we also allow the genes in some experiments to be altered to take fixed 

values. The deletion of the genes 𝑋 or 𝑌 eliminates the gene and any function it might 

have. They are modeled by: 

𝑋(𝑡) = 0 𝑜𝑟 𝑌(𝑡) =  0 , 
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for all times 𝑡, such that the gene is always off rather than following its wild-type 

dynamics. For the case of knockins, the genes are expressed as:  

𝑋(𝑡) = 1 𝑜𝑟 𝑌(𝑡) =  1, 

such that the gene is always on. Performing such genetic manipulations is not always 

trivial, but there has been a great deal of genetics research for centuries, and there are 

many well-established means for doing so. 

 

The output trait 𝑍 is assumed to follow the Boolean dynamics at all times and in all 

experiments. A value of 1 denotes that the phenotypic consequence of a genetic pathway 

is observed or measured to be above a specified threshold, while 0 means that the trait is 

not observed or measured to be below a specified threshold. (The threshold is specified 

by the scientist conducting the study.)  The activity of 𝑍 may depend on any or all of the 

other three biological variables 𝑆, 𝑋 and 𝑌, so that: 

𝑍(𝑡 + 1) =  𝑓𝑧(𝑆(𝑡), 𝑋(𝑡), 𝑌(𝑡)). 

 

The indegree of a gene or the output trait is the number of variables directly affecting it. 

Each input can appear directly or negated, in which case it is considered activating or 

repressing respectively. Let us first consider when the indegree of a gene/output trait is 

one. For example, when 𝑋(𝑡 + 1) =  𝑆(𝑡), the gene 𝑋 is activated when the signal 𝑆 is on 

at the previous time step. Conversely, if 𝑋(𝑡 + 1) =  𝑁𝑂𝑇 𝑆(𝑡), the gene  𝑋 is activated 

only if the signal 𝑆 is off at the previous time step. In this case, we say 𝑆 represses 𝑋. In 

situations when there is more than one input to a gene/output trait, we restrict 𝑓𝑥, 𝑓𝑦 and 
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𝑓𝑧 to be the logical AND or logical OR. For example, if the rule for 𝑍’s dynamics is 

𝑍(𝑡 + 1) =  𝐴𝑁𝐷(𝑁𝑂𝑇 𝑆(𝑡), 𝑋(𝑡), 𝑁𝑂𝑇 𝑌(𝑡)), then we would say 𝑍 is repressed by 𝑆, 

activated by 𝑋 and repressed by 𝑌, and that 𝑍 turns on only when 𝑋 is on at the previous 

time step, and neither 𝑆 nor 𝑌 are on. 

 

We follow the assumptions used by most of the previous work on epistasis analysis 

regarding the type of networks used. We assume that all the networks generated are 

acyclic. For example, there is no cyclic dependency between 𝑋 and 𝑌 meaning that a 

connection between the two genes, if any, is only one direction. Auto-regulation is also 

not allowed. In classical epistasis analysis [11], these assumptions are made so that the 

output trait 𝑍 comes to a fixed, steady state value for any given fixed value of the input 𝑆, 

and that the steady state value is independent of the initial state of the network. For our 

project, we remove the restriction of observing only steady state traits. However, we 

retain the acyclicity assumption to avoid initial state dependence. 

 

3.2 Network Classes 

In this section, we describe the classes of networks used in our simulation study. We 

simulate more than one class of networks, from the most general which includes all the 

acyclic networks, to the simplest which consists of only 16 networks. The general 

network class represents situations in which scientists have less knowledge about the 

GRN under study. The more specialized class networks are for situations where scientists 

have an idea about either the type of interaction between the genes 𝑋 and 𝑌 (in the case 

of Linear or LinearPlus) or the effect of knocking out individual genes in the pathway (in 
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the case of Single Knockout Visible). Classes of networks of size greater than one are 

generated to observe what type of information (static or dynamic epistasis and with or 

without genetic perturbations) would be helpful to discriminate between the different 

network structures. Simulated experiments are conducted on all networks in each of the 

network classes. 

 

For a detailed analysis of GRNs, we generate all the possible network topologies of two 

genes 𝑋 and 𝑌 which regulate the state of an output trait 𝑍 when driven with a signal 𝑆. 

In our diagrams, an arrow and a horizontal tangent to the node denote activation and 

suppression respectively. We use all of six rules below to describe all the possible 

interactions in a network:  

1. Influence of the signal 𝑆 on gene 𝑋. 

2. Influence of the signal 𝑆 on gene 𝑌. 

3. Influence of the signal 𝑆 on output trait 𝑍. 

4. Interaction between genes 𝑋 and 𝑌. 

5. The effect of gene 𝑋 on 𝑍. 

6. The effect of gene 𝑌 on 𝑍. 
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Figure 3.2 displays all the possible links, not all of which are present in the same 

network. There can be an activating link between 𝑆 and 𝑋 (shown in Figure 3.2), as well 

repressing and absent links. The remaining links, excluding the 𝑋 − 𝑌 link, can have the 

same three choices. In addition to having no link, the 𝑋 − 𝑌 link can have activating or 

repressing links in either direction. Additionally, for all the network structures created, 

we assume that we have full control over the signal 𝑆 and any output from 𝑍 cannot be 

used as input for any of the other variables. 

 

Figure 3.2: Network structure with 

all the possible links allowed. In this 

figure, only activating links are shown. 

However, repressing links are also 

allowed. 
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We categorize the GRNs into four different classes of networks. The large number of 

networks in the classes are due to all the possible links we allow. Figure 3.3 shows the 

relationship between the different network classes using a Venn diagram. Below, we 

describe the characteristics and assumptions used in each class: 

 

 Linear Networks 

This is the simplest and smallest group of networks. It consists of all networks with only 

three links connected as 𝑆 → 𝑋 → 𝑌 → 𝑍 or 𝑆 → 𝑌 → 𝑋 → 𝑍.  Each link has two options, 

it can either be activating or repressing. With three links per network, two choices per 

link and two choices for the order of 𝑋 and 𝑌, there is a total of 2(23) = 16 networks in 

 

Figure 3.3: A Venn Diagram to represent the 

relationship between the different network classes. The 

AllAcyclic class is a superset of the other classes.  
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the Linear class. Figure 3.4 enumerates all Linear class networks, where the top row A 

differs from the bottom row B in the order of 𝑋 and 𝑌. 

 

 LinearPlus Networks  

The networks of the Linear class are a subset of this class. The LinearPlus class allows 

additional feedforward links. Consider the Linear chain 𝑆 → 𝑋 → 𝑌 → 𝑍 in Figure 3.4A, 

for example. Additional links would include links from any upstream variable to any 

downstream variable such as 𝑆 → 𝑌,  𝑆 → 𝑍 and 𝑋 → 𝑍. Each of the links may be 

activating, repressing or absent. For every Linear network structure, there are 85 possible 

LinearPlus networks. Two logical possibilities (logical AND or logical OR) are defined 

for each node with multiple inputs. By straightforward enumeration, we found the 

LinearPlus class contains 1360 distinct networks.  

 

LinearPlus is a more complicated class than the Linear class of networks. It allows more 

complex behaviour for the output trait 𝑍. In both the Linear and the LinearPlus network 

classes, 𝑋 and 𝑌 are both on a genetic pathway that leads from 𝑆 to 𝑍, but their ordering 

and the nature of their direct relationship, activating or repressing, is unknown. Thus, 

these network classes model situations in which we already have some strong evidence 

that two genes, 𝑋 and 𝑌, collaborate in a pathway.  
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 AllAcyclic Networks 

This is the largest network class (a superset of all the other network classes), and 

comprises all acyclic networks with the four variables 𝑆, 𝑋, 𝑌 and 𝑍. This class has only 

the two basic restrictions found in every class of networks considered: 𝑆 is controlled by 

the experimenter (does not take any inputs) and 𝑍 does not provide input to any other 

 

Figure 3.4: All the networks that make up the Linear network 

class. There is a total of 16 different network structures. 
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variable. The relationship between 𝑋 and 𝑌 is unknown such that the link 𝑋 − 𝑌 could 

either be absent or present. Whether 𝑆 influences the trait Z is also unknown. Thus, the 

AllAcyclic class models situations where the experimenter has very limited knowledge 

about the network structure. This class may be used to represent cases of high-throughput 

screens, where one is simply interested in genes or stimuli that might influence a trait. By 

straightforward enumeration, we found the AllAcyclic class contains 3243 distinct 

networks. 

 

 Single Knockout Visible (SKOV) Networks 

This group of networks is more restricted than the LinearPlus class and is a subset of the 

AllAcyclic network class. It is motivated by a common approach to detecting pathways 

that are affected by single gene deletions of 𝑋 or 𝑌 by identifying the candidate genes that 

may be in a pathway. For example, assume that the signal is always on. The output 

produced when both genes are in their wild-type form is compared to the output produced 

when gene 𝑋 is individually knocked out. Suppose you also compare the outputs 

produced when the signal is always off. If for either situation, there is a difference in the 

outputs produced, we can say that gene 𝑋 is “single knockout visible”. Additionally, 

suppose you conduct the same comparison with individually knocking out gene Y instead 

of X.  If there is a difference in the outputs produced in the individual knockout of both 

genes X and Y, then we can say that the network is “single knockout visible”. 
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Consider the network in Figure 3.5. The signal 𝑆 activates 𝑋, 𝑌 and 𝑍, where gene 

𝑌 receives input from 𝑆 AND 𝑋 and the output trait 𝑍 receives input from 𝑆, 𝑋 AND 𝑌. If 

𝑆 is on and both genes 𝑋 and 𝑌 are in their wild-type form, 𝑍 is on. However, the deletion 

of either gene 𝑋 or 𝑌 individually, while the signal is on, results in the turning off of Z 

due to the logical AND present at 𝑍. The contradicting effects on the output trait with and 

without the gene deletions of either 𝑋 or 𝑌 makes the pathway “single knockout visible”. 

That is, a single gene deletion of either gene helps in the understanding of the order of 

genes in the pathway, and thus the genes would be flagged in a single knockout screen. A 

follow up to such a screen might be to do a more detailed epistasis analysis, to try to 

understand how the different flagged genes are related. By straightforward enumeration, 

we found the SKOV class contains 220 distinct networks, the second to smallest network 

class.  

 

Figure 3.5: An example of a 

SKOV network structure. 
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3.3 Running a simulated experiment on a network 

As stated above, we are considering four different classes of networks. To determine the 

type of data we can obtain from a network using different input signals and genetic 

perturbations, we run a set of experiments on each network structure in each of the four 

network classes. Here, we describe how we run a simulated experiment on a network 

structure.  

 

Consider the network structure in Figure 3.6A. An experiment here is defined as driving 

this network with an input signal 𝑆, such that 

𝑆(𝑡) ∈ {0,1} 𝑓𝑜𝑟 𝑡 ∈ {1, … , 𝑡𝑚𝑎𝑥}, 

where 𝑡 corresponds to the time steps, 𝑡𝑚𝑎𝑥 ≥ 4 is the final time step in the experiment 

and the signal 𝑆 at each time step could either be 1 or 0.  The output trait 𝑍 is observed at 

each time step 𝑡 to study the effect of the signal on the genetic pathway. In the first three 

time steps, the value of the output trait depends on the initial conditions for the genes 𝑋 

and 𝑌. The networks have a depth of at most three links to 𝑍, thus it takes at most three 

time steps for the input signal to reach 𝑍. In our study, to avoid complexity, we assume 

that we cannot control or observe the values of 𝑋 and 𝑌  and thus cannot consider any 

dependence of their unknown states in the data. Hence, since at most three time steps are 

needed to ensure that the value of the output trait is fixed in the networks we study, each 

input is held for four time steps to ensure that 𝑍 is at a steady state value for a constant 

signal 𝑆. 
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Figure 3.6: An example of three  

hypothetical GRN structures. 

 

For the input signal 𝑆(𝑡), we consider three options:  

 Static Signal: The signal S is constant at zero, 𝑆(𝑡) = 0, or constant at one, 𝑆(𝑡) = 1, 

in every experiment conducted.  

 

 Step Dynamics Signal: We drive the network with a time-varying input 𝑆(𝑡) =

(0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1), where the signal steps from zero to one to zero, 

and then back down to one (See Figure 3.7). We observe how the step dynamic signal 

propagates through the network and alters the trait dynamically from the fourth time 

step onwards. The outcome of an experiment is 𝑍(𝑡) for 𝑡 ∈ {4, … , 𝑡𝑚𝑎𝑥}. 
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Figure 3.7: Line graph to represent how both signals 

propagate through time. 

 

 Full Dynamics Signal: Here, we drive the network with the time-varying input 𝑆(𝑡) =

(0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0), as seen in Figure 3.7. The reason for this 

particular dynamic sequence is that the networks have a depth of at most three links. 

Thus, it takes at most three time steps for an input signal to reach the trait. The output 

trait 𝑍(𝑡) can be written in term of 𝑆(𝑡 − 1), 𝑋(𝑡 − 1) and 𝑌(𝑡 − 1). The intermediate 

genes 𝑋(𝑡 − 1) and 𝑌(𝑡 − 1) can then be further written in terms of 𝑆(𝑡 − 2) and/or 

𝑆(𝑡 − 3) depending on their order and which gene is upstream the other. Thus, the 

output trait can always be written in terms of the signal of  𝑆, with 𝑍(𝑡) = 𝑆(𝑡 − 1), 

𝑆(𝑡 − 2) and 𝑆(𝑡 − 3). The mentioned sequence for the input signal contains all the 

possible 8 triplets of values: (000, 001, 010, 011, 100, 101, 110, 111). Thus, although 

we could consider other dynamical signals, none could provide any more information 

than the one we have chosen. We test how the signal can influence 𝑍 in every possible 
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way. Again here, we only observe the output trait 𝑍 at the fourth time step to avoid 

dependence on the initial values of the intermediate genes 𝑋 and 𝑌. 

 

In addition to the type of input signal we choose to drive the genetic pathway, there are 

three options for each of the genes 𝑋 and 𝑌. As stated previously, they will either follow 

wild-type (WT), knock-out (KO) or knock-in (KI) dynamics. Thus, an experiment can be 

fully defined as:  

𝐸 = (𝑆(1), … , 𝑆(𝑡𝑚𝑎𝑥), 𝑋𝑠𝑡𝑎𝑡𝑢𝑠, 𝑌𝑠𝑡𝑎𝑡𝑢𝑠) 

where 𝑋𝑠𝑡𝑎𝑡𝑢𝑠, 𝑌𝑠𝑡𝑎𝑡𝑢𝑠 ∈ {𝑊𝑇, 𝐾𝑂, 𝐾𝐼}. 

 

3.4 Set of Simulated Experiments Per Network 

In the above section, we describe what is meant by an experiment and the types of input 

signals and genetic perturbations we allow. Here, we explain the set of experiments 

conducted per network. For each network, there is a set of 27 = (3 × 3 × 3) different 

experiments, with 3 choices for the signal 𝑆, 3 choices for the genetic perturbations of 𝑋 

and 3 choices for the genetic perturbations of 𝑌. We organize them such that we consider 

nine modes of analysis for each network structure which we describe below. Static 

epistasis refers to when the signal is fixed, while dynamic epistasis refers to when the 

signal is time varying for both step or full dynamic signal inputs. 

 

 Static Epistasis with Wild-Type: We observe the trait under two constant signal 

conditions: signal on or off, gene 𝑋 wild-type and gene 𝑌 wild-type. Thus, there a two 
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different effects on the output trait 𝑍. A pair of networks can be discriminated from 

each other if they have different output traits under these two conditions.  

 

 Static Epistasis with Knockouts: Both genes 𝑋 and 𝑌 in this case can either be wild-

type or deleted. Thus, these two choices for each gene and the two choices for the 

static signal (either always on or always off), generate 8 different conditions which 

can influence the output trait 𝑍 differently. We observe the trait under each of these 

conditions.  The 8 resulting Boolean values of 𝑍 define the output behaviour of a 

network. Under this analysis, two networks are considered distinguishable if they have 

different output trait values under any of the 8 conditions. An example of a complete 

truth table for the graph network in Figure 3.6A under classical epistasis analysis is 

shown in Table 3.1, where the output trait Z is observed for all different combinations 

of the genes’ states and signal states. 

 

 

 

 

 

 

 

 

 

Table 3.1: Truth table for the 
network structure in Figure 3.6A 

S WT or KO Variable Values 

X Y X Y Z 

Off KO KO 0 0 0 

Off KO WT 0 0 0 

Off WT KO 0 0 0 

Off WT WT 0 0 0 

On KO KO 0 0 0 

On KO WT 0 0 0 

On WT KO 1 0 0 

On WT WT 1 1 1 
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 Static with Knockouts and Knockins: Here, there is an additional option for each of 

the genes 𝑋 and 𝑌, the gene can be knocked in (always on). For each gene 𝑋 and 𝑌, 

there are three choices: wild-type, knocked-out or knocked-in, and the signal S again 

has 2 choices: on or off. Thus, this results in 18 different conditions under which the 

trait 𝑍 is observed.  

 

 Dynamics with Wild-Type: Neither gene 𝑋 or 𝑌 are knocked out or knocked in; they 

are both wild-type. However, the signal 𝑆 changes dynamically, and the output trait is 

observed at each time step. Since the length of the signal under which we observe the 

output trait equals 12, there are 12 output trait values which we can use to infer the 

network structure.   

 

 Dynamics with Knockouts: The dynamics is similar to what was described previously. 

However, in this case, both genes 𝑋 and 𝑌 may either be knocked out or in their wild-

type form. With two choices for each gene and 12 time steps in the signal 𝑆, the value 

of the output trait 𝑍 is observed under 48 different conditions.  

 

 Dynamics with Knockouts and Knockins: Again, here an additional option of 

knocking in the gene is considered. Each gene 𝑋 and 𝑌, can either be knocked out, 

knocked in or wild-type. Thus, there are 9(12) = 108 output trait values for network 

inference.  
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3.5 Identifiability Analysis 

Up to this point, we have described four classes of networks. We have also considered 

how for each network structure in each network class we will observe the value of the 

output trait under different experimental conditions. Here, we describe what is meant by 

the identifiability of network structures and individual links. 

 

3.5.1 Network Identifiability  

Consider the pair of network structures B and C in Figure 3.6. To analyze network 

identifiability for this example, we observe the effects of the signal on the output trait for 

both networks under the different experimental conditions discussed above. This pair of 

networks is distinguishable by an experiment if the output trait of B is different from the 

output trait of C at any time 𝑡 ≥ 4 during the experiment. We say that this pair of 

networks is distinguishable by a set of experiments 𝐸 = {𝐸1, … , 𝐸𝑚} if the output trait of 

B is different from the output trait of C for any of the experiments. The pair of networks 

are equivalent if the networks are not distinguishable by any of the experiments. For 

example, the networks B and C generate the same output trait value under static epistasis 

analysis with wild-type and single and double gene deletions. Thus, we can say that 

networks B and C are equivalent under this experimental condition. On the other hand, 

under step dynamics analysis with wild-type and single and double gene deletions, these 

networks produce different output traits, and are thus distinguishable. 

 

After the simulation of the output trait values for each network in each network class 

under the different experimental conditions, we study the ability of a set of experiments 
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to discriminate between not only a pair of networks, but a whole set of networks 𝑁 =

{𝑁1, … , 𝑁𝑛}, as we are not only interested in the unique identification of a network. Thus 

for a set of networks, we introduce the notion of equivalence classes. An equivalence 

class is group of networks which produce the same output, that is have the same effect on 

the output trait. The use of any experimental condition divides the set of networks 𝑁 into 

equivalences classes, such that: 

𝑁 = 𝑄1 ∪ 𝑄2 ∪ … ∪ 𝑄𝑘, 

where 𝑁 is the collection of all networks, as described above, 𝑄𝑖 represents an 

equivalence class, and 𝑄𝑖 ∩ 𝑄𝑗 = ∅ for 𝑖 ≠ 𝑗. Equivalence classes here may include 

single or multiple networks. In an ideal situation, all the networks are identifiable, and 

thus fall in their own equivalence classes. An example of an equivalence class with 

multiple networks is shown in Figure 3.8, which shows a group of six LinearPlus 

networks that produce the same output under static epistasis analysis with knockouts.  

 

3.5.2 Link Identifiability 

Uniquely identifying an entire genetic pathway is the best possible outcome. However, 

since we may not always be able to identify a network uniquely based on the output trait 

observations, the identification of individual links in a network is a more tractable goal. 

Let 𝑄 be the equivalence class for the group of networks in Figure 3.8. If 𝑄 contained a 

single network, then all links in that network could be identified. In this case, where 𝑄 

contains multiple networks, a link can be identified if all networks in the class contain the 

same type of link—activating, repressing or absent. Consider the link from 𝑆 to 𝑋 in the 

networks in Figure 3.8. Figures 3.8A, B, C and E have an activating link from 𝑆 to 𝑋, 



 

51 

while Figure D has a repressing link and Figure F has no link from 𝑆 to 𝑋. Thus, the link 

is not identifiable for the networks in 𝑄. However, consider the link from 𝑆 to 𝑍 in all the 

networks. We notice that the link is identifiable as for all the networks there is always an 

activating link from 𝑆 to 𝑍. For a given network class 𝑁 and experimental condition 𝐸, 

we will report the fraction of times an activating/repressing/absent link can be identified 

as the total size of all equivalence classes where all networks have that link, divided by 

the total number of networks that have that link. 

  

 

 

 

 

 

  

 

Figure 3.8: An equivalence class of LinearPlus networks under the 

static epistasis analysis with knockouts. 

The link from S-Z (red) can always be identified for this equivalence class, 

as all the networks have an activating link from S to Z. 
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4 RESULTS 

We have thus far described the theoretical framework we use for our analysis. To 

demonstrate how helpful the addition of dynamic analysis is to epistasis analysis, we 

conduct an identifiability analysis of the two gene network structures in each of the 

network classes (Linear, LinearPlus, AllAcyclic, SKOV) under the different experimental 

conditions described in the previous chapter (Static, Static with KO, Static with KO and 

KI, Step Dynamic, Step Dynamic with KO, Step Dynamic with KO and KI, Full 

Dynamic, Full Dynamic with KO, Full Dynamic with KO and KI). We then conduct an 

identifiability analysis of the individual links.  

 

4.1 Equivalence Classes and Network Identifiability 

We start with the simplest class of networks. Figure 4.1 provides a visual representation 

of all the network structures in the Linear network class reorganized according to the 

outputs generated by each experimental condition. With experimental conditions which 

do not include the addition of genetic perturbations, be it static analysis, step dynamic 

analysis or full dynamic analysis none of the network structures are uniquely identified. 

The networks are divided into two equivalence classes, each of size eight. Red rectangles 

are drawn around the two groups of networks in Figure 4.1. For all the networks, it takes 

exactly three time steps for any change in the input signal to propagate to the output trait 

and 𝑍(𝑡) can always be written in terms of 𝑆(𝑡 − 3). There are two equivalence classes 

as the net effect of the networks is either 𝑍 = 𝑆 or 𝑍 = 𝑁𝑂𝑇 𝑆. For example, consider the 

8 networks in the equivalence class on the left in Figure 4.1. For all the networks, if the 



 

53 

signal S is on, the output trait Z eventually turns on and if the signal is off, Z turns off. 

However, for the equivalence class on the right, the opposite effect on the output trait is 

seen. If S is on, Z turns off and if S is off, Z turns on.    

 

 

Figure 4.1: Linear networks are categorized into different categories depending on the experimental 

condition.  

Red rectangles are drawn around two equivalence classes generated with experimental conditions which 

do not include the addition of genetic perturbations, be it static analysis, step dynamic analysis or full 

dynamic analysis. Blue rectangles surround the equivalence classes generated from the addition of single 

and double gene deletions to all types of signal dynamics. This results in the unique identification of half 

of the networks (D, G, C, H, L, O, K, P). 
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The addition of single and double gene deletions for all types of signal dynamics results 

in the unique identification of half of the networks (D, G, C, H, L, O, K, P). The rest of 

the eight networks are divided into four equivalence classes, where each class contains a 

pair of networks. Blue rectangles surround all the equivalence classes generated. In the 

equivalence classes of size two, we observe that the genes X and Y are in the two possible 

orders, with an activating link between them. Also, for these classes, the signal regulates 

the upstream gene and the downstream gene regulates the output trait in the same way. 

For example, in the equivalence class with networks Figure 4.1A and I, the signal 

activates the upstream gene, the upstream gene activates the downstream gene, and the 

downstream gene activates the output trait. Dynamics aside, the deletion of either or both 

genes X and Y in these networks results in the turning off of Z. Finally, with the use of 

both knockouts and knockins, regardless of the type of input signal, all the networks in 

the Linear network class are uniquely identified.  

 

While the use of a dynamic signal in the Linear class does not influence the number of 

identifiable graphs or equivalence classes, as all the network structures can be uniquely 

identified using only static analysis with knockouts and knockins, the LinearPlus, 

AllAcyclic and SKOV network classes show different trends. Figure 4.2 provides a visual 

depiction of the identifiable and non-identifiable but equivalent networks induced by 

different experimental conditions, while Table 4.1 provides some summary statistics. In 

Table 4.1, we report the number of similar pairs (4.1A), the number of uniquely 

identifiable networks (4.1B), the number of non-singleton equivalence classes (4.1C) and 

the average size of the non-singleton equivalence classes (4.1D), under each experimental 
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condition for each network class. In our study, a similar pair of networks, for example, 

are networks that generate the same output, meaning that they look identical under a 

specified experimental condition. For each network class, this helps to observe the effect 

of the experimental conditions relative to each other. We notice that within each type of 

signal dynamics (static, step or full dynamics), as you move progressively to the right 

with the addition knockouts then knockins and knockouts, the number of similar pairs 

decreases, the number of identifiable graphs increases, the number of non-singleton 

equivalence classes increases, and the average size per non-singleton equivalence class 

decreases.  

 

Unsurprisingly, static analysis without the privilege of gene perturbations provides the 

least information for discriminating network structures. No network can be identified 

definitively, and for the three network classes (LinearPlus, AllAcyclic and SKOV), the 

networks are simply divided into four equivalence classes. These correspond to networks 

always outputting Z = 0, those with Z = 1, those with Z = S, and those with Z = NOT S. 

The addition of dynamics in the three classes of networks, LinearPlus, AllAcyclic and 

SKOV, results in a substantial increase in the number of equivalence classes. While 

dynamics alone does not uniquely identify any graph structure (Figure 4.2B, C, E, F, H, I 

outer ring, or Table 4.1), the integration of knockouts or knockins and knockouts with 

dynamics shows a large advantage over static analysis. For example, in the LinearPlus 

network class, only 0.588% of the networks can be uniquely identified using static 

analysis with knockouts. The use of full dynamics with knockouts increases the 

percentage of identifiable networks to 23.5%. The combination of knockouts and 
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knockins with dynamic analysis produces an even higher percentage of identifiability. 

For example, approximately half of the LinearPlus networks are uniquely identified with 

the use of full dynamics with knockouts and knockins, while 43.5% of the networks can 

be uniquely identified using step dynamics for S with knockouts and knockins.  

 

   

Table 4.1: Statistics on similar pairs, network identifiability and equivalence classes. 

 Static Dynamics Step Dynamics Full Dynamics 

WT WT + 
KO 

WT + 
KOKI 

WT WT + 
KO 

WT + 
KOKI 

WT WT + 
KO 

WT + 
KOKI 

 

A) Number of Similar Pairs:  

Linear 56 4 0 56 4 0 56 4 0 

LinearPlus 242072 51844 3648 46104 6412 592 23704 3204 336 

AllAcyclic 1348916 467686 30014 400500 177736 14046 312532 156584 13470 

SKOV 7622 2164 396 940 420 68 828 340 68 

 

B) Number of Identifiable Networks:  

Linear 0 8 16 0 8 16 0 8 16 

LinearPlus 0 8 80 0 200 592 0 320 688 

AllAcyclic 0 8 56 0 184 600 0 304 792 

SKOV 0 8 40 0 56 120 0 56 120 

 

C) Number of Non- Singleton Equivalence Classes:  

Linear 2 4 0 2 4 0 2 4 0 

LinearPlus 4 76 256 36 268 320 62 278 336 

AllAcyclic 4 76 327 36 288 583 64 316 567 

SKOV 4 20 44 30 36 44 42 44 44 

 

D) Average Size of Non- Singleton Equivalence Classes: 

Linear 8 2 0 8 2 0 8 2 0 

LinearPlus 340 17.8 5 37.8 4.3 2.4 21.9 3.7 2 

AllAcyclic 810.8 42.6 9.7 90.1 10.6 4.5 50.7 9.3 4.3 

SKOV 55 10.6 4.1 7.3 4.6 2.3 5.2 3.7 2.3 
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Figure 4.2: Circos graphs visualizing the equivalence classes and identifiable networks for 

different network classes and under different experimental conditions 

A similar trend is observed for the AllAcyclic network class. Full dynamics with 

Each graph represents a specific network class (A-C: LinearPlus, D-F: AllAcyclic, G-I: SKOV) and the 

type of dynamics assumed for the input signal (A, D, G: static, B, E, H: step dynamics, C, F, I: full 

dynamics). Within each ring of each graph, the alternating red and blue wedges correspond to equivalence 

classes with more than one network, with the size of the wedge being proportional to the number of 

networks in the equivalence class. Black wedges indicate networks that fall in their own equivalence class, 

and are thus identifiable. The three rings within each graph correspond to wild-type observations only 

(outer ring), wild-type plus single and double deletions (middle ring), and wild-type plus single and double 

deletions and knockins (inner ring). 
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knockouts uniquely identifies 9.37% of networks compared to only 0.247% using static 

analysis. The addition of knockins also increases the percentage of identifiability for both 

types of analyses. For example, 24.4% of the networks can be distinguished using full 

dynamic analysis with knockins and knockouts.  

 

Also, for LinearPlus and AllAcyclic class networks, while both full and step dynamics 

display improved results over static analysis, full dynamics with genetic perturbations can 

uniquely identify more graph structures than those with step dynamics and genetic 

perturbations. However, the same cannot be said about the SKOV class network. For 

SKOV networks, both step and full dynamic analysis identify the same percentage of 

graph structures. A time varying signal with knockouts and both knockouts and knockins 

identify 25.5% and 54.5% graph structures respectively. Thus, while the addition of 

dynamics greatly increases the percentage of identifiable graphs, the use of full dynamics 

in the SKOV network class has no advantage over step dynamic analysis in the 

identifiability of graphs. If we consider the number of equivalence classes (Figure 4.2H 

and I), full dynamics with knockouts results in an increase in the number of equivalence 

classes in comparison to step dynamics with knockouts. However, knockouts and 

knockins with step and full dynamics result in the same number of equivalence classes. 

 

As one would expect, experimental conditions that result in greater numbers of 

identifiable networks also tend to result in greater numbers of smaller equivalence classes 

of non-identifiable networks (Figure 4.2, Table 4.1). That is, even when a network cannot 

be uniquely identified, there tend to be fewer other networks with which it can be 
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confused. For instance, static analysis with knockouts on LinearPlus networks results in 

76 equivalence classes with an average size of roughly 18 networks. Full dynamic 

analysis with knockouts increases the number of equivalence classes to 278 with average 

size of roughly 4. Similar results are observed for step dynamic analysis with knockouts. 

Knockouts and knockins with full dynamics on LinearPlus networks produces 336 

equivalence classes of size 2, where each pair of networks differs by a single link. 

Consider Figure 4.3 where an example of two equivalence classes (A and B) generated 

by full dynamics with knockins and knockouts are shown. In Figure 4.3A, the two 

networks only differ in the order of the X and Y genes. Similarly, in 4.3B, we observe that 

the all links are identical, except for the link between S and X.  

 

Thus, while dynamics with knockouts or knockouts and knockins may not uniquely 

identify all the network structures, it greatly reduces the number of possible networks that 

are consistent with given experimental outcomes. Further, and boding well for 

experimental utility, manipulating the input signal through simple step dynamics is nearly 

as powerful as a more sophisticated dynamical scheme that obtains the maximum 

possible information. To summarize the results, Figure 4.4 illustrates the percentage of 

identifiable graphs in each network class under the different experimental conditions in a 

bar chart.  
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Figure 4.3: An example of two equivalence 

classes (A and B) of LinearPlus networks 

generated by full dynamics with knockins and 

knockouts.  

Each equivalence class consists of a pair of 

LinearPlus networks. These pair of networks only 

differ by a link. For 4.3A, they only differ in the X-Y 

link, as for 4.3B, they only differ in the S-X link. 
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Figure 4.4: Percentage of identifiable networks in each network class: Linear, LinearPlus, 

AllAcyclic and SKOV under the different experimental conditions: Static, StaticKO, StaticKOKI, 

StepDynamic, StepDynamicKO, StepDynamicKOKI, FullDynamic, FullDynamicKO and 

FullDynamicKOKI. 
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4.2 Individual Link Identification 

Here, we consider the percentage of identifiability of all the links (see Figure 4.5 for 

Linear, LinearPlus, AllAcyclic and SKOV link identifiability under static signal with 

knockouts and under full dynamics with knockouts; Table 4.2 provides comprehensive 

statistics).  

 

Again, we start with the simplest class. For an analysis with knockouts regardless of the 

input signal S in the Linear network class (Figure 4.5A and B), the links between S and 

the genes X and Y and those between X and Y and the output trait Z, can be positively 

identified for half of the networks. Similar results are shown by specifically considering 

the activating, repressing or absent links. The addition of knockins regardless of the input 

signal increases the percentage identifiability to 100% for all the links (Table 4.2A).  

 

For static analysis with knockouts of the LinearPlus network class (Figure 4.5C and D), 

the S − X and S − Y links can be confidently identified in just 6.2% of the networks. In 

more detail, when such links are activating or repressing, we can be sure of this for 6.9% 

of networks. However, when there is no link from S − X or from S – Y, we can never be 

sure of this fact, under the condition with static signal and gene knockouts. The S − Z 

link has a greater percentage of identifiability at 31.8% across all types of interactions, 

with 33.3% for both the activation and repression links and 28% for links with no 

interaction. The identifiability of links between the genes (X and Y ) and the trait Z is 

similar to that between the signal and the genes. Across all types of interactions, 31.2% of 

the links can be identified, with 34.8% for both activation and repression links and 10% 
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when there is no interaction. In the comparison of static analysis with knockouts to full 

dynamics with knockouts (Figure 4.5D), we observe a great increase in the percentage of 

identifiability of all the links. Perhaps most dramatically, the links between the signal and 

genes (X and Y) go from 6.2% identifiable to 57.6% identifiable when we switch from  

 

Figure 4.5: Percentages of networks in all network classes (A-B: Linear, C-D: LinearPlus, E-F: 

AllAcyclic, G-H: SKOV)  for which different links can be identified under the experimental 

condition combining static signal with knockouts (A, C, E, G) and the condition combining a fully 

dynamic signal with knockouts (B, D, F, H).  

Due to the symmetry of X and Y, identifiability of S − X and S – Y links is identical, and similarly for X − 

Z and Y – Z links. Within each box, the bold number gives the total percentage of networks for which the 

link can be definitely identified as being activating, repressing or absent. The remaining three numbers 

give the total percentage of networks where the link can be identified, in comparison with the total 

number of networks that have an activating, repressing or absent link respectively. 
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static to dynamic analysis. There is near perfect identifiability for the S – Z link, and  

substantially better identifiability of the relationship between X and Y. Similar trends are 

seen for the AllAcyclic (Figure 4.5E and F) and the SKOV network classes (Figure 4.5G 

and H).  

Dynamics alone for the LinearPlus and AllAcyclic network structures does not assist in 

identifying any of the links (they are 0% identifiable) except for the S – Z link.  In 

comparison with these two network classes, however, when dynamics alone is used in the 

SKOV class, the links S – X or Y, X or Y – Z and S – Z  always show some percentage of 

identifiability, with the S – Z link being the most identifiable. Also, while a significant 

increase is observed with the use of either types of time varying input signal compared to 

static in the SKOV network class, the links in both step and full dynamics analysis have 

identical percentages of identifiability. Thus, there is no advantage of using the full 

dynamics analysis over the step dynamic analysis.  

 

In all network classes, for all links excluding the interaction between genes X and Y, in all 

the experimental conditions that do not include knockins, and for all network classes, 

activating and repressing links have equal identifiability. A repressing link between X and 

Y, however, has greater identifiability than an activating one. For example, in the case of 

static analysis with knockouts for LinearPlus networks, activating links are 1.2% 

identifiable whereas repressing links are 14.1% identifiable. When knockouts and 

knockins are allowed, this disparity vanishes, so that activating and repressing links are 

equally identifiable.  
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Naturally, the use of full dynamics with both knockouts and knockins generates the best 

results in the unique identification (with the highest percentages) of each link in the 

network structure for LinearPlus, AllAcyclic and SKOV networks (Table 4.2). All the 

links to the output trait are 100% identifiable and the links from the input signal to the 

genes are 85.9%, 62.3% and 89.1% for LinearPlus, AllAcyclic and SKOV respectively. 

Additionally, the interactions between the genes X and Y have the highest percentage of 

identifiability compared to other types of analysis. For example, in the LinearPlus 

network class, 78.8% of the X – Y links can be identified. 

  



 

66 

 

  

Table 4.2: Percentage of networks for which links can be identified. 

  Static Dynamics Step Dynamics Full Dynamics 

WT WT + 
KO 

WT + 
KOKI 

WT WT + KO WT + 
KOKI 

WT WT + 
KO 

WT + 
KOKI 

A) Linear 

S       X or Y ,overall  0 50 100 0 50 100 0 50 100 

activating 0 50 100 0 50 100 0 50 100 

repressing 0 50 100 0 50 100 0 50 100 

absent 0 50 100 0 50 100 0 50 100 

S      Z , overall 100 100 100 100 100 100 100 100 100 

activating 0 0 0 0 0 0 0 0 0 

repressing 0 0 0 0 0 0 0 0 0 

absent 100 100 100 100 100 100 100 100 100 

X      Y , overall 0 50 100 0 50 100 0 50 100 

activating 0 0 100 0 0 100 0 0 100 

repressing 0 100 100 0 100 100 0 100 100 

absent n/a n/a n/a n/a n/a n/a n/a n/a n/a 

X       Z or Y ,overall 0 50 100 0 50 100 0 50 100 

activating 0 50 100 0 50 100 0 50 100 

repressing 0 50 100 0 50 100 0 50 100 

absent 0 50 100 0 50 100 0 50 100 

B) LinearPlus 

S       X or Y ,overall  0 6.2 34.1 0 50 83.5 0 57.6 85.9 

activating 0 6.9 37.3 0 54.9 89.5 0 62.4 92.2 

repressing 0 6.9 37.3 0 54.9 89.5 0 62.4 92.2 

absent 0 0 5.9 0 5.9 29.4 0 14.7 29.4 

S      Z , overall 0 31.8 100 57.6 84.1 100 85.9 94.7 100 

activating 0 33.3 100 60 85 100 86.7 95 100 

repressing 0 33.3 100 60 85 100 86.7 95 100 

Absent 0 28 100 52 82 100 84 94 100 

X      Y , overall 0 7.6 34.1 0 27.1 76.5 0 30.6 78.8 

activating 0 1.2 34.1 0 9.4 76.5 0 14.1 78.8 

repressing 0 14.1 34.1 0 44.7 76.5 0 47.1 78.8 

Absent n/a n/a n/a n/a n/a n/a n/a n/a n/a 

X       Z or Y ,overall 0 31.2 100 0 53.5 100 0 60 100 

activating 0 34.8 100 0 55.2 100 0 61.4 100 

repressing 0 34.8 100 0 55.2 100 0 61.4 100 

absent 0 10 100 0 44 100 0 52 100 
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Table 4.2: Percentage of networks for which links can be identified (Continued). 

 Static Dynamics Step Dynamics Full Dynamics 

WT WT + 
KO 

WT + 
KOKI 

WT WT + 
KO 

WT + 
KOKI 

WT WT + 
KO 

WT + 
KOKI 

C) AllAcyclic 
S       X or Y ,overall  0 2.8 21.4 0 34.5 59.9 0 38.9 62.3 

activating 0 3.9 26.7 0 46.5 68.6 0 50 70.6 

repressing 0 3.9 26.7 0 46.5 68.6 0 50 70.6 

absent 0 0 7.4 0 2.9 37 0 9.6 40.5 

S      Z , overall 0 34.6 100 59.1 73.9 100 71 78.4 100 

activating 0 41.2 100 65 78.3 100 76 82.4 100 

repressing 0 41.2 100 65 78.3 100 76 82.4 100 

absent 0 17.4 100 43.7 62.4 100 58 67.8 100 

X      Y , overall 0 4.3 17 0 15.4 37.7 0 16.4 40.7 

activating 0 0.6 19.6 0 4.5 43.4 0 5.7 46.8 

repressing 0 9.4 19.6 0 30.9 43.4 0 32.1 46.8 

absent 0 0 0 0 0 0 0 0 0 

X       Z or Y ,overall 0 23 100 0 37.7 100 0 39.9 100 

activating 0 31.1 100 0 48.7 100 0 50.7 100 

repressing 0 31.1 100 0 48.7 100 0 50.7 100 

absent 0 1.8 100 0 8.9 100 0 11.6 100 

D) SKOV 

S       X or Y ,overall  0 21.8 58.2 9.1 52.7 89.1 12.7 56.4 89.1 

activating 0 25 62.5 10.4 58.3 93.8 14.6 62.5 93.8 

repressing 0 25 62.5 10.4 58.3 93.8 14.6 62.5 93.8 

absent 0 0 28.6 0 14.3 57.1 0 14.3 57.1 

S      Z , overall 0 41.8 100 89.1 100 100 100 100 100 

activating 0 26.1 100 91.3 100 100 100 100 100 

repressing 0 26.1 100 91.3 100 100 100 100 100 

absent 0 53.1 100 87.5 100 100 100 100 100 

X      Y , overall 0 21.8 61.8 0 32.7 76.4 0 32.7 76.4 

activating 0 5.6 66.7 0 16.7 83.3 0 16.7 83.3 

repressing 0 62.5 62.5 0 75 75 0 75 75 

absent 0 0 0 0 0 0 0 0 0 

X       Z or Y ,overall 0 21.8 100 14.5 56.4 100 14.5 56.4 100 

activating 0 25 100 18.2 59.1 100 18.2 59.1 100 

repressing 0 25 100 18.2 59.1 100 18.2 59.1 100 

absent 0 9.1 100 0 45.5 100 0 45.5 100 
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5 CONCLUSIONS AND FUTURE WORK 

In our theoretical investigation, we explored the potential of dynamics in epistasis 

analysis. We simulated using a dynamic input signal to drive Boolean models of genetic 

pathways, in addition to genetic perturbations, to obtain a better understanding of the 

organization of genes in the pathway and uniquely identify a greater number of gene 

networks. To quantify how helpful the addition of dynamics to epistasis analysis is, we 

conduct an identifiability analysis of network structures and individual links under 

different experimental conditions. We show the advantage of dynamic epitasis analysis 

using the three different network classes (LinearPlus, AllAcyclic, and SKOV) and 

different experimental conditions (with or without genetic perturbations). 

 

Our primary findings suggest that the use of a dynamic signal alone does not uniquely 

identify any of the network structures. It even appeared to be weaker in comparison with 

traditional genetic approaches based on genetic perturbations. However, the combination 

of dynamical input with gene perturbations proved to be far more powerful than the 

classical static epistasis analysis approach. Dynamic epistasis could be used to 

discriminate between GRNs that were previously indistinguishable and identify a higher 

percentage of links. For instance, when we enumerated all acyclic Boolean pathway 

models, we found that only 0.247% of them could be uniquely identified by a classical, 

static epistasis analysis based on gene knockouts. However, driving the same pathways 

with a dynamical input, in combination with gene knockouts, allows 9.37% of them to be 
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identified uniquely. Our positive results show the potential value of dynamics in epistasis 

analysis. 

 

While a better understanding of the pathway architectures is obtained with dynamics and 

genetic perturbations, there are still some architectures that could not be entirely 

identified. It is not possible to perfectly discriminate between all the GRN structures in 

the three network classes: LinearPlus, AllAcyclic and SKOV, using either static or 

dynamic epistasis analysis. However, dynamics with genetic perturbations greatly 

reduces the number of alternatives, and often results in the unique identification of certain 

links within the pathway. Also, we observed that the addition of dynamics to gene 

deletions has greater discriminatory power than the addition of knockouts and knockins 

to static epistasis analysis. This is true for overall network identifiability as well as for 

links interior to the pathway, although direct links from pathway members to the output 

phenotype/trait are best identified by combining knockouts with knockins. Of course, all 

three can be combined for even better pathway inference.  

 

An important question for further research is what more can we add to attain full pathway 

identifiability? One possibility is dynamic gene perturbations, where genes are perturbed 

during the course of an experiment. Here, we have explored the value of dynamics only 

in the input signal driving a pathway.  

 

Our study is not without limitations. Many simplifying assumptions that may not always 

be true in practice are made. We use Boolean models, with dynamics that are 
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deterministic, proceed in discrete time, and are not subject to time delays, to represent 

GRNs. While Boolean models are useful in simplifying complex issues and thus have 

allowed us to observe the overall advantage of a dynamical approach, real biological 

systems are different from Boolean networks. Nodes in a Boolean network take only 

binary values which are updated synchronously, whereas experiments involving external 

stimuli, gene expression and an observable output trait/phenotype in real genetic 

pathways are not binary and change continuously [3]. For example, our analysis assumes 

that deleted mutant genes completely lack normal gene functionality, meaning a deleted 

gene has no activity. However, mutants generated in genetic screens may exhibit partial 

loss or partial gain of function in case of knockdowns or knockins respectively, which 

may generate more complex phenotypes. In the case of the observable output trait, most 

recent studies on epistasis analysis have been exploring the use of quantitative phenotypic 

measurements [20-23]. Moreover, with Boolean models, deterministic GRNs are 

assumed. However, according to recent studies, most biological systems are stochastic in 

nature [4, 8]. For future work, more general model systems, such as dynamic Bayesian 

models, which can incorporate prior knowledge and handle hidden variables and missing 

data, could be considered to represent GRNs.  In other words, a more realistic model 

which captures properties of GRNs not present in a simple Boolean model could be 

selected. 

 

Other assumptions made in our study include the number of genes in the genetic 

pathway, the number of inputs per gene/output trait and the logical functions used for the 

genes/output trait with multiple inputs. With two intermediate genes and the use of only 
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logical AND or logical OR, only specific subnetworks of biological systems are 

considered. Additionally, we assume that the genetic pathway is driven by one external 

stimuli, which may not always be the case. Future work may include conducting a 

theoretical investigation of epistasis analysis with the addition of dynamics by 

enumerating all the possible networks of an increased size, with more logical functions 

and external stimuli possibilities. We also restrict the type of GRNs to only acyclic 

networks. Although most studies on epistasis analysis assume the acyclicity of gene 

networks [11-28], many biological processes rely on feedback mechanisms for regulation 

[26]. They may appear as loops in which one gene regulates itself or two or more genes 

regulate each other. Future work may also include modeling gene networks as those with 

feedback loops and multidirectional influence between the genes. 

 

As seen above, relaxing some of these assumptions is an important direction for future 

work.  It would allow the continuation to assess the theoretical value of dynamics in 

epistasis analysis and the development of algorithms that will be directly applicable to 

real-world data. The combination of quantitative statistical, regression or probabilistic-

based approaches [21, 28, 29, 30] with dynamical models in epistasis analysis could lead 

to methods with great practical utility in determining genetic pathway structures.  

 

The next step would be to translate the theoretical advantage of dynamic epistasis 

analysis into practice. The applied side of this research project is currently being 

conducted by our collaborating lab. It involves experimental flow cytometry data 

analysis, where to identify the DNA damage genetic pathway in yeast, a DNA damaging 
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drug is used as the external stimuli. Initially, single gene knockouts of all the yeast genes 

are performed to identify candidate genes that may be involved in the DNA damage 

pathway. Pairs of candidate genes are then knocked out to further identify the networks 

of genes influencing the DNA damage response.  

 

Will the assumptions made act as a practical barrier to the understanding of gene 

networks? It is practically unreasonable to relax all the assumptions. Naturally, scientists 

choose assumptions depending on the data set and the features to be extracted from the 

network under study. With the assumptions made in this project, one could get a general 

understanding of the structure of the network. To determine which model (and 

assumptions) best represent GRNs, we could model a known GRN using various model 

based approaches [21, 28, 29, 30] and then conduct an assessment which compares the 

predicted networks generated by the models from real quantitative phenotypic 

measurements to the actual known GRN.  
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