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Abstract—In contrast to conventional studies of discovering hot
spots, by analyzing geo-tagged images on Flickr, we introduce
novel methods to discover obscure sightseeing spots that are less
well-known while still worth visiting. To this end, we face two
new challenges that the classical authority analysis based methods
do not encounter: how to discover and rank spots on the basis
of 1) popularity (obscurity level) and 2) scenery quality. For
the first challenge, we estimate the obscurity level of a spot in
accordance with the visiting asymmetry between photographers
who are familiar with a target city and those who are not. For the
second challenge, the behavior of both viewers who browsed the
images and photographers are analyzed per each spot. We also
develop an application system to help users to explore sightseeing
spots with different geographical granularities. Experimental
evaluations and analysis on a real dataset well demonstrate the
effectiveness of the proposed methods.

I. INTRODUCTION

Benefiting from Social Networking Service (SNS) and ad-
vances in mobile devices, people can upload and share their
experiences on the Internet. Geo-tagged images are one of
the typical content generated by users. The vital information
it contains provides researchers with excellent opportunities
for discovering landmarks and moving patterns. For instance,
GPS traces [1], images [2], check-ins [3], and tweets [4] are
treated as different kinds of user votes to help gather tourism
knowledge. Authority based analysis, like “rank-by-count” and
“rank-by-frequency” in a vote manner, is the basis for most
of these trip recommendation research.

More importantly, based on a survey by Zheng et al. [5],
the growing geo-referenced and community-contributed media
resources have generated huge amounts of detailed location
and event tags, covering not only famous landmarks but also
obscure locations. Because obscure locations always have
not enough visits or votes on the Internet, the conventional
authority based analysis, which is used to recommend popular
locations, is not suitable.

By dividing sightseeing spots into four quadrants on the
basis of their “popularity” and “sightseeing quality”, we are
trying to discover the obscure ones [6]. Located in the quadrant
with high sightseeing quality but low popularity, an obscure
sightseeing location is a considerable choice for in-depth travel
to not only enjoy the beautiful scenery but also experience
local culture, especially for the repeat tourists who have
already visited the most famous places there.

In this paper, to a given scenery object, we propose a system
to discover the obscure sightseeing locations with two novel
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metrics of locations, “obscurity level” and “scenery quality”,
by analysis of geo-tagged images retrieved from Flickr [7]. In
section III, we first devise novel methods to classify Flickr
users by considering their familiarity with a given city. In
contrast to conventional methods, we pay attention to users’
properties and classify them into different groups to detect
potential valuable spots. Then, we evaluate scenery quality
of a spot by analyzing user behavior related to the images
shot around it. The behavior of both viewers who browsed
the social images (i.e., social appreciation) and photographers
(i.e., photographers’ attention) are considered in section IV.
Implementations of the system are validated on the basis of
field visits in Section V.

II. OVERVIEW OF OUR SYSTEM

This section introduces our system, which is comprised of
three components: data construction, obscure sightseeing spots
mining, and recommendation.

A. Data Construction

Figure 1 illustrates the relationships between the main three
data structures in our system.

Definition 1: A social network G is a directed graph G =
G(V,E), where V is the photographer set of vi and E is the
friendship set of e(vi, vj) from vi to vj .

Definition 2: A familiarity matrix Ti is a mapping between
a photographer vi and all the cities Ci that s/he has been to.
For example, Ti[y = 2014, c = kyoto] = 10, c ∈ Ci means
that among vi’s images taken in Kyoto in 2014, there are 10
different dates detected from the images’ taken dates.

Definition 3: A tree-based hierarchical graph H is a collec-
tion of location clusters, denoted as spotk, with a geographical
hierarchical structure. A spotk is a candidate sightseeing place,
and all the images taken there are denoted as an image set Ik.
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B. Obscure Sightseeing Spots Mining

Obscurity Level Estimation: Given G(V,E) and Ti, we
first estimate each photographer vi’s familiarity with a par-
ticular city c ∈ Ci, based on which all the photographers
are classified into a familiar group and an unfamiliar group.
Then, on the basis of visiting frequency asymmetry between
the photographers from these two groups, we estimate the
obscurity level of each spotk.

Scenery Quality Evaluation: Two kinds of user behavior
are identified to evaluate the scenery quality. Regarding the
behavior of users who viewed target images, we evaluate
a spotk’s social appreciation to present how much on-line
community members like some scenery around there. On the
other hand, by analyzing the behavior of photographers who
took target images, we try to evaluate the attention they have
paid to some scenery at spotk.

C. Recommendation

Given a query, say “Kyoto, Maples”, the recommendation
component first labels all the related geo-tagged images (see
Section IV-A). Then, as shown in Figure 2, a list of ranked
sightseeing spots will be displayed on a Web map. By chang-
ing the zoom levels, a user can explore the spots in different
geographical granularities. From deep blue (obscure) to deep
red (popular), different colors indicate the obscurity levels of
maple spots. By clicking any tags on the map, a user can view
the images taken there, as well as the ranking information.

III. OBSCURITY LEVEL ESTIMATION

A. Photographer Classification

In this subtask, we will first introduce two complementary
familiarity scores, Fs and Fv , to classify photographers into
the familiar group and unfamiliar group. Then, the relationship
between these two scores will be discussed.

1) Social Network Based Familiarity Score: If a photogra-
pher is a resident, we assume s/he is familiar with the target
city. However, few users specify their residency information on
Flickr. Due to this, we propose a social network based method
to calculate the familiarity of a photographer with a given city
c. We assume that a photographer with many friends who are
familiar with city c will also be familiar with the city c.

Fs(c) = αB ·G · Fs(c) + (1− αB)dc. (1)

By iterating the biased PageRank on the graph G, the
familiarity value of a parent is split among its children, and

the familiarity value of a child node is the sum of familiarity
values propagated over its links. This is exactly consistent with
our assumption. For the normalized bias distribution dc, com-
pared with the TruskRank [8], our system can automatically
select good seeds due to whether a vi is a resident or not as
detected from his/her profile. The entries of the vector dc that
correspond to good seeds sum up to 1. Given a city c, Fs(c) is
initialized to dc before the iteration of the above computation.
αB is the decay factor.

Xu et al. [9] have also proposed a similar assumption and
proved that geographical nearby users are more probable to
establish friendship relations using their dataset. However, the
sensitivity (also known as recall) of this method would become
low because of the exception that a potential good seed is
pointed out by few good seeds. Thus, a complementary method
is devised by considering photographers’ visiting frequencies.

2) Visiting Frequency Based Familiarity Score: Since “fa-
miliarity” is time sensitive, on the basis of a vi’s familiarity
matrix Ti (see Definition 2) we calculate his/her “familiarity”
of each c ∈ Ci before a year λ. Three factors are considered:

1) For each year before λ, the proportion of days each c
accounts for is recorded in Ti;

2) Before λ, the reproducibility of cities is denoted as
vector ~αi. Assuming that before λ we collect 10 years’
worth of image data of vi in total, ~αi[c] = 5

10 if we
detect that vi went to c in five of the years;

3) The staleness of information. To identify whether vi has
been to these cities recently, we introduce a diagonal
matrix, ωi(x, y) ∀x, y ∈ {1, 2, ..., n}, to characterize this
feature. n equals the number of detected years before λ.

Then, the score Fv is computed as follows.

Fv(vi, c, λ) = diag( ~αi
T · (wi · Ti))[c] (2)

where diag means matrix’s diagonal vector, while [c] is used
to obtain the familiarity score of the target city c.

Obviously, the accuracy of Fv highly depends on the scale
of the familiarity matrix Ti. For a photographer who has
uploaded few images, this method would not be effective. To
cover as many situations as possible, we need to discuss the
fusion of Fs and Fv .

3) Score Integration: The most ideal situation is that Fv
can be propagated over the network G(V,E). Namely, we
can merge these two scores by using Fv to select more good
seeds (i.e., dc in Eq. 1) in the social network based method.
However, for the cities (e.g., Kyoto) where locals rarely upload
images to Flickr, exceptions are raised:

1) Fs and Fv are almost independent. That means a pho-
tographer with high visiting frequency is not necessarily
a resident. Inversely, a resident is very likely to have a
low visiting frequency based score.

2) In accordance with the first issue, there is no similarity
of visiting frequency between vi and vj , ∀(vi, vj) ∈ E.
Namely, Fv cannot be used to select more good seeds.
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For such exceptions that have no proportional relationships
between Fs and Fv , we find that the best way of combining
the two scores in our experiments is to take the maximum:

F (vi, c, λ) = max{Fs(vi, c), Fv(vi, c, λ)}. (3)

B. Obscurity Score Calculation

For a target city c, we first introduce a fuzzy set
{Uc,m(vi) = F (vi, c, λ)} to specify each vi’s familiarity on
the basis of the integrated familiarity score F (vi, c, λ). Then,
for a spotk, we define two vectors, ~φspotkf and ~φspotkunf , to rep-
resent the percentage of both the familiar group and unfamiliar
group who have visited spotk in each year y:

~φspotkf [y] =
wy
|Ukc |

∑
vi∈Ukc

m(vi);
~φspotkunf [y] = wy − ~φspotkf [y].

(4)
Finally, to calculate the time sensitive familiarity before year
λ, the entries in ~φspotkf and ~φspotkunf should include all the
detected years before λ. We calculate spotk’s obscurity score
by comparing the norms of these two vectors.

ObscurityScore(spotk, λ) =
∥∥∥ ~φspotkf

∥∥∥− ∥∥∥ ~φspotkunf

∥∥∥ . (5)

IV. SCENERY QUALITY EVALUATION

Figure 3 presents the framework of evaluating a spotk’s
scenery quality. By observing the behavior of both viewers
(i.e., who have viewed the images in Ik) and photographers
(i.e., who have taken the images in Ik), we defined three
progressive criteria. Along with this flow chart, the three
criteria will be introduced in the remainder of this section.

A. Image Labelling

Given a query consisting a city c and a scenery object
o, the system labels the target images. Hereinafter, the set
of all images about the scenery object o that are taken at
spotk is denoted as Ik(o). Benefiting from Flickr’s well
implemented keyword based search function, the labelling has
already obtained a good performance. For example, through
manually statistics, the percentage of noise images in Ik(o =
cherryblossom) is about 7.72 % on average.

We further applied SIFT [10] to reduce noise images in
Ik(o). In this model (see Figure 3), we use the key-points
detected by SIFT to describe an image. For calculating the

similarity, a fast nearest-neighbor algorithm, FLANN, is used
to do the matching by considering both numbers of matches
and match distance. When filtering, Ik(o) itself is used as a
set of references. After mutual match, the system removes the
images obtaining the lowest similarity scores. By sampling
in our ranking experiments, the percentage of noise images
finally dropped to about 5.86 %.

After noise image filtering, we have met the first and most
elementary criteria that there is the scenery object o at spotk.

B. Social Appreciation Based Analysis

In this method, we use an intuitive value, the number of
“Favs”, to evaluate a scenery object’s quality in a social
appreciation manner. “Fave this photo” is a common user
behavior on SNS websites including Flickr for friends and
visitors to mark on a message or an image. In [11], Pedro et
al. used the number of “Favs” as ground truth for building and
testing their image attractiveness ranking models. However,
our task is faced with two new problems: (1) few images may
be taken at spotk; (2) a higher “Favs” may mean a beautiful
image rather than beautiful scenery included in this image. In
order to solve these two problems, two kinds of Ik(o)’s related
images are introduced.

Similar Content Images: Similar to a semi-supervised
learning method having a small training set, we expand the
existing data sets (i.e., Ik(o)) by detecting the similar content
images. For each image in Ik(o), we retrieve its most similar
images by applying SIFT model as shown in Figure 3. The
newly expanded image set is denoted as Isk(o). High social
appreciation on Isk(o) anyhow shows that the spotk is a good
place for someone to take beautiful images about object o.

Context Images: We set the images from the same pho-
tosets to which an image η ∈ Ik(o) belongs as its context
images, denoted as Cη . Note that the image η itself is not in
Cη . In this sense, both η and images in Cη have a similar
chance of being accessed by viewers. In addition, all these
images are likely taken by the same photographer as well as
similar shooting skills. Under these contexts, compared with
Cη , higher social appreciation on η suggests that η contains
beautiful scenery.

On the basis of these two related image sets, the final social
appreciation based score consists of two parts. The first Isk(o)
based part is computed by the mean of ratios χ between an
image η’s number of “Favs” (i.e., voteη) and view count (i.e.,
viewη):

S1(spotk, o) = µχ(I
s
k(o)); χ(η) =

voteη
viewη

. (6)

The second Cη based part is computed by z-scores:

S2(spotk, o) =
1

|Ik(o)|
∑

η∈Ik(o)

χ(η)− µχ(Cη)
σχ(Cη)

. (7)

Function µχ(Cη) and σχ(Cη) are used to respectively calcu-
late the average χ and χ’s standard deviation on the image set
Cη . Thus, positive and negative z-scores represent observation



images above and below the mean, respectively. To combine
S1 and S2, a weight factor ωc is used to adjust discrimination.

SAS(spotk, o) = S1 + ωc · S2. (8)

By proposing the SAS, we have met the second criteria of
answering where to take beautiful pictures. By adapting this
system to be a photography suggestion guide, the value of ωc is
somewhat a trade-off of recommending either attractive images
or beautiful scenery. However, nobody can indeed know the
reasons a viewer “Faves” an image seen when browsing the
Web. Sometimes, we “Fave” images just because our friends
have posted them. By proposing a heuristic method in the
next section, we try to evaluate the scenery quality from a
photographer’s point of view.

C. Photographer Attention Based Analysis

For a scenery object o, it needs not only to be beautiful
from a distance but also to have a delicate beauty up close.
Figure 4(a.1) shows beautiful maple trees from far away, while
in Figure 4(a.2) it shows a close-up of the beautiful leaves.
The photographers’ choices of taking distance view or close-
up view images psychologically indicate their attention to a
scenery object o.

Accordingly, we first propose a new method to divide
scenery images into “distance view” and “close-up view”,
which exactly correspond to the two kinds of beauty above.
Then, the regular patterns of photographers’ attention when
visiting the known sightseeing spots with beautiful scenery
object o are recognized. At last, we calculate the photographer
attention based score, which indicates the degree of agreement
with an observed regular pattern.

1) Image Classification: In the classification learning
method, we use an image’s edge histogram and HSV (hue,
saturation, and value) shown in Figures 4a and 4b as features
to generate the training model. For the edge histogram, we
find that a close-up view image has more clearer edges in
the part where the photographer’s camera focused. In other
words, the background of a close-up view image is more
blurred. In contrast, a distance view image has a gentle contrast
throughout the whole image. For the HSV, we assume that the
hue and saturation values of close-up view images of particular
scenery are always located in a relatively fixed range (see
Figure 4b). In contrast, there is no such rule for distance
view images. This is due to that, for close-up view images
of particular scenery, most content of the images is generally
made up of the target scenery objects.

In accordance with our experiments described in Figure 4,
our classification model reaches a stable accuracy that is close
to 80%. Torralba et al. [13] proposed a method to estimate
the absolute depth of an image on the basis of the whole
scene structure. For man-made scenes, the performance of
depth estimations reaches 76%, while the result is relatively
lower on natural image sets (about 70% on average). When
applied in our task of classifying scenery images into two
categories: (1) “distance view”; or (2) “close-up view”, our
methods outperformed those of Torralba et al. [13].

2) Photographer Attention based Scenery Score: After the
image classification, without loss of generality, we use the
ratio of distance view images taken at a spot as ro, which
represents photographers’ attention on the scenery object o’s
beauty from a distance.

Figure 5a shows two observations on the known spots
having beautiful maples and cherry blossom. For maples, we
find that photographers paid more attention to the up-close
beauty. Conversely, cherry blossom’s beauty from a distance
attracted more attention compared with its up-close beauty.

Furthermore, by seeing the normal Q-Q plots in Figure
5b, we hypothesize that the two sample data sets come from
the populations with normal distribution, since the points
fall approximately along the 45-degree reference line. We
performed the Lilliefors test, a kind of normality tests, to verify
our hypothesis. By obtaining the p− value = 0.26 and 0.28,
which are higher than the significance value (0.05 or 0.1), our
hypothesis is statistically true.

As a result, based on the attention patterns recognized
from spots having beautiful scenery o, a spotk’s photographer
attention based score is computed using a probability density
function. For instance, since maples and cherry blossom both
have the same pattern, we use the normal distribution functions
to get their scores:

PAS(spotk, o) =
1

σo
√
2π
e
− (ro(k)−µo)2

2σ2o . (9)

µo and σo are obtained by distribution fitting of investigation
results on the target scenery object o. ro(k) is the ratio
of distance view images taken at spotk. For different kinds
of o, corresponding probability density functions are fitted.
Intuitively, the PAS indicates how well a spotk can attract
visitors’ attention.

V. EXPERIMENTS

A. Data Preparation

From Flickr, we collected a total number of 929,403
images and the profiles of about 5,309,082 photogra-
phers. Using queries q1 = “Kyoto,Maples” and q2 =
“Kyoto, CherryBlossom”, two target sub-datasets are la-
belled by our system. For the corresponding datasets, they
contain 6,950 maple images taken by 177 photographers and
4,576 cherry blossom images taken by 319 other photogra-
phers, respectively.

B. Parameter Selection

Spot clustering method: Both density based clustering
algorithm (e.g., [14]) and agglomerative methods like K-means
can be used for building the graph H (see definition 3). Since
the density based clustering would filter out a few sparsely
distributed points that may be obscure, we utilized a centroid
linkage based hierarchical clustering algorithm. We set the
smallest cluster size to 2km (i.e., leaves of H), which enables
us to find some obscure sightseeing spots that exist in famous
sightseeing areas.
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Fig. 4. Image classification. In (a), an image is vertically divided into 256 bins, and for each, the points of detected edges are counted to set up the histogram
(i.e., EH). (b) presents the saturation (X-axis) and hue (Y-axis) distributions of close-up view images. Two original datasets, which repectively include 100
images, are labeled manually with either “distance view” or “close-up view”. Then, 3-fold cross validation is utilized. (c) and (d) illustrate the effectiveness
of image classifiers on both the Cherryset and the Mapleset by a grid search method proposed by Hsu et al. [12]. The X-axis (γ = 2−9, 2−7, ..., 23)
represents RBF kernel’s parameter, while the Y-axis (C = 2−5, 2−3, ..., 27) stands for the penalty parameter in SVMs.
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Fig. 5. Distribution fitting of sample data. Red: 22,421 geo-tagged maple
images taken at 32 spots with beautiful maples; Blue: 10,748 geo-tagged
cherry blossom images taken at 35 spots with beautiful cherry blossom.

TABLE I
DETAILS OF PHOTOGRAPHER CLASSIFICATION

Target photographers No. 177
Known Kyoto locals No. 18
Recall on social network based method 50%
Recall on visiting frequency based method 77.8%
Recall on using both of the two methods 83.3%

w: Since both wi in Eq. 2 and wy in Eq. 4 have the same
meaning of characterizing the staleness of information, on the
basis of the actual effectiveness, we set them to the same
exponential decay: 1

2

(λ−y). We set the wc in Eq. 8 to 1.0,
which means that the SAS emphasizes more on the beauty of
scenery rather than the attractiveness of images.

C. Photographer Classification Evaluation

Table I shows the detailed information. Among the target
177 photographers, we obtain 18 Kyoto locals according to
their public profiles, while the other 159 photographers are
unknown. For the social network based method (i.e., Eq. 1),
we retrieve 26,567 their friends to establish the social network.
For the visiting frequency based method (i.e., Eq. 2), we
totally collected 395,053 images taken by them to calculate
the familiarity matrices Ti. The “recall” in Table I means the
fraction of familiar photographers that are discovered among
the 18 known residents.

For nodes (photographers) in the social network, we detect
318 residents as good seeds based on their available profiles.
Although there are few good seeds selected, “familiarity
communities” are still detected among the network. When we
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Fig. 6. Precision-recall of discovering spots.

set the threshold equal to 0.5 (i.e., Fs(vi,Kyoto) ≥ 0.5), the
recall of this method reaches 50%. For the second method, on
the basis of the normalized Fv(vi,Kyoto, 2013) ≥ 0.5, we
obtain the recall of 77.8% among the 18 residents. The final
recall obtained by considering both social network and visiting
frequency (i.e., Eq. 3) is much higher, which reaches 83.3%.

D. Experiment on Obscurity Level Estimation

In order to analyze the effectiveness of our method for
estimating a spot’s obscurity level (i.e., Eq. 5), we invited three
residents who have lived in Kyoto for more than 20 years to
label the discovered spots using an a five-point scale ranging
from “0” for “not famous” to “4” for “very famous”.

Figures 6a and 6b illustrate precision-recall curves about the
results of q1 and q2. The blue curve shows the experimental
results when we regard the spots with the average score of the
three respondents with a relevance score no more than 3.0,
while the red one displays the corresponding results when the
relevance score is no more than 2.0.

By getting leaves of the tree-based graph H , we obtain
582 maple and 368 cherry blossom spots. To reduce the
workload of respondents, we choose 32 maple candidate spots
and 33 cherry blossom candidate spots from which 17 and
18 discovered obscure ones are returned, respectively, to do
the analysis. The blue curves in both figures indicate that
the ObscurityScore can exclude almost all the “very famous
spots”. Furthermore, the red curves show that it still does well
at discovering “not so famous” and “not famous” spots.

E. Experiment on Ranking Obscure Spots

Ground Truth: For q1 and q2, we obtained the ground truth
through field visits conducted in November 2013 and April



TABLE II
TWO CRITERIA OF SCENERY RANKING SCORES

Criteria Explanations Ratings
v Is the spot worth visiting or not. 0,1,2,3
r Is the spot worth recommending or not. 0,1,2,3
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Fig. 7. NDCG values of the top-k ranking results.

2014. For each of the selected 32 maple spots and 33 cherry
blossom spots, we invited at least three subjects to perform
field evaluation. Using Google Nexus 7, we asked them to
record their visiting experiences on Twitter as well as take geo-
tagged photos at each spot. Verified by these logs, we say that
the human evaluation is credible. After that, they answered a
questionnaire about their opinions of the spots they had visited.
On the basis of the feedback, we defined two criteria to denote
how well a discovered obscure spot meets tourist requirements
shown in Table II.

We compare other 4 baseline methods with the SAS (i.e.,
Eq. 8) and PAS (i.e., Eq. 9):

• Image Attractiveness (IA): the image attractiveness rank-
ing model proposed in [11];

• HITS based Authority Analysis (HAA): the user(hub)-
location(authority) graph based analysis in [1];

• Rank-by-Visits (RV): the accumulative counts of visits to
the spot;

• Rank-by-Users (RU): the accumulative counts of unique
users who have been to the spot.

By implementing these methods, we rank the 17+18 obscure
spots mentioned above.

NDCG based Evaluation: Figure 7a and 7b, respectively,
depict the NDCG [15] of different measures on the two
queries: q1 and q2. From the data shown in these figures, we
can obtain the following results.

First, in contrast to the baseline methods, our proposed
methods, SAS+PAS and SAS, performed more effectively
in the scenery quality based obscure spot ranking.

Second, the PAS brings a significant improvement to the
ranking only based on SAS. Since ranking obscure spots
of having few images is very challenging, our experiments
verified that the photographer attention based analysis could
provide a stable effectiveness improvement.

Third, by comparing Figure 7a and 7b, the authority based
analysis, HAA, fluctuated considerably. Namely, this series
of conventional methods heavily depend on how much the
corresponding raw data obtained.

Finally, the results related to IA have verified our hypoth-
esis that an attractive image doesn’t mean beautiful scenery
included in this image. As naive methods, RV and RU both
performed better than expected, because our system has pre-
filtered out the noises (like crowded spots of having no target
scenery) in the first step of ranking.

VI. CONCLUSION

We proposed an obscure sightseeing spots discovery system
based on two novel metrics, obscurity level and scenery qual-
ity. In the experiments, we employed human effort to obtain
ground truth for the two query instances and further analyzed
the performance of each proposed method by comparison.
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