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Abstract—The unprecedented use of social media through
smartphones and other web-enabled mobile devices has enabled
the rapid adoption of platforms like Twitter. Event detection
has found many applications on the web, including breaking
news identification and summarization. The recent increase in
the usage of Twitter during crises has attracted researchers to
focus on detecting events in tweets. However, current solutions
have focused on static Twitter data. The necessity to detect events
in a streaming environment during fast paced events such as a
crisis presents new opportunities and challenges. In this paper,
we investigate event detection in the context of real-time Twitter
streams as observed in real-world crises. We highlight the key
challenges in this problem: the informal nature of text, and the
high-volume and high-velocity characteristics of Twitter streams.
We present a novel approach to address these challenges using
single-pass clustering and the compression distance to efficiently
detect events in Twitter streams. Through experiments on large
Twitter datasets, we demonstrate that the proposed framework
is able to detect events in near real-time and can scale to large
and noisy Twitter streams.

I. INTRODUCTION

Social networking sites like Twitter have proven to be
popular outlets for information dissemination during crises.
It has been observed that information related to a crisis is
released on social media sites before traditional news sites [1].
This motivates us to study the problem of event detection,
which is an interesting and important problem in this domain.

Event detection approaches designed for documents cannot
be directly applied to tweets due to the difference in the
characteristics of tweets. Unlike a traditional document stream,
a Twitter stream suffers from the informality of language, and
differs in both volume and velocity characteristics. Existing
approaches to event detection in tweets focus on the problem in
an offline setting, where the corpus is static and multiple passes
can be employed in the solution. However, event detection
in streaming environment presents unique challenges, which
prevent the direct application of existing approaches. Detecting
events in streaming Twitter data have the following new
challenges: Informal use of language: Twitter users produce
and consume information in an informal manner [2]. Mis-
spellings, abbreviations, contractions, and slang are rampant in
tweets, which is promoted by the length restriction (a tweet can
have no more than 140 characters). Noise: While traditional
event detection approaches assume that all documents are
relevant, Twitter data typically contains a vast amount of noise
and not every tweet is related to an event [3]. Dynamicity:
Twitter streams are highly dynamic with high volume and high
velocity. Approximately 400 million tweets are now posted on

Twitter every day [4]. Event detection methods need to be
scalable to handle this high volume of tweets.

Social media such as Twitter empower their users to publish
information as soon as a real-world event occurs. However,
this information is not curated as in the case of traditional
documents, such as a news article. Whereas, each news article
is part of an event, not every tweet is expected to be part of
an event, as there is a significant amount of noise and inter-
personal communication. In this paper, we address the above
challenges through a novel approach which can:

e Effectively handle the informality of language in a Twitter
stream through an appropriate distance measure;

e Capture evolving events without the need for labeled
events; and

e Scale to high-volume streaming Twitter data.

II. RELATED WORK

Event detection in traditional media is known as Topic
Detection and Tracking (TDT). In [S5], news articles were
modeled as documents to detect topics. The documents were
transformed into vector space using TF-IDF and evaluated
the Group-Average Agglomerative Clustering (GAAC) for
retrospective event detection, and Incremental Clustering for
new event detection. Allan et al. [6] focused on online event
detection. The authors constructed a query from the & most
frequent words in a story. If a new document did not trigger
any existing queries, then it was considered to be part of a new
event. In [7], the authors addressed the problem of detecting
hot bursty events. They introduced a parameter-free clustering
approach called feature-pivot clustering, which attempted to
detect and cluster bursty features into hot stories. Similarly, [8]
interpreted events as hashtag clusters and propose a hierarchi-
cal spatio-temporal clustering of tweets into events.

An attempt to detect earthquakes using Twitter users as
social sensors was made in [9]. The temporal aspect of
an event was modeled as an exponential distribution, and
the probability of the event was determined based on the
likelihood of each sensor being incorrect. In [10], the authors
constructed word signals using the Wavelet Transformation and
applied a modularity-based graph partitioning approach on the
correlation matrix to get event clusters. [11] identified bursty
segments in tweets and clustered them to identify events.

In [12], the authors model the social text streams including
blogs and emails as a multi-graph and cluster the streams using
textual, temporal, and social information to detect events. A
hybrid network and content based clustering approach was



employed in [13] to identify a fixed number of events in
a labeled Twitter stream. Typically, the number of events is
unknown and obtaining the user network is expensive. In [14],
the authors recognized the need for faster approaches for first
story detection in streams. They proposed a two-step process to
identify first stories in streaming data. First, the nearest neigh-
bor of each tweet is identified using locally sensitive hashing in
constant time and space. Second, a clustering approach called
Threading is applied to group related tweets into event clusters.
Here a thread is considered an event. Subsequently, this was
converted to a distributed method in [15].

III. PROBLEM DEFINITION

Given an ordered stream of tweets T = tq,ts,13,...,

where each ¢; is associated with a timestamp indicating its
publication time, we need to detect events £ = e, e, ...em,
where e; = ti,ts,...,t5, Where ¢, € T and j € [1,m].
Event: An event is formally defined as a set of similar tweets
E =1t1,t9,...,t; with high user diversity.
User Diversity: of an event is the diversity of the user
population who contribute to the event. The intuition here is
that a diverse user population lends credibility to the event and
helps us filter out noise. Entropy is a measure commonly used
to compute the amount of information in a text and here we
reformulate it to measure user diversity of an event. Given an
event e, its User Diversity H(e) is

H(e) = — —log— 1

(e) Z log—=, (1
where u; is the ith user in the cluster. Here, n,,, is the number
of tweets published by user w;, which are part of the cluster

C, and n is the total number of tweets in the cluster.

IV. IDENTIFYING EVENTS

People use Twitter to tweet and retweet their experiences.
This published information may be aggregated/clustered to
detect events. For streaming Twitter data, we must consider
that (1) traditional multi-pass clustering cannot be applied,
and (2) the informal language of tweets defies the standard
preprocessing of text such as stemming and vectorization.

To handle high-volume and high-velocity streams, clus-
tering approaches must return the clusters in a single pass.
We seek to avoid multiple passes over data. In this paper,
we employ a single-pass clustering technique to group related
tweets into clusters as they arrive. Additional information on
the method and additional results can be found in [16]

To cluster the tweets, we must choose an appropriate
distance measure which is scalable to high-volume streaming
data; avoids the need for expensive data transformations, be
robust to informal language, and avoids the maintenance of a
vocabulary as the language is constantly evolving.

A. Tackling Data Informality

We use the compression distance to compute the distance
between two texts by measuring the compression gain achieved
from merging the two texts. This distance measure has been
shown to be both efficient and effective for clustering text
in [17]. Unlike traditional measures, such as cosine similarity

which requires the maintenance of a vocabulary and data trans-
formation, compression distance can be directly applied to text.
In this paper, we consider each tweet as a document and use
the compression distance to compute the distance between two
events D(eq,ez2) as the maximum pairwise distance between
any pair of tweets in the events. We use DEFLATE as the
compressor to compute the distance.

B. Scaling to High-Volume Data

Twitter users currently generate more than 400 million
tweets a day [4]. Using publicly available Twitter APIs, one
can access a sample of (1%) tweet stream, which can lead to
as many as several million tweets a day. Thus, detecting events
in a stream necessitates a scalable solution. Here, we present
detailed solutions to scalability.

Events are dynamic and it is essential to consider the
temporal evolution of the events in streaming data. As we
create clusters of tweets, they be active or inactive at a given
time based on the arrival of new tweets. Here, we propose
a temporal model which can be used to make this decision.
We model events as a Poisson process, which have been
traditionally used to model the number of objects in an event
at time ¢. In a Poisson process, the rate of arrival of tweets
can be modeled as an exponential distribution. This rate is
represented by the parameter \.

Let us consider a random variable X, where X measures
the time between successive tweets. The variable X is modeled
as an exponential distribution with the parameter A as X o
exp(A). Given an event e and the number of tweets in each
time interval in the event x1, xo, ..., ,, the likelihood function
for the inter-arrival time is

L(A\x1, @, . xy) X f(21, T2, ..., Tn|X) H)\e_‘”’\. 2)
i=0

To obtain Ap;pp, by taking the derivative of the log-
likelihood with respect to A and setting it to zero. Then,
AMLE = %, where T is the mean of the distribution. For
each cluster ¢, if a tweet does not arrive in \. time units, the
current estimate for cluster ¢, then c is considered inactive and
removed from memory. The estimate for \. is updated every
time a new tweet is added to the cluster.

C. Identifying Events from Noisy Clusters

Tweets are noisy and not every tweet in the stream is
expected to be part of an event. Therefore, not every cluster
identified by the algorithm can be an event. The volume of
a cluster can help us identify events, but this is susceptible
to noise. As a crowdsourced information sharing platform, the
diversity of the users (or the number of unique users) who
publish tweets in a cluster lends credibility to the information
within the cluster. Therefore, we measure the user diversity
of a cluster to determine whether it is an event. A cluster is
classified as an event, if its Diversity Score H(c) is above the
Diversity Threshold H.

V. EVENT DETECTION FRAMEWORK

Using the strategies to handle informal language in tweets,
temporal dynamics of events, and handling noise, we can



Algorithm 1: Event Detection in Twitter Streams

Input: A stream of tweets 7" and the Cluster Limit (k), the Tweet
Limit (1), the Distance Threshold (D;), and the Diversity
Threshold (H).

Output: Detected events E.

E+—{}

C—{h

while tweet t € T' do

Identify active cluster ¢ € C, where D(¢,c) < Dy;

if ¢ exists then

Add t to c;

Update expected time of next tweet Ac;

Update User Diversity (H (c)) of cluster c¢;

if H(c) > H; then

‘ Mark cluster as an event, Add c to E;
end

end

else

Create new cluster ¢ with ¢ as its first member;
Add cto C;

5

end
end

detect events in Twitter streams. A high-level description of
the algorithm is presented in Algorithm 1. To improve the
efficiency of the algorithm and to scale it to large Twitter
streams we propose two heuristics: Cluster Limit: sequentially
searching through all active clusters can be prohibitive. As a
tweet is more likely to be similar to clusters with overlapping
content we limit the comparisons to these candidate clusters.
We pick the top k clusters as the candidate clusters. Here
k = 100. Tweet Limit: due to the timely nature of tweets
we restrict the comparisons to at most [ recent tweets in a
cluster. In our implementation, we set [ = 1000.

Time complexity: given the number of tweets in the stream
as N, the Cluster Limit (k) and the Tweet Limit ([), the time
complexity of our algorithm is O(NNkl). The most expensive
operation in our algorithm is the assignment of tweets to
clusters. The values of k£ and [ are much smaller than N, thus
allowing us to process the tweets in near real-time. We will
present empirical evidence in support of this claim lated.

Selection of parameters: two thresholds are used in our
framework to identify events. First, the distance threshold D,
is used to determine assignment of tweets to clusters. In a
study on 20,000 random tweets, we found that the average
self-similarity of tweets was 0.54 and a value of 0.8 was
empirically found to be a suitable value to obtain reasonable
clusters. Second, the diversity threshold H;, which is used to
decide which clusters can be labeled as events to remove noise.
This threshold is set empirically as outlined later.

VI. EVALUATION STRATEGY

There are two challenges in evaluating events from Twitter:
1) unlike traditional media such as broadcast news, where
every event is reported, on Twitter there is less likelihood of
finding tweets related to minor events, and 2) while traditional
research on event detection has relied upon the availability of
labeled corpora such as the TDT corpus for evaluation, no such
corpus exists for Twitter. Therefore it is difficult to determine

TABLE 1. EFFICIENCY OF EVENT DETECTION: EARTHQUAKE

Day #tweets Total Collection Processing
processing rate rate
time (Min) (Tweets/Min) | (Tweets/Min)

7/19/2011 880 0.04 0.613 23,498.00
9/5/2011 2,712 0.18 1.88 14,788.69
9/18/2011 465 0.02 0.32 18,699.73
10/23/2011 5,253 0.49 3.65 10,646.89
11/9/2011 2,712 0.17 1.89 15,611.63
2/6/2012 13,586 4.79 13.72 2,834.92
4/11/2012 28,182 10.61 19.57 2656.06
5/20/2012 20,509 6.40 14.33 3,204.44

TABLE II. EVENTS DETECTED IN THE EARTHQUAKE DATASET
Day Earthquake | Key Event Terms

Location
9/5/2011 Indonesia sumatra, western, indonesian, island, #break-
ingnews

10/23/2011 | Turkey #turkey, eastern, turkey, magnitude, news
11/9/2011 Turkey turkey, eastern, magnitude, rocks, usgs
2/6/2012 Philippines pray, visayas, philippines, struck, earlier
4/11/2012 Indonesia #indonesia, tsunami, magnitud, indonesia, sacudi
5/20/2012 Italy sentito, emilia, sono, cosa, chies

the exact number or nature of the events and manual labeling
is impractical. In this section we evaluate our approach on
two forms of Twitter streams: topic streams containing tweets
related to a specific topic, where the number and type of events
can be verified using external sources, and random streams,
which contain randomly sampled tweets, where the number
and type of events must be manually determined.

A. Detecting Events in Topic Streams

As a representative topic stream, we introduce the Earth-
quake topic stream which consists of tweets related to earth-
quakes around the world. Due to the existing research demon-
strating the use of Twitter during earthquakes [9], [18], we
collected tweets referring to earthquakes between June, 2011
to May, 2012 by monitoring the hashtags: #earthquake, #ter-
remoto, and #quake using the Twitter streaming API and
the techniques recommended in [19]. The data comprises of
1,007,417 tweets from 317,564 users. In general, the volume of
tweets during the earthquakes in 2011 was significantly lower
than those in 2012.

To obtain ground-truth we seek an independent and external
source. One such source is Wikipedia where the information
is curated by the community. Therefore, we select the major
earthquakes in 2011 [20] and 2012 [21] listed on Wikipedia as
the ground-truth. These reports were manually compiled from
several major news sources. Here, we focus on 10 days when
a major earthquake resulted in at least 10 casualties. We found
that for most events in 2011, only a few hundred tweets were
collected. Therefore, we set H; = 5 for this dataset.

1) Evaluating Scalability: To verify the scalability of our
approach we compare tweet processing rate with the tweet
generation rate. Table I presents the results of the comparison
for the Earthquake dataset. We find that the approach is capable
of handling high-volume topic-specific Twitter streams by
being able to process the tweets at a rate higher than the rate
at which tweets are generated.

2) Quality of Detected Events: Events are typically de-
scribed using the frequent keywords extracted from the
tweets [5], [14], [7]. We employ the same procedure to verify



TABLE III. EFFICIENCY OF THREADING TECHNIQUE: EARTHQUAKE

Day #tweets Total Tweet Processing rate
Processing collection rate | (Tweets/Min)
Time (Min) (Tweets/Min)
7/19/2011 880 1.11 0.613 793.40
9/5/2011 2,712 3.99 1.88 678.68
9/18/2011 465 0.88 0.32 527.10
10/23/2011 | 5,253 2.65 3.65 1,984.97
11/9/2011 2,712 2.54 1.89 1,068.13
2/6/2012 13,586 38.36 13.72 354.19
4/11/2012 28,182 135.27 19.57 208.34
5/20/2012 20,509 210.32 14.33 97.51

whether the detected events matched the ground-truth. In Ta-
ble II, we present the most representative event corresponding
to the known events.

To quantify the effectiveness of our approach, we compute
the Fy score which captures both the Precision and Recall.
Precision is computed as the number of detected events that
match the ground truth including sub-events. Recall is com-
puted as the number of known events which were successfully
detected. The F; Score for the Earthquake dataset was 0.77.

B. Detecting Events in a Random Stream

Twitter streams can also be collected without any topic bias
using the Twitter Sample API. The task of event detection is
harder in this case due to the presence of noise in the form
of interpersonal tweets. We collected a 1% random sample of
tweets from 11:02 AM on Apr 15 to 9:16 AM on Apr 16,
2013. The data consisted of 4,212,333 tweets from 3,322,379
users. Due to the lack of ground truth, we verify that we can
detect the top stories of the day. Here we set H; = 6.3.

Evaluating scalability: to evaluate scalability we once
again compare the tweet generation rate and the tweet process-
ing rate and found that the processing speed for a majority of
the processing speed was on par with the collection speed and
it often exceeded the tweet collection rate significantly.

Quality of detected events: we detected 167 events in this
corpus. But, a manual investigation revealed 4 major kinds of
events: the Boston bombing incident, the Presidential elections
in Venezuela, a music festival, and events representing banal
Twitter chatter, such as those of Justin Bieber fans.

VII. DISCUSSION AND FUTURE WORK

We compare the performance of the proposed technique
with the Threading technique proposed in [14]. Using the
configuration recommended by the authors, we applied this
technique to the Earthquake dataset. The results for the scala-
bility experiment are presented in Table III. A comparison with
our approach in Table I shows that we can process and detect
events faster. Next, we evaluate the quality of the events. On
all days, the Threading approach detected a greater number of
events. Even using the ranking strategy proposed by the authors
to retrieve the top 10 fastest growing events, we found that the
Fy score for the Threading technique was 0.64 compared to
0.77 for the proposed approach. As the Earthquake dataset
was the smallest among our datasets, the results show that our
framework outperforms this approach.

Event detection has several potential applications, which
we intend to investigate as part of our future work. Inves-
tigating the relationship between an event’s rate of growth

and its impact in the real-world is one. Another direction
of future study is the categorization of events based on two
characteristics: the volume of the event defined by the number
of tweets, and the rate of the event. By organizing the events
in this fashion, we can provide a value added service to users
by facilitating the tracking of specific types of events.
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