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ABSTRACT 

Estimating the future position of a deep sea vessel more than 24 

hours in advance is a major challenge for Dutch logistics service 

providers (LSPs). Their unscheduled arrival in ports directly 

impacts scheduling and waiting times of barges, propagating 

throughout the entire supply chain network. To help LSPs’ 

planners improve planning operations, we intend to capture the 

characteristics of maritime routes for a specific region (the North 

Sea connecting the Netherlands and United Kingdom) in the form 

of a directed graph, which can be used as a foundation for 

predicting destination and arrival time of each associated vessel. 

To create such graph we need an efficient way to extract 

waypoints for traffic data and this is the problem we will address 

in this paper. 

Since LSPs only use publicly available data for arrival estimation, 

our solution is entirely based on Automatic Identification System 

(AIS) data. Extracting positional information from AIS, we 

explore various machine learning approaches to identify clusters. 

We apply DBSCAN algorithm and show its advantages and 

disadvantages when used on AIS data. The same process is 

repeated using meta-heuristics, comparing clustering results 

generated by a genetic algorithm and by modified ant-colony 

optimization to those produced by DBSCAN. Finally, we present 

a hybrid approach and its ability to discover waypoints, 

highlighting the achieved improvements. 

To extend the problem, two constraints are added. The first is the 

requirement to handle large volumes of streaming AIS data on 

standard PC-based hardware.  The second introduces the common 

situation of “dark areas” in a map due to problems with receiving 

and transmitting AIS data. The algorithm discovers route 

waypoints in efficient and effective ways under these constraints.  

CCS Concepts 

• Information systems➝Data analytics   • Information 

systems➝Clustering   • Information systems➝Data stream 

mining.  
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Automatic identification system; unsupervised machine learning; 

meta-heuristics; trajectory analysis 

1. INTRODUCTION 
The SynchromodalIT project was initiated to enable Dutch 

logistic service providers (LSPs) increase efficiency and customer 

service by providing a platform that can support the decision 

making process. The ability to estimate the future state of a 

system and suggest a favorable action is the essential component 

of such a platform [1]. Uncertainties related to arrival times of 

deep sea vessels have been identified as a major challenge by 

LSPs. In order to add value to the decision making process, the 

SynchromodalIT platform has to provide means of estimating 

these values. 

Deep sea vessels have priority over barges at port terminals. Any 

unscheduled arrival propagates throughout entire supply chain 

network. Consequently, barges and trucks are delayed and an 

additional safety stock in warehouses is required, which directly 

increases the LSPs’ operational costs. The late arrivals are 

influenced by various external factors, weather being the most 

common one. According to Vernimmen et al. [2] only 52% of the 

vessels arrive on time, due to both internal and external factors.  

In this paper we address the problem of “long term prediction” – 

the ability to estimate future position of a vessel at least 24 hours 

in advance. This prediction must be made using only data 

available to LSPs, which constrains the input to publicly available 

sources. Automatic identification system (AIS) data belongs to 

that group. With LSPs primarily using AIS data as the source of 

information for the vessels they do not own, this study will also 

base long term prediction on the same input type.   

AIS contains static information such as vessel name and it’s 

unique number, dynamic information such as position, speed and 

heading, and voyage-specific information with destination and 

estimated arrival time. While static and dynamic information are 

reliable, the voyage-specific part is often either not used, or 

contains incorrect information [3], making it unsuitable for 

estimating arrival times. With positional data as the only reliable 

source of information, any destination and arrival time prediction 

must begin with discovery of maritime lanes. These lanes will 

form edges of a directed graph that contains all routes in a specific 

region, including the probability of using each edge for sailing 

from one node point to another. By assigning vessel’s position to 

this graph, we can estimate the likelihood that it will arrive at a 

specific point. 
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The process of creating this graph relies on adequate isolation of 

so called waypoints – i.e., positions on map that, when connected, 

give the shape of maritime routes. Our research objective in this 

paper is to find an efficient algorithm that identifies waypoints 

from large volume of streaming AIS data. Since it is common in 

real business case applications to have areas that are not fully 

covered by AIS receivers, or where receiving data is not 

consistent, our goal is to have an algorithm that can tolerate and 

handle these inconsistencies. 

Research done by Lame et al. [4] indicates that vessels’ routes are 

influenced by weather. When weather conditions deteriorate, 

ships show tendency of choosing routes closer to shore. 

Consequently, this implies that waypoints are not fixed 

coordinates, but can move depending on external factors. Using 

AIS data only, we cannot predict those factors, but we can 

identify change in the behavior. Because of this, we require 

solution that can extract waypoints in real time. 

The contribution of this paper is the novel approach in handling 

large volume AIS data streams, process them in real or near real-

time and extract maritime waypoints that define routes and lanes. 

Although we limit our experiments to AIS and waterways, there is 

no limitation of applying this concept for other modes of 

transportation. 

The methodology followed in this document is the design science 

research methodology for information systems research by Peffers 

et al. [5] 

The remainder of the paper is organized as follows. In Section 2 

we present our solution design. Starting with problem space, we 

continue with algorithms for waypoint extraction and then present 

a hybrid approach. Section 3 is used to evaluate the algorithms 

and explain their strengths and weaknesses. In Section 4, we 

present related research on this topic. Section 5 is used to 

summarize the work done and discuss the future work and impact. 

2. SOLUTION DESIGN 

2.1 Problem Space 
Vessel information, their unique identifier, position, speed, and 

heading is based on information received from AIS data. To make 

the simulated environment resemble the scenario of what is 

available to LSPs as closely as possible, we limit ourselves to 

publicly available AIS sources. Data used in this experiment is 

obtained from AIS Hub, through one of the SynchromodalIT 

project partners. The area of utmost importance for LSPs includes 

waterways in the vicinity of major Dutch ports. Thus, we 

constrain the route identification to the region of the North Sea, 

containing major maritime lanes between the Netherlands and 

United Kingdom. 

 

Figure 1: AIS Hub coverage of the North Sea 

To analyze different algorithms we stored all AIS messages 

received from 26-11-2014 13:05:38 to 02-12-2014 05:25:56. 

During this period we were receiving approximately 693 raw AIS 

messages per second. These messages originated from all 

receivers around the world connected to AIS Hub. We stored all 

raw messages as well as decoded navigation and trip blocks. 

During simulation we loaded raw AIS messages from our 

database, setting the limit to the same number of messages per 

second. Upon loading completion, we performed a decoding and 

filtering according to the message type. Only messages of type 1, 

2, and 3 have been processes, as only these types of AIS messages 

contain vessel’s positional information. Following is another 

filtration required to isolate AIS messages with latitude and 

longitude coordinates belonging to the designated problem space 

within the North Sea. 

 

Figure 2: Plotting maritime traffic for interval with limited 

coverage (above) and complete coverage (below) 

We want to emphasize that AIS messages can be picked only 

from the region covered with online AIS receiver stations. Our 



problem region has complete coverage of the coastal and inland 

areas, but there are zones in the open sea that may not be visible 

from time to time. This is due to weather conditions limiting how 

far an AIS message can be received, as well as an AIS station 

being offline (see Figure 1). Consequently, there are intervals with 

full AIS coverage for the region, and intervals containing zone 

from which no information is being received. Figure 2 depicts the 

difference of data being received with limited and full coverage. 

The upper image contains a blank area with no information about 

vessels inside, while the lower image shows the same area with 

complete information. Since this is the typical scenario LSPs face, 

we choose to process data in this form without any additional 

adjustments to the algorithms indicating the level of coverage. 

AIS is a self-reporting system, implying that the trustworthiness 

of information depends on data reported by the vessel, and, as 

such, is prone to spoofing or intentional incorrect information 

reporting [6]. For the problem being researched, we do not 

perform any analysis to assess the quality of the received AIS 

message, assuming that the frequency of faulty messages is below 

the threshold that can impact our algorithms in any way. 

The executions of our algorithms are being done on standard PC 

hardware, using Python 3 and NumPy, SciKit-learn and 

Matplotlib libraries. The typical processing uses query to retrieve 

messages in 5 – 7 minutes interval, storing them in the local 

memory buffer and using them as the input for the algorithm 

developed. 

2.2 Waypoint Extraction Algorithms  
For the process of waypoint discovery from AIS data, we are 

looking into algorithms that can perform clustering, be tolerant to 

noise and capable to quickly process large streaming volumes. We 

demonstrate the performance of three different algorithms: 

DBSCAN, genetic algorithm, and modified ant colony 

optimization. 

2.2.1 DBSCAN 
DBSCAN is the machine learning algorithm that produces clusters 

from the area of high density [7]. Pallotta et al. [8] perform 

unsupervised learning of maritime routes assuming waypoints lay 

in the area of high traffic density, while the low density area is to 

be treated as the noise. They use incremental DBSCAN to identify 

waypoints and use them to plot lanes and routes. Unlike other 

clustering algorithms DBSCAN does not require the number of 

clusters to be given a priori. It can handle noise and can produce 

arbitrarily shape clusters. All these characteristics make it a good 

candidate for solving this type of problem. 

Through scikit-learn package, we use DBSCAN on positional data 

from our dataset. The number and shape of the clusters produced 

by DBSCAN depend on two variables specified by the user: ε and 

minPoints. To determine the most suitable values for these 

parameters, we run several tests using datasets of different size, 

with different ε parameter (see Figure 3). Each cluster labeled by 

DBSCAN is represented with a different color, where points 

belonging to the same cluster have the same color. Noise points 

are black and are plotted as circles with smaller radius than cluster 

points. 

The experiment shows that results are influenced by the density of 

maritime traffic. In the top left picture we observe that with higher 

ε value and bigger dataset, we get acceptable clusters in the 

coastal region of United Kingdom. However, due to much higher 

traffic density, especially in inland areas of the Netherlands, 

DBCSAN detects one huge cluster, enveloping a large portion of 

those routes. The top right picture presents the result of running 

the same algorithm with the same dataset, using a lower ε. This 

leads to better clustering in the Netherlands with the drawback of 

labeling majority of points within UK as noise only. Going back 

to the previous ε value, while reducing dataset (bottom left), we 

get an acceptable number of clusters in the Netherlands, and yet 

again the majority of UK points get classified as noise. Reduced 

dataset and ε (as shown in the bottom right picture), results in 

labeling most of the traffic as the noise. 

 

Figure 3: DBSCAN results with varying data size and ε 

parameter 

Hence, we conclude that the DBSCAN algorithm can identify 

maritime waypoints, but only for the regions without major 

differences in traffic density. For the observed region of the North 

Sea, where the number of detected vessels in the vicinity of the 

Netherlands is considerably higher compared to those in UK, 

DBSCAN will not produce satisfactory results. The possible 

improvement is to subdivide the region and use different 

DBSCAN parameters adjusted to the traffic density. 

2.2.2 Genetic algorithm 
A genetic algorithm (GA) is a population-based model that uses 

selection and recombination operators to generate new sample 

points in a search space [9]. The problem of discovering 

waypoints can be formulated as optimization problem. If we 

assume that a waypoint is a circle with a given radius, we can 

formulate the maximization criteria as to find geometrical 

positions for a given number of circles, such that they contain the 

maximum amount of points from the dataset. 

Each waypoint can be observed as a gene, containing latitude, 

longitude and radius values. This version of the genetic algorithm 

sets same radius value for all chromosomes, making all waypoints 

of equal area. Genes are grouped in sets forming chromosomes, 

making each chromosome representation of waypoints set for our 

problem space. Chromosomes are grouped to form the population 

of the genetic algorithm. 

The fitness criterion used for the evaluation of each chromosome 

is the number of vessel points contained within all of its genes. 

The crossover operation is performed by taking two parent 

chromosomes A and B and choosing random position to subdivide 

genes into two subsets. A is subdivided into A1 + A2, while B is 

subdivided into B1 + B2. Two new offspring are created, with the 

first inheriting genes A1 + B2 and the other B1 + A2. The initial 



population is randomly created using any latitude and longitude 

value from the given area. During each epoch a fitness evaluation 

is performed for each chromosome. All fitness values are summed 

and then two genes are selected using a roulette wheel selection. 

Following the selection, a crossover operation is performed and it 

generates two offspring. The process of selecting parent genes and 

creating offspring is repeated until a new population is created 

with the number of chromosomes equal to the previous one. This 

completes one epoch of our genetic algorithm. 

Elitism is included to prevent the loss of the best solution. Our 

implementation limits the elite to always preserve the two fittest 

genes from each epoch. Mutation is also used as a means to 

prevent the GA getting stuck in a local maximum. A mutation is 

assigned with a probability of 5% to occur after each crossover. If 

the conditions are met and the chromosome has to mutate, a 

random gene is selected. Then it mutates by picking new, random 

latitude and longitude values. 

In the problem space section, we stated that AIS messages are 

received in the form of continuous streams. The fact that we are 

dealing with streaming data, and that waypoints can move due to 

weather change, makes this problem a good candidate for using 

GAs to solve. 

We run the experiment by loading AIS messages from the 

database, decoding and filtering those that contain positional data 

for this region. These positions are stored in the memory buffer, 

containing vessel data of approximately 7 minutes. In the 

following text we will refer to this position set as the frame. For 

each frame we execute one epoch in GA, update fitness scores, 

and take the best fit chromosome. The results of the experiment 

are shown in Figure 4. Vessel positions are plotted as black dots, 

while waypoints are blue circles.  

 

Figure 4: Waypoints identified by genetic algorithm 

The top left picture shows the result after the first call to the epoch 

function. We can see that the majority of the waypoints are 

located in the highly trafficked areas such as Rotterdam and 

Antwerp. This is expected behavior since it’s the common 

characteristics of a GA to rapidly converge towards the area of an 

optimal solution. After running the algorithm for 70 more frames 

we can see waypoints shifting positions. Also there is an increase 

of the fitness score from 36% to 40.9% (top right). The GA has 

achieved the best score after 134 frames (bottom left) with a 

fitness of 62.9%. Depending how steep the vessel position 

changes are, fitness can fluctuate, but it shows the tendency to 

stay above 53.2% (bottom right). 

Running the experiment has confirmed that our GA 

implementation can process streaming data in real time, but the 

execution time keeps increasing with the increase of fitness 

values. This is due to the need to evaluate each point within every 

genome of the population. Adding more waypoints to the 

chromosome means better precision, but it also negatively impacts 

the performance. Unlike DBSCAN, the GA approach requires a 

balanced decision / trade-off between the number of waypoints – 

precision and the execution time.  

Similar to DBSCAN, GA also shows a tendency to converge 

towards the area of higher traffic density. This can be better 

illustrated with the result of another experiment, where additional 

waypoints were added and the waypoint radius decreased. After 

running GA for 200 frames / epochs, we can see that majority of 

waypoints now solely lie within the Netherlands (see Figure 5). 

Without the time constraint, increasing the waypoint number 

would solve the problem, but in this problem space, a different 

approach is required. One potential solution is to modify the 

fitness function in such a way that it penalizes chromosomes with 

waypoints close to each other. 

 

Figure 5: GA converges towards area with higher traffic 

density 

2.2.3 Modified ant colony optimization approach 
The third alternative to address waypoint extraction is to view 

every ship as an ant, leaving their pheromone trail as they go. In 

such case, major maritime routes can be isolated with higher 

concentration of pheromone. Waypoints would be intersections of 

these routes, containing even higher pheromone signature. 

In ant colony optimization (ACO) every ant moves randomly and 

marks a trail with pheromone, while following ants that encounter 

such trail decide with probability weather to follow it or not [10]. 

For the problem on hand, we don’t have the case of vessels 

following each other, but we can utilize the concept of pheromone 

trail to identify sailing density. Adding to the problem that vessels 

change their sailing patterns due to external factors such as 

weather, we need a mechanism to isolate the route that was used 

only in a specific case from the one frequently used. 

We will approach the problem in the following manner: every 

vessel that sails through a point on the map leaves a predefined 

unit of pheromone. Multiple passing through the same points 



sums the pheromone level. After each frame / epoch is complete, 

a percentage of pheromone will dissipate according to a given 

constant. If a route is only used once, it will exist for a short 

period of time and then will disappear, while the frequently used 

ones will remain. Since vessels following the same path do not 

have the exact latitude and longitude values, we will subdivide the 

area into cells, and then for each cell track its pheromone density. 

We also define parameters that indicate the threshold for high and 

low density points. 

An example of lane discovery process using modified ACO is 

given in Figure 6. Black points are vessel position in the selected 

frame. The pheromone concentration is indicated by colors: green, 

yellow, red and blue to indicate low, medium, high and maximum 

values respectively. In the figure we show the pheromone levels 

after 1, 50 and 100 frames. The last picture on the bottom right 

displays pheromone only and was generated after the completion 

of the algorithm. 

 

Figure 6: Lane discovery using modified ACO 

The blank area in the center of the problem space requires 

experimentation with different parameters, in order to isolate 

maritime lanes passing through it, and yet avoid noise pollution. 

We run two tests (see Figure 7). In the first, we set the following 

threshold parameters: LOW = 100, HIGH = 1200, MAX = 1800, 

while in the second we use: LOW = 50, HIGH = 1000, MAX = 

1500. Each passing of a vessel through a cell increases pheromone 

level per frame by 1 for both tests. The dissipation factor for both 

is based on the percentage of its previous level. In the first test, 

modified ACO is set to lose 1.5% of its pheromone level. In the 

second, this factor is 1%. 

The results of the first test identify major shipping lanes, but due 

to the blank area, they are interrupted. Also, the lanes used less 

frequently are not visible. Reducing the pheromone threshold as 

well as the dissipation factor, yields additional lanes, but the 

presence of noise becomes especially visible in the coastal area of 

UK. 

The benefits of this approach are that this is the fastest of all 

attempted algorithms and with a good dataset, it can clearly 

isolate major lanes. The negative side is either the 

misinterpretation of noise that becomes evident when pheromone 

thresholds are reduced, or not being able to identify some lanes if 

these values are high. 

2.3 Hybrid Approach 
Every algorithm covered in Section 2.2 can partially contribute to 

waypoint discovery, but each one has disadvantages, preventing 

them to give satisfactory results in isolation. To overcome this, we 

propose a hybrid approach, combining strengths of all three 

algorithms. 

 

 

Figure 7: Lane discovery with different pheromone thresholds 

GA has shown the capacity to quickly discover waypoints and 

given more time and processing power, it can produce good 

discovery results. We keep the ability to quickly converge towards 

solution, yet remove randomness by replacing GA with a basic 

Quad Tree (QT) structure. QT is able to decompose space into 

adaptable cells, with each cell containing points up to the 

maximum capacity [11]. Using this ability we can instantly 

subdivide the area into cells, solving speed issues caused by the 

GA. This also solves the problem for DBSCAN originating from 

the different traffic densities, as each cell is guaranteed to have a 

number of points lower than a given threshold. For each cell we 

run separate DBSCANs and save the discovered clusters. 

We improve the output of the algorithm by making additional 

modifications. The first one is to check the number of points 

contained within a new cell as soon as it is being created. If it 

contains only a few points (lower then user defined threshold), 

this cell is guaranteed not to have any waypoints, so we can 



immediately exclude it from further processing and discard the 

points inside. This additionally increases the algorithm’s speed 

and reduces memory requirements. The second modification is the 

introduction of maximum depth level, after which we prevent any 

further cell subdivision. Before implementing this modification, 

areas with the highest densities, typically lying in the port vicinity, 

had very high cell depth, which meant many tightly packed points 

in a small area. Consequently, every point in such an area would 

be identified by DBSAN as belonging to a single cluster, leading 

to many waypoints just next to each other. Using a maximum 

depth this problem is eliminated. Figure 8 illustrates this process 

for two arbitrary frames. In the upper part of the figure, the 

subdivision of the region into cells is being shown. Cells with 

enough points to make them candidates for possible waypoints are 

colored red, while discarded ones are yellow. The result of 

DBSCAN is given per cell, where each cluster is marked with a 

different color. In the lower part, we plot discovered waypoints on 

top of ship positions for that frame. 

 

Figure 8: Waypoint discovery using hybrid approach 

To meet the requirements of the research question, this algorithm 

needs to be able to process streaming AIS data in real time. To 

that end we apply the pheromone trail concept from the modified 

ACO. Instead of ships, we assign discovered waypoints as trail 

carriers and for each frame we measure the pheromone density per 

cell. After processing the entire dataset, or whenever the user 

requires, the hybrid algorithm returns frequently used waypoints.  

3. EVALUATION 
Each of the algorithms presented in the previous section has 

different strengths and weaknesses. To evaluate how adequate 

each of them is for the extraction of waypoints, we formulate the 

following criteria: 

1) Extraction quality  

2) Algorithm efficiency  

3) Traffic density handling 

4) Noise tolerance 

5) Blank region tolerance 

The first criterion relates to the ability of the algorithm to produce 

such waypoints, that they can be used to reconstruct maritime 

routes in the region. To evaluate the quality of extraction we 

create the simulation with obvious lanes (edges of a rectangle) and 

compare the percentage of the rectangle we can recover from 

discovered waypoints. Algorithm efficiency is about speed and 

memory requirements. A good performance requires the algorithm 

to process all input data at the same speed or faster than the speed 

with which the AIS data streams have been received. The third 

criterion is to evaluate the algorithm on its ability to successfully 

extract waypoints in regions with varying traffic densities. Noise 

tolerance is used to show how tolerant the algorithm is with route 

deviations, interpreted as noise. Finally, we want to see how good 

an algorithm is when blank regions are occurring in the problem 

area. 

To test these algorithms we simulated vessel data such that we 

have four distinctive lanes with four intersections (see Figure 9). 

Maritime lanes are represented with letters: “a”, “b”, “c” and “d”. 

Lane “b” contains traffic density five times greater than lane “a”. 

Lane “c” is the opposite and contains only one third of density in 

comparison to “a”. Lane “d” uses same parameters as lane “a”, 

while only sailing speed is set to be twice as fast in comparison to 

all other lanes. In Figure 9 we can also identify four intersections: 

A, B, C and D, marked by capital red letters. 

 

Figure 9: Simulation data 

We run all algorithms on this simulated data. Since DBSCAN 

gives varying results depending on data density and minPoints 

and ε parameters, we include three different results with 

parameters best fitted for one of the lanes “a”, “b” and “c”. The 

results are given in Figure 10.  

 

Figure 10: Visualizing results on simulation data 



In the top left corner we have DBSCAN result with parameters 

fitted for lane “b”. In the middle, labeled as B, the same DBSCAN 

algorithm was fitted for lane “a”, and in the upper right (C), we 

increase sensitivity to identify intersection D. In the bottom part, 

we give results from genetic algorithm (D), modified ACO (E) 

and hybrid approach (F). To quantify the quality of extracted 

lanes we compare the percentage of reconstructed lanes against 

simulated data. We also check the ability of algorithms to 

discover intersections A, B, C and D. The results are given in 

Figure 11. From the results we conclude that only genetic 

algorithm and hybrid approach detect 3 of 4 intersections and that 

waypoints extracted can be used to reconstruct 69% and 90% of 

actual lanes, respectively. DBSCAN shows vulnerability to 

different traffic densities in lanes “b” and “c”, therefore no good 

parameters could be found that would result in effective extraction 

for this data set. Modified ACO, although visually almost 

identical to simulated data, cannot identify waypoints in the lane, 

and for intersections, it only detected points B and C. 

 

Figure 11: Lane extraction quality per algorithm 

To determine algorithm efficiency we measure execution time per 

one data frame and present them in Table 1. Both DBSCAN and 

modified ACO perform under 10 seconds. The exact figure cannot 

be accurately measured since it varies upon initialization time of 

the simulated environment. The hybrid approach takes 20s – 43s 

to extract waypoints, depending on number of subdivided regions. 

Genetic algorithm was the only one that failed to complete after 

one hour and the execution was terminated. For result evaluation 

we used waypoints detected by GA at the moment of termination. 

As can be observed from Figure 10, result D, there are still 2 

waypoints that could be assigned to one of the lanes provided the 

algorithm had longer execution time. Since frame updates do not 

occur faster than once per five minutes, we conclude that all 

algorithms with execution time below that value are sufficient for 

the task. That means that all except genetic algorithm passed this 

requirement.  

Table 1: Execution time 

Algorithm DBSCAN Genetic 

Algorithm 

Mod. 

ACO 

Hybrid 

Approach 

Execution 

time (sec.) 

10 * 3600 ** 10 * 20 - 43 

Traffic density is directly related to extraction quality. In our 

simulation (see Figure 9), lanes “b” and “c” are given in a way to 

reflect the high density of maritime traffic, as observed in inland 

and coastal areas of the Netherlands, and that of lower volume, as 

observed in coastal areas of UK. From the Figure 10, images A, B 

and C, we can see that varying density prevents DBSCAN to 

extract waypoints in effective way, either creating huge clusters 

enveloping entire lane (C), or by failing to identify intersections 

(A). The remaining algorithms (D, E, F) are able to distinguish 

between lanes “b” and “c”. It is important to note that GA is a 

special case. Even though it can detect waypoint effectively from 

lanes with varying density, this variation has impact on execution 

time, that on previous test (see Table 1) was determined to be 

unacceptable. Therefore we conclude that only modified ACO and 

hybrid approach can cope with varying traffic density. 

For the noise tolerance, no specific test was made since no 

problems were observed in real case scenario, with only modified 

ACO showing higher noise sensitivity with lower pheromone 

threshold. 

Blank region tolerance is the biggest challenge for all algorithms. 

The existence of such regions leads to degradation of the data 

quality and thus of the overall results. All algorithms are 

vulnerable to it, but the presence of “memory” of former waypoint 

reduces degradation time. DBSCAN is the only one without 

“memory”, causing appearance of blank regions to immediately 

produce different waypoints, while in the case of the remaining 

algorithms this change is not instant and occurs over time. 

Summing up all criteria we present Evaluation results in Table 2. 

Satisfactory performance is labeled with ‘+’ and unsatisfactory 

with ‘-’. Those cases when algorithm partially complies we label 

with ‘+ / -’. 

Table 2. Algorithm evaluation 

Criteria DBSCAN GA 
Modified 

ACO 

Hybrid 

Approach 

Extraction 

quality 
+ / - + - + 

Algorithm 

efficiency 
+ - + + 

Traffic 

density 
- + / - + + / - 

Noise 

tolerance 
+ + + / - + 

Blank 

region tol. 
- + / - + / - + / - 

From the table we see that the biggest challenge for all algorithms 

is the blank region handling. Noise is quite the opposite and with 

exception to modified ACO, not deemed to be a problem. The 

same applies to the extraction of waypoints, however vulnerability 

to traffic density reduces the overall extraction quality for 

DBSCAN. Traffic density is also somewhat problematic for GA, 

forcing it to converge first on high density area. Judging 

algorithms by their execution speed, only GA underperforms. 

Although GA is still viable if a restriction on the number of 

waypoints is imposed, with the increase of data volume, it falls 

behind. Overall, the hybrid approach has shown better or equal 

performance for all criteria and we find it to be the best choice for 

unsupervised discovery of maritime waypoints under these 

conditions. 

4. RELATED WORK 
In [12] we conduct a literature review on current state of the art 

using AIS data for predictions. We classify articles according to 

prediction objective and horizon. According to that classification, 

most of the papers are mainly concerned with short term 

prediction, where the prediction horizon does not go further than 



one hour in the future. The reason for that is that these papers 

focus on detecting anomalous behavior or collision avoidance, 

hence there is no need for estimations far in the future. 

Pallotta et al., Liu et al. and Lei at al. are authors whose research 

presents solutions that can be used for long term prediction. 

Pallotta et al. in [8] classifies waypoints as entry, exit, anchor, 

port and turning points. For turning points, which connect 

shipping lanes into routes, authors use incremental DBSCAN to 

extract them from AIS data. That concept is presented as an 

improvement of [13] by Vespe et al. In [11] turning points are 

extracted through change detection of ship’s rate of turn. 

DBSCAN approach in [8] attempts to improve the work of [13], 

where turning point are extracted in close proximity to another. 

Our initial approach builds on the solution proposed by Pallotta. 

However, as mentioned in section 2.2.1, we find that DBSCAN 

alone can discover waypoints in effective way, only if there is no 

major difference in traffic density. Since our problem space 

contains that situation, we had to search for other discovery 

methods. 

Liu et al. focus on recovering missing data using tensor CP 

decomposition [14]. Since this method works on recovering 

missing data in past as well as into the future, it can be used to 

predict vessel positions. We choose not to go with this approach 

due to difference in input data. In [14] all AIS data is stored and 

accessible, while we focus on streaming data, without the option 

to store all positions received by AIS Hub stations. 

Article [15] by Lei et al. also use DBSCAN to identify “hot 

regions” and use TMP algorithm based on PST probabilistic 

suffix tree. They focus on vessel’s moving behavior instead of 

maritime patterns. 

5. CONCLUSIONS 
In this paper we addressed the problem of discovering waypoints 

of maritime routes, based on data obtained from streaming AIS 

messages. We presented the problem space, constraints and 

desired outputs. Then we described three different algorithms 

used for waypoint extraction as well as their strengths and 

weaknesses when applied to the particular problem. Following, 

we presented a hybrid approach, incorporating best features of all 

previous algorithms. In the separate section we showed the criteria 

used to evaluate the adequacy of each approach for waypoint 

extraction. We concluded that the hybrid approach is the best 

choice to use, especially, when the problem space contains 

streaming data that cannot be stored completely, has to be 

processed in real-time, and has potential to include blank areas. 

Finally, we mentioned the related work in this domain, pointing 

out similarities and differences of proposed solutions in those 

papers to the one presented here. 

Although the hybrid approach can successfully extract waypoints 

from AIS data, the complete prediction requires the generation of 

a directed graph, representing maritime routes for the given area. 

In future work we plan to extend this work with a novel approach 

in extracting edges (i.e. sea lanes of a graph) from the same input 

data. Also, all algorithms are to be tested on a much larger dataset, 

preferably spanning several months. 

Completing the process of extracting maritime lanes in the form 

of a graph will allow long term predictions. All major 

characteristics, such as lane length, average speed of a lane and 

the frequency of usage can be incorporated as attributes of the 

graph’s edges. Predicting the future state of a vessel will require 

only mapping the ship’s current position on that graph. It is our 

expectation that this approach will contribute towards uncertainty 

reduction related to unscheduled arrival times of deep sea vessels, 

and aid LSPs increase the efficiency of their operations. 
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