
POSTER: Using Unit Testing to Detect Sanitization Flaws
Mahmoud Mohammadi, Bill Chu, Heather Richter Lipford

College of Computing and Informatics
University of North Carolina at Charlotte

Charlotte, NC, USA
{mmoham12, billchu, richter}@uncc.edu

ABSTRACT

Input sanitization mechanisms are widely used to mitigate

vulnerabilities to injection attacks such as cross-site scripting.

Static analysis tools and techniques commonly used to ensure that

applications utilize sanitization functions. Dynamic analysis must

be to evaluate the correctness of sanitization functions. The

proposed approach is based on unit testing to bring the advantages

of both static and dynamic techniques to the development time.

Our approach introduces a technique to automatically extract the

sanitization functions and then evaluate their effectiveness against

attacks using automatically generated attack vectors. The

empirical results show that the proposed technique can detect

security flaws cannot find by the static analysis tools.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and debugging – Code

inspections and walk-throughs. D.4.6 [Operating Systems]:

Security and Protection – Verification.

General Terms

 Security, Verification.

Keywords

Unit testing; cross-site scripting (XSS); program analysis;

sanitization correctness; grammar-based attack generation

1. INTRODUCTION
Web applications consume data from different inputs. Some of

these inputs are originated from untrusted sources, such as user

inputs, and referred as untrusted sources. In addition, many of the

data from these sources will be used in functions such as sending

data to the outputs or accessing the databases referred as sensitive

sinks. In the case of injection attacks and more specifically in

cross-site scripting attacks, some of these sinks are sensitive to

certain characters or keywords, affecting their functionalities and

so malicious inputs can change their planned functionalities to

dangerous actions. Therefor any arbitrary inputs cannot be used

for them as input. Attacks of type command injections or XSS are

results of such problems. To deal with this problem web

applications use sanitization functions to make the untrusted

inputs free of texts that can be interpreted as scripts. But how we

can ensure about the correctness of sanitization functions?

Although the sanitization process can be applied to all types of the

injection attacks we have focused on cross-site scripting (XSS)

attacks in this paper. Sanitization to prevent XSS is context-

sensitive. Context here means in which place the untrusted source

is going to be used after sanitization. There are different contexts

as Html, JavaScript, and style sheets and each of them have

different sanitization requirements. Meanwhile, based on many

practical experiences and successful attacks vectors, there are

different sanitization problems[5]: 1) Context inconsistency and

2) Order of the sanitization functions. The conceptual examples

shown in Figure 1 demonstrate these problems.

1) <input type='button' onclick=" …<%=

StringEscapeUtils.escapeHtml(UNTRUSTED) %> " />

2)<% htmlEsc = StringEscapeUtils.escapeHtml(UNTRUSTED); %>

<input type='button' onclick=" …<%= StringEscapeUtils.

escapeJavascriptl (htmlEsc) %> " />

Figure 1. Context-sensitive sanitization

In the first example (Figure 1) the Html escaping is used in the

event (onclick) context, which is a JavaScript context. Html

escaping is insufficient to prevent XSS attacks. In the second one,

the order of applying the JavaScript escaping function is wrong

and it has no effect on the previously sanitized using Html

escaping function. Figure 6 and Figure 7 show real attack vectors

for such problems for the first and the second problem

respectively. The root cause of these problems can be seen better

by looking deeper into internal behavior of the browsers. The

browsers have different internal interpreters for different

grammars such as mentioned before and each of them is sensitive

to different characters and keywords (Problem 1). In addition,

once these interpreters encounter a keyword and before

transferring the control to another interpreter, they may decode

some of the input stream characters, causing some issues namely

as browser transduction problem [5](Problem 2). Currently, static

analysis tools widely used to check whether the web application

use any kind of sanitization or not, but these tools can only check

the existence of sanitizers and not their correctness. Here

correctness means both satisfying the requirements of the target

context the sanitizer is designed for and also the order of the

sanitizations used in the path from the untrusted sources to

security sinks. A single untrusted source could have different

sanitization paths (section ‎2.2) based on different control flows

and target security contexts and thus the type and order of

sanitizations used in each path should be different.

2. APPROACH
Our proposed approach is based on automatic generation of

security test cases. Software testing tools and methodologies

always has to deal with the structural coverage problem[6]. In the

case of evaluating the sanitizations paths spread in different

modules of an application, two challenges can be revealed. The

first one is finding all sanitization functions applied to untrusted

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for third-party components of this work must be honored. For all other

uses, contact the Owner/Author. Copyright is held by the

owner/author(s).

CCS'15, October 12-16, 2015, Denver, CO, USA

ACM978-1-4503-3832-5/15/10.

http://dx.doi.org/10.1145/2810103.2810130

http://dx.doi.org/10.1145/2810103.2810130

sources across the application modules and the second one is the

generating test inputs to maximize the quality and reliability of

testing trials. Automatic security test cases generation serve these

purposes. This approach is implemented as an IDE plug-in to

automatically build security “Test Cases” based on extracted

sanitization paths and then evaluating them by injecting attacks

scripts. The automated generated test cases composed of 3

different sections (Figure 2): Attack generation, Sanitization path

extraction and Attack evaluation. These steps described as below.

SanitizationPath-TestCase()
{

atkVec=Attack-Generation();

sanInp=Sanitization-Path(atkVec);

Assert Attack-Evaluation(sanInp);

}

Figure 2. General structure of security test cases

2.1 Attack generation
The goal is to automatically generate attack vectors for the

application under unit testing. We want to ensure that, if there is

an attack vector capable of exploiting a vulnerable sanitization

path, this attack vector can be generated. In other words the false

negative rate of this section should be zero or very low. One

approach to generate attack vectors is to use attack vector

repositories containing different attack patterns such as OWASP

XSS evasion list but obviously it is impossible to estimate the

false negative rates of such repositories. The other approach is to

generate attack scripts based on the specific application context of

the injection point. Injection point is the sink or the final

destination of the untrusted variable after sanitization. It is the

place the attackers try to inject their attack scripts to exploit

potential vulnerabilities. As mentioned before, the browsers have

different internal contexts which each of them correspond to one

grammar. These contexts fall into either an executable context or a

non-executable context. The only executable context is defined by

the JavaScript grammar. Here the goal of attackers is to trick the

browsers to run their attack scripts directly. If the injection point

is already in a JavaScript context it could be (at its simplest form)

an attack vector to end the current statement and then start a

malicious code (attack payload). But if it is in a non-executable

context such as HTML tag attribute, at first it should change the

current context (grammar) to a JavaScript enabled one (e.g. using

“javascript:” keyword in tag‟s value) and then run the malicious

code. In general an attack vector could have a pattern composed

of pre-escaping characters, attack payload, post-escaping

characters. The Figure 3 shows this pattern in action.

<input type='button' onclick=" Func(‘ UNTRUSTED’); " />

 Pre escaping Attack Payload Post escaping

„); Alert(1); //

Figure 3. Attack vector pattern

Here attack payload is a character string, which should be a valid

statement in the target grammar. In the case of XSS attacks the

target grammar is JavaScript. Also pre-escaping and post-escaping

strings are completely application and context-sensitive. In other

words, these escaping characters will be determined considering

the context and the surrounding characters of the injection point.

Moreover, considering the flow of data and internal behavior of

the browsers in different contexts explained in [5] and also formal

published html specifications, we can assume that there is a

branching mechanism(e.g. a switch-case statement) in the

browser engine which calls a certain grammar interpreter based on

the parsed token and then transfer the control to this interpreter.

Using this view, it can be said that an attack vector is an input that

tries to modify the source code to prevent the browser interpreting

in a planned branch and change control to the JavaScript branch

or change the current interpreting flow of characters if the it is

already in JavaScript context. We can cast this problem formally

based on previous researches in symbolic execution. A path

coverage problem is to select a range of input values in such way

that a particular point of an application can be reached (after

passing constraints from entry points to the destination). The

attack script generation problem is a path coverage problem,

which aimed to reach a particular branch (JavaScript interpreter)

of the application (browser). We define all surrounding characters

of the injection point in most recent DOM element as the

constraints. If this constraint can be solved, an attack vector exists

and if not we are sure that no attack vector exists for this

combination of context and constraint. Solution (attack vector) is

a string that should be solved using rules of both current and

target (if they are different) grammars of injection point. The

architecture of the attack generation is shown in Figure 4.

 Figure 4. Attack generation architecture

 Figure 4 shows attack generation architecture, which contains a

constraint solver box customized to solve constraints satisfying

different grammars. Obviously solving the constraints depends on

their complexities and may be very time consuming[2]. These

constraints are all string constraints that should be expressed in

regular and context-free grammars [4] in order to be efficiently

solved by constraint solver.

2.2 Sanitization path extraction
 The goal sanitization path extraction is to build a model of the

application that only contains input sanitization logic leaving

aside other application specific logic.

String login = (String)df.get("username"); //Untrusted Source

login =ESAPI.validator().getValidInput("User", login, …. .);

…

System.err.println(ESAPI.encoder().encodeForHTML(login));

Extracted Sanitization Path:

login=ESAPI.validator().getValidInput("User", login, …);

ESAPI.encoder().encodeForHTML(login)

Figure 5. Sanitization Path Extraction

A sanitization path, which is called path from now on, is the

combination of all sanitization functions applied to one untrusted

source and the variables derived from it in the same order

appeared in the source code (Figure 5). Two paths are similar if

the type and order of their functions are the same. Considering

this definition it is very likely that different sources have similar

paths but based on the context of their final sensitive operation,

they can be vulnerable to different attack scripts. Similar paths

mean similar test cases, which required to be merged to one test

case. This process uses static analysis techniques such dataflow

and control flow analysis to extract the sanitization paths. The

Context +

Surrounding text

Constraint

Solver

Attack

Vector

important point here is that because untrusted string values can

take different control flows before be used in sensitive operations,

it is required that all possible control flow structures such as

if/else statements and function calls considered. In the proposed

approach the developers would declare the sanitization functions

to be monitors and extracted. Current limitations are that only

server-side functions and only the string type untrusted sources

are considered for any analysis.

2.3 Attack evaluation
The goal of attack evaluation is to assess whether the extracted

sanitization path is vulnerable to the generated attack scripts.

There are some challenges for this evaluation. The first one is that

because some sanitization flaws, such as browser transduction,

can only be revealed when the attack scripts execute in a real

browser, thus the attacks should be really executed. This can be

(approximately) accomplished using browser components or

libraries such as JWebUnit. The second challenge is that some

vulnerabilities are triggered only by user interactions as html links

or mouse hovers. To deal with this issue, the proposed technique

simulates the user interactions using features provided by browser

components. It is noteworthy that all of this process is done in a

unit-testing framework such as JUnit. Advantages of using unit-

testing framework are two folds. The first one is the popularity of

these frameworks among the developers, which makes its usage

fairly straightforward by efficient utilization of their features such

as whole test process automation. The second advantage is early

discovery of the vulnerabilities and increase security awareness

of developers[7] causing improvements in time and cost of

removing security flaws.

3. EMPIRICAL RESULTS
We applied the proposed approach to an open source web-based

medical application (iTrust) and found a zero-day vulnerability in

one of its modules. In this application untrusted input is used in

an event context, a JavaScript context, but the sanitization used

for this purpose is not matched with the sink‟s context (Figure 6).

In this case the request.getParameter("forward") is an untrusted

source which is sanitized using StringEscapeUtils.escapeHtml()

which is not safe for the target context.

<input type='button onclick= "parent.location.href= 'getPatientID.jsp?

forward= <%=StringEscapeUtils.escapeHtml("" + (
request.getParameter("forward"))) %> ';” … />

Attack vector: ‘; alert(1); //

Figure 6. Sanitization flaw found in the iTrust

String sant= StringEscapeUtils.escapeHtml (source);

sant = StringEscapeUtils.escapejavascript (sant);

tag.innerHTML = '<a onclick="MyFunc(\'' + <%= sant %> + '\')">' + sant +
'’;

Attack vector: '); Alert(1);//

Figure 7. A Conceptual nested sanitization flaw

Also we applied the proposed technique to a conceptual example

containing nested contexts to introduce browser transduction

challenge. In this case the source is an untrusted source used in an

event context and sanitized for both context of html and

JavaScript but the order of sanitization is not correct (Figure 7).

The attack script '); Alert(1);// at first will be escaped to

");alert(1);// which will not be changed by the second

sanitization because the single quote character escaped as "

and because all of the characters are legal, the " characters

will be decoded to single quote „ at run time by the browser and

so causing the attack script to be successful.

4. RELATED WORK
Previous research [1] performed heuristic dynamic evaluation of

sanitization functions by injecting predefined attack vectors,

making it difficult to evaluate false negatives. Our approach

generates attack vectors based on the application under testing

and can demonstrate low false negatives, given sufficient

computing resources Researchers in[3] introduced a vulnerability

injector tool(VAIT) for SQL injection. It is not clear this can be

generalized to other types of injection attacks. None of these

works and many of similar ones have considered unit-testing

approach to bring their evaluations into early software

development cycle.

5. CONCLUSION
We propose a unit testing based approach to detect injection

vulnerabilities that can complement static analysis and ensure

sanitizations are performed correctly. This approach can be fully

integrated into IDEs as a development time plugin, combining

static and dynamic security testing features. It means that this

integration can be efficiently adjusted to satisfy agile software

development life cycle requirements and methodologies.

6. ACKNOWLEDGMENT
This research is support in part by NSF grants: 1129190,

1318854.

7. REFRENCES
[1] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E.

Kirda, C. Kruegel, and G. Vigna. Saner: Composing Static

and Dynamic Analysis to Validate Sanitization in Web

Applications. In 2008 IEEE Symposium on Security and

Privacy (sp 2008), pages 387–401. IEEE, May 2008.

[2] J. Fonseca, M. Vieira, and H. Madeira. Evaluation of Web

Security Mechanisms Using Vulnerability & Attack Injection.

IEEE Transactions on Dependable and Secure Computing,

11(5):440–453, Sept. 2014.

[3] hom e orla and eller earch-based security

testing of web applications. In Proceedings of the 7th

International Workshop on Search-Based Software Testing -

SBST 2014, pages 5–14, New York, New York, USA, 2014.

[4] A. van Deursen, A. Mesbah, and A. Nederlof. Crawl-based

analysis of web applications: Prospects and challenges.

Science of Computer Programming, 97:173–180, Jan. 2015.

[5] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter,  R. Shin,

and D. Song. A Systematic Analysis of XSS Sanitization in

Web Application Frameworks. Computer Security - ESORICS

2011 SE - 9, volume 6879 of Lecture Notes in Computer

Science, pages 150–171. Springer Berlin Heidelberg, 2011.

[6] X. Xiao, T. Xie, N. Tillmann, and J. de Halleux. Precise

identification of problems for structural test generation. In

Proceeding of the 33rd international conference on Software

engineering - ICSE ’11, page 611, New York, New York,

USA, 2011. ACM Press.

[7] J. Xie, B. Chu, H. R. Lipford, and J. T. Melton. ASIDE: IDE

Support for Web Application Security. In Proceedings of the

27th Annual Computer Security Applications Conference on -

ACSAC ’11, page 267,New York, New York, USA, 2011.

