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ABSTRACT OF THE DISSERTATION

Consumer / Producer communication with

application level framing in Named Data Networking

by

Ilya Moiseenko

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2015

Professor Lixia Zhang, Chair

Over time the Internet has evolved from a network that interconnects hosts to

a network that interconnects information objects broadly defined; these objects

range from movie files, Facebook content, twitter messages, to sensor data and

authenticated device actuation commands.

As a newly proposed architecture to meet this new usage, Named Data Net-

working (NDN) replaces the host-based addressing scheme by names of infor-

mation objects in moving packets through the network. In an NDN network

consumers send Interest packets carrying application-level names to request infor-

mation objects, and the network returns the requested Data packets reversing the

path of the Interests. As a new way of doing networking, NDN introduces new de-

sign patterns for applications. To make the content available in the network, one

needs to consider multiple design choices, which range from name structure and

security model to more basic issues such as data segmentation. To fetch content,

one also faces new considerations such as the presence of caching in the network

and the question of data validation, in addition to conventional issues of loss recov-

ery and error corrections. What kind of application interface should be provided

to ease the application development? And what protocols would be needed to
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support the interface? Clearly socket abstraction and associated protocols cannot

be reused, because the model of a virtual channel between two communicating

processes supported by socket does not exist in the NDN architecture.

This dissertation addresses the above challenges with the design of a new

Consumer / Producer API and its associated protocol suite that can play socket-

equivalent roles in an NDN network. We demonstrate how the API can be used

to invoke the most fundamental communication patterns in an NDN network and

also show how stand-alone and web-based applications can be designed on top of

the API. While the architecture of NDN is still a subject to the changes, we believe

that the Consumer / Producer API framework can be successfully extended to

accommodate new protocols, communication patterns and applications.

iii



The dissertation of Ilya Moiseenko is approved.

Tarek Abdelzaher

Mario Gerla

Songwu Lu

Lixia Zhang, Committee Chair

University of California, Los Angeles

2015

iv



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Challenges of developing NDN applications . . . . . . . . . . . . . 2

1.2 Design goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Consumer / Producer API design overview . . . . . . . . . . . . . 5

1.4 Contributions of this work . . . . . . . . . . . . . . . . . . . . . . 6

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 A Simple-Video Application . . . . . . . . . . . . . . . . . . . . . 8

2.2 Named Data Networking (NDN) architecture . . . . . . . . . . . . 9

2.3 NDN inside a Node . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Repo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Application Level Framing (ALF) . . . . . . . . . . . . . . . . . . 13

3 Consumer / Producer communication abstractions . . . . . . . 17

3.1 Design goals for the producer abstraction . . . . . . . . . . . . . . 17

3.2 Producer context . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Context options . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Design goals for the consumer abstraction . . . . . . . . . . . . . 22

3.4 Consumer context . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1 Context options . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 The problem of asynchrony between a consumer and a producer . 25

3.6 Negative acknowledgement . . . . . . . . . . . . . . . . . . . . . . 26

3.6.1 Application level NACK . . . . . . . . . . . . . . . . . . . 26

v



3.6.1.1 Estimation of NACK lifetime . . . . . . . . . . . 28

3.6.1.2 Estimation of Retry-After timeout . . . . . . . . 29

3.6.1.3 Versioning model . . . . . . . . . . . . . . . . . . 30

3.6.2 Network level NACK . . . . . . . . . . . . . . . . . . . . . 32

3.6.2.1 Network level NACK usage in Consumer/Producer

API . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7 Manifest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Data Retrieval Protocols . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Simple Data Retrieval . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Unreliable Data Retrieval . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Reliable Data Retrieval . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Use cases and communication patterns . . . . . . . . . . . . . . . 45

5.1 Common communication patterns . . . . . . . . . . . . . . . . . . 45

5.1.1 Realtime publishing & consumption . . . . . . . . . . . . . 45

5.1.2 Fast signing & verification . . . . . . . . . . . . . . . . . . 48

5.1.3 Largely asynchronous publishing & consumption . . . . . . 49

5.1.4 Mobile asynchronous publishing . . . . . . . . . . . . . . . 50

5.1.5 Localhost broadcasting . . . . . . . . . . . . . . . . . . . . 51

5.1.6 Sequential fetching . . . . . . . . . . . . . . . . . . . . . . 53

5.1.7 Parallel fetching . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 NDNlive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1.1 Publisher . . . . . . . . . . . . . . . . . . . . . . 58

vi



5.2.1.2 Player . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1.3 Influence on the API . . . . . . . . . . . . . . . . 64

5.2.2 NDNtube . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.2.1 Publisher . . . . . . . . . . . . . . . . . . . . . . 67

5.2.2.2 Player . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.2.3 Influence on the API . . . . . . . . . . . . . . . . 72

5.2.3 NDNradio . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.3.1 Station . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.3.2 Player . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.3.3 Influence on the API . . . . . . . . . . . . . . . . 75

5.2.4 Bittorrent over NDN . . . . . . . . . . . . . . . . . . . . . 76

5.2.4.1 Seeder & Leecher . . . . . . . . . . . . . . . . . . 77

5.2.4.2 Influence on the API . . . . . . . . . . . . . . . . 77

6 Bidirectional Consumer / Producer communication . . . . . . . 79

6.1 Characteristics of HTTP/RESTful communication . . . . . . . . . 80

6.2 Theoretically possible communication patterns . . . . . . . . . . . 82

6.2.1 Name Component . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.2 Compressed name component . . . . . . . . . . . . . . . . 87

6.2.3 Common Issues with Interest Names . . . . . . . . . . . . 88

6.2.4 Application Data field . . . . . . . . . . . . . . . . . . . . 89

6.2.5 Data Locator field . . . . . . . . . . . . . . . . . . . . . . 92

6.2.5.1 Routable name . . . . . . . . . . . . . . . . . . . 93

6.2.5.2 Non-routable transient name . . . . . . . . . . . 95

6.3 Comparison of communication patterns . . . . . . . . . . . . . . . 97

vii



6.4 HTTP/RESTful interaction using the Consumer / Producer API 102

6.4.1 Name Component pattern . . . . . . . . . . . . . . . . . . 102

6.4.2 Routable Data Locator pattern . . . . . . . . . . . . . . . 102

7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.1 Structured streams . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.2 Publish / Subscribe . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.3 Named Networking Socket . . . . . . . . . . . . . . . . . . . . . . 109

7.4 CCNx Portal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.4.1 RTA protocol . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.5 Extensible API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

viii



List of Figures

1.1 TCP/IP segmentation does not preserve boundaries of applica-

tion frames (ADUs). NDN segmentation exposes these boundaries

through naming. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Consumer and producer contexts have a similar life-cycle to the

socket API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 A naming scheme for an exemplary video playback application. . . 9

2.2 NDN packet types. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Producer context can publish data with or without network con-

nectivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Producer context is initialized with a name prefix common for all

information objects that it generates. . . . . . . . . . . . . . . . . 19

3.3 Producer context can publish data regardless of being attached to

the network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Event-based processing of Interest and Data packets in the con-

sumer context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Consumer context is initialized with a name prefix defining the

range of information objects that can be retrieved from the network. 24

3.6 Producer context automatically appends a time-based version name

component to every NACK. . . . . . . . . . . . . . . . . . . . . . 32

3.7 Manifests are embedded in the sequence of data packets when ap-

plication data is being segmented. . . . . . . . . . . . . . . . . . . 36

4.1 RDR recovers from the Data verification error and handles dynamic

data generation delay. . . . . . . . . . . . . . . . . . . . . . . . . 43

ix



5.1 Realtime publishing & consumption states: a) Wait for pull b) Wait

for data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Benefit of having producer’s send buffer for serving multi-packet

ADUs to multiple consumers that pipeline Interests. . . . . . . . . 47

5.3 Producer amortizes the signing cost by embedding manifests in the

ADU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Benefit of embedding manifests in the multi-packet ADUs fetched

by multiple consumers that pipeline Interests. . . . . . . . . . . . 49

5.5 Largely asynchronous publishing & consumption through local per-

manent storage (Repo) . . . . . . . . . . . . . . . . . . . . . . . . 50

5.6 Remote permanent storage . . . . . . . . . . . . . . . . . . . . . . 51

5.7 Broadcasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.8 Sequential fetching of ADUs . . . . . . . . . . . . . . . . . . . . . 54

5.9 Parallel fetching with multiple consumer contexts . . . . . . . . . 55

5.10 NDNlive architecture . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.11 NDNlive namespace . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.12 Locations of producers and consumers in the NDNlive namespace 58

5.13 NDNtube architecture . . . . . . . . . . . . . . . . . . . . . . . . 66

5.14 NDNtube namespace . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.15 Locations of producers and consumers in the NDNtube namespace 68

5.16 NDNRadio namespace design. . . . . . . . . . . . . . . . . . . . . 73

5.17 Locations of producers and consumers in the NDNRadio namespace. 75

6.1 Interest name carries client-side information. . . . . . . . . . . . . 83

6.2 Client data carried in multiple Interests. . . . . . . . . . . . . . . 85

x



6.3 Two-phase Interest exchange. . . . . . . . . . . . . . . . . . . . . 86

6.4 Consumer-supplied name-component is compressed to a hash. . . 88

6.5 Interest carrying ApplicationData field. . . . . . . . . . . . . . . . 90

6.6 Interest-Interest exchange with routable name. . . . . . . . . . . . 94

6.7 Interest-Interest exchange with non-routable name. . . . . . . . . 96

6.8 Bidirectional traffic model using 512 bytes of client data. . . . . . 101

xi



Acknowledgments

I would like to gratefully and sincerely thank my academic advisor Prof. Lixia

Zhang for providing invaluable support throughout my Ph.D. program. I also

want to thank Jeff Burke, David Oran, Mark Stapp, and my colleagues from

UCLA’s Internet Research Laboratory Alexander Afanasyev, Yingdi Yu, Wentao

Shang and others for their support and deep technical discussions.

Chapter 6 is a version of [MSO14]. David Oran (PI) contributed “Compressed

Name Component” pattern (Section 6.2.2) and Mark Stapp contributed “Appli-

cation Data Field” pattern (Section 6.2.4).

I have a special thanks to Lijing Wang who had developed NDNtube and

NDNlive video applications, Valerie Runge who had developed NDNRadio appli-

cation, Mickey Sweatt who had developed a NDN Bittorent application and other

people who were the first to use the API in their projects. Consumer / Producer

model is an experimental research, and having other people build the software

with it helped to verify and validate its design and discover all sorts of problems

in the software library implementation.

xii



Vita

2009 B.Tech. (Computer Science), Bauman Moscow State Technical

University, Moscow, Russia.

2011 M.Tech. (Computer Science), Bauman Moscow State Technical

University, Moscow, Russia.

2013 M.S. (Computer Science), UCLA, Los Angeles, California.

2011–2015 Graduate Research Assistant, Computer Science Department,

UCLA.

2012–2015 Teaching Assistant, Computer Science Department, UCLA.

2012 Research Intern, Palo Alto Research Center (PARC), Palo Alto,

California.

2013 Research Intern, Qualcomm Research Center, Bridgewater,

New Jersey.

2014 Research Intern, Cisco Systems, Cambridge, Massachusetts.

2015 Research Software Engineer, Cisco Systems, Cambridge, Mas-

sachusetts.

Publications

A. Afanasyev, I. Moiseenko, and L. Zhang, ”ndnSIM: NDN simulator for NS-3,”

Tech.Report NDN-0005, 2012

xiii



C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang, “A Case

for Stateful Forwarding Plane,” Computer Communications, vol. 36, no. 7, 2013.

A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and L. Zhang, “Interest

Flooding Attack and Countermeasures in Named Data Networking,” in Proc. of

IFIP Networking 2013, 2013.

A. Attam, I. Moiseenko, “NDNBlue: NDN over Bluetooth,” Technical Report

NDN-0015, NDN, 2013.

A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moiseenko, Y. Yu, W. Shang, et al.

“NFD developer’s guide,” Technical Report NDN-0021, NDN, 2014.

I. Moiseenko, M. Stapp, and D. Oran, “Communication patterns for web interac-

tion in Named Data Networking,” in Proc. of ICN Sigcomm 2014, 2014.

I. Moiseenko, “Fetching content in Named Data Networking with embedded man-

ifests,” Technical Report NDN-0025, NDN, 2014.

S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM 2.0: A new

version of the NDN simulator for NS-3,” Report NDN-0028, NDN, 2015.

L. Wang, I.Moiseenko and L.Zhang, “NDNlive and NDNtube: Live and Prere-

corded Video Streaming over NDN,” Report NDN-0031, NDN, 2015.

I. Moiseenko, L. Wang, and L. Zhang, “Consumer / Producer communication with

application level framing in Named Data Networking,” in Proc. of ICN Sigcomm

2015, 2015.

xiv



CHAPTER 1

Introduction

Today’s Internet architecture stands on IP — a universal network layer designed

to create a point-to-point communication network where packets are delivered to

specific destinations, enabling direct process-to-process communication. This was

a premise for introducing the concept of the socket, which binds a running process

to a communication channel, and represents a container for the current state of

data transfer between two processes [JM71, JFL86].

Over time Internet has evolved from a network that interconnects hosts to

a network that interconnects information objects broadly defined; these objects

range from movie files to Facebook content to sensor data and to authenticated

device actuation commands. This fundamental change in its usage suggests that

the Internet’s universal network layer will be much more organic as a distribu-

tion network natively working with information objects instead of communication

endpoints.

As a newly proposed architecture to meet this new usage, Named Data Net-

working (NDN) replaces the host-based addressing scheme by names of informa-

tion objects to move packets in the network [JST09, L 10, ZAB14]. In an NDN

network consumers send Interest packets carrying application-level names to re-

quest information objects, and the network returns the requested Data packets

following the path of the Interests. NDN strengthens information safety with

the concept of content-based security. The data itself is secured with publicly

verifiable signature and encryption (Section 2.2).
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1.1 Challenges of developing NDN applications

As explained in [CT90], network applications work with Application Data Units

(ADU) — units of data represented in a most suitable form for each given use-

case. For example, a video playback application typically handles data in the

unit of video frames; a multi-user game’s ADUs are objects representing users’

current status; and for an intelligent home application, ADUs may represent sensor

readings. NDN enables applications to communicate using ADUs.

As a new way of doing networking, NDN introduces new design patterns for

applications. To make the content available through the network, one needs to

consider multiple design choices, which range from name structure and security

model to more basic issues such as data segmentation. To fetch content, one also

faces new considerations such as the presence of caching in the network and the

question of data validation, in addition to conventional issues of data loss recovery

and error corrections. What kind of application interface should be provided

to ease the application development? And what protocols would be needed to

support the interface? Clearly socket abstraction and associated protocols cannot

be reused, because the model of a virtual channel between two communicating

processes supported by a socket does not exist in the NDN architecture.

1.2 Design goals

In this work we aim to create a comprehensive design of a communication model

— API and necessary underlying components that:

• gives application developers adequate freedom when handling ADUs, at the

same time minimizes the complexity associated with the production and

retrieval of ADUs of any size;

• has built-in content retrieval and segmentation protocols and can host newly

2



developed protocols;

• can be applied to a broad range of NDN applications;

• significantly simplifies application development and does not require appli-

cation developers to be experts in NDN technology.

In TCP/IP networking, similar tasks are managed by the socket API. A socket

is a container for data transfer parameters holding the current state of transmis-

sion in a virtual channel between two processes running on IP hosts. Because a

socket creates a duplex pipe for data to flow in both directions, server and client

applications use sockets in more or less the same way with a few minor differences

(e.g. listen() and accept() calls). Socket has no use without being attached to

the channel (e.g. bind() or connect()). To support “time asynchrony” or delay

tolerance between communicating parties, application developers often resort to

higher level abstractions (e.g. ZeroMQ [M ]) suitable for queuing and passing

messages.

NDN is a pull-based data dissemination protocol, therefore applications that

consume data behave differently from applications that produce data. Conse-

quently these applications need different sets of data transfer parameters. Pro-

ducer applications, in general, care about ADU segmentation, securing and caching

/ storing Data packets, and incoming Interest demultiplexing. Consumer appli-

cations, on the other hand, care about fetching all Data packets of each ADU,

fetching reliability, verification of received data, as well as flow and congestion

control by controlling their Interest generation rates.

These observations prompt us to design two programming abstractions: one

for consumer applications, and another one for producer applications.

To have data delivered over the Internet, large ADUs must be segmented, be-

cause the packet size is limited by network MTU. There are two major differences

in how TCP/IP and NDN handle data segmentation. First, because TCP treats

3
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Figure 1.1: TCP/IP segmentation does not preserve boundaries of application

frames (ADUs). NDN segmentation exposes these boundaries through naming.

all application data as byte streams, TCP segmentation ignores ADU boundaries,

thus ADUs can only be identified after the segment reassembly (Figure 1.1). NDN

data packets carry the names of individual ADUs or ADU segments, therefore

these packets match to application’s data units directly.1

The second, and related, difference is the degree of insight and control that

application can have during data transfer. In the simple example shown in Fig-

ure 1.1, if TCP/IP is used to send several ADUs back to back across the network

and one of the segments is lost in transit, all the subsequent ADUs, even if they

arrive at the destination, will be blocked from getting delivered to the application.

This is a well known head-of-line (HOL) blocking problem. On the other hand,

if NDN is used and faces the same segment loss problem, all successfully received

ADUs can be immediately delivered to the applications without waiting for the

recovery of the missing segment.

1The terms “ADU segment”, “data segment”, and “Data packet” are used interchangeably
in this dissertation.
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1.3 Consumer / Producer API design overview

At the present time, NDN applications are developed on top of the basic NDN

network abstractions: Interest and Data packets. All major functionality such

as ADU segmentation, queueing, ADU reassembly, Interest retransmission, loss

and error recovery, etc. is a direct responsibility of the application. As a result,

application development process takes a lot of time and effort, and often requires

deep expertise with Named Data Networking technology.

Since sockets are the de facto standard API for network programming, Con-

sumer / Producer API was designed to allow developing NDN applications in a

similar to socket API manner contrary to the current practice of using some arbi-

trary set of NDN concepts loosely related to each other. The biggest conceptual

difference between the socket API and Consumer / Producer API is that our API

is used for transferring ADUs in and out of the NDN network, whereas sockets

are used for transferring byte-streams or datagrams between IP endpoints.

Consumer and producer contexts have a similar life-cycle to sockets that con-

sists of four stages: (1) creation and deletion, (2) configuration, (3) attaching to

the network, and (4) data transfer (Figure 1.2).

	
  Func&on	
   	
  	
  TCP/IP	
  socket	
  API	
   	
  NDN	
  Consumer/Producer	
  API	
  

	
  Crea&on	
  and	
  dele&on	
  
	
  
	
  Configura&on	
  
	
  
	
  A/aching	
  to	
  network	
  
	
  
	
  Data	
  transfer	
  

	
  	
  socket(),	
  close()	
  
	
  
	
  	
  setsockopt(),	
  getsockopt()	
  
	
  
	
  	
  bind(),	
  connect()	
  
	
  
	
  	
  send(),	
  receive()	
  

	
  consumer(),	
  producer(),	
  delete()	
  
	
  
	
  setcontextopt(),	
  getcontextopt()	
  
	
  
	
  a/ach()	
  *	
  
	
  
	
  consume(),	
  produce(),	
  nack()	
  

Figure 1.2: Consumer and producer contexts have a similar life-cycle to the socket

API.

Sockets are not capable of performing any operations if not attached to the
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network via bind() and connect(). This is different from producer context, which

can publish data to in-memory or persistent storage (e.g. in Repo) without be-

ing attached to the network. This functionality is highly important for a large

number of applications, because Consumer / Producer communication in NDN

is inherently time decoupled. Time asynchrony can extend to relatively extreme

levels when data is published into a permanent storage far ahead (e.g. hours,

weeks, months) of any possible data fetching.

From the viewpoint of software engineering, Consumer / Producer framework

adheres to the Inversion of Control (IoC) design pattern for the purpose of increas-

ing the modularity of the software library and making it extensible for ongoing

research work. In particular, the modularity is necessary for experimentation with

trust models, and other security related functionality. Inversion of Control is a

design in which custom-written portions of a computer program receive the flow

of control from a generic, reusable library. An IoC software architecture inverts

the control as compared to traditional procedural programming: in traditional

programming, the custom code that expresses the purpose of the program calls

into reusable libraries to take care of generic tasks, but with inversion of con-

trol, it is the reusable code that calls into the custom, or task-specific, code (e.g.

event-handlers, callbacks, user-defined routines).

1.4 Contributions of this work

Contributions of this dissertation can be summarized as follows:

• Design and implementation of Consumer / Producer contexts — program-

ming abstractions specifically tailored for data dissemination in NDN net-

works (Chapter 3).

• Design and implementation of a number of supporting concepts: manifest
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and application level negative acknowledgement, utilized by the protocols

below the API to facilitate the operation of applications. (Chapter 3).

• Design and implementation of the initial Consumer / Producer protocol

suite — data retrieval and segmentation protocols (Chapter 4).

• Description of communication patterns available via the Consumer / Pro-

ducer model and evaluation of the Consumer / Producer model through a

number of pilot applications built on top of the API (Chapter 5).

• Analysis of the bidirectional Consumer / Producer communication, which

is necessary for web-based applications (Chapter 6).
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CHAPTER 2

Background

This chapter briefly introduces Named Data Networking (NDN) architecture along

with Application Level Framing (ALF) and Integrated Layer Processing (ILP)

principles, which serve as a foundation for this thesis. NDN works in a funda-

mentally different way than IP. To help the reader better understand its basic

concepts, in this chapter we first describe a toy application example, then use this

example to explain the NDN basics and Consumer / Producer communication

throughout the thesis.

2.1 A Simple-Video Application

A Simple-Video application is used as an example to help illustrate the concepts

behind any rational application and possible problems that must be solved by an

application developer, and the concepts in named data networking. Simple-Video

produces two separate streams of data, video and audio, to give the consumers a

choice of either watching the video with audio or listen to the audio only (Fig-

ure 2.1). Both video and audio streams consist of data frames, and the application

should allow consumers to retrieve any frames independently. The consumer ap-

plication can, for example, stop fetching audio frames when user hits the ‘Mute’

button, or can skip some video frames after a pause in order to catch up the actual

‘live’ video. In most cases, a video frame is likely too large to be encapsulated in a

single network packet, and the video producer application would have to perform

content segmentation in order to split one frame into multiple packets.
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An existing technology, MPEG-DASH [Sto11] produces the content, with ei-

ther a mixed audio/video stream or two separate streams, into a sequence of small

file segments of equal time duration. File segments are later served over HTTP

from the origin media server or intermediate HTTP caching servers. While there

is a great variety in the way how application produces and fetches data at the

level of application frames, there are repetitive and labour intensive tasks related

to the segmentation of the application frames and retrieval of the segments that

make an application frame. In the case of MPEG-DASH, all these low-level details

are handled by the HTTP / TCP protocol machinery.

/com/youtube/media-1234/video/frame-number/segment-number 
/ 120                / 0 
/ 120                / … 
/ 120                / 31 
 
/ 121                / 0 
/ 121                / … 
/ 121                / 12 
 

/com/youtube/media-1234/audio/frame-number/segment-number 
/ 311                / 0 
 
/ 312                / 0 
 
/ 313                / 0 
 
/ 314                / 0 
 

Figure 2.1: A naming scheme for an exemplary video playback application.

2.2 Named Data Networking (NDN) architecture

An NDN network works with two distinct types of packets: Interest and Data

(Figure 2.2). Consumers send Interest packets, i.e. expressing Interests in receiv-

ing specific pieces of data. Producers produce Data packets to satisfy received

9



Interests. Both types of packets carry a data name, which uniquely identifies a

piece of information object carried in a single Data packet. Data names in NDN

are supplied by applications. Generally speaking, an NDN name is made of mul-

tiple components and is used to deliver the packet across network; it also contains

application specific information to facilitate packet processing. As an example,

Figure 2.1 shows the naming scheme used by Simple-Video in an NDN network.

The name begins with routable components “/com/youtube/” which guides the

Interest carrying this name toward the data producer. The next component is the

name identifier of the media resource. The next name component separates video

and audio frames into separate namespaces (e.g. name subtrees). Both video

and audio frames are named sequentially. Each video frame consists of multiple

segments, also named sequentially, while each audio frame is made of a single

segment.

Interest Packet Data Packet
Name Name

(order preference, publisher filter, 
exclude filter, …)

Selectors MetaInfo

Nonce

Lifetime

Content

Signature

(content type, 
freshness period, …)

(signature type, key locator,
signature bits, …)

Figure 2.2: NDN packet types.

To retrieve a Data packet, a consumer application requests it by sending an

Interest packet containing the name of the desired content. An NDN router looks

up this name against its Forwarding Information Base (FIB) to forward the In-

terest towards likely locations of the data, and keeps a record of all forwarded

Interest packets in a Pending Interest Table (PIT) until the corresponding Data

packet is returned, or until the record times out. Each PIT entry contains an In-

terest name, the incoming interface(s) where the Interest arrived from (to support
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multicast delivery of the returning Data packet), and the outgoing interface(s) to

which the Interest has been forwarded (an Interest can be forwarded along multi-

ple paths towards the data). When an Interest meets a Data packet whose name

matches the name in the Interest, which can happen either at a router cache or

at the data producer, the Data packet is returned to the consumer application by

reversing the path of the Interest using the information present in routers’s PITs.

The routers along the way can also cache the Data packets.

An NDN network secures data by having the producer of the information

append a cryptographic signature to bind the name to the content (and encrypt

the payload of its outgoing Data packets if needed). Consumers can verify the

signature of each received Data packet no matter from where it is retrieved. This

security model decouples the trust in data from the place and time the data is

obtained, enabling NDN nodes to cache any passing Data packets. Packet routers

must have buffer space to support statistical multiplexing. An NDN router uses

this buffer space for both statistical multiplexing and data caching, thus calls this

buffer space Content Store (CS). A cached Data packet can be used to satisfy

an Interest with a matching name. Note that an NDN network consider all data

immutable and the name to data binding is unique, any updated data leads to a

new version number in the name.

Similar to IP, an NDN network provides datagram delivery. Data consumers

who desire reliable data fetching need to enable reliable fetching services as needed.

Data consumers can also regulate data flow through pacing Interest packets trans-

missions.

Data production can be independent from data consumption. This inherent

asynchrony creates quite delicate consumer-producer coordination issues, such as

the availability of data, the specifics of data, etc. Interest Selectors is one of the

available mechanisms for coordination between multiple consumers and multiple

producers. Any Interest may carry optional Selectors that set additional condi-
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tions for content retrieval from the cache or producer application. For example,

when a consumer fetched a Data packet P that is not the desired one, it can try

again by adding an Exclude selector to the Interest, where the Exclude selector

may contain either name components of P or P ’s digest.

2.3 NDN inside a Node

NDN Forwarding Daemon (NFD) plays the role of multiplexer between applica-

tions and network interfaces inside a node [ASZ14]. NFD does not distinguish

between applications and network interfaces, and views them as Faces. As men-

tioned above, NFD has a content store which performs opportunistic caching of

passing by Data packets. NFD can also have a face to a local repository (e.g.

Repo [CSC14]), which provides managed storage of Data packets.

To make data available, producer-process registers its name prefix with NFD

to be able to receive interests for its data. The local NFD adds the prefix to

its FIB and also forwards the prefix to next router. Consumer-process does not

need registration — it simply sends Interest packets to the local NFD which then

forwards the Interest toward the producer, either locally or remotely.

2.4 Repo

Repo is one of the core components for most NDN-based communications, pro-

viding long-term storage of NDN Data. After a producer application puts Data

packets into Repo, the packets are used to satisfy Interests in the same way as

packets residing in the cache of NFD.

The most fundamental difference between Repo and NFD cache is the fact

that Repo is managed by the applications through a Repo API, whereas NFD

cache has an application-agnostic data indexing and eviction techniques.
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Repo API supports insertion and deletion of single and multiple Data packets

at once. The general syntax of Repo API is:

“/<repo-prefix>/<command>/<CommandParameter>/<SignedInterestComponents>”

• <repo-prefix> is a prefix of a specific Repo node;

• <command> refers to the name of the operation (e.g. insert, delete);

• <CommandParameter> specifies names of the Data packets to be added or

removed and other selection criteria;

• <SignedInterestComponents> contain information about the signature with

replay protection.

Since it is not possible to push data in NDN network, the basic idea behind the

data insertion API is to fetch Data from the application using an Interest-Interest-

Data-Data exchange. The exchange is initiated by an application that issues a

signed Interest towards a Repo node. Repo replies to the successfully verified

insertion command with a single or multiple Interest packets that retrieve the

Data packet(s) specified in the initial insertion command. After Data packet(s)

are successfully inserted, the Repo closes the transaction by replying with a Data

packet containing the completion status of an initial insertion command.

Deletion is much simpler as it only involves a regular Interest-Data exchange.

It is possible to remove either a single specific Data packet by its name or multiple

Data packets under a certain name prefix.

2.5 Application Level Framing (ALF)

The seminal paper [CT90], published 25 years ago, clearly articulated the value of

applying the concept of application level framing to network protocol development

by directly using application data unit (ADU). The second related principle is
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the Integrated Layer Processing at the end hosts, which is enabled by the ADU

concept.

Internet protocol suite consists of multiple layers, where socket API represents

an interface between all application layers (application, presentation, session) and

the transport layer. In other words, socket API performs conversion of data

organized in application units (ADUs) into data organized into transmission units,

which often creates problems related to retransmission, congestion/flow control,

multiplexing, error correction, etc.

What defines a suitable size for an ADU? The fundamental characteristic of D.

Clark’s and D.Tennenhouse’s definition is that each ADU can be processed out of

order with respect to other ADUs. This rule permits the ADU boundaries to take

the place of the packet boundaries for purposes of manipulation functions such as

end-to-end error detecting codes or moving into application address space.

At the same time, the ADU now becomes the unit of error recovery. Since

the ADU is defined to be the smallest unit which the application (or presentation

conversion function) can deal with out of order, it follows that if even part of an

ADU is lost in transmission, the application will, in general, be unable to deal

with it. Since our application layer takes on the responsibility of recovering lost

data, it will almost certainly need to assume the whole ADU is lost, even if parts

exist. Unless the presentation layer can translate the identity of the lost data into

terms the application understands, the application cannot understand which of

its elements have actually been lost.

This suggests that ADU lengths should be reasonably bounded, so that when

data is lost the application need do no more work than necessary. Indeed, since the

loss of even one bit will trigger the loss of a whole ADU, excessively large ADUs

might prevent useful progress at all, since the probability of any ADU having at

least one uncorrected error would approach one.
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However, there will be a minimum unit, based on the details of the application

data, below which the application cannot break the data and still deal with parts

lost or out of order. If this minimum natural size of the ADU is too large to

provide a practical unit of error free transmission, then it will be necessary to

define an artificial set of subunits into which an ADU is broken for error recovery.

Although this partitioning may be provided by an independent protocol module,

the overall responsibility for retransmission must rest with the application.

Integrated Layer Processing is the second important concept that was intro-

duced in that paper. According to the paper, any communication protocol consists

of two major parts: transfer control and data manipulation. The transfer con-

trol part processes the information in packet headers, and maintains the state

needed for the protocol operation. Interest retransmission, packet ordering, con-

gestion/flow control are the examples of transfer control functionality. The data

manipulation part processes packet data. Examples of data manipulation func-

tions are content segmentation, signing and encryption of Data packets, verifica-

tion of Interest and Data packets. They all have in common that they process large

amounts of data, which often involves data transformation and copying between

memory buffers.

In a traditional implementation of a protocol stack, transfer control and data

manipulation functions are often executed independently on separate layers. A

vivid example of the traditional layered design is HTTP-TLS-TCP-IP bundle.

HTTP messages are passed to the session layer, where they are encrypted and

placed in the transport layer, where buffer with encrypted content is segmented

in TCP segments.

Layered architecture provides isolation between distinct layers. A major archi-

tectural benefit of isolation is that it facilitates the implementation of subsystems

whose scope is restricted to a small subset of the suites layers. However, it also

causes sequential processing of each unit of information by each layer, which often
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imposes precedence or ordering constraints that limit the opportunities for many

useful optimizations.

The idea of integrated layer processing is to combine the data manipulation and

transfer control functions of several traditional protocol layers into one processing

loop. Because NDN operates with ADUs, it is now more feasible to process packets

in one integrated processing loop. ADU-based protocols are more suitable for

applying integrated layer processing than traditional protocols (i.e. IP), because

ADU packets are independent from each other and therefore can be processed out

of order.

A generic API for such integrated processing loop could potentially hide the

complexity of communication protocols, while providing a way to customize data

manipulation actions in critical areas such as confidentiality and privacy, event

monitoring and error handling.
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CHAPTER 3

Consumer / Producer communication

abstractions

This chapter defines consumer context and producer context programming abstrac-

tions and describes the rationale behind their design. It also contains a discussion

of the asynchrony between the consumers and producers that represents the most

fundamental problem of communication in NDN, and describes the mechanisms

capable of solving some of the issues related to the consumer / producer asyn-

chrony.

3.1 Design goals for the producer abstraction

Given that NDN producers and consumers do not directly communicate, one

basic question for producers is where to put the generated data. At this point

the following three application patterns were identified to be so important that

producer abstraction must naturally support them.

1. Realtime ADU publishing (and consumption), which can be used by a large

number of applications including video conferencing, games, etc. Publishers

may need to “wait for pull” and keep the ADUs in memory temporarily to

handle a possible mismatch between production and consumption timing.

2. ADU publishing to stable storage, to support potentially large asynchronies

between ADU publishing and consumption in terms of time, as well as in
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terms of data popularity (“publish once - consume multiple times”). This

publication pattern can be beneficial for static content services, such as video

and web-content backend applications.

3. ADU publishing to remote stable storage, to support mobile publishers and

IoT publishers. This publication pattern allows smartphones and sensors

to get around their resource limitations by moving the content to stable

locations.

3.2 Producer context

A producer context is used to publish data under a common prefix (Figure 3.2).

It is initialized by calling producer() primitive with a given name prefix parame-

ter (Table 3.1). Unlike a server side socket in TCP/IP, a producer context is ready

to publish data even without being attached to the network and in the absence

of any incoming Interests. Except the case of on-demand publishing, our con-

sumer / producer model has no requirement for publishers and consumers being

‘connected’ at the same time, therefore data publication can take place any time,

including when the producer is disconnected. In our Simple-Video example, the

publisher publishes data at its own pace, ahead of fetching by any consumers.

Ini$aliza$on	
   producer	
  (name	
  prefix)	
  è	
  context	
  

Primi$ves	
  

a*ach	
  (context)	
  
produce	
  (context,	
  name	
  suffix,	
  content)	
  
nack	
  (context,	
  nega$ve	
  acknowledgement)	
  
delete	
  (context)	
  	
  
setcontextopt	
  (context,	
  op$on	
  name,	
  value)	
  
getcontextopt	
  (context,	
  op$on	
  name)	
  

Table 3.1: API primitives for producing data: producer() creates a context, at-

tach() connects it to the network, produce() outputs Data packets.
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send 
buffer 

Interest 

✗ 

Data 

✗ 
drop or NACK 

 NDN node 

receive 
buffer 

NACK 

✓ 
✗ 

Interest  
processing 

routine 

content 
segmentation 

Data 

Producer context 

✓ 

produce() 

content 

cache miss 

Full 

cache hit 

Application 

Data 
security 
routine 

Data Data 

Data 

cache lookup 

Figure 3.1: Producer context can publish data with or without network connec-

tivity.

An application process calls produce() operation to start data publication,

passing the name suffix and application frame (ADU) content. In the Simple-

Video example, the name suffix is a frame number. In general cases, the name

suffix parameter allows application developers to reuse the same producer context

to publish data in any name subtree. In the Simple-Video application example,

one context is used for publishing all video frames, and another context is used for

publishing all audio frames. The locations of the producer contexts in the name

tree are illustrated in Figure 3.2.

producer ( /youtube/media-1234/audio/ ) producer ( /youtube/media-1234/video/ ) 

segments 

frames 

Figure 3.2: Producer context is initialized with a name prefix common for all

information objects that it generates.

The produce() operation finishes when 1) the application frame (ADU) is
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segmented into an appropriate number of Data packets, 2) the segment number

is appended to each packet name, 3) each packet is secured (e.g. signed), and 4)

pushed in the send buffer and out of the context (Figure 3.1). By default, the

segments are temporarily stored in the send buffer — in-memory storage of Data

packets, while some producer applications may want to write the resulting Data

packets in a permanent storage, such as NDNFS or Repo-NG [SWD14, CSC14].

The context’s send buffer is different from the socket’s send buffer in two ways.

First, the socket’s send buffer is used to retransmit unacknowledged segments,

whereas the producer context’s send buffer is used as a temporary cache of Data

packets that is being looked up by incoming Interest packet. In other words,

send buffer softens the time asynchrony between data production and fetching.

Second, in a socket, packets are evicted after being acknowledged, whereas in

a producer context, Data packets are evicted based on memory availability, e.g.

when the application calls produce() with an already full buffer under FIFO

eviction policy.

Production 

Initialization Idle 

Wait  
(for Interests) 

producer() 

att
ac

h(
) produce() 

produce() 

Figure 3.3: Producer context can publish data regardless of being attached to the

network.

In order to receive Interests for its data, the producer context must be attached

to the local NFD by calling attach() operation. The arriving Interests get into

a receive buffer and wait there for their turn to be matched with Data packets in
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the send buffer. If an Interest matches a Data packet by the name and Interest

selectors successfully, the Interests is satisfied from the send buffer. If a matching

Data packet is not found, an application can be informed about the Interest.

In some conditions, the rate of incoming Interest packets may be too high

for a particular producer context to process as quickly as they arrive. In other

conditions, the requested data cannot be generated within the Interest’s lifetime

span. Instead of letting the consumers timeout blindly, application can use nack()

operation to satisfy the Interests with a negative acknowledgement (Section 3.6.1),

so that the consumer(s) can handle the situation in a most informed way.

3.2.1 Context options

Primitives getcontextopt() and setcontextopt() are used to manipulate pa-

rameters of the producer context, such as:

• Size of the send buffer — internal cache of Data packets. The send buffer

size has an impact on the performance of the content publishing application

(Section 5.1.1).

• Size of the receive buffer for arriving Interests. Large receive buffer size may

increase queuing delay at the producer side, and a small size may cause more

frequent congestion events in the Producer API that results in automatic

transmission of network level NACKs with congestion signal.

• Data freshness period, which affects duration of time the content stays in

cache of intermediate NDN nodes.

• ADU segmentation parameters, such as Data packets size in the range of

supported by NFD (e.g. [0KB .. 8KB]), signature type [RSA-SHA1, RSA-

SHA256, RSA-SHA512, HMAC-SHA1, HMAC-SHA256] and KeyLocator

length (in bytes).
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• Forwarding strategy: BEST ROUTE, BROADCAST (Section 5.1.5)

• Permanent storage mode: local repo (Section 5.1.3) or remote repo prefix

(Section 5.1.4)

• Fast signing mode using the embedded manifests (Section 5.1.2)

• Event handlers (e.g. user-provided routines, callback functions): Interest

arrival, cache hit/miss events, Data signing and encryption, Data transmis-

sion, etc.

3.3 Design goals for the consumer abstraction

In identifying the design goals for the consumer abstraction, an initial assumption

is made that, generally speaking, individual applications would like to organize

ADU fetching according to their own priorities. Therefore the design goals are

described in terms of what kinds of support that applications may desire in han-

dling the relations between ADUs. Given we are still experimenting with this

new consumer / producer API, the current sets of design goals, as stated below,

may be further revised over time as we gain deeper understanding of applications’

needs. The same can be said for the goals of the producer abstraction.

At this time the new consumer abstraction model should support the following

application patterns.

1. Sequential fetching of ADUs, with allowance of missing any ADU in the

stream if necessary. This can be used to support real time media streaming

applications.

2. Parallel fetching of ADUs to speed up content transfer. This can benefit

applications like web download and torrent.
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3. Fetching of individual, dynamically generated ADUs, as needed by web and

IoT applications.

3.4 Consumer context

A consumer context abstraction is a container that associates a name prefix

with consumer-specific transfer parameters. Consumer context controls Interest

transmission and processing of fetched Data packets. It is initialized by calling

consumer() primitive with two parameters: 1) a name prefix, 2) a data retrieval

protocol.

Note that, in general cases, the name prefix is not a complete name of the ADU.

Since a given NDN namespace forms a name tree, an application developer can

reuse a single consumer context repeatedly to fetch multiple ADUs under the same

name prefix. In the Simple-Video application example, one can use one context

to fetch all video frames, and another context to fetch all audio frames. The

locations of the consumer contexts in the name tree are illustrated in Figure 3.5.

Table 3.2: API primitives for consuming data: consumer() creates a context,

consume() starts data transfer, stop() terminates data transfer, delete() destroys

context.

The data retrieval starts when an application calls consume() operation,

which takes the name suffix as an input parameter. In the case of Simple-Video
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Figure 3.4: Event-based processing of Interest and Data packets in the consumer

context.

application, the name suffix is a frame number. Name suffix parameter allows

application developer to reuse the same context for fetching multiple ADUs (Fig-

ure 3.5). Inside the context, the data retrieval protocol (Chapter 4) generates

Interests and processes incoming Data packets with other related events (Fig-

ure 3.4).

The data retrieval stops under one of the three conditions: 1) last Data packet

of the ADU has been successfully fetched, validated and reassembled (if needed);

2) irrecoverable fetching error has occurred; or 3) stop() operation has been

called.

producer ( /youtube/media-1234/audio/ ) producer ( /youtube/media-1234/video/ ) 

segments 

frames 

Figure 3.5: Consumer context is initialized with a name prefix defining the range

of information objects that can be retrieved from the network.
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3.4.1 Context options

Primitives getcontextopt() and setcontextopt() are used to manipulate pa-

rameters of the consumer context, and parameters of its underlying data retrieval

protocols, such as:

• Interest selectors: exclude, child, freshness, min/max name components, etc.

• Max sliding Interest window size can enforce a hard limit on the number of

Interest sent per RTT.

• Fast start threshold impacts the number of ADU segments that can be

fetched after 2 round-trips. The default value is 16 Interests.

• Maximum number of Interest retransmissions for the lost packets. Default

value is 16 retransmissions.

• Maximum length of an exclusion filter. Default value is 5 exclusions (e.g.

packet digests).

• Interest lifetime, which by default is calculated based on RTT estimation,

can be changed to a constant user-defined value.

• Forwarding strategy: BEST ROUTE, BROADCAST (Section 5.1.5)

• Event handlers (e.g. user-provided routines, callback functions): Interest

modification, Interest transmission, Data arrival, Data verification, ADU

reassembly, etc.

3.5 The problem of asynchrony between a consumer and

a producer

The fundamental problem of the communication between consumers and produc-

ers in NDN and one of the major differences with the push IP-based synchronous
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style of communication is an inherent asynchrony between consumer and produc-

ers. Consumers and producers not only are fetching and publishing application

frames at a different rates, but also at a different moments of time. Production can

happen well in advance of any fetching (e.g. hours, days, months). In other cases,

data can be generated dynamically with some delay after the Interest arrival. An-

other significant problem is the asynchrony in the amount of shared knowledge

about application frames between consumers and producers. Often the consumer

is ‘step behind’ in knowing what the latest version available, the exact data name

and alternatively named data packets, and other retrieval options. Sometimes

the consumer has to perform an expensive content discovery phase in order to

bootstrap the data retrieval of valuable content.

3.6 Negative acknowledgement

Negative acknowledgements is one of the consumer / producer coordination mech-

anisms. This section talks about application level and network level negative

acknowledgments in more detail.

3.6.1 Application level NACK

In NDN, consumer applications pull desired Data packets from the network by

expressing Interests. If an Interest does not find matching Data along the way, it

arrives at the producer context, which either finds the matching Data packet from

the send buffer, or otherwise informs the application to produce the requested

data. The latter case happens when some specific data is being requested and

produced for the first time.

Since NDN is a pull-based network protocol, it shares some common polling

related challenges with HTTP [MSO14]. An HTTP client can “short poll” the

HTTP server (i.e. sending regular requests) in an attempt to receive the most up-
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to-date data. The HTTP server responds with empty reply in case the requested

data is not ready, and the poll request will be repeated again after the client

timeout. To avoid HTTP clients generating requests too frequently, which can

lead to unacceptable burdens on the server and the network, HTTP long polling

is commonly used. Long polling is a technique of keeping HTTP requests pending

or “hanging” at the server until the requested data is ready to be sent back to the

client.

Long polling works well for HTTP, because the underlying TCP connection

ensures that HTTP request is reliably delivered to the server, and that the HTTP

client is still waiting for the data. Since NDN network layer does not, on its own,

ensure reliable transmission of an Interest all the way to the producer, and, more

importantly, outstanding NDN Interests consume router resources (by occupying

PIT entries), the long polling technique is not a feasible solution. In order to effi-

ciently handle the polling of dynamically generated data in NDN, two conditions

must be satisfied: 1) consumer application must be certain that its Interest packet

has successfully reached the producer, and 2) producer application can regulate

the polling frequency according to its current conditions.

A negative acknowledgement (NACK) can satisfy these two conditions. Ap-

plication level NACK is defined as a sub-type of NDN Data packet, which is

generated when the requested data is unavailable. A NACK carries an error code,

a retry timer value, and other optional application-defined fields filled by the pro-

ducer application. It informs the consumer that 1) the Interest for its requested

data has been received by the producer, and 2) the error code contains informa-

tion to advice the consumer for best next action. Currently, two error codes are

defined as follows:

1. RETRY-AFTER — prompts the data retrieval protocol to schedule Interest

retransmission based on the timeout value in the negative acknowledgement.

This mechanism is somewhat similar to Retry-After HTTP and SIP header
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field [FGM99a, RSC02]. NACK with Retry-After field does not change the

Interest pipeline size.

2. NO-DATA — prompts the data retrieval protocol at the consumer side to

terminate its operation.

Since NACK packet must be signed like all other Data packet, additional

measures [AMM13] must be taken to prevent malicious consumers from launching

a Denial-of-Service attack by forcing the producer application to generate and

sign excessive amounts of NACK packets.

Since NACKs are NDN Data packets, they can be cached at intermediate NDN

routers, so that the same NACK packet can be used to satisfy the Interest packets

from multiple consumers requesting the same piece of data.

3.6.1.1 Estimation of NACK lifetime

A cached NACK becomes stale when its lifetime (e.g. the FreshnessPeriod field),

whose value is set by the producer context, expires. As a rule of thumb, the lifetime

of a NACK packet must not be longer than the retry timeout value contained in

it, otherwise the consumers attempting retry after the timeout will receive the

same cached NACK again, and consequently will wait for another timeout period.

One must also keep in mind that a Data packet can stay at each router hop for

the FreshnessPeriod before it becomes stale, and that there can be multiple router

hops between a producer and its consumers. Therefore, it is proposed to set the

FreshnessPeriod of a NACK to be within a small fraction (10%) of the application

specified retry timer.
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3.6.1.2 Estimation of Retry-After timeout

Retry-After timeout is calculated by the application, because its time scale is typ-

ically much larger than the time scale of network transmission (e.g. RTT). The

application is in a good position to make accurate estimation of how much time

is necessary to prepare an ADU, which potentially involves such operations as:

writing or retrieving data from non-NDN database (e.g. SQL, NoSQL, etc.), ex-

pensive computations, or communication with some other applications over NDN

or non-NDN networks. Network stack (e.g. producer context) has a very limited

insight in the operations of the application located above the stack, and therefore

it cannot estimate Retry-After timeout accurately.

Sometimes even the application has difficulties with calculating a Retry-After

timeout, especially when ADU publishing involves some interaction with external

components, such as databases, remote servers, etc. In such cases, two strategies

do exist:

1. Overestimation of Retry-After timeout. This approach guarantees ADU

existence by the time when consumer performs retransmission, but may lead

to a user-perceived or real unresponsiveness of the application. However, this

method can be used for several classes of applications that rely on heavily

asynchronous communication model.

2. Underestimation of Retry-After timeout. This approach increases respon-

siveness of the application, but may lead to the situation where a consumer

performs retransmission when the ADU is still not ready. In general, it is

a responsibility of the application to decide whether to ignore such Interest

retransmissions or issue a new application NACK with a new Retry-After

timeout, which accurately estimates current conditions.
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Ignoring retransmitted Interests is still relatively safe, because 1) a consumer

already knows from the first NACK that the producer has received an initial

Interest(s) for the ADU and is preparing a response, and 2) a consumer will

perform a number of Interest retransmissions and do an exponential backoff

every time. However, there is a risk that the data retrieval protocol at the

consumer side will simply give up on retransmitting Interest(s) in the case

if Retry-After timer was heavily underestimated.

Reissuing of a new application NACK is a much safer technique, because

it allows to ‘spend’ consumer-side retransmissions less actively. It is a re-

sponsibility of the application to provide an updated Retry-After timeout

value, and it is a responsibility of the Producer API to ensure the absence of

naming conflicts among old and new application NACK1 using a versioning

model.

3.6.1.3 Versioning model

The purpose of NACK versioning model is to prevent re-usage of the previously

assigned names. It is important to preserve name consistency not only during

the lifecycle of the application or producer context, but also during the larger

timespans, such as between producer context deletion/instantiation, application

and operating system restarts. Three versioning models had been considered:

1. Sequential

Sequential versioning model is a model ensuring that each new version of

the content is given a unique monotonically increasing non-negative number.

The advantage of this model is that the consumer can easily discover the

1All data is immutable in NDN. New content cannot be named the same as any existing
content.
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most recent available version by either issuing Interest with a rightmost-child

selector or by speculative fetching of content (e.g. probing). The disadvan-

tage of this model is a requirement to keep state (e.g. last used version

number) in order to assign next version number. One can argue that a pro-

ducer application can avoid the requirement of preserving the state by using

the same ‘latest version discovery mechanism’ as a consumer application.

Such a technique would add a considerable latency to the NACK publica-

tion process and is not fully reliable, which could lead to undesirable name

collisions.

2. Random

Random versioning model is a model ensuring that each new version of

the content is given a unique random number. The advantage of this model

consists in the fact that producer application does not have to keep any state

about prior versions of the content. The disadvantage is that consumer

application has no way of knowing the order of versions and, therefore,

cannot decide what is the latest version available.

3. Time-based

Time-based versioning model is a model ensuring that each new version

of the content is given a unique non-monotonically increasing non-negative

number. This model is used in the Producer API, because it allows con-

sumers to know the order of versions and does not require producer context

to keep any state between context deletion/instantiation, application and

operating system restarts. The source of the time values is a localhost op-

erating system time service encoded as UTC Unix Epoch time (Figure 3.6)
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/edu/ucla/www/bruinbill/view/nack/2015-09-25T10:00:01.25 

Location dependent  
routable prefix 

Application level suffix NACK suffix 

Figure 3.6: Producer context automatically appends a time-based version name

component to every NACK.

3.6.2 Network level NACK

Network level NACK (Interest NACK) was not present in the original design

of NDN. It was introduced later in the joint work of UCLA and University of

Arizona [YAM13]. In the original design of NDN, when a router forwards an

Interest it has to wait until the timer expires to learn that the interface does not

work. This waiting process slows down the detection of and recovery from network

errors. In addition, the unsatisfied Interest is left in the network until its lifetime

expires, which will affect the correct processing of other Interests requesting the

same Data.

The network level NACK (Interest NACK) was introduced to resolve these

type of problems. When an NDN node cannot satisfy or forward an Interest (e.g.,

there is no interface available for the requested name), it sends an Interest NACK

back to the downstream node. The downstream node is promptly notified of the

problem by the interest NACK, and thus can take recovery actions right away.

Interest NACK also cleans up the dangling states in the network. In the absence

of packet loss or hijacks, every pending Interest should be consumed by either a

returned Data packet or a NACK. Upon receiving a NACK, a node may return it

further downstream if it has exhausted all forwarding options.

An Interest NACK carries the same name and nonce as the corresponding

Interest, plus an error code explaining the reason why the NACK is generated so

that actions can be taken accordingly by the downstream node. The following list
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provides a few common reasons. New code may be added in the future as we gain

more experience with the system.

• Duplicate: The Interest is a duplicate of a recently forwarded Interest. This

happens when the upstream node detects a looped Interest.

• Congestion: The one-to-one flow balance between Interest and Data packets

gives NDN an effective way to prevent congestion inside networks. By pacing

Interests sent to the upstream direction (towards producer) of a link, one

can prevent congestion (caused by Data) on the downstream direction of the

link.

• No Prefix : If an upstream node has no path to forward the Interest, it is

beneficial to infrom downstream node to stop sending future Interests under

the same name prefix. This may happen when N does not want to provide

service for the named data, e.g., due to its own policy.

In the absence of packet losses, every pending Interest is consumed by either

a returned Data packet or a NACK. Returning NACKs brings two benefits to

the system: it cleans up the pending Interest state much faster than waiting

for timeout, and it allows the downstream nodes to learn the specific cause of a

NACK, so that they can take informed recovery actions. Note that an Interest

NACK is different from an ICMP message; the former goes to the previous hop

while the latter is sent to the source host, hence their effects are entirely different.

3.6.2.1 Network level NACK usage in Consumer/Producer API

Due to the absence of receiver window advertisement mechanism, a producer

context can become congested if Interest arrival rate is higher than the Interest

satisfaction rate over a period of time. Figure 3.1 helps to see that incoming

Interests are queued in the receive buffer awaiting processing, which fills up in the

congestion scenario.
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What actions must be taken when a producer context is in a congested or

near-congested state? Since an application only works with the Interests that

have been dequeued and not matched to Data in the send buffer, it is the ultimate

responsibility of the producer context to drop excessive Interests and reply with

congestion NACKs.

This thesis does not offer a recommendation regarding which particular queu-

ing discipline is the best option for the producer context. Tail-drop, classic Ran-

dom Early Detection (RED) [FJ93], Weighted RED, Blue [FKS99], PIE [PNP13],

or any other AQM techniques could be considered as a single-queue disciplines.

A multi-queue design of the receive buffer seems to be a promising approach

to the problem. Since NDN names are hierarchical, it appears to be feasible to

distribute incoming Interest packets on either a per-ADU basis, or per-prefix basis.

For example, queuing Interests on a per-ADU basis would allow to avoid dropping

Interests for the ADUs that are already being processed, which can potentially

result in a faster flow completion. Per-ADU queueing discipline can also take

input in a form of application NACKs generated by the application directly that

could trigger a removal of all Interests in that particular per-ADU queue.

In the Consumer API, network level NACK benefits data retrieval protocols

that do not have to accept losses as signals of congestion, but rely on explicit con-

gestion NACK signals instead. In other words, the processing of congestion NACK

is somewhat similar to the processing of ECN (Explicit Congestion Notification)

in ECN-enabled TCP/IP protocol suite.

3.7 Manifest

A well-built NDN application fully utilizes “many-to-many with caching in-between”

communication paradigm. To keep consumers best informed of the production

progress of the data that they are interested in fetching, a producer application
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may package together necessary meta-information to distribute to consumers.

Manifest, proposed in [BDN12], is one of the means to facilitate the operation

of consumer applications by distributing a catalogue.

The catalogue may contain either ordinary NDN names, or special names which

associate the hash (e.g. digest) of a Data packet with its name. The primary

benefit of using catalogues to carry data names with associated packet digests

is the elimination of cryptographic signing operations for those Data packets.

Instead of signing, a publisher computes a simple hash of every newly produced

Data packet, populates the manifest with names carrying digests, and signs only

the manifest. Consumer applications can verify Data packets by fetching the

manifest and comparing their digest with the digest listed in the catalogue. As

proposed in [BDN12], manifests carrying the catalogue of names need to be fetched

before data fetching, which introduces an additional round-trip latency.

This thesis proposes to embed a manifest as an ADU in the same sequence with

Data packets to eliminate the undesirable latency from fetching manifest [I 14]. A

producer context can perform this operation when an ADU is segmented by the

produce() API primitive. The basic idea is to establish a convention of naming

the manifest as the first segment of the Data packets to be published, so that

consumers simply fetch the manifest together with data via Interest pipelining. In

case where an ADU’s size is too large so that the names of all its segments cannot

fit into a single manifest packet, multiple manifest packets can be periodically

interleaved with data packets as shown in Figure 3.7.

Manifest embedding enables the consumer application an opportunity to fetch

manifests together with Data packets within the same sliding Interest window.2

By letting the KeyLocator field in each Data packet point to the corresponding

embedded manifest, a consumer application is able to verify each received Data

2Sliding Interest window includes already sent not-yet-satisfied Interests, as well as the In-
terests scheduled for transmission at the moment of time.
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Figure 3.7: Manifests are embedded in the sequence of data packets when appli-

cation data is being segmented.

packets immediately without waiting for the rest of the Data packets.

A manifest is realized as a sub-type of NDN Data packet. In addition to the

catalogue of names, manifest can also carry miscellaneous meta-information in a

form of key-value pairs, such as:

• Current data production rate. Live streaming applications can benefit

from knowing the current rate of Data packet production (packaging) and

using this knowledge to pace Interest packets.

• Other available versions. Applications working with multi-version con-

tent can discover available versions of ADUs without iterative discovery

using Interest selectors which can be time consuming.

• First and Last ADU sibling. In most cases, the producer of the ADU

knows the total number of ADUs that constitute some larger information

object (e.g. a video stream). Our Simple-Video application uses the last

ADU name to understand where the video ends (e.g. frame #2500).

This is a preliminary description of a manifest abstraction, which is being

actively researched by the community these days. It is important to note that

(1) the manifest described above is created by the publisher of the original content,
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and (2) manifest embedding is not the only viable way of publishing manifests by

the original content producer.

There are multiple ways of organizing data and manifests, which are based on

the idea of manifests pointing to other manifests. For example, one can easily

imagine a way to construct a tree of manifests. Such tree can either match the

relationships of the underlying user content objects or create an alternative hier-

archy (i.e. index). A unidirectional tree would allow a ‘manifest traversal robot’

at the consumer side to go down from the root manifest towards the leaf man-

ifests, which could be just enough for many search algorithms. A bidirectional

tree requires child manifests to point to the parent manifests, but in turn allows

to traverse the manifest tree starting from any manifest (not only the root). Tree

is not the only useful data structure for manifests, for example a graph structure

of manifests might also have good properties for some applications.

Manifest can be published not only by the original content producers, but

also by the third-party applications or system / network services. Third-party

applications may include various content aggregators that re-mix and embed the

original content from various original publishers. System / network services may

include various lookup and directory services that assist application with discov-

ering devices, content and services.

In many of these cases, a ‘manifest traversal robot’ at the consumer side is likely

to prefer to know the type of content the manifest entries refer to. To achieve that

goal the definition of a manifest would need to be extended to support not only

the standard NDN names, but also NDN names with attached metadata (e.g.

PublisherKeyID), as well as so called NDN Link Objects that bind two names

(e.g. location independent & location dependent) together using a cryptographic

signature [AYW15].
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CHAPTER 4

Data Retrieval Protocols

Based on our experience with building NDN applications, the initial set of data

retrieval protocols includes: Simple Data Retrieval (SDR), Unreliable Data Re-

trieval (UDR), and Reliable Data Retrieval (RDR).

4.1 Simple Data Retrieval

Any communication in an NDN network involves Interest / Data exchanges, and

Simple Data Retrieval protocol (SDR) is the simplest form of fetching Data from

NDN networks: send one Interest to retrieveone Data packet. SDR provides no

guarantee of Interest or Data delivery. If SDR cannot verify an incoming Data

packet, the packet is dropped.

SDR can be used by the applications that:

• do not know the name of the application frame (ADU) and, therefore, need

to discover it using the name prefix and Interest selectors, which could be

set via the setcontextoption() API primitive;

• know the name of ADUs and have small ADUs that fit in one Data packet;

• want to directly control Interest transmission and error corrections.
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4.2 Unreliable Data Retrieval

When an Application Data Unit (ADU) is too large to fit in a single Data packet,

the produce() API primitive automatically segments this ADU into an appro-

priate number of Data packets. In this case, the consumer first needs to send a

sequence of Interest packets to fetch all the data packets of the same ADU, then it

needs to reassemble these Data packets into the ADU, which often implies dealing

with packet losses and error corrections, as well as packet ordering.

UDR is designed to meet the needs of applications that have relaxed require-

ments for the reliability and ordering of the Data packets, and are unwilling to pay

the price in the latency of loss recovery, or in the performance overhead associated

with other means of reliable delivery. UDR fetches all Data packets that belong

to a single ADU in an unreliable and unordered way, with a simple flow control

and best-effort Interest retransmission as explained below.

UDR makes use of the FinalBlockID, one of the optional fields carried in an

NDN data packet, by having the producer set the FinalBlockID to the number

of segments in an ADU. UDR fetches the ADU of a given name by starting with

the segment number zero, and learns about the total number of segments to be

fetched as soon as any Data packet is received. Next, the protocol enters the

fast start phase and sends as many Interests as MIN (FinalBlockID, Fast start

threshold).1 If the value of FinalBlockID is greater than the fast start threshold

value, UDR completes fast start phase and begins to multiplicatively increase

sliding Interest window size in a way similar to the TCP slow start phase. If any

Interest times out during the multiplicative increase phase, the sliding window

size is reduced by half. To get the basic intuition behind this flow control scheme,

consider a common use case where the ADU consists of a small number (≤ 15)

of Data packets: UDR can fetch such small ADUs in two RTTs and avoid bursty

1The default fast start threshold is 16 Interest packets, which could be modified via setcon-
textoption() API call.
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transmission for much larger ADUs (e.g. hundreds of Data packets).

UDR’s best-effort Interest retransmission works in the following way: at any

given time, if three out-of-order Data packets arrive at the consumer, UDR imme-

diately retransmits the Interest for the missing Data packet(s).2 UDR can perform

multiple fast retransmissions per sliding Interest window by keeping an accurate

track of missing and contiguous segment numbers.

UDR does not perform any persistent error correction; it does not run re-

transmission timers, nor retransmits Interests upon receiving NACKs, which are

passed up to the application. UDR drops Data packets that fail data verifica-

tion. UDR delivers each received Data packets to applications as soon as possible

without enforcing ordering, thus applications handle received packets directly and

are responsible for the ADU reassembly. This also offers an opportunity for the

applications to perform specially tailored error and loss recovery.

In summary, UDR functionality includes best effort fetching of single- and

multi-segment application data frames (ADUs), and best effort fast retransmission

for potentially lost segments. “Deadline-oriented” consumer applications (e.g. live

streaming) can benefit from using UDR’s machinery and extending it with the

custom functionalities appropriate at the application level.

4.3 Reliable Data Retrieval

When an Interest packet fails to bring back the corresponding Data packet, it can

be due to one of the multiple reasons:

1. the Interest is lost in transit before it reaches the data, which may reside in

cache, or need to be produced;

2The current implementation of NFD will forward a retransmitted Interest even if the original
Interest has not expired, if the retransmission arrives from the same face and is at least 100ms
after the original Interest.
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2. the Interest reaches the producer-application but the application does not

respond due to various reasons;

3. the returning Data packet is lost;

4. the returning Data packet fails the signature validation (e.g. content is

poisoned, etc.).

Reliable Data Retrieval protocol (RDR) uses Interest retransmission timers to

handle packet losses (cases 1 & 3 in the above), and uses application negative

acknowledgements to handle case 2. The Interest is retransmitted if the expressed

Interest packet is not satisfied when it times out, or if the negative acknowledgment

carrying Retry-After field is retrieved instead of the actual data.

Data verification error can be caused by packet tampering, content poison-

ing by a non-credible publisher, expired certificate of a credible publisher, or

other cases depending on the selected trust model. Several in-network mecha-

nisms of mitigating content poisoning attacks have been proposed by [CGT13],

and [GTU14] describing the content ranking algorithms based on the users’ feed-

back.

While the Data verification operation is performed separately by the security

part of the library, Data retrieval protocol makes an attempt to recover from

this type of error. To recover from the Data verification failure, RDR performs

retransmission of the Interest packet with exclude selector set to exclude any

possible Data packet having the same name and the digest (e.g. hash, checksum)

of the packet that has failed verification. Because exclude selector tells NDN

router to retrieve an alternative Data packet, which in general case requires an

extra work to be performed by the router, large excludes (e.g. containing a lot of

excluded name components or digests) can affect the performance of NDN router.

RDR limits its exclude selector to five digests, which means that the protocol

attempts up to five retransmissions in order to recover from the Data verification

41



failure.

RDR provides reliable and ordered delivery of the ADU to the consumer appli-

cation. Unlike TCP, RDR does not attempt to establish a connection between the

consumer and producer applications. In RDR, the retrieval of every ADU begins

with sending an Interest packet for segment number zero, and is finished when

the last segment is successfully retrieved. Similar to UDR, the producer sets the

FinalBlockID field in each Data packet to the last segment number. RDR’s flow

control has the same fast start and multiplicative increase phases as UDR does.

Figure 4.1 illustrates an example where the consumer application uses RDR

to retrieve dynamically generated data and handle verification errors. The first

Interest is satisfied by poisoned content from the router cache, which is returned

back to the consumer context. The RDR checks the content with the user-specified

verification routine, and retransmits the Interest(s) with the exclude selector car-

rying the digest of the poisoned content. Since the routers respect the exclude

selectors, this second Interest reaches the producer context, which needs some

time (e.g. several seconds) to prepare the content, and therefore replies with

the Retry-After NACK. This Retry-After NACK packet has /nack in its name

suffix, therefore it has no impact on the poisoned content in the cache. When

the consumer RDR receives the Retry-After NACK, it schedules the Interest re-

transmission accordingly, which later successfully retrieves the content from the

producer context. Now the router has two Data packets with identical names but

different digests, they can be either stored side by side or replace one another

depending on the router Content Store policies.

Producer applications can mitigate excessively high rate of Interest arrivals by

responding with negative acknowledgements carrying either Retry-After or No-

Data fields, depending on the data being asked. RDR’s flow control utilizes these

NACKs as discussed in Section 3.6.1. The traditional mechanism of TCP window

size advertisement for flow control purpose is not applicable in NDN, given the
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Figure 4.1: RDR recovers from the Data verification error and handles dynamic

data generation delay.

absence of a “connection” between consumers and producers.

Congestion is controlled at the NDN forwarding plane by utilizing network

level NACK mechanism as discussed in Section 3.6.2. The NFD running on the

local node is expected to handle network level NACK, perform congestion control,

and enforce fairness among multiple applications running on the same node.

If three out-of-order Data packets arrive at the consumer, RDR performs op-

portunistic fast retransmission of the Interest for the missing Data packet, in the

same way as UDR.

In the presence of the manifests embedded in the sequence of Data packets

(Section 3.7), RDR performs verification of Data packets with help of catalogues

of names in the corresponding manifest segments. If any Data packet fails its

43



verification with the catalogue, RDR retransmits the Interest packet with the

implicit digest. Since the correct digest is already known from the manifest, there

is no need to use exclude selector in this case.

If a sequence of Data packets does not contain embedded manifests with cata-

logues of names, RDR verifies each packet’s signature independently, and performs

error correction using the exclude selector as described earlier.

In summary, RDR functionality includes:

• reliable fetching of a single- or multi-segment application frame (ADU) that

may be either pre-generated ahead of time by the producer application and

potentially cached by NDN routers, or dynamically generated upon an In-

terest arrival;

• low overhead consumption of dynamically generated application frame (ADU)

through the use of NACK packets published by the producer application;

and

• persistent recovery from the Data verification failures.
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CHAPTER 5

Use cases and communication patterns

This section describes the most fundamental NDN communication patterns avail-

able through the Consumer / Producer API framework and introduces the design

of the few pilot applications built on top of the API.

5.1 Common communication patterns

NDN specific communication properties such as built-in transient and permanent

storage, pull-based data retrieval, multi-path forwarding and multicast content

dissemination provide the foundation for some distinct communication patterns.

The following sections describe the ways how applications can exploit these pat-

terns using the Consumer / Producer primitives.

5.1.1 Realtime publishing & consumption

A pattern with realtime ADU publishing and consumption is used by a large

number of applications, such as video conferencing, games, etc. (Figure 5.1).

This pattern can be characterized with two different aspects:

• if the producer is not able to pre-generate the content before it is requested,

the consumer(s) are waiting for the data, since the on-demand content gener-

ation takes additional time due to Interest processing, content segmentation

and signing, etc.
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• if the producer is able to pre-generate the content before it is requested by

the consumer(s), the producer is waiting for pull, which requires keeping

the ADUs in memory for some period of time to handle a possible mismatch

between production and consumption rates and timing.

host 

P1	
  
Interest NDN	
  

network	
  

process 

Figure 5.1: Realtime publishing & consumption states: a) Wait for pull b) Wait

for data

Unlike the socket’s send buffer, which stores the segments that belong to a

particular connection, producer’s send buffer stores Data packets that share some

common name prefix. In other words, different ADUs are temporarily stored in

the same send buffer. This also means that Interests for different ADUs might

potentially go to the same producer context (e.g. the same send buffer). These

two factors create an interesting dynamic between the ADUs that are currently

stored in the send buffer and the ADUs that have been evicted from the buffer

and, therefore, have to be republished (e.g. signed) again.

The publisher-process is exposed to different computational costs depending

on the size of the send buffer. The publishing cost is lower if the send buffer is

large, allowing more ADUs to be kept in memory, and is higher if the send buffer

is small, which causes more “ADU republishing events”.

The experiment modeled the behavior of:

1. a basic web server publishing 20 ADUs (50 KB each) such as personalized

html pages and other dynamic content. Each ADU consists of 30 Data
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packets. The send buffer sizes that had been tested are [0, 25, 50, 100, 200,

400, 800] of Data packets.

2. multiple basic web consumers requesting 20 personalized web resources (ADUs)

in random order. The retrieval of the random ADU can potentially cause

the “ADU republishing event” depending on the contents and the size of the

producer’s send buffer.

The third factor that affects space-computation tradeoff is the Interest pipeline

size at the consumer when it tries to fetch any particular ADU. Interests sent

within a larger window fetch more Data packets at once, leading to fewer “ADU

republishing events”.

Figure 5.2 demonstrates that without a send buffer, multiple consumers, each

pipelining many Interests, are able to overload the producer due to signing and

segmentation overhead. A larger buffer effectively amortizes these same costs

across multiple consumers.
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Figure 5.2: Benefit of having producer’s send buffer for serving multi-packet ADUs

to multiple consumers that pipeline Interests.
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5.1.2 Fast signing & verification

Producer API has an additional mechanism for improving the speed of ADU

publishing — manifest embedding in the sequence of Data packets (Figure 5.3).

This technique relies on the fact that many applications reassemble ADU from

multiple Data packets, and therefore, do not have a strong need for independent

verification of each individual Data packet.

Data1%Manifest0% Data2% Datak% Datak+2%Manifestk+1% Datak+3% Datak+4%

ADU%

Key Locator Key Locator 

host 

C1	
  
Interests NDN	
  

network	
  

process 

host 

P1	
  

process 

Data 

Figure 5.3: Producer amortizes the signing cost by embedding manifests in the

ADU.

Algorithm 1 Publishing with fast signing

1: h← producer(“/edu/ucla/video-1234”)

2: setcontextopt(h, FAST SIGNING, true)

3: produce(h,“/frame1”, video frame payload)

The same experiment with a single Web server and multiple Web consumers

had been performed to understand the performance implications of embedding

manifests in the sequence of Data packets. This technique demonstrated up to 32

times increase of the speed of ADU publishing as illustrated by the Figure 5.4.

Both experiments were conducted on the Mac OS X platform with trusted plat-
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form module (TPM)1 used to produce RSA signatures with SHA256 digest.

Consumers running RDR protocol do not need to take any special action to

enable fast verification since the protocol discovers this pattern automatically. A

special option must be set in the producer API to activate fast signing (Algo-

rithm 1).

0 100 200 300 400 500 600 700 800
In-memory storage (packets)

0

2

4

6

8

10

12

P
ro

d
u
ce

r'
s 

co
m

p
u
ta

ti
o
n
a
l 
o
v
e
rh

e
a
d
 (

se
co

n
d
s)

Amount of Interest pipelining

window size 1
window size 2
window size 4
window size 8
window size 16

Figure 5.4: Benefit of embedding manifests in the multi-packet ADUs fetched by

multiple consumers that pipeline Interests.

5.1.3 Largely asynchronous publishing & consumption

A pattern with largely asynchronous ADU publishing and consumption usually

requires the permanent storage of Data packets, because the lifetime of the content

can be much longer then the uptime of the process that publishes the content.

The pattern “Publish once - consume multiple time” is beneficial for static content

servers, such as video and web-content backend applications.

1Mac OS X Keychain
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When the lifetime of the data is much longer than the lifetime of the publisher-

process, the data can be published into a Repo (Figure 5.5). To publish data into

the local Repo, the producer context does not have to be attached to the NFD as

shown in Algorithm 2.

host 

Repo	
  

P1	
  

Interest 
process 

NDN	
  
network	
  

process 

Figure 5.5: Largely asynchronous publishing & consumption through local per-

manent storage (Repo)

Algorithm 2 Publishing into the local repository (Repo)

1: h← producer(“/com/youtube/video-1234”)

2: setcontextopt(h, LOCAL REPO, true)

3: produce(h,“/frame1”, video frame payload)

4: delete(h)

5.1.4 Mobile asynchronous publishing

In general, the publisher’s mobility has no impact on forwarding Data packets

back to the consumers, because NDN’s stateful forwarding plane keeps the state

of data requests at each network hop. However, when the producer is moving,

routing updates must be made in order to keep the content reachable for the

consumers.

One way to avoid costly routing updates is to publish the content to some

location-static permanent storage, such as a remote Repo, and route Interest
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packets to this Repo instead of the mobile publisher (Figure 5.6). The “publish

and forget” communication pattern is also beneficial for the low-capability pub-

lishers, such as IoT publishers, since they cannot afford to keep the content due

to memory and energy constraints.

Publishing to the remote Repo can be easily enabled with the following code

snippet (Algorithm 3).

host host 

Repo	
  P1	
   Interest 

process 
process 

NDN	
  
network	
  

Figure 5.6: Remote permanent storage

Algorithm 3 Publishing to the remote repository

1: h← producer(“/health-monitor-app/”)

2: setcontextopt(h, REMOTE REPO PREFIX, /edu/ucla/hospital/ilya)

3: attach(h)

4: produce(h,“/health-report/06-10-2015”, payload)

5: delete(h)

5.1.5 Localhost broadcasting

Some categories of applications may require an event (e.g. Interest) delivery to

all interested parties inside the node. In such cases, an IP-network application

would send a UDP datagram to the broadcast address (e.g. 255.255.255.0) to the

pre-agreed port number. An NDN-network application can achieve the same goals

by setting the broadcast forwarding strategy for a specific name prefix, because

NDN Forwarding Daemon (NFD) serves as a multiplexer between applications and
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network interfaces inside a node. The broadcast strategy forwards every Interest

to all upstreams, indicated by the supplied FIB entry (Figure 5.7).
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Figure 5.7: Broadcasting

The broadcast strategy can be set from both producer and consumer contexts

with the following code (Algorithm 4 and 5)

Algorithm 4 Setting a broadcast strategy from the producer

1: h← producer(“/localhost/service/eventsink”)

2: setcontextopt(h, FORWARDING STRATEGY, BROADCAST )

3: attach(h)

Algorithm 5 Setting a broadcast strategy from the consumer

1: h← consumer(“/localhost/service/eventsink”, SDR)

2: setcontextopt(h, FORWARDING STRATEGY, BROADCAST )

3: consume(h, ”/restart”)

Broadcast forwarding strategy is not the only strategy available in NFD, and

all other forwarding strategies (e.g. BEST ROUTE, etc.) can be activated in

the same way as shown above. The forwarding strategy in NFD is a decision

maker, deciding whether, when, and where to forward the Interests [ASZ14]. The

main motivation for having multiple strategies is that our experience with NDN

application showed that there a single fixed strategy cannot fit the needs for all
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applications. For example, some applications may require to multicast Interests to

all available Faces to retrieve any matching copy of the Data as soon as possible,

while the other may want to retrieve Data only from locations pointed by the

routing system.

To provide the maximum flexibility, NFD allows per-namespace selection of

the specific strategy [ASZ14]. This per-namespace strategy choice is recorded in

StrategyChoice table, which is consulted in the forwarding pipelines when decision

about Interest forwarding needs to be made. In addition to the Interest forwarding

decision points, strategy can also receive notifications when the forwarded Interests

are getting satisfied or timed out. Therefore, strategy presents a closed loop

subsystem in NFD to control Interest forwarding. Conceptually, a strategy can

be considered a program, which is written for an abstract machine and determines

how to forward Interests. All current NFD strategies are written in C++ and are

built-in into the NFD binary. However, future releases of NFD may allow custom

strategies to be loaded at runtime and/or written in a scripting language against

the strategy API abstract machine.

5.1.6 Sequential fetching

With NDN Consumer / Producer model, a TCP-like stream semantics can be

achieved by fetching ADUs sequentially (Figure 5.8) using the single consumer

context by calling multiple consume() operations with different name suffixes as

illustrated in the Algorithm 6.

Note that consume() operation takes at least one round trip time to complete

the retrieval of a single packet ADU and more round trips for a multi-packet

ADU. Depending on the network round trip time and ADU size, it might be

impossible to achieve high goodput with a single consumer context running in a

single thread. In such cases, it is recommended to the application developer to
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switch to the parallel ADU fetching pattern.
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Figure 5.8: Sequential fetching of ADUs

Algorithm 6 Sequential fetching of ADUs with a single consumer

1: h← consumer(“/cam01/video/”, RDR)

2: while NOT End-Of-Stream do

3: Name suffix← ADU number

4: consume(h, Name suffix)

5: end while

5.1.7 Parallel fetching

Parallel fetching of ADUs is used to speed up content transfer. This pattern is

beneficial to web, torrent, video and many other low latency and high throughput

applications. Since ADUs are independent from each other, they can be trans-

ferred and processed at the same time, which makes the parallel ADU fetching

pattern one of the key communication patterns for NDN applications (Figure 5.9).

In its current implementation, Consumer / Producer API offers two ways of

parallel ADU fetching:

• in a single thread with multiple consumer contexs using asynchronous func-

tion call asyncConsume()
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• in multiple threads with multiple consumer contexts using the standard

consume() function (Algorithm 7).
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Figure 5.9: Parallel fetching with multiple consumer contexts

Algorithm 7 Parallel fetching of ADUs with two consumers

1: h1 ← consumer(“/cam01/video/”, RDR)

2: h2 ← consumer(“/cam01/video/”, RDR)

Thread 1

3: while NOT End-Of-Stream do

4: Name suffix← odd ADU number

5: consume(h1, Name suffix)

6: end while

Thread 2

7: while NOT End-Of-Stream do

8: Name suffix← even ADU number

9: consume(h2, Name suffix)

10: end while
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5.2 Applications

A few pilot applications were built by the developers (e.g. undergraduate, gradu-

ate and visiting students at UCLA) that do not have deep expertise in computer

networking in general and in Named Data Networking in particular. This section

reports on their experiences using Consumer / Producer API framework in real

environments.

5.2.1 NDNlive

NDNlive is capable of streaming live video captured by the camera and handling

network problems by dropping individual video or audio frames. Figure 5.10

illustrates the architecture of NDNlive, which consists of two major components:

• Publisher

NDNlive is a live streaming application; the publisher captures video from

the camera and audio from the microphone and passes it to the Gstreamer

to encode the raw media data and extract individual video and audio frames.

The video and audio frames are published to NDN network with via multiple

producer contexts.

• Player

The video player uses the RDR protocol (UDR is a viable option as well) of

Consumer API protocol suite to generate Interest packets for specific video

and audio frames, which are later passed to the Gstreamer for decoding

purposes. The player application is responsible for timing the consumption

of individual frames, i.e. pacing of consume() calls.
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Figure 5.10: NDNlive architecture

The following name is a typical name of the Data packet that is a part of a

video frame.

“/ndn/ucla/NDNlive/stream-1/video/content/8/%00%00”

• Routable Prefix: “/ndn/ucla/NDNlive” is the routable prefix used by

NFD forwarders to direct Interest packets towards the NDNlive publisher.

• Stream ID: “/stream-1” is a stream identifier used to distinguish among

live streams. Note that stream ID could be a part of the routable prefix.

• Video or Audio: “/video” is a markup component to distinguish between

video and audio streams.

• Content or Stream Info: All frames go under “/content” prefix, and all

stream information goes under “/stream info” prefix.

• Frame number: “/8” is frame number, which is used to identify each

individual video and audio frame.
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• Segment number: “%00%00” is the segment number required to identify

each individual Data packet, because most video frames are too large to fit

in a single Data packet, and have to be broken into multiple Data packets.

stream_id

/video /audio

/content /stream_info /content /stream_info

/frame_number /frame_number

/segment_number

/ndn/ucla/ndnlive

/4mestamp /4mestamp

Figure 5.11: NDNlive namespace
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Figure 5.12: Locations of producers and consumers in the NDNlive namespace

5.2.1.1 Publisher

Publisher’s application has four producers: video content producer p1, video

stream information producer p2, audio content producer p3 and audio stream
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information producer p4. Figure 5.12 shows the locations of the producers in the

NDNlive namespace.

Two content producers (p1 and p3) continuously publish video and audio

frames by incrementally increasing the corresponding frame numbers (Figure 5.11).

Two stream info producers (p2 and p4) continuously publish up-to-date infor-

mation about the live streaming media: current frame number, frame rate, video

width and height, encoding format (Figure 5.11).

Negative Acknowledgement

In some situations, the live stream publisher is not able to satisfy Interests

with actual data (e.g. video and audio frames).

1. The consumer may sometimes miscalculate the pacing of video and audio

frames and request the frame that does not exist at the moment (e.g. ahead

of the production). The publisher can inform the consumer about this sit-

uation using nack() function of the Consumer / Producer API.

As illustrated by the Algorithm 8, producer calls nack() function with PRO-

DUCER DELAY header containing the anticipated time value after which

the data may become available.

2. Consumers join the live stream after the publisher. Since the publisher of

the live stream stores only a limited number of the most recently produced

audio and video frames, some consumers might request the frames that has

already expired everywhere in the network. In this case, the publisher calls

the nack() operation with textitNO-DATA header, which informs consumers

that a particular video or audio frame is no longer available.

The operation of NDNlive publisher is shown in Algorithm 8.
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Algorithm 8 NDNlive producer

1: hv ← producer(/ndn/ucla/NDNlive/stream-1/video/

2: content)

3: setcontextopt(hv, cache miss, ProcessInterest)

4: attach(hv)

5: while TRUE do

6: Name suffixv ← video frame number

7: contentv ← video frame captured from camera

8: produce(hv, Name suffixv, contentv)

9: end while

10: ha ← producer(/ndn/ucla/NDNlive/stream-1/audio/

11: content)

12: setcontextopt(ha, cache miss, ProcessInterest)

13: attach(ha)

14: while TRUE do

15: Name suffixa ← audio frame number

16: contenta ← audio frame captured from mirophone

17: produce(ha, Name suffixa, contenta)

18: end while

19: function ProcessInterest(Producer h, Interest i)

20: if NOT Ready then

21: appNack ← AppNack(i, RETRY-AFTER)

22: setdelay(appNack, estimated time)

23: nack(h, appNack)

24: end if

25: if Out of Date then

26: appNack ← AppNack(i, NO-DATA)

27: nack(h, appNack)

28: end if

29: end function

60



Algorithm 9 NDNlive consumer

hv ← consumer(/ndn/ucla/NDNlive//stream-1/video/

2: content, UDR)

setcontextopt(hv, new segment, ReassambleVideo)

4: while reaching Video Interval do

Name suffixv ← video frame number

6: consume(hv, Name suffixv)

framenumber + +

8: end while

function ReassembleVideo(Data packet)

10: content← reassemble segment

if Final Segment then

12: video← decode content

Play video

14: end if

end function

16: ha ← consumer(/ndn/ucla/NDNlive/stream-1/audio/

content, SDR)

18: setcontextopt(ha, new content, ProcessAudio)

while reaching Audio Interval do

20: Name suffixa ← audio frame number

consume(ha, Name suffixa)

22: framenumber + +

end while

24: function ReassembleAudio(Data content)

audio← decode content

26: Play audio

end function
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5.2.1.2 Player

NDNlive consumer must fetch the live stream information to set up the Gstreamer

playback pipeline before it can request any of the audio or video frames. The

application has four consumers (Figure 5.12): video content consumer c1, video

stream information consumer c2, audio content consumer c3 and audio stream

information consumer c4.

Data retrieval

Consumer / Producer API protocol suite offers three data retrieval protocols:

SDR, UDR, RDR. This section describes how NDNlive player uses SDR and UDR

protocols. The operation of NDNlive player is shown in the Algorithm 9.

1. Content Retrieval

In the case of the live media streaming, the player must continue retrieving

video and audio frames at all times in order to keep up with the data pro-

duction rate. All packets of each frame must be retrieved as fast as possible

and the fetching process should not block other frames because of packet

losses.

NDNlive video content consumer uses UDR (Unreliable Data Retrieval)

protocol for video frame retrieval. Since UDR pipelines Interests transmis-

sion and does not provide ordering, some Data packets may arrive out of

order. NDNlive player takes care of Data packet reassembly and drops the

whole frame is any of its packets are lost.

NDNlive audio content consumer uses SDR (Simple Data Retrieval) for

audio frame retrieval. SDR does not pipeline Interest packets, which satisfies

our requirements, since the audio frame is small enough to fit in just one

Data packet.
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2. Stream Information Retrieval

Stream information is periodically updated by the video publisher, which

essentially means creation of a new Data packet with a unique name (e.g.

new timestamp name component). The consumer that is trying to join the

live stream does not know the unique name of the latest stream information

object, and therefore cannot use UDR or RDR protocols that require such

knowledge. A simple solution of this problem is to use SDR (Simple Data

Retrieval) protocol with Right Most Child option set as TRUE. The proto-

col generates a single Interest packet with RightmostChildSelector which is

capable of fetching the latest stream info object.

Frame-to-frame interval

The player should control the speed of frame consumption, while the pipelining

of Interests inside each frame is handled by the consumer context. If the applica-

tion consumes different frames too aggressively and the data is not yet produced by

the publisher application, the playback may collapse. If the application consumes

frames too slow, the playback may fall behind the video generation. NDNlive uses

constant frame rate encoding, therefore for a video, which is encoded by 30 frames

per second, the interval between frames is 33 millisecond. In other words, if the

next frame cannot be retrieved within 33 ms, the playback will stop.

Our strategy to scheduling frame consumption is to adjust it to the real-time

RTT. The amount of frames which are requested at the same time is equal to the

frame pipeline window. Any finished frame will allow fetching of the following one

frame. For example, if the current frame pipeline window includes frame 13 to

frame 22, the completion of frame 12 fetching immediately triggers the fetching

of the frame 23.

Frame pipeline window is calculated according to the observed Frame RTT :

Pipeline Window = Frame RTT/(1000/FrameRate)
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Frame RTT = Accumulated T ime/Frame Numbers

The Frame RTT is equals to the average retrieval time of a single frame.

The intuition behind this formula is very straightforward. If the speed of frame

retrieval must be matched to the speed of frame generation, the number of frames

requested at the same time must be no less than the frame pipeline window.

Synchronization of video and audio

Since NDNlive is streaming video and audio separately, it is a vital problem to

keep these streams synced. When video and audio frames are captured, they are

timestamped by the Gstreamer. The time information is recorded in GstBuffer

data structure containing the media data, and transferred along with every video

or audio frame. When the consumer fetches the video or audio frames separately,

the video and audio frames are pushed into the same GstQueue. Gstreamer ex-

tracts the timestamps present in the video and audio frames, and displays the

content in synchronized mode.

5.2.1.3 Influence on the API

The live video streaming project demonstrated the need for the fast signing /

verification communication patterns, because on-the-fly signing of a high number

of Data packets needed to accommodate the video frames once again proved to

be a performance bottleneck like it did in NDNvideo project [D 12], which had to

downgrade to SHA256 digest computation suitable for content integrity protection

only.

Application developer experienced some ambiguity with selecting the data

retrieval protocol for the video player. In one hand, UDR protocol satisfies la-

tency requirements of the live streaming applications, but forces application to

reassemble application frame segments. In another hand, RDR reassembles ADU

segments, but might take more time due to the possible retransmissions and error
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corrections. However, it is possible to fine tune RDR to be as fast as UDR by

setting the maximum number of retransmissions to zero via the setcontextop-

tion() API primitive. In such case, the video frames are automatically dropped

each time when a single Data packet is not delivered at the first try.

5.2.2 NDNtube

Figure 5.13 illustrates the architecture of NDNtube, which can be summarized as

follows:

• Publisher

NDNtube is a pre-recorded media streaming application, therefore the pub-

lisher works with existing video files stored on the disk. The publisher reads

the file from the disk, extracts video and audio frames from it and pub-

lishes these frames to the Repo. After that, the Repo takes over the duty

of responding to the Interests requesting the frames.

• Player

Comparing to the NDNlive, NDNtube player has an additional functionality

for displaying the list of the currently available video resources (e.g. playlist).

In order to support this feature, NDNtube publisher keeps publishing the

updated playlist every time a new video is added to the collection.

NDNtube’s namespace is mostly similar to NDNlive, with the following four

differences:

1. Playlist namespace branch

The user of NDNtube can select any video from the list of available ones

(e.g. playlist). The typical name of the playlist is shown below.

“/ndn/ucla/NDNtube/playlist/1428725107042”
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Figure 5.13: NDNtube architecture

The playlist is identified by the timestamp name component, because it is

updated every time the new file is added or the old file is removed from

the collection of media resources. The consumer is interested in the latests

version of it (e.g. rightmost).

2. Video name

The name of the video must match one of the video names provided by the

playlist. Semantically, the video name component serves the similar purpose

as the stream ID component in the NDNlive application.

3. Permanent stream information

In NDNtube, the information object carrying auxiliary video encoding infor-

mation (e.g. final frame number, width, height, etc.) is published only once

and is not updated after that, unlike the stream information in NDNlive’s

live streams. As a result, the name of the information object does not con-

tain a timestamp component.

4. Multi-packet audio frames

Since some mp4 video files that are added to the collection of media resources

66



contain a high quality audio stream, the audio frames have to be broken into

Data packets that have unique segment name component (Figure 5.14).

/ndn/ucla/ndntube

/playlist /video_name

/video /audio

/content /stream_info /content /stream_info

/frame_number /frame_number

/segment_number /segment_number

/6mestamp

Figure 5.14: NDNtube namespace

Although the namespace of NDNtube might look very similar to the namespace

of NDNlive, the patterns of the data production and retrieval are quite different.

5.2.2.1 Publisher

Publisher’s application has three producers: dynamic playlist producer, video

content producer and audio content producer. Figure 5.15 shows the locations of

the producers in the NDNtube namespace.

Playlist producer P1 is responsible for generating the latest playlist every time

a video file is added or removed from the collection of media resources. Producer

P1 runs for the duration of the publisher application’s lifetime.

Video content producer P2 is responsible for publishing the video frames and

the stream information object for a each particular media resource. Since pro-

ducer P2 is configured with LOCAL REPO option, all packets are written to the

Repo running on the same local host. After all video frames as well as stream
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Figure 5.15: Locations of producers and consumers in the NDNtube namespace

information objects are successfully inserted in the repo, producer P2 terminates

its execution, and the publisher-process continues to run.

Audio content producer P3 is responsible for publishing the audio frames and

the stream information objects for each particular media resource. Since producer

P3 is configured with LOCAL REPO option, all packets are written to the repo

running on the same local host. After all audio frames as well as stream infor-

mation objects are successfully inserted in the repo, producer P3 terminates its

execution (Algorithm 10).

5.2.2.2 Player

The application has five consumers: playlist consumer C1, video content consumer

C2, video stream information consumer C3, audio content consumer C4 and audio

stream information consumer C5. Figure 5.15 shows the locations of the consumers

in the NDNtube namespace.

Data retrieval

This section describes how NDNtube player uses SDR and RDR protocols.

The operation of NDNtube player is shown in the Algorithm 11.
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Algorithm 10 NDNtube publisher

1: hv ← producer(/ndn/ucla/NDNtube/video-1234/video)

2: setcontextopt(hv, local repo, TRUE )

3: while NOT Final Frame do

4: Name suffixv ← video frame number

5: contentv ← video frame

6: produce(hv, Name suffixv, contentv)

7: end while

8: ha ← producer(/ndn/ucla/NDNtube/video-1234/audio)

9: setcontextopt(ha, local repo, TRUE )

10: while NOT Final Frame do

11: Name suffixa ← audio frame number

12: contenta ← audio frame

13: produce(ha, Name suffixa, contenta)

14: end while

1. Content Retrieval

All video and audio frames as well as stream information objects are re-

trieved by RDR (Reliable Data Retrieval) protocol, which provides ordered

and reliable fetching of Data packets. NDNtube video player does not con-

sume a live streaming media, and consequently can afford much larger buffer-

ing delays in order to preserve the original quality of the video and audio

resources. By default, NDNtube buffers for at least two seconds of video and

audio frames of real playback time before it begins (or resumes) its play-

back. Buffering allows to soften the delays of frame retrieval due to possible

Interest retransmissions done by the RDR protocol.

An expected but nevertheless interesting effect of frame-by-frame reliable

delivery shows itself in rare cases when a particular video or audio frame
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cannot be retrieved within a reasonable amount of time (e.g. Interest re-

transmissions) and application faces the choice whether it wants to skip

the frame or try to consume() it again. Since our goal was to prototype a

Youtube-like user experience, in this situation, NDNtube consumer will try

to retrieve the same frame again.

2. Playlist Retrieval

Playlist is periodically updated by the video publisher, which essentially

means creation of a new Data packet with a unique name (e.g. new times-

tamp name component). The consumer that is trying to obtain the names

of available media resources does not know the unique name of the latest

playlist, and therefore cannot use UDR or RDR protocols which require such

knowledge. A simple solution of this problem is to use SDR (Simple Data

Retrieval) protocol with Right Most Child option set as TRUE. The proto-

col generates a single Interest packet with RightmostChildSelector which is

capable of fetching the latest playlist.

Frame-to-frame interval

Since all the content and stream information already exists in the Repo for a

long time, consumer can be quite aggressive with fetching video and audio frames.

By default, NDNtube player does not wait any time between the retrieved frames

and, in fact, fetches 25 video frames in parallel via the consume() operation. The

number of simultaneously fetched frames does not have to be the same throughout

the playback and can change depending on network conditions (e.g. congestion

signal, increased RTT).

The NDNtube consumer’s operation is shown in Algorithm 11.

70



Algorithm 11 NDNtube consumer

1: hv ← consumer(/ndn/ucla/NDNtube/video-1234/

2: video, RDR)

3: setcontextopt(hv, new content, ProcessVideo)

4: while NOT Final Frame do

5: Name suffixv ← video frame number

6: consume(hv, Name suffixv)

7: framenumber + +

8: end while

9: function ProcessVideo(byte[] content)

10: video← decode content

11: Play video

12: end function

13: ha ← consumer(ndn/ucla/NDNtube/video-1234/

14: audio, RDR)

15: setcontextopt(ha, new content, ProcessAudio)

16: while NOT Final Frame do

17: Name suffixa ← audio frame number

18: consume(ha, Name suffixa)

19: framenumber + +

20: end while

21: function ProcessAudio(byte[] content)

22: audio← decode content

23: Play audio

24: end function
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5.2.2.3 Influence on the API

The video streaming project taught us many lessons. First, the application strug-

gled with achieving high throughput of the video frames, which was limited to

about 20 frames per second (less than 0.5 Mbits). At that moment of time, RDR

protocol used a slow start with AIMD flow control scheme, therefore most con-

sume() operations were taking multiple round-trips to complete the data retrieval

of a single video frame.

We experimented with keeping the current sliding Interest window size between

the consume() calls in order to do slow start only once per each video stream

and to keep the window size large enough to fetch all video frame segments during

the same round-trip. This design caused an extremely high rate of unsatisfied

Interest packets 90% due to the fact that the video stream is composed of key

and delta frames. Key frames tend to be large ( 20 Data packets), whereas delta

frames usually fit in one Data packet. The highly unpredictable video frame size

distribution invalidates the concept of re-using the size of the sliding Interest

window for consecutive consume() calls.

As a result, the video player was rewritten to use the parallel consumption com-

munication pattern with multiple threads. It was noted that API could support

parallel consumption in a single thread. Such functionality had been implemented

later.

The sheer size of the video content made it clear that the video publisher

does not want to do the signing every time the client requests the content and it

would be much more scalable to perform this expensive operation only once. This

also means that the signed Data packets must be stored outside of the running

application process. These considerations prompted us to add the integration

with Repo storage to the producer context API.
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5.2.3 NDNradio

NDNRadio is a stand-alone application that streams radio over NDN instead

of HTTP/TCP/IP protocol stack. The design of NDNRadio allows almost full

independence between the player and the station, with very little configuration

information needing to be exchanged between the two.

NDNRadio station sources the audio from Radio Reddit using the REST API;

it is completely stateless, and contains no information about the NDNRadio play-

ers currently or previously listening to it. An NDNRadio station can run non-stop,

with all NDNRadio players listening to that station automatically updating them-

selves at the appropriate time.

The NDNRadio player finds all available stations at startup in a decentralized

manner, and then displays those stations to the end user in a user-friendly, easy

to use GUI. When the user selects the station to play, NDNRadio player acquires

the station information: a) what name must be currently used to get the initial

audio frame, b) when to request a new start time from the station, and c) when

to restart the frame number.

/edu/ucla/radio 

/<station_name> 

/song 

/<time_radio_start> 

/<frame_number> 

/<segment_number> 

/start_time 

/<time_interest_sent> 

Figure 5.16: NDNRadio namespace design.
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5.2.3.1 Station

A single NDNRadio station consists of two NDN producers (Figure 5.17) and one

external connection to a Reddit audio stream (e.g. rock, jazz, blues, pop, etc.).

Multiple radio stations must be run in separate processes or threads.

Producer P1 is responsible for 1) replying to the station discovery requests

with a packet carrying the station name and dummy payload, and 2) replying to

the requests for the station configuration information.2

Producer P2 runs in a separate thread from the producer P1. It publishes audio

pieces obtained from the external Reddit audio streaming resource in a non-stop

fashion.

5.2.3.2 Player

The NDNRadio player is a multithreaded application with the audio player (g-

streamer) and NDN consumer working in separate threads. Separation of data

transfer and audio playback functionality in separate threads allows faster transfer

of audio frames. The NDNRadio player also has a buffering time of 3 seconds.

NDNRadio player can play only one stream at a time and is composed of three

consumer contexts (Figure 5.17):

• Consumer C1 runs before the NDNRadio player creates its GUI. It identifies

all available stations using the name discovery mechanism through the iter-

ative exclusion accessible with SDR protocol of Consumer / Producer API

framework. Iterative exclusion works based on the assumption that different

radio stations share the same routable prefix.3

2Please, note that these two operations can be merged into one.
3In the current implementation, radio stations are running in separate processes on the single

machine. The broadcast forwarding strategy was set from the Producer API to ensure Interest
forwarding to all producers.
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/edu/ucla/radio 

/<station_name> 

/song 

/<time_radio_start> 

/<frame_number> 

/<segment_number> 

/start_time 

/<time_interest_sent> 

/edu/ucla/radio 

/<station_name> 

/song 

/<time_radio_start> 

/<frame_number> 

/<segment_number> 

/start_time 

/<time_interest_sent> 

C2	
  C1	
  p1	
  

p2	
   C3	
  

p1	
   producer(/edu/ucla/radio) 

p2	
   producer(/edu/ucla/radio/song) 

c1	
   consumer(/edu/ucla/radio, SDR) 

c2	
   consumer(/edu/ucla/radio, RDR) 

c3	
   consumer(/edu/ucla/radio/song, RDR) 

Figure 5.17: Locations of producers and consumers in the NDNRadio namespace.

• Consumer C2 is activated when the user hits the play button on the GUI. It

is responsible for retrieving the radio station configuration information via

the RDR protocol. The information is used for constructing the request for

audio frames of the specific audio stream by the consumer C3.

• Consumer C3 sequentially fetches the audio frames of the audio stream using

the knowledge about the audio stream naming obtained by the consumer

C2. Consumer C3 has the longest lifetime out of these three consumers.

5.2.3.3 Influence on the API

Streaming radio over NDN confirmed our expectations about the need to support

the basic “single Interest - single Data” communication pattern via the API (e.g.

SDR protocol). The radio player used SDR protocol with iterative exclusion to

gain the knowledge about available radio stations.

Another communication pattern that is heavily used in NDNradio is a sequen-

tial fetching of the song fragments. Early implementations of the API library had
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some problems with fast exiting / resuming to the new consume() operation that

were fixed as soon as the project demonstrated this inefficiency.

5.2.4 Bittorrent over NDN

Bittorent is a peer-to-peer system with two types of users: seeders and leechers.

Seeders act as producers of all content they are willing to serve to the network,

and leechers act as consumers. All interaction with the network is done at the

chunk granularity, where each chunk is a fixed-size portion of a file. The adopted

Bittorent protocol leverages torrent files from the original protocol to encapsulate

the metadata required to participate in sharing. Also in the spirit of torrent, when

a leecher successfully downloads a chunk, it immediately acts as a seeder for this

chunk.

The original format of torrent files, which traditionally includes unnecessary

information (announceList, announceURL), is preserved in order to have the same

baseline for comparing different implementations of the transport / network layers.

Another benefit, is the opportunity for the user to load any content and torrent

files from an existing TCP/IP based Bittorent implementation and port them to

the NDN Bittorent application without any additional effort.

NDN Bittorent names start from torrent/ name component followed by the

name of the specific torrent <torrent name>/, which is taken directly from the

torrent file. The next component of the application-level name is a unique name

for each chunk, as this is the granularity at which the torrent application is imple-

mented. The application developers decided to use a unique index for each chunk,

making the next portion of the name <chunk id>. So the complete name for a

given chunk is: /torrent/<torrent name>/<chunk id>
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5.2.4.1 Seeder & Leecher

Seeder is the component that is responsible for servicing chunk requests from the

peers. It utilizes the Producer API to handle network layer communications. In

other words, Bittorent’s seeder is responsible only for handling events associated

with incoming Interest packets and constructing outgoing torrent chunks. Until

the TorrentClient gives the seeder chunks to upload, the seeder will send a NACK

for any Interests for data it does not have.

The seeder maintains the list of uploadable chunks, so that it can handle the

CacheMiss events from the Producer API whenever an Interest arrives requesting

data that was not cached in the network or in the in-memory cache of the producer

context. In other words, this is called whenever the seeder must actually upload

data to the network.

Leecher is responsible for correctly acquiring the necessary chunks required to

complete the files in the torrent. The leecher is implemented using the Consumer

API, which manages them majority of networking operations. A failure to down-

load a chunk is handled by trying to download the chunk again via the consume()

API primitive. The leecher is also responsible for communicating with the torrent

client when a requested chunk has been downloaded and verified.

5.2.4.2 Influence on the API

When the leecher successfully downloads the chunk, it saves the chunk to the

disk. Similarly to the Bittorent application, the seeder process picks up the new

files and publishes these chunks via the produce() primitive. While it is possible

to recreate the original structure of the chunk (e.g. put the right files in it) by

looking at the bittorent file, it is not clear how sign this new “reproduced” chunk,

because the leecher doesn’t have the private key of the original publisher of the

content. Since the original Bittorent protocol offers only an integrity protection
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of the chunks via checksums, NDN Bittorent can easily achieve parity with it by

doing a simple checksum over the content, but some concerns had been raised

wether there should be a mechanism of preserving the original signatures of the

Data packets even after the ADU is reassembled.

This problem motivated us to add the extension to the produce() function,

which accepts a single Data packet instead of the application frame. Using this

extension, for example, an NDN Bittorrent application can pass the unmodified

Data packets from the leecher to the seeder without loosing the original signatures.

Since each Bittorent client usually downloads multiple chunks simultaneously,

we received a request from the application developer to enable parallel consump-

tion within a single thread. The implementation of API has been extended with

asyncConsume() operation allowing to schedule multiple fetching operations

within the same thread.
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CHAPTER 6

Bidirectional Consumer / Producer

communication

The Web today is a universal platform for many kinds of services, from famil-

iar content browsing and media streaming to purpose-built applications hosted

in browsers and in stand-alone agents. The backbone of the web is the HTTP

protocol [BFF96] [FGM99b], which is based on a request/response model run-

ning on top of a point-to-point connection to a server. A client sends a request

in the form of a message containing a URI [BFM05], request meta-information,

and possible body content. The server responds with a message containing entity

meta-information, and possible entity-body content.

In this chapter, we examine diverse approaches to matching the needs of this

important category of modern applications to the capabilities of the NDN proto-

col architecture. The analysis shows that some of the desirable communication

patterns (Sections 6.2.4, 6.2.2 and 6.2.5.2) are not fully supported at the current

stage of the NDN architecture design. While the NDN architecture is still flexible

and being shaped via experimentation, and these communication patterns might

become available in the future, this chapter contains an example of “possible-

today” design of HTTP/RESTful style applications built on top of Consumer /

Producer API framework (Section 6.4).
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6.1 Characteristics of HTTP/RESTful communication

In addition to carrying content data, the HTTP protocol defines a wide range of

meta-data for both requests and responses. The meta-data are carried in HTTP

headers, part of the messaging protocol. The meta-data sent in client requests

may be information about the client application itself, including information about

acceptable content languages and data encodings.

A large fraction of these Web applications use a transactional paradigm known

as Representational State Transfer (REST) [FT02]. REST improves scalability by

distributing application state from servers to clients. A pure RESTful request is

self-contained — it carries all the information necessary for a service to process

the request. Without the client-side context, a RESTful service may be inefficient

or impaired, or may not be able to function at all. The familiar HTTP cookie

is a simple form of distributed context, where a service uses the HTTP protocol

to convey tokens, often opaque, to its clients. The tokens are typically unique

to each client; this allows the service to associate multiple requests from a given

client together. The cookie may carry client-side state directly, or may be used as

a reference to state held at the server.

The usability of these distributed applications depends on the latency between

user action and the rendering of a result. Because the Web is composed of multiple

highly distributed services, this issue of latency (round-trips within the transport

or the application protocol) has considerable importance in the system design.

Modern browsers and other applications have evolved to be ever more efficient

in the way they use round-trips, by caching content locally, and by reusing DNS

information and TCP connections. Some modern browsers even speculatively

initiate DNS queries and TCP connection activity in order to improve perceived

responsiveness [Gri].

As we view the current state of HTTP/RESTful communication, then, we see
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these key points:

• Clients have data to send in their requests, in the form of HTTP header

meta-data and other application-specific RESTful state.

• Many client requests are intimately bound to the client context data asso-

ciated with them; the context and the request are carried together in the

HTTP communication protocol messages. The client-specific data tends to

make each request unique even when clients are accessing common resources

or services.

• Latency and number of network round-trips are key factors in efficiency and

perceived responsiveness.

Given our understanding of the existing NDN protocols, RESTful interactions

encounter a number of challenges:

• All of the client-side context and meta-data associated with a request must

be encoded in the Interest name field: no other field is present in the base

NDN architecture.

• NDN Content objects are immutable, and the object names are bound to

fixed data. Services are not able to return different results based on client-

specific processing unless the clients use unique names in their requests.

• NDN’s stateful forwarding supports clients (consumers) who do not have

to have a globally-routable address (name). Web services that require bidi-

rectional data flow cannot get their own requests to their clients unless the

clients have routable names.

• Many web sites and RESTful applications depend on being able to identify

(or at least count) the specific clients making requests. NDN mechanisms
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like Interest aggregation and pervasive caching prevent producers from see-

ing some Interest packets.

In the next section, we will examine a range of approaches to supporting

RESTful and Web applications on NDN networks. Each approach addresses the

challenges we have outlined above in a different way, adapting the basic NDN

protocols in more or less significant ways.

6.2 Theoretically possible communication patterns

In this section, we explore communication patterns suitable for running transac-

tional and interactive REST- or Web-like applications over NDN. We focus on the

key issue as we see it: how can servers obtain the client meta-data and context in-

formation that is associated with client requests? We start with an approach that

relies solely on the existing design of NDN, but several important drawbacks com-

pel us to try out alternative patterns which introduce various degrees of changes in

NDN. The two types of NDN packets divide the discussion into two corresponding

categories: approaches using clients’ Interest packets alone, and approaches where

the server is obliged to retrieve information from client-sourced Data packets.

We discuss benefits and disadvantages of each communication pattern as well

as the effect each has on the network, considering several specific factors as we

examine each approach:

• Interest name size: impact on routers

• Data name size: impact on Data packet efficiency

• Round-trips

• Client data segmentation and reliable delivery
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• Potential security vulnerabilities: reflection, amplification, flooding, spoof-

ing/poisoning

6.2.1 Name Component

In the basic NDN protocol design, an Interest packet carries little more than

a Name field. In some previous work, Interest names have been used to pass

commands to an NDN router [ccn14], to pass authenticated requests to a light-

ing controller [BHM12], and to convey the current state of a system to support

distributed dataset synchronization [ZA13].

Today’s interactive Web applications need to pass meta-information and application-

specific data with their requests, so we begin by examining the consequences of

using the Interest’s Name field to convey that information. An Interest packet is

routed through the network via the name it carries. Application meta-information

and client-side data required for a particular type of request could be carried by

appending it using one or more trailing name components. This pattern is illus-

trated in Figure 6.1.

consumer producer router 

PIT 

Interest :  /prefix/[Meta, Data] 

Data:  /prefix/[Meta, Data] 

/prefix/[Meta, Data] 

/prefix/[Meta, Data] 

Interest  

Data 

Figure 6.1: Interest name carries client-side information.
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This communication pattern works with the current NDN architecture, and

naively seems fairly natural. The client-side data is bound to each Interest packet

directly, satisfying the server’s expectation that the client-side context will be

present along with each client request.

However, there are a number of significant drawbacks to this simple approach.

The first concern is related to stateful packet forwarding in NDN. Contemporary

HTTP requests that perform browsing often convey hundreds of bytes (or even

kilobytes) of supplemental information in HTTP headers [NJA13][Ram]. If this

meta-information and application-specific data is placed in the Interest name,

there may be a significant additional overhead on intermediary NDN routers. Each

router will have to process these large names, increasing the computational load,

and the accumulated name state held in their PIT data structures will consume

substantially more memory.

A second concern is decreased network throughput and increased nodal pro-

cessing delays. The entire name must be echoed in each Data packet. Inside the

NDN router, longer names may lead to more operations on name components,

slowing down packet processing. The name-to-payload ratio can turn out to be

far from optimal. Regardless of the eventual fragmentation scheme NDN proposes,

large names will reduce available packet space, reducing space for the actual con-

tent. This leads to decreased goodput, and potentially more fragmentation and

reassembly operations per Data packet.

A third concern is the possibility of cases where a single Interest name is not

able to carry all required application data. While there is no clear consensus

within the NDN community on the maximum allowed size of the name, there is a

clear possibility that meta-information and application data (e.g. HTTP POST

or a large cookie) may be larger than the maximum name length can accommo-

date. Within the constraints of the current NDN protocol, meta-information and

application data would have to be subdivided into multiple Interests’ names, trans-
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mitted as multiple Interest packets and reassembled by the producer. Figure 6.2

illustrates how NDN might accommodate transmitting arbitrary sized client-side

data to the producer, and retrieving an arbitrary sized response from it.

consumer producer router 

PIT 

Interest1 :  /prefix/[Meta1, Data1] 

Data1 

Data2 

Interest2 :  /prefix/[Meta2, Data2] 

/prefix/[Meta1, Data1] 

/prefix/[Meta2, Data2] 

/prefix/[Meta1, Data1] 

/prefix/[Meta2, Data2] 

Interest1  

Interest2  

Data1 

Data2 

Figure 6.2: Client data carried in multiple Interests.

According to this pattern, the consumer sends no fewer Interests than needed

to both accommodate client-side data in Interests and fetch all segments of the

producer’s reply. This pattern appears to take only a single round-trip to transmit

the whole request and receive the whole reply. But once multiple related packet

transmissions are introduced, we now need to consider some sort of reliable de-

livery of consumer-supplied information. That is, the client must re-transmit its

Interests in the absence of any timely response or acknowledgement that they

have been delivered. This complexity leads us to examine some alternative pro-

tocol approaches.

The conventional design of NDN interactions is that the producer acknowledges

arrival of Interest packets in its Data packets, but the situation may be more nu-

anced. The completion time for Web and application requests requiring dynamic

on-demand content can vary widely. As a result, it is not clear how the client
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consumer producer router 

PIT 

Interest1 :  /prefix/[Meta1, Data1] 

Data1 
Data2 

Interest2 :  /prefix/[Meta2, Data2] 

/prefix/[Meta1, Data1] 

/prefix/[Meta2, Data2] 

/prefix/[Meta1, Data1] 

/prefix/[Meta2, Data2] 

Interest1  

Interest2  

Data1 – ACK to Interest1 

Data2 – ACK to Interest2 

/prefix/1 

/prefix/2 

Interest1  

Interest2  

/prefix/1 

/prefix/2 

Data1 

Data2 

Figure 6.3: Two-phase Interest exchange.

should estimate waiting time between Interest retransmissions. One extreme is to

use an Interest retransmission timer at the scale of network RTT. But this may re-

sult in many unnecessary retransmissions of Interests if the server processing time

is significantly greater than RTT. The other extreme is to use a timer scaled to the

tolerable application response delay. This in turn results in poor responsiveness in

cases when network retransmission is indeed necessary. NDN protocol mechanics

do not inherently distinguish network-level and application-level responsiveness,

despite the substantially differing time scales.

One solution might be for the producer to use Data packets to acknowledge

delivery of Interest packets containing meta-information and application data.

The producer application would acknowledge each of these Interest packets prior

to the execution of the actual content request, resulting in a two-phase operation.
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First, an initial set of Interest packets conveys the client-side data; Data packets

from the producer acknowledge receipt of this information. Then a second round

of Interest packets retrieves the actual producer-side content. This pattern is

illustrated in Figure 6.3.

Note that this approach employs parallel Interest transmission to reduce overall

latency. Separating the delivery of client data from the Interests used to retrieve

producer content eliminates the need for all Interests in the exchange to use the

same name, reducing the Interest size penalty. However, a significant problem with

this approach is that the first round of ‘acknowledgement’ Data packets must be

signed with the producer’s private key in order to be considered valid. Signing

a Data packet is computationally costly. If malicious clients flood Interests like

these, this could lead to a denial of service (DoS) attack on the producer. In

addition, the producer requires some means of associating the client-side data

in the initial round of Interests with the subsequent Interests for the producer’s

content, resulting in more interaction state at the server.

6.2.2 Compressed name component

Including significant client-side data in Interest names raises concerns about mem-

ory scalability for the PITs of intermediary NDN routers, and decreased through-

put due to the need to echo the entire name in each Data packet. These concerns

can be partially addressed by compressing the client-side data into a constant size

compact representation, and using this representation in the router PIT and in

Data messages.

To achieve compression, a specialized Name component could be introduced

to hold client meta-information and application data. An NDN router recognizing

this specialized name component could then compute a hash of the component.

This operation would effectively reduce the amount of state held in the PIT,
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compressing variable meta-information and application data into a constant size

hash value. In order to forward Data packets back to the consumer, the producer

application would replace the specialized name component with the corresponding

hash value. As a result, Data packet names would continue to match the names

in the PITs of intermediary routers, while occupying less space. This technique

is illustrated in Figure 6.4.

consumer producer router 

Interest:  /prefix/[Meta, Data] 

Data:  /prefix/[hash] 

PIT 

/prefix/[hash] 

/prefix/[hash] 
Data 

Interest 

Figure 6.4: Consumer-supplied name-component is compressed to a hash.

6.2.3 Common Issues with Interest Names

Even with name component compression, all protocol approaches where meta-

information and application data are pushed in Interest packet name components

still have a number of common problems.

Exposure of meta-information and application data impairs confidentiality.

If meta-information similar to HTTP cookies and HTTP headers such as Referer

and User-agent are passed unencrypted in an Interest name component, the user

can be easily tracked and deanonymized by a third-party observer. If security-

sensitive data is held in these meta-information structures, the compromise could

be even more substantial.
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Signature generation must be performed on-the-fly for all Data packets that

acknowledge the arrival of Interest packets with names carrying meta-information

and application data. The per-client information creates names that are un-

predictable, so the producer application must build and sign the corresponding

Data packets dynamically. This introduces a potential vulnerability to a resource-

exhaustion attack. NDN signature generation with public key cryptography is

computationally expensive — significantly more expensive than, for example, SYN

cookie generation.

Interest packet flooding in NDN networks can be a vector for Distributed

Denial of Service (DDoS) attacks[GTU13]. It has been shown that many Inter-

est flooding attacks can be mitigated by exploiting stateful forwarding in NDN

routers, such as by observing the rate with which Interests successfully retrieve

Data packets on a per-prefix per-interface basis[AMM13]. If meta-information and

application data is pushed in Interests and if producer applications acknowledge

every Interest with a Data packet, the per-prefix per-interface statistics may be

distorted. An artificially high Interest satisfaction rate might jeopardize detection

and mitigation of Interest flooding attacks.

6.2.4 Application Data field

We have examined some approaches to carrying client-side information in Interest

names; now we’ll explore sending request meta-data in the Interest packet, but

outside the Interest name. In this approach, an Interest carries the additional

application data in an ApplicationData field. This field would contain opaque

data, and thereby not influence the operation of NDN routers or their processing

in any way. The Interest name only requests the named content, and does not

carry any client- or application-specific information. Figure 6.5 illustrates this

approach.
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Interest:  /prefix/1 ... n 
AppData: token consumer producer router 

Interest:  /prefix/0 
AppData: Meta, Data 

Data:  /prefix/0 
AppData: token 

PIT 

/prefix/0 

/prefix/1 
Data1 

Interest0 + Meta, Data 

/prefix/1 
Interest1 + token 

/prefix/0 
Data0 + token 

/prefix/2 
Data2 

/prefix/2 
Interest2 + token 

Data:  /prefix/1 ... n 
AppData: token 

Figure 6.5: Interest carrying ApplicationData field.

The client includes an AppData field in its ”base” Interest packet - the Interest

for segment zero of a possibly segmented Data object. For Web-like interactions,

the AppData field would carry meta-information about the client application,

including stored cookies (i.e. what is found today in HTTP headers). In a stan-

dalone RESTful application, the field would carry client-side application context

data.

The AppData field is opaque to routers. No special name components are

present, and no special name processing takes place at routers. If a client In-

terest packets name a cacheable object, intermediate routers can perform normal

CS processing and return the cached data. If an application requires server-side

processing, client Interests must use unique-ified names so that Interests from

different clients avoid aggregation.

The client does not have to send the entire AppData in each Interest during
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a multi-segment exchange. In an ongoing exchange of packets to retrieve larger,

segmented Data objects, the server may need to associate the correct client context

with each individual Interest in order to respond properly. To accomplish this,

the server could generate a token — presumably shorter than the entire client

context data — and return it to the client with the first Data packet. Subsequent

Interests then would include this token in the AppData, allowing the server to

properly associate the client meta-data with each individual Interest packet. If a

series of exchanges required dynamic, frequently updated client context, obviously

that context would have to be transferred between client and server as it changed.

Employing such a token mechanism requires that each Interest contain either

the client context, or a corresponding server-generated token. This may affect a

client’s choice of initial Interest window size. If the initial Interest window size

is just one, data fetching efficiency during the first round trip is reduced. If the

initial Interest window is greater than one, the client has not been offered a server-

side token, so it must transmit redundant application data in each Interest in this

window. The choice of initial window size for Interests using a scheme like this

may have delicate tradeoffs.

The communication pattern with the Application Data field has the following

benefits:

• The Interest name does not need any special processing. There is no need

for complex name matching at the PIT or CS: exact-match for names is

available.

• The application context information travels directly with the Interests; the

client context, name, and returning data remain bound together.

• The application data can be transferred just once, with the initial Interest.

Subsequent Interests can refer to the context if a server-generated token is

returned in Data packets.
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• No additional round-trips are needed.

Any scheme that ”pushes” client data in Interest packets increases Interest

packet size, possibly substantially. The NDN property of flow balance assumes

that Interest packets will generally be small compared to the corresponding Data

packets. Pushing ‘unsolicited’ data might compromise that property. To address

this concern we might consider a limit on the size of Interest packets. A 4KB limit,

for example, would be adequate for most current Web-like interactions [NJA13].

However, this is still quite large — possibly large enough to make bandwidth

accounting for Interests more important. A RESTful application that required

a larger client payload would need to send multiple Interests, or use a different

mechanism.

6.2.5 Data Locator field

The alternative to pushing client-side data with Interest packets is a communica-

tion pattern where the producer application pulls data it needs from the client. An

essential piece of such protocols is a so called Interest-Interest exchange[BGN12].

In this exchange, an initial Interest packet is expressed by the consumer applica-

tion as usual. This initial Interest prompts the producer application to express

one or more Interest packets in return. These requests from the producer retrieve

client-specific information from the client; the producer then uses that information

to satisfy the client’s original Interests.

The Interest-Interest information could be placed in the initial client Interest

name, but this approach would suffer from some of the same constraints as the

examples in the previous sections — extremely long NDN names have drawbacks.

Enclosing one name in another, for example, will not allow both names to approach

their maximum lengths, which is inconvenient for application designers.

In our view, a better alternative would be to introduce an optional DataLo-
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cator field in the Interest packet. The presence of the DataLocator would serve

as an indication for the producer that some supplemental information — meta-

information, consumer-supplied data, etc. — is available to be fetched from the

client before processing the initial request. The DataLocator would therefore

contain a name the producer could use to express Interests that reach the client

application. We discuss some variations of this mechanism below.

6.2.5.1 Routable name

This pattern requires the consumer application to provide a routable name at

which it can be reached. The client must be prepared to package necessary meta

information and application data in properly-formatted and signed Data packet(s).

The consumer application might acquire a routable prefix from the point of pres-

ence (PoP) of the Internet Service Provider (ISP) that it is currently connected

to, or through some other means.

The consumer application sends an Interest packet containing the name for

the producer to use in a DataLocator field. When the producer application re-

ceives the Interest, it transmits an Interest packet using the name specified in the

DataLocator field to fetch meta-information and/or application data associated

with the client’s request. This communication pattern is illustrated in Figure 6.6.

The immediate advantage of this protocol is eliminating ”pushed” data from

client’s Interests, which do not need to convey more than a single name. This

restores the NDN flow balance property. A second important benefit is that the

producer application is now in control of the data retrieval process. The producer

is subject to standard NDN flow control and congestion control mechanisms as it

retrieves Data from the client.

A third benefit is that some client-side data can benefit from NDN’s natural

on-path caching. Web cookies that represent the state of the server, kept on the
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consumer producer router 

Interest:  /prefix 
Interest DataLocator: /routable/prefix 

Data:  /prefix 

Interest: /prefix 

Data:  /prefix 

PIT 

/prefix 

/routable/prefix 

/prefix 
Interest: /routable/prefix 

/routable/prefix 

/prefix 
Data: /routable/prefix 

/prefix 

Figure 6.6: Interest-Interest exchange with routable name.

client, may be stable for extended periods of time. Client data associated with

related idempotent requests (e.g. HTTP GETs) can be cached in the intermediary

routers that are located closer to the producer. Both the client and server therefore

benefit from the NDN mechanisms that localize traffic and reduce latency.

However, the use of routable names for the server to fetch client data has

several drawbacks. First, the client must acquire and convey a routable name

prefix. A mobile consumer will either have to acquire a new prefix every time

its connectivity changes, or use some sort of indirection service to map a stable

name alias to its current routable prefix. This adds complexity, and introduces

the possibility of traffic interruptions.

Second, the DataLocator mechanism’s use of a routable name could be used to

launch a reflection attack involving the producer. If an attacker specifies the name
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of a target third party, the producer will be induced to direct Interests to that third

party. The reflection attack might be mitigated if the DataLocator is inspected

when Interests enter the client’s Internet Service Provider (ISP) network. The ISP

ingress router could perform a check similar to an ingress filter in Reverse Path

Forwarding (RPF) [BS04], accepting and forwarding Interest packets carrying

DataLocators that will route to the source face. The router would drop any

Interests with DataLocator names that would route elsewhere.

6.2.5.2 Non-routable transient name

The problems caused by the use of routable prefixes in the DataLocator field

prompt us to explore the possibility of using non-routable prefixes for client-

side data. This approach uses the per-packet router PIT state to construct an

ephemeral path for Interests going back from the producer to the client in a

manner somewhat like Kite [Y 14]. As shown in (Figure 6.7), this introduces

several changes in the forwarding mechanism of an NDN router:

1. The client constructs a unique name, preferably using a distinguished (by

convention) non-routable prefix, and includes it in a DataLocator field.

2. When an Interest containing a DataLocator field arrives at a router, the

DataLocator name is saved in the PIT along with the name in the Interest

packet itself.

3. The producer responds with an Interest using the non-routable name taken

from the DataLocator. As the producer’s Interest moves through the net-

work, each NDN router performs an exact match on the producer’s Interest

name using the extended PIT entries created as it forwarded the client’s

original Interest. If the router finds a match, it creates a new PIT entry

for the non-routable name with the egress interface matching the ingress

interface of the original Interest. The FIB is not consulted: the producer’s
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Interest is forwarded on the inverse path of the consumer’s original Interest

packet using the PIT alone.

consumer producer router 

Interest1:  /prefix 
Interest DataLocator: /nonroutable/prefix 

Data1:  /prefix 

match 

Interest1 

New PIT entry 

PIT 

Ingress 
interface 

Interest  
name 

Interest  
DataLocator 

Egress 
interface 

1 /prefix /nonroutable/prefix 4 

1 /prefix /nonroutable/prefix 4 

Interest1 

4 /nonroutable/prefix --- 1 

1 /prefix /nonroutable/prefix 4 

4 /nonroutable/prefix --- 1 
Data1 

1 /prefix /nonroutable/prefix 4 
Data1 

Interest1:  /nonroutable/prefix 

Data1:  /nonroutable/prefix 

Figure 6.7: Interest-Interest exchange with non-routable name.

The DataLocator name is not independently routable. If the server (or anyone

else) tries to access this information object outside the context of the enclosing

Interest/Data exchange, the operation will fail. Further, since the names used

cannot be forwarded outside the reverse path, reflection attacks are eliminated.

The fact that these non-routable Interests bypass the normal FIB does not

prevent them from being satisfied by a Content Store. If a router’s CS cache has
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a matching entry, this entry can be returned to the producer. However, the non-

routable name can take any form, including self-certifying and other flat names,

and therefore reverse forwarding cannot depend on longest prefix lookup.

When a mobile consumer changes its connectivity, the path for reverse Interest

packets can be quickly rebuilt by client-side retransmission of its Interest packet,

which will create necessary PIT state again.

If client meta information or application data is too large to fit in one Data

packet, the consumer application segments it into multiple Data packets just as

would be done for any large Data object. The producer application issues multi-

ple interests to retrieve the entire information object. In order to accommodate

this, the algorithm matching DataLocator names in the PIT ignores any segment

number name component. Pipelining would allow a producer to fetch arbitrary

size client data with minimal round trips.

6.3 Comparison of communication patterns

In this section, we develop a simple analytic model and use it to characterize each

communication pattern. We model bidirectional traffic between an HTTP/Web-

like client (consumer) and an HTTP/Web-like server (producer); network traffic

is an obvious, key metric applicable to all of the communication patterns we have

considered.

The model applies NDN segmentation as data objects grow large. Segmen-

tation is the operation where a content producer splits a large data object into

smaller pieces, naming and signing each separately. NDN flow balance, the one-

to-one correspondence between Interest and Data packets, assumes that Data

packets have constant size for simplifying hop-by-hop flow- and congestion con-

trol. A large name field reduces the available space for the content payload in each

fixed-size Data packet. A given content object requires more or fewer segments
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(packets) depending on the payload space made available in each pattern.

The model utilizes a base Interest name (prefix) that is 50 bytes long, with 512

bytes of client-side data. We do not argue that this is accurate or representative

of actual traffic; rather that it is not unrealistic given the current web traffic

patterns [NJA13].

We use this simplified arithmetic equation to compute the number of segments

(NoS ):

Number of segments (NoS) =
Producer content size

Space for content

The choice of the communication pattern affects the amount of space available

for content in Data packets. In the name component pattern, all of the client data

is appended to the base name prefix. In the compressed name component pattern,

Data packet names have a large hash value (e.g. SHA-512) appended to the base

name prefix. In the Interest acknowledgement pattern, client data is not echoed in

the name of Data segments. In the application data pattern, producer generates

and echoes back a token (e.g. SHA-256), carried in its Data segments. In the

DataLocator pattern, client data is not echoed in the name of Data segments.

Space = Data size−



Prefix− Client data (Name component)

Prefix−Hash (Compressed name)

Prefix (Interest ack.)

Prefix− Token (Application data)

Prefix (Data Locator)

Name component pattern carries client data in the Interest name. Each

segment is fetched with an Interest carrying the relatively large name.

Interest traffic = NoS ∗ (Prefix + Client data)
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Table 6.1: Comparison chart of communication patterns.

Large names force the producer to send more segments, increasing the amount of

bidirectional traffic:

2way traffic = Interest traffic + NoS ∗Data size

Compressed name component pattern carries client data in each Interest

name, but echoes back only the hash of the client data in each Data packet of the

producer’s response.

Interest traffic = NoS ∗ (Prefix + Client data)

Total amount of bidirectional traffic:

2way traffic = Interest traffic + NoS ∗Data size

Interest acknowledgement pattern uses an initial series of Interests contain-

ing client data, acknowledged with signed Data packets. The producer’s actual

content is then fetched using the normal length Interest packets.

First round — acknowledged delivery of client data. A Data packet with

Interest acknowledgement has a negligible payload, therefore:
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1st round traffic = (Prefix + Client Data) ∗ 2

Second round — fetching segmented content from the producer.

2nd round traffic = NoS ∗ prefix + NoS ∗Data size

Total amount of bidirectional traffic:

2way traffic = 1st round traffic + 2nd round traffic

Application Data pattern carries client data in a single Interest, in a special

Interest packet field. The producer generates and echoes back a token, carried in

its Data segments. Subsequent Interests, if any, use the producer’s token and do

not have to convey the client data explicitly.

Interest traffic = (Prefix + Client data) + NoS ∗ (Prefix + Token)

Total amount of bidirectional traffic:

2way traffic = Interest traffic + NoS ∗Data size

DataLocator pattern carries an additional name in a special field of each

Interest packet. For the purposes of this arithmetic traffic model, the routable

and non-routable locator names are identical. We use 50-byte name lengths for

both the content name and the DataLocator name.

The client’s Interest packets carry the content name and a DataLocator name.

The producer responds with its own Interest(s) using the DataLocator name.

Interest-Interest traffic = 2 ∗ Prefix ∗NoS + Prefix

The client provides its client data in Data object(s) using the DataLocator

name, then retrieves the actual content from the producer.
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Figure 6.8: Bidirectional traffic model using 512 bytes of client data.

Data-Data traffic = Data size + NoS ∗Data size

Total amount of bidirectional traffic.

2way traffic = Interest-Interest traffic + Data-Data traffic

Figure 6.8 summarizes the results of applying this arithmetic model. The

canonical NDN Interest formulation proves to be noticibly less efficient than any

other. Name field size has an obvious impact for any but the smallest contents;

even the use of a compressed name component has a considerable though less-

dramatic impact. The network bandwidth used by the other three protocol pat-

terns is roughly equivalent. This particular metric does not distinguish among

these other approaches particularly, though we highlight some key comparison

points in Table 6.1 and discuss it in the next section.
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6.4 HTTP/RESTful interaction using the Consumer / Pro-

ducer API

At the present moment, NDN architecture does not support Compressed Name

component, Application Data Field and Non-routable Data Locator communica-

tion patterns. Bidirectional Consumer / Producer interaction can only be achieved

either with Name component or Routable Data Locator patterns. This section

describes how Consumer / Producer API framework can be used for this purpose.

6.4.1 Name Component pattern

With the Name Component pattern, all necessary application state goes into the

name suffix, whereas the name prefix is used to forward the Interest towards the

web service. In this example, we prototype the work of the login page of the

email web-service. To get access to the personal inbox, the user provides his/her

login and password information which is potentially packaged with some other

related information such as language and encoding settings, browser type, etc.

in the so called “application state”. The Algorithm 12 demonstrates how the

application state can be passed from the web client to the web service using the

Name Component communication pattern and the retrieval of the web service’s

reply using the RDR protocol.

6.4.2 Routable Data Locator pattern

In the previous sections, the Routable Data Locator pattern speculated on the

possible extension of the Interest packet format, which could have a separate

field to carry the routable name (Data locator). However, the existing packet

format does not allow any additional name field. A web client application can

work around this problem by placing the routable data locator in the suffix of the
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Algorithm 12 Passing client state in the name suffix

1: h← consumer(“/com/google/mail/sign-in”, RDR)

2: name component← login, password, language, encoding, etc.

3: setcontextopt(h, ON CONTENT, OnServerReply)

4: consume(h, name component)

5: function OnServerReply(Producer h, Interest i)

6: Process the reply from the service and redirect to the next page

7: end function

Interest name. A web service can rely on the application specific name design to

retrieve the meaningful Data locator from the name suffix of the arriving Interest.

In this example, we prototype the operation of the login page of the Gmail

service. To get access to the personal inbox, the user provides his/her login

and password information which is potentially packaged with some other related

information such as language and encoding settings, browser type, etc. in the so

called “application state”. The Algorithm 13 demonstrates how the application

state can be published by the client and how the client can notify the web service

about the application state. Lines 1 — 4 are responsible for publishing the web

client’s application state under the routable name prefix, obtained through the

Internet Service Provider (e.g. Verizon). The name of the application state also

includes automatically generated name component(s) which ensure its uniqueness

across the web system for a short period of time. Lines 5 – 8 demonstrate that

consumer context can be used to notify the web service “/com/google/mail/sign-

in”) about the application state (“/6758-6855-3857”) and retrieve the server’s

response, which is processed in line 9 – 10.

The Algorithm 14 demonstrates how the web service processes the notification

from the web client, fetches its application state and responds with a personalized

content. A notification in this design is an Interest carrying “/com/google/mail/sign-
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Algorithm 13 Web client publishes the application state and notifies the web

server
1: hp ← producer(“/verizon/residential/02145/”)

2: attach(hp)

3: application state← login, password, language, encoding, etc.

4: produce(hp, ”/6758-6855-3857”, application state)

5: hc ← consumer(“/com/google/mail/sign-in”, RDR)

6: name component← “/verizon/residential/02145/6758-6855-3857”

7: setcontextopt(hc, ON CONTENT, OnServerReply)

8: consume(hc, name component)

9: function OnServerReply(Consumer h, byte[] content)

10: Process the web service’s reply and redirect to the next page

11: end function

in/<DataLocatorName>” name.

Lines 1 – 3 set the producer context, which is responsible for processing new

notifications from the users trying to sign in to their accounts. Lines 4 – 9 show

how to use the consumer context with RDR protocol to fetch the application state

from the web client by knowing the Data Locator name. Lines 10 – 15 are executed

after the client’s application state is successfully fetched to publish the response

to the initial notification (“/com/google/mail/sign-in/<DataLocatorName>”).
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Algorithm 14 Web service receives the notification, fetches the application state

of the client and publishes a response message

1: hp ← producer(“/com/google/mail/sign-in”)

2: setcontextopt(hp, CACHE MISS, OnNotification)

3: attach(hp)

4: function OnNotification(Producer h, Interest i)

5: application state name← extract from i.name

6: hc ← consumer(application state name, RDR)

7: setcontextopt(hc, ON CONTENT, OnApplicationState)

8: consume(hc, “”)

9: end function

10: function OnApplicationState(Consumer h, byte[] content)

11: Process login, password, language, encoding, etc. from the content

12: service reply ← web service reply status, redirection page, etc.

13: unique request name← getcontextopt(h, PREFIX)

14: produce(hp, unique request name, service reply)

15: end function
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CHAPTER 7

Related work

Over the years multiple efforts have attempted to adapt application level framing

at the transport layer (Structured Streams [For07], HTTP 2.0 [htt]), or above

the transport layer (Publish/Subscribe [EFG03]). However all these efforts are

built over the existing TCP/IP protocol stack. A more recent effort (Named Data

Socket [GGP14]) proposed to provide some ALF support over an NDN network

through a modified socket system. PARC has recently proposed a CCNx Portal

API with RTA (Ready-To-Assemble) and datagram protocols available through

it. A few publish / subscribe systems have been proposed for NDN overlays, such

as COPSS [CAJ11] and DDS-over-CDN-over-NDN [PWG12].

In this section, we provide a brief description of the above research direc-

tions and highlight their differences with the Consumer / Producer API which is

specifically designed to work over NDN.

7.1 Structured streams

It has been well recognized that TCP’s byte stream model does not match all

applications’ needs, while UDP’s best effort datagram model leaves too much

work to applications. Structured Stream Transport (SST) enhances the traditional

stream abstraction with a hierarchical hereditary structure, allowing applications

to create lightweight child streams from any existing stream [For07]. Unlike TCP,

these lightweight streams offer independent data transfer and flow control for each
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stream, allowing different transactions to proceed in parallel without head-of-line

blocking, but sharing one congestion control context. SST supports both reliable

and best-effort delivery in a way that semantically unifies datagrams with streams

and solves the classic “large datagram” problem.

Primi%ves	
  
create_substream	
  (stream)	
  è	
  new_stream	
  
listen_substream	
  (stream)	
  
accept_substream	
  (stream)	
  è	
  new_stream	
  

Table 7.1: API for working with structured streams.

HTTP 2.0 proposal addresses similar issues by optimizing the mapping of

HTTP’s semantics to an underlying stream [htt]. Its key features include: 1) mul-

tiplexing of HTTP requests over a single connection, allowing concurrent HTTP

requests/responses, and 2) prioritization of the requests, providing the ability to

indicate which HTTP request is more important than others, and therefore avoid

head-of-line blocking.

SCTP [Ste] and DCCP [FHK06] have been designed to preserve the initial

structure of application data units and provide reliable / unreliable and ordered

/ unordered transmission services.

However all protocols mentioned above are confined to IP’s point-to-point

packet delivery, and the application data units are invisible at the network layer.

Consequently their data priority only has the effect at the end-to-end level, their

scalability (for web service) must rely on other means to address, and their require-

ment of the direct connectivity between client and server makes them infeasible

in mobile and delay tolerant scenarios.

7.2 Publish / Subscribe

Publish / subscribe communication offers multi-point non-host-based addressing:

topic-based, content-based, and type-based [EFG03]. Subscribers register their
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interest in events by calling a subscribe() operation on the event service, with-

out knowing the effective sources of these events. This subscription information

remains stored in the event service and is not forwarded to publishers. The sym-

metric operation unsubscribe() terminates a subscription. Event-based nature of

this interaction leads to time decoupling between subscribers and publishers. To

generate an event, a publisher typically calls a publish() operation. The event ser-

vice propagates the event to all relevant subscribers. Publishers also often have

the ability to advertise the nature of their future events through an advertise()

operation.

Primi%ves	
  

subscribe	
  (expression,	
  %meout)	
  è	
  s_handle	
  
unsubscribe	
  (s_handle)	
  
adver-se	
  (expression,	
  %meout)	
  è	
  p_handle	
  
unadver-se	
  (p_handle)	
  
publish	
  (event)	
  

Table 7.2: Common API primitives for publishing and subscribing to the events.

Publish / subscribe communication work with application data units, but is

different from the consumer / producer communication in some important ways.

First, the majority of publish / subscribe systems run on top of today’s point-

to-point transport layer (e.g. TCP, SCTP), which provides reliable delivery and

segmentation. The rendezvous point (e.g. event service) between publishers and

subscribers raise concerns about single point of failure and system scalability.

Other concerns include the feasibility of supporting realtime, on-demand dynamic

data production, due to the additional latency caused by the introduction of the

event service.

Second, for the few publish / subscribe systems capable of running on top

of Named Data Networking, their designs are not centered on the data directly.

COPSS [CAJ11] introduces a push-based delivery mechanism using multicast in

a content centric framework. At the content centric forwarding layer, COPSS
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uses a multiple-sender, multiple-receiver multicast capability with the use of Ren-

dezvous Points (RP). DDS-over-CDN-over-NDN [PWG12] offers a push-based de-

livery over simplified Content Delivery Network (sCDN). When DDS has created

subscriber and publisher entities, sCDN is invoked to send a subscription message

from the subscriber. This message is flooded through the network to look for an

appropriate publisher. When a publisher is found, the requested content objects

are forwarded to the subscriber by following the appropriate directed acyclic graph

(DAG) in a hop-by-hop, reliable store-and-forward manner.

7.3 Named Networking Socket

Named Networking Socket is an implementation of the process-to-content (PCC)

communication model [GGP14]. The design extends Unix implementation of the

BSD socket with a novel Named Networking domain, which implies a layered

architecture with distinctive network, transport and application layers. The API

does not perform conversion of application data unit (ADU) to transmission units.

As a result, the application cannot use ADUs that exceed the MTU. NaNet socket

provides a datagram ADU (single-segment) and reliable byte-stream content re-

trieval mechanisms.

Ini$aliza$on	
   socket	
  (domain,	
  type,	
  protocol)	
  è	
  handle	
  

Primi$ves	
  

bind	
  (handle,	
  address)	
  
listen	
  (handle,	
  backlog)	
  
connect	
  (handle,	
  address)	
  
sendto	
  (handle,	
  buffer,	
  des$na$on)	
  
receivefrom	
  (handle,	
  buffer,	
  source)	
  
setsocktopt	
  (handle,	
  op$on	
  name,	
  value)	
  
getsockopt	
  (handle,	
  op$on	
  name)	
  
close	
  (handle)	
  

Table 7.3: NaNET primitives for consuming and publishing data in NDN network.
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7.4 CCNx Portal

CCNx Portal API is a programmatic mechanism to create, maintain and use

multiple CCN Transport Stacks, each associated with a specific Portal instance

(Table 7.4). At the present moment, the provided transports are: RTA (Ready-

To-Assemble) and Datagram protocols. RTA uses the chunking protocol [ccn15]

to split the user data into CCNx Content Objects.

Ini$aliza$on	
   createPortal(protocol,	
  a0ributes)	
  è	
  handle	
  

Primi$ves	
  

listen	
  (handle,	
  prefix)	
  
ignore(handle,	
  prefix)	
  
send	
  (handle,	
  message)	
  
receive	
  (handle)	
  
isError(handle)	
  
getError(handle)	
  
isEOF(handle)	
  
setA4ributes(handle,	
  a0ributes)	
  
getA4ributes(handle)	
  
release(handle)	
  

Table 7.4: CCNx Portal API primitives.

The data transfer starts when the application creates an Interest and puts it in

the send() operation (an example of the consumer in Algorithm 15). In the case,

if the Interest name contains a segment number component, the data retrieval

starts from that segment. In the case, if the Interest name does not contain

a segment number component, the data retrieval starts from the segment zero.

During the data retrieval, if the portal receives a new Interest with the same prefix

and a different segment number, the sliding Interest window is re-adjusted to start

from the specified segment. send() operation also accepts Data packets and other

control messages such as InterestReturn message that is somewhat similar to the

network level NACK in NDN.

It is possible to cancel the data retrieval in several ways:
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1. Close the connection via the close() API primitive. This will cancel all in

progress sessions and drop any undelivered Data packets.

2. Use send() API primitive to put a control message with the name prefix

which data retrieval to be canceled.

Retrieved Data packets are passed up to the application in-order, and are

dropped if they arrive outside of the sliding Interest window. Control messages

and Interest packets are passed up to the application unmodified (an example of

the producer in Algorithm 16).

Algorithm 15 HelloWorld consumer

1: h← createPortal(RTA, Blocking)

2: name← “/Hello/World”

3: interest← createSimple(name)

4: message← createFromInterest(interest)

5: send(h, message)

6: while isError(h) = false do

7: response← receive(h)

8: contentObject← getContentObject(response)

9: display contentObject

10: end while

Portal API has built-in content verification capability. An application might

use setAttributes() API primitive to add new items to the lists of trusted cer-

tificates, issuers and keys, which are later used for the verification of retrieved

Data packets.

7.4.1 RTA protocol

In order to map TCP-style protocol machinery onto NDN semantics Interest pack-

ets are treated as TCP acknowledgements, because they give the sender a permis-
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Algorithm 16 HelloWorld publisher

1: h← createPortal(RTA, Blocking)

2: listenName← “/Hello”

3: contentName← “/Hello/World”

4: listen(h, listenName)

5: while true do

6: request← receive(h)

7: interestName← request.name

8: if interestName = contentName then

9: contentObject← createContentObject(contentName, payload)

10: message← createFromContentObject(contentObject)

11: send(h, message)

12: end if

13: end while

sion to send data in the network. Therefore, the node that is expressing Interests

it responsible for Interest pacing to avoid exceeding the network capacity. In RTA

this is achieved by monitoring the delay of returning Data packets and backing

off in the case if the delay grows quickly. If the delay is in the range of expected

values, RTA increases the sliding Interest window size linearly. RTA has a slow

start phase, during which it doubles Interest window size every other RTT until it

reached the slow start threshold or the delay of data retrieval increases too much.

RTA uses the standard RFC6298 Retransmission Timeout (RTO) calculation

methods per flow control session. RTA flow corresponds to the user object’s prefix.

7.5 Extensible API

Some research projects propose even higher level API abstractions, which would

allow application to express its communication semantics to the network stack

112



and get the desired style of communication in return. NetAPI is an interface

that decouples applications from network mechanisms to foster innovation below

the API [DFK07, AHZ09]. NetAPI hides implementation mechanisms from the

application and captures application intent to let the network stack understand

application requirements.

Primi%ves	
  

open	
  (scheme://resource,	
  op%ons)	
  è	
  handle	
  
get	
  (handle,	
  op%ons)	
  è	
  message	
  
put	
  (handle,	
  message,	
  op%ons)	
  
control	
  (handle,	
  op%ons)	
  è	
  result	
  
listen	
  (handle)	
  
accept	
  (handle)	
  
close	
  (handle)	
  

Table 7.5: NetAPI primitives.

The user starts a connection through the open() call, which returns a con-

nection handle. NetAPI takes a Uniform Resource Identifier (URI) of the form

scheme://scheme-specific-part. The scheme selects one of a number of communi-

cation schemes, such as web://, video://, or voice://. The scheme defines what

types of messages and options can be used in API operations and how they are

interpreted.

The put() and get() operations send and receive messages over the connec-

tion. NetAPI messages are application-defined data units (ADUs), such as video

frames in a video scheme. They consist of data plus a list of key-value proper-

ties. This lets the scheme implementation distinguish between messages types and

understand the semantics of each message.

The control() function is used for scheme-specific control operations, such as

seeking in a streaming media scheme. It takes an options argument, which is a

list of key-value pairs interpreted by the scheme.
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CHAPTER 8

Conclusions

The seminal paper [CT90], published 25 years ago, clearly articulated the value of

applying the concept of application level framing to network protocol development

by directly using application data unit (ADU). [FJL97] further demonstrated that

communicating by ADUs is particularly valuable in building many-to-many dis-

tributed applications. However because the work done in [FJL97] was built upon

the existing IP protocol stack where the network layer had no concept of data, the

authors used IP multicast group, enhanced with various tweaks, to get packets to

the interested nodes.

In today’s Internet, network and transport layers are completely decoupled

from application layers in namespace, because each layer has its own namespace

(e.g. address and port versus application data names), and in timing, because

socket simply gets a virtual channel ready, but the application decides when pack-

ets are actually sent. This insulation makes it easy to design each part on its own,

however when multiple layers are put together, they often do not work most co-

herently. NDN’s direct use of application names at network layer removed the

insulation, which opens new potential for developing an overall cohesive system

where applications can make the best use from the network transport.

NDN is able to support application level framing throughout the network,

and Consumer / Producer API makes it easy for applications to publish and

retrieve application frames from the network. The API was designed iteratively

by evaluating new functionality through application development and going back
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to the design phase. The Internet radio streaming application demonstrated the

need for easy to use sequential frame fetching pattern, the static video streaming

demonstrated the need for parallel fetching and publishing into the storage, the

live video streaming needed a fast way of signing the video frames at the live rate.

The analysis of the feasibility of running a web-style RESTful applications proved

the need for the efficient bidirectional Consumer / Producer interaction, because

the modern web-services depend on the user context pushed by the web-clients.

The present work provides an insight into the design of NDN-based web clients

and servers that use Consumer / Producer API to communicate.

Our experience with several pilot applications proved that Consumer / Pro-

ducer API benefits application developers in terms of ease of development and

functionality. The Consumer / Producer API is still at its early development

stage, and we would like to invite others to experiment with it and help further

improve its functionality.

We anticipate that the designed Consumer / Producer model will continue

to evolve to further accommodate the needs of NDN applications. One of the

most valuable additions to the model would be an ability to select a trust schema

from the set of available trust models during the initialization of the consumer

and producer contexts in a similar way as how the selection of the data retrieval

protocol is done now. Since the trust schema defines the relationships between

data names and keys, both consumer and producer applications would benefit

from the automated partial name construction based on the selected schema.

Another large area for enhancement of the model is the integration with new

data retrieval and segmentation protocols. The analysis of a few protocols such as

InfoMax [Jon15] and NDN-RTC [Pet15] showed that it is possible to provide the

wide range of protocol’s functionality and configurability through the Consumer /

Producer API by adding new context options to it, because the model itself does

not put any strict limitations on the name construction operations performed by
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the protocols. There is a high possibility that new protocols will take an advantage

of publishing and traversing trees, lists and graphs of manifests.

Versioning models represent an important research topic. Since NDN data

is immutable, applications must manage their namespaces in a very consistent

manner in order to avoid name collisions, which otherwise would introduce a lot

of ambiguity in the operation of the applications and the network itself. Unfortu-

nately, managing content versioning is not always easy as we demonstrated in the

discussion of an application NACK versioning model. Questions appear almost

instantaneously when an application developer starts working on the code that

involves construction of the names which include versions. What version format

to use? What is the minimal incremental value? How long and where to store

already used versions that cannot be reused again? Consumer / Producer model

can potentially offer multiple built-in versioning models to the application devel-

opers who need to publish the content, and offer the data retrieval protocols that

semantically understand versioning and fetch the right content.
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