
Deterministic Replay of Java Multithreaded Applications

Jong-Deok Choi and Harini Srinivasan
IBM T. J. Watson Research Center

Hawthorne, NY, USA, 10532
jdchoiQus.ibm.com hariniQus.ibm.com

Abstract

Threads and concurrency constructs in Java introduce non-
determinism to a program’s execution, which makes it hard
to understand and analyze the execution behavior. Non-
determinism in execution behavior also makes it impossible
to use execution replay for debugging, performance monitor-
ing, or visualization. This paper discusses a record/replay
tool for Java, DejaVu, that provides deterministic replay of a
program’s execution. In particular, this paper describes the
idea of the logical thread schedule, which makes DejaVu ef-
ficient and independent of the underlying thread scheduler.
The paper also discusses how to handle the various Java
synchronization operations for record and replay. DejaVu
has been implemented by modifying the Sun Microsystems’
Java Virtual Machine.

1 Introduction

The ubiquity of the Java programming language in current
software systems has made development of advanced pro-
gramming environment tools for writing efficient and cor-
rect Java programs very important. Building such tools,
however, is non-trivial because of non-determinism in Java,
introduced by features such as multiple threads, windowing
events, network events/messages and general input/output
operations. For example, repeated execution of a program is
common while debugging a program, and non-determinism
may disallow a bug that appeared in one execution instance
of the program from appearing in another execution instance
of the same program [8, 13, 11, 10, 12, 5, 1, 2, 41.

A key missing element in current debuggers and moni-
toring tools for Java is the ability to provide a deterministic
replay of a non-deterministic execution instance. In this
paper, we present a record/replay tool for Java, called De-
jaVu, that enables deterministic replay of concurrent Java
programs. In particular, we describe how DejaVu determm-
istically replays non-deterministic execution behavior due to
threads and related concurrent constructs such as synchro-
nization primitives. DejaVu, to our knowledge, is the first
tool that handles all the Java synchronization operations in

Pemiission to mnkc digital or hard copies of all or part of this work for
personal or classroom use is grnntrd without fee provided that copies
arc not made or distributed for prolit or convnercial advantage and that
copies hc.ar this notice and the full citation on thr first page. To copy

otherwise, to rcpuhlish, to posl on servers or to redistribute to lists.
requires prior specific pcmlission and/or n fee.

SPDT 98 Welches OR 1 JSA
Copyright ACM 1998 l-581 1%WI--5/9X/ R...$5,CJO

the context of deterministic replay of multithreaded Java
applications.

In addition to threads and concurrent constructs, win-
dowing events/inputs and network events can also attribute
to non-deterministic execution behavior. Although the cur-
rent DejaVu implementation handles network and window-
ing events, they are the topic of another paper [3].

DejaVu, developed as an extension to the Sun Microsys-
tems’ Java Virtual Machine (JVM), runs in two modes: (1)
The record mode, wherein, the tool records the logical th-
read schedzlle information of the execution while the Java
program runs; and (2) the replay mode, wherein, the tool
reproduces the execution behavior of the program by enforc-
ing the recorded logical thread schedule.

DejaVu uses a portable approach and is independent of
the underlying thread scheduler, be it an operating system
scheduler or a user-level thread scheduler. Although de-
scribed in the context of Java, the techniques employed by
DejaVu apply to general multithreaded programming sys-
tems with similar synchronization primitives. Another ad-
vantage of DejaVu is that it can be used on a multiprocessor
system as well, though higher overhead than on a unipro-
cessor system is expected.

The rest of the paper is organized as follows: Section 2
discusses the notion of logical thread schedule and how to
identify a logical thread schedule in a program execution.
Section 3 discusses our approach for recording logical th-
read schedule information. This section also describes how
to handle the various synchronization operations of Java.
Section 4 discusses how we replay a logical thread schedule.
Section 5 discusses the DejaVu implementation and some
performance results. Section 6 compares our approach to
previous approaches. Finally, Section 7 concludes the pa-
per.

2 Deterministic Replay

Replaying a multithreaded program on a uniprocessor
system can be achieved by first capturing the thread sched-
ule information during one execution of the program, and
then enforcing the exact same schedule when replaying the
execution [12]. A thread schedule of a program is essen-
tially a sequence of time intervals (time slices). Each in-
terval in this sequence contains execution events of a sin-
gle thread. Thus, interval boundaries correspond to thread
switch points. Capturing the actual thread schedule infor-
mation is not always possible, in particular, with commercial
operating systems. Rather than relying on the underlying
physical thread scheduler (either an operating system or a

48

http://crossmark.crossref.org/dialog/?doi=10.1145%2F281035.281041&domain=pdf&date_stamp=1998-08-01

class Test {
static public volatile int f = 0;

// shared variable
static public volatile int g = 20;

// shared variable
static public void main(String axgvc]) {

int j; // local variable
MyThxead tl = nev MyThxeadO;
ti.starto;
j = 20;
System.out.println(“f = “ + f

+ ” j = ” + j);

class MyThread extends Thread {
public void run0 {

int k; // local variable
k = 5;
Test.f = Test.f + k;
Test.g = Test.g - k;

1
1

Figure 1: Example Program

user-level thread scheduler) for thread scheduling informa-
tion, we capture the logical thread schedule information that
can be computed without any help from the thread sched-
uler. We refer to the thread schedule information obtained
from a thread scheduler as the physical thread scheduleinfor-
mation, and each time interval in a physical thread schedule
as a physical schedule interval.

To better understand the notion of logical thread sched-
ule, consider a simple multithreaded Java program shown in
Figure 1. Here, thread main starts a child thread, ti. Both
main and tl can access the (shared) member variables, f
and g - main reads f and ti reads and writes variables f
and g.’ Variables k and j are thread-local variables, while
f and g are thread-shared variables.’

Figure 2 depicts a few execution instances (physical th-
read schedules) of the example program on a uniprocessor
machine: time is marked in the vertical direction. In Fig-
ure 2(a), the shared variable f is incremented by ti before
main can print the value of f. Hence, for this execution,
the value printed is 5. The difference between the execution
instances (a) and (b) in Figure 2 is that, in the latter, vari-
able j is updated before thread tl starts executing. This
does not affect the execution behavior of the program be-
cause accessing a local variable is a local event of a thread.
The value of f printed by thread main is still 5. However,
in Figure 2(c), main prints the value off before ti updates
it. Hence, the value printed is 0. Likewise, in Figure 2(d),
the value off that gets printed by main is 0. The difference
between the thread schedules (c) and (d) in the figure lies
in the order of local variable accesses. In (c), k is updated
before the shared variable f is accessed by thread main; in
(d), k is updated after f is accessed in main.

An execution behavior of a thread schedule can be dif-

‘Declaring the shared variables volatile forces each thread not to
treat them as locals in the absence of any explicit synchroniaation
operations.

2 We use the term variable to denote the unique memory location
associated with the variable at an execution point.

ferent from that of another thread schedule, if the order of
shared variable accesses is different in the two thread sched-
ules. Thus, it is possible to classify physical thread schedules
with the same order of shared variable accesses into equiva-
lence classes. In our example, schedules (a) and (b) belong
to the same equivalence class. Likewise, schedules (c) and
(d) belong to one equivalence class. We collectively refer to
all the physical thread schedules in an equivalence class as
a logical thread schedule.

Synchronization events can potentially affect the order of
shared variable accesses, and thus affect the possible logical
thread schedules. Java provides several flavors of synchro-
nization:

l monitorenter, monitorexit that mark the begin and
end, respectively, of a critical section. The semantics
of a critical section is that only one thread can execute
the section of code at any given time. A different th-
read can enter the critical section only after the first
has executed the monitorexit operation. However,
threads compete to enter a critical section, and dur-
ing different execution instances, threads may acquire
access to the critical section in different orders. The
Java synchronized methods and statement blocks can
be implemented using monitorenter and monitorexit
operations.

wait, notify/notifyAll that can be used to coordi-
nate the execution order of multiple threads. A thread
that has executed a wait on an object must wait to be
notified by a different thread executing a notify op-
eration on the same object. The thread that executes
the notify on an object wakes up an arbitrary thread
waiting on the same object. notifyAl can be used to
wake up all the corresponding waiting threads.

suspend and resume are also used to coordinate the
execution order. A thread can suspend another th-
read or itself A suspended thread must be explicitly
resumed by another thread.

Finally, it is possible to also interrupt the execution of
a thread at any point by a different thread using the
interrupt operation.

All of the above synchronization operations affect the ex-
ecution order of threads, which in turn can affect the order of
shared variable accesses and hence the logical thread sched-
ules. In addition, the interactions between synchronization
operations in the user application are themselves part of the . . apphcatron and have to be reproduced for the user to cor-
rectly understand their program behavior. It is therefore
imperative, in a record/replay tool, to capture all these syn-
chronization events and the shared variable accesses in order
to reproduce the exact same execution behavior of the pro-
gram. We collectively refer to the synchronization events
and shared variable accesses as critical events. A logical
thread schedule is a sequence of intervals of critical events,
wherein each interval corresponds to the critical and non-
critical events executing consecutively in a specific thread.
(Note that events of a single thread are well ordered ac-
cording to their temporal order during the execution of the
thread.)

Note that it is not necessary to trace each critical event
individually - in particular, for a particular logical thread
schedule, if multiple critical events occur in succession and
are not separated by a thread switch, it suffices to trace
the critical event interval, i.e., the first and the last critical

49

main tl

I tl.sturt
II

main tl

t1..sturt

j = 20

- 0

k=5

print(f)

j = 20

printu)
k=5

Cd) (b)

Figure 2: Possible Physical Thread Schedules for Example Program. Object Updates are indicated by a variable name
followed by an equals sign.

threadI I I thread121 thread[last]

thread[i] *
B2: 1 localClock = 0;

rs next event a cr~tlcal event.

global-clock-copy = global-clock;

global-clock++;

execute the next event;

B6: I

's IlocalClock < global-clock-copy)

I

YES r

v
iz

NO

BS: t

B7: LastCriticalEvent[il = localClock;
i = i + 1;

FirstCriricalEvent[il = global-clock-copy,

I
llocalclock = global_clock_copy+l;I

*
B9:

Is thread[il terminated?

. . .

$ I

YES .

1,

threadI I I threadI BlO: V thread[last]

Save Logical Thread Schedule Information;

Figure 3: Flowchart to Capture the Logical Thread Schedule

50

event. (In this paper, we use the term tracing events to refer
to monitoring events and recording the monitored events in
main memory or a secondary storage place such as disks.)
Tracing the critical event interval rather than every critical
event reduces the space requirements for the traces, and con-
sequently improves the performance of the replay tool. For
example, in both the logical schedules in Figure 2, the shared
variables f and g are accessed in thread tl, uninterrupted
by thread switches, in the order f; f; g; g (corresponding to
the reads and writes of f and g respectively). Rather than
trace each of these critical events, we simply trace the first
access to f, which is a read, and the last access to g, which
is a write, in t 1. Before proceeding to discussing record and
replay of critical events, the rest of this section formalizes
the notion of logical thread schedule and discusses how such
schedules can be identified.

2.1 Capturing logical Thread Schedules

The logical thread schedule, captured by DejaVu, contains
enough thread schedule information to reproduce the execu-
tion behavior of the program during a replay. The approach
to capture logical thread schedule information is based on a
global clock (i.e., time stamp) for the entire application and
one local clock for each thread.

2.1.1 logical Schedule Intervals

The logical thread schedule of an execution instance on a
uniprocessor system is an ordered set of critical event inter-
vals, called logical schedule intervals. Each logical schedule
interval is a set of maximally consecutive critical events of
a thread. Formally, a logical schedule interval is a (tempo-
rally well ordered) non-empty set of critical events with the
following properties:

all critical events of the logical schedule interval belong
to the same thread;

given any two critical events Ci and Cj of the logical
schedule interval, all critical events of the thread that
happened between Ci and Cj also belong to this logical
schedule interval; and

no two adjacent intervals belong to the same thread.

The implication of 3 above is as follows: If there are two
physical schedule intervals Pi and Pj of a thread such that no
physical schedule intervals between Pi and Pj have critical
events, then all the consecutive physical schedule intervals
of this thread from Pi to Pj are merged into a single log-
ical schedule interval. The two physical schedule intervals
of thread main in Figure 2(c) and Figure 2(d) are examples
of such intervals to be merged into a single logical schedule
interval. Such a merge is possible because the first physical
schedule interval of tl in these figures does not contain a
critical event. We need only two logical schedule intervals
to capture the four physical schedule intervals in these fig-
ures: one logical schedule interval for thread main consisting
oft I. start and print(f) , and the other for thread t 1 con-
sisting of the assignments to f and g. Assignment to k in
thread t 1 can be done independent of its timing with respect
to thread main without affecting the execution behavior of
the program.

With the above properties, an execution instance of an
application on a uniprocessor system has a unique logical th-
read schedule. We capture this unique logical thread sched-
ule during the record phase, and enforce it during the replay

phases to reproduce the same execution behavior. The man-
ner in which non-critical events between two logical schedule
intervals are scheduled during a replay does not affect the
execution behavior of the program. In the rest of the paper,
we will refer to the logical schedule interval as the schedule
interval when the meaning is clear.

Each schedule interval, LSIi, is an ordered set of critical
events, and can be represented by its first and last critical
events as follows:

LSIi =< FirstCriticalEvent;, LastCriticalEvent, >.
We use a global clock that ticks at each execution of a

critical event to uniquely identify each critical event. There-
fore, FirstCdicalEvent; and LastCriticalEvent, can be
represented by their corresponding global clock values While
running, each thread captures the FirstCriticalEvent and
LastCriticalEvent pair of each of its schedule intervals.
The following section provides a detailed description of how
we capture FirstCriticalEvent and LastCriticalEvent

The idea of capturing and tracing schedule interval in-
formation, and not tracing the exhaustive information on
each critical event, as is done in previous approaches [8, 13,
11, lo], is crucial for the efficiency of our replay mechanism.
In the trace file generated by the system, we have found it
quite general for a schedule interval to consist of thousands
of critical events, all of which can be efficiently encoded by
two, not thousands of, word-long clock values.

2.1.2 Identifying Schedule Intervals

Although the global clock and a thread’s local clock start
with the same time value, the local clock stays behind the
global clock when a different thread executes a critical event:
when the thread is scheduled out, the global clock contin-
ues to tick for each critical event executed by other threads
while the local clock stays still. We use this observation in
capturing the schedule interval for each thread as follows:

s At the beginning, all the local clocks and the global
clock have the same value (say, zero).

s When a critical event is executed by a thread, the th-
read compares its local clock with the global clock.

a If the two clock values are different, the thread has just
detected the end of the previous schedule interval and
also the start of a new schedule interval.

l The thread executes the critical event, and increments
the global clock, both as one atomic operation. (De-
tails of this will be provided below.) The thread then
synchronizes the local clock with the global clock.

At the beginning, global-clock is initialized to 0.’ Fig-
ure 3 shows the steps for thread[i] in detail as a represen-
tative case. The statements in B5 must be executed atomi-
cally. Block B7 corresponds to the case when a new thread
schedule interval is detected. Note that, according to the
algorithm, all the threads except the main thread will have
an initial interval < 0, -1 >, which should be ignored. (The
initial interval of the main thread could also be < 0,O >,
and should not be ignored. This could happen if the main
thread is scheduled out after only one critical event. We as-
sume, however, we can always distinguish the main thread
from the other threads.)

Figure 4 shows the timing diagram with four threads:
7’1, T2, T3, and T4. The vertical lines indicate time. The

3glabalAxk is shared by all threads in the program. Other vari-
ables in the flowchart are local to each thread.

51

T1 72 T3 T4

Lo G3

IA G4

L5 G5

L6 G6

. : thread-shared variable
Thread Schedule Intervals:

0: thread-local variable TI: < 0. 2 >, < 7. X >

T3: < 6, 6 >

T4: < 3. 5 >

Figure 4: Identifying Thread Schedules 3. CriticalEvent - execution of a critical event.

figure shows that Tl is the first thread scheduled by the
thread scheduler. Tl executed three accesses to shared vari-
ables followed by one access to a local variable. Then, a
thread switch happened, and T2 was scheduled in. After
accessing two local variables, T2 was scheduled out, and T4
was scheduled in, and so on. The figure also shows the th-
read schedule intervals for threads Tl, 2’3, and T4. Note
that T2’s execution does not contain any critical event and
hence, nothing has to be traced for T2. Consider Tl: there
are five critical events in Tl (in this case all of them corre-
spond to shared variable accesses). The first three critical
events occur in succession, and then, there are four thread
switches before the next two critical events. The first three
critical events of Tl correspond to global clock values 0, 1
and 2 respectively. The 4th and 5th critical events corre-
spond to global clock values 7 and 8, respectively. Hence,
our algorithm computes two logical schedule intervals for
Tl, < 0,2 > and < 7,8 >.

3 Tracing Critical Events

In the previous section, we described how to detect thread
schedule intervals using a set, of local clocks, one for each
thread, and a global clock. The global clock is used to order
the critical events, by assigning a unique, increasing value to
each critical event. Since multiple threads execute critical
events and update the same global clock, the following three
events must be executed as a single atomic action during the
record phase:

1. AssignGlobalClock - assigning the global clock value
to the critical event.;

GcEnterCriticalSection:

Enter the GC Critical Section

GcLeaveCriticalSection:

(release GCounter-Lock 1

Figure 5: Acquiring and Releasing locks for general critical
events

GcCriticalSection 0 {
GcEnterCriticalSection ;
global-clock-copy = global-clock;
global-clock++;
execute the critical event;
GcLeaveCriticalSection:

Figure 6: GC-critical section for general critical events

2. UpdateGlobalClock- incrementing the global clock; and

We have implemented light-weight GC-critical section
(for Global Clock critical section) codes to implement. a sin-
gle atomic action of the above three events by guarding them
with GcEnterCriticalSection and GcLeaveCriticalSection as
shown in Figure 6. It is used when the critical event is a gen-
eral event, e.g. a shared variable access, and corresponds to
the statements in B5 of Figure 3. GcEnterCriticalSection
and GcLeaueCriticalSection are implemented by acquiring
and releasing a light-weight lock called GCounterLock as
shown in Figure 5.

A straightforward application of the GC-critical section
works fine for critical events that are accesses to shared vari-
ables, we will call it the general GC-critical section. How-
ever, GC-critical sections different from the general GC-
critical section are used to record most synchronization op-
erations because of their different semantics. The interrupt
operation can be handled using the general GC-critical sec-
tion. The rest of this section discusses the GC-critical sec-
tions used to record the other Java synchronization opera-
tions.

3.1 monitorenter and monitorexit

Java’s bytecode has two instructions to help implement crit-
ical sections: monitorenter and monitorexit. Examples of
Java’s critical sections that can be implemented using these
instructions are synchronizedmethods or statement blocks.
Reproducing the same order in which threads enter a user-
defined critical section is necessary to reproduce the same
order in which threads access shared variables within the
critical section. A straightforward application of the general
GC-critical section code to monitorenter, however, would
fail, resulting in a deadlock as shown in Figure 7(a).

52

TI n TI I7

I I I I
W : monitor-enter Ti T2 TI

q : monitor-exit

n : lock and increment the
global clock

u : unlock the global clock

‘_ _I : fail to unlock the global clock

- - -) : wait-for edge

l : wait
0 : notify Cc) (4

Figure 7: Incorrect and Correct Handlings of monitorenter (a, b) and vait/notify (c. d)

In the figure, thread Tl first enters the user-defined criti-
cal section, executing GC-critical section code with
monitorenter as its critical event. Right after Tl enters
the critical section but before accessing a shared variable,
T2 tries to enter the same critical section. In doing so,
T2 first enters the GC-critical section, then tries to execute
its critical event, which in this case is monitorenter of the
critical section that Tl is already in.’ (We ignore that there
must have been a thread switch from Tl to T2 for T2 to
try to enter the critical section, and simply describe as if
there were multiple processors, one for each thread, which
is easier to understand.) T2 will have to wait until Tl exe-
cutes monitorexit before it can execute its monitorenter.
T2, however, has already entered the GC-critical section,
but is blocked from executing monitorenter. Now, when
Tl wants to access the shared variable, it will be blocked
from entering the GC-critical section because T2 is already
in it.

This situation is a classical example of a deadlock as
shown with the zuait-for edges in the figure: (1) Tl is waiting
for T2 to leave the GC-critical section, but T2 cannot leave
the GC-critical section until it can execute monitorenter;
(2) T2 cannot execute monitorenteruntil Tl leaves the GC-
critical section via monitorexit; (3) Tl, however, is waiting
for T2 to leave the GC-critical section, which is identical
to (1) above. The solution, as shown in Figure 7(b), is to
execute monitorenter before GC-critical section, not in the
middle of the GC-critical section. Since only one thread can
be in a user-defined critical section, we can still correctly
capture the order of threads entering the critical section af-
ter the execution of monitorenter. We still need the GC-
critical section to atomically update the global clock. Note
that monitorexit need not be captured, because capturing
the order of successfully executing monitorenter is suffi-
cient for replay. Figure 8 shows the GC-critical section for
the monitorenter critical event.

3.2 vait, notify, and notifyAl

Java provides event-style synchronization operations via vait,
notify, and notifyAl methods. The language requires
that vait, not if y and not if yAl1 methods be invoked within
-

‘For the simplicity of the discussion, we assume there is only one
user-defined critical section.

GcCriticalSectionMonitor 0 (
monitorenter;
GcEnterCriticalSection;
global-clock-copy = global-clock;
global-clock++;
GcLeaveCriticalSection;

1

Figure 8: GC critical section for monitorenter

synchronized methods or statements. For example, the code
to invoke vait would look as follows:

synchxonized(ev) c ev.vaitO;)

where ev is the object on which the vait is invoked. Thus, a
thread can successfully invoke a vait, not if y, or not if yAl1
method on an object ev only within the critical section
where the thread owns ev. Hence, when a thread success-
fully invokes ev.aaitO, ev.notify() or ev.notifyAll(),
no other thread can own ev. Upon (successful) invocation of
ev. wait 0, the thread releases ownership of the object, ev,
thus allowing another thread to acquire access to ev and ex-
ecute a not if y or not if yAl1 on ev. Any invocation of these
operations on an object not owned by the thread can be sim-
ply treated as a non-synchronization critical event since it
fails to perform as a synchronization operation.”

Since wait is a blocking event (i.e., the thread executing
wait suspends and cannot proceed until another thread is-
sues a notify), a straightforward application of the general
GC-critical section will result in a deadlock. Figure 7(c) il-
lustrates this situation: Tl cannot leave the GC-critical sec-
tion, because it becomes suspended as soon as it executes
wait. T2, which is supposed to execute the not if y event for
Tl, cannot do that because it cannot enter the GC-critical
section, which is currently occupied by Tl: a deadlock oc-
curs. Recall that a thread (Tl in this case) can successfully
invoke wait on an object only when it already owns the ob-
ject in a synchronized code block, and that another thread

‘It throws IllegalMonitorStateException exception, which can be
caught and handled by an exception handler.

53

GcCriticalSectionWait 0 {
GcEnterCriticalSection;
global-clock-copy = global-clock;
global-clock++;
GcLeaveCriticalSection;
vait0;

Figure 9: GC critical section for vait

GcCriticalSectionSelfSuspend 0 {
GcEnterCriticalSection;
global-clock-copy = global-clock;
global-clock++;
isAnySelfSuspended = suspending_threadid;
suspend(self);

1

Figure 10: GC critical section for self-suspend

(T2 in this case) can invoke notify/notifyAll on an ob-
ject only when it already owns the object in a synchronized
code block. Because of this, vait need not be inside the
GC-critical section to atomically update the global clock;
we can place wait after the GC-critical section, as shown
in Figure 7(d). Figure 9 shows the GC-critical section for
wait.

When multiple threads are waiting on an object, a notify
wakes up only one of them in an implementation-dependent
way. If the wake-up order is deterministic (a stack or a
queue), forcing each thread to invoke vait on the same ob-
ject in the same order during the replay as in the original
execution will suffice to wake up the waiting threads in the
same order. If the wake-up order is non-deterministic, en-
forcing the same order to invoke wait on the same object is
not sufficient, and we use a JVM implementation-dependent
approach to make the wake-up order deterministic.

3.3 suspendand resume

In Java, a thread can suspend itself or others via suspend.
A thread suspended this way resumes execution when an-
other thread executes resume on the suspended thread.
suspend(other), which suspends another thread, can be
handled with the general GC-critical section code in Fig-
ure 6. Resuming other threads can also be handled with the
general GC-critical section. Th e rest of this section discusses
handling a self-suspend operation, i.e., a suspend(self)
operation.6

A thread suspending itself introduces a problem similar
to, but larger than, the one by vait. The problem is similar
in that the execution of the thread suspends after the invoca-
tion of the operation. The difference is that suspend(self)
need not be in a synchronized block as wait does. In order
to allow a thread to suspend itself within the GC-critical sec-
tion while holding the GCounterLock, another thread must

6The notations suspend(self) and suspend(other) are used here
only for convenience. The real Java syntax for them are suspend0
and other.suspend(), respectively

execute the GcLeaveCriticalSection on behalf of the self-
suspended thread, i.e., release the GCounter-Lock owned
by the self-suspended thread. The self-suspending thread
sets a flag, isAnySeZfSuspend, with a non-zero-valued thread
id of the self-suspending thread. The flag lets other threads
know that the GCounter-Lock is currently held by the self-
suspending thread so that they can release the GCounter-Lo-
ck on behalf of it. A special-valued thread id (such as zero)
can be used to reset the flag. Figure 10 shows the GC-
critical section for suspendfself). Notice the absence of
GcLeaueCriticaISection at the end of the critical section.

We also change the original GcEnterCriticaZSection in
Figure 5 into the new one in Figure 11(a) for all the GC-
critical sections in order to handle self-suspend. The differ-
ence is that, in the latter, when a thread fails to acquire the
GCounter-Lock and finds isAnySeZfSvspendto be set, it tries
to release the GCounterLock held by the self-suspending
thread by executing try UnlockSeljSuspended. try UnlockSelf-
Suspended, in Figure 11(b), itself is a light-weighted critical
section.

Once in tryUnZoc&SeljSuspended, the thread examines the
isAnySelfSuspended flag again to guard against the case an-
other thread has reset it before the current thread enters
the critical section. If the flag is still set, it checks whether
the thread that set the flag is indeed in a suspended state
(Bl in the figure). If not, the thread simply exits the criti-
cal section, waiting for the self-suspending thread to become
suspended. If the self-suspending thread is in a suspended
state, the thread resets the isAnySeZfSuspended flag and re-
leases the GCounterLock, effectively executing GcLeave-
Cr’riticalSection on behalf of the self-suspended thread. The
thread then exits the critical section and tries to grab the
GCounter-Lock again. Determining whether the self-sus-
pending thread is indeed in a suspended state can be done
easily if there exists a system call that returns the state of a
thread. In that case, the isAnySelfSuspend, which is the id
of the self-suspending thread can be used to query the state
of the self-suspending thread.

When there exists no such system call, we force the other
threads to wait another round of thread scheduling to give
the self-suspended thread enough time to successfully sus-
pend itself after setting the flag. More specifically, we use
a counter, instead of the thread id, as the isAnySelfSuspend
flag set by a self-suspending thread. The counter, initially
zero, is incremented at each self-suspend operation. After
the counter is reset to zero in try UnlockSeZfSuspend, it starts
from the previous counter value, not from zero. Note that
this is differnt from Figure 10, where isAnySelfSuspend is
the id of the self-suspending thread.

After thread Tl sets the isAnySelfSuspendflag, the state-
ment Bl in Figure 11(b) by another thread T2 becomes sim-
ply comparing the new isAnySeZfSuspended flag value with
the previous one T2 saw before. If they are identical, T2
assumes Tl has had enough time to suspend itself. If they
are different, T2 assumes that Tl has not had time to self-
suspend, remembers the new flag (counter) value, and yields
the thread schedule. The assumption behind this scheme is
that the thread scheduling is fair: an active thread gets a
thread-schedule slot of non-trivial amount of time before any
other thread with no higher priority gets two of such thread-
schedule slots. (Only threads with priorities no higher than
that of the self-suspended thread can participate in unlock-
ing the GCounterLock on behalf of the self-suspended th-
read.) To ensure that there exists at least one thread with
priority no higher than that of the self-suspended thread,
DejaVu uses a JVM thread that always runs at a lower pri-

54

GcEnterCriticalSection:

enter the GcCriticalSection

irylJnlockSelfSuspended

trylJnlockSel/Suspended

I
en[erSelfSusoendCriticalSection

has thread suspended?

yes
isAnySelfSuspended = O_)

I
release GCounterLcck

(IeaveSelfSusoendCriticalSection

(b)

Figure 11: Modified GcEnterCriticalSection

ority than any other threads.
We use Figure 12 to illustrate how the scheme works. In

the example above, we assume all the threads have the same
priority. In Figure 12(a), Tl sets the isAnySelfSuapended
flag with a new value. After this, all the other threads,
during the same round of the thread scheduling, see this
new flag value and yield the thread schedule, assuming Tl
has not had enough time to self-suspend. At the next round
of the thread scheduling, T2 sees the same flag value again
and assumes Tl has had enough time to self-suspend: it
releases the GCounterLock on behalf of Tl and resets the
flag. T3 now grabs the lock and executes its critical event.

In Figure 12(b), the events are the same up to T3’s grab-
bing the lock and executing its critical event during the sec-
ond round of the scheduling. T3’s critical event, however, is
another self suspend, and T3 sets the isAnySelfSuspended
flag with a new value. After that, threads T4 through
TN during this round fail to release the GCounter-Lock
on behalf of T3 because the flag value they see is differ-
ent from what they saw before. During the third round,
T2 sees a different value of the flag and fails to release the
GCounter-Lock. T4, however, sees the same flag value sec-
ond time and releases the GCounter-Lock. T5 then grabs
the lock and executes its critical event.

3.4 Interactions between wait and suspend

Assume a thread Tl is about to wait on an object and has
just finished the GC-critical section for it, as described in
Section 3.2. Also assume this is followed by a thread T2
suspending Tl. There are three possible timings:

1. T2 suspends Tl before Tl successfully invokes wait;

r
I

(a)

+: su.spend(self)

r

(b)

0 : CriticalEvent

Figure 12: Correct Handlings of suspendfself 1

2. T2 suspends Tl after Tl successfully invokes aait;
and

3. T2 suspends Tl after Tl successfully invokes wait and
a third thread wakes up Tl (via notify or interrupt).

Case 3 does not introduce any interference between wait
and suspend, and there is no need for any special treatment
in this case. Probably this is what the user intended.

Case 1 and Case 2 are the same as far as Tl is concerned:
Tl becomes inactive. Also, there is no difference in terms
of the global clock values for the wait and the suspend: the
clock value of the wait precedes that of the suspend since,
in this scenario, the GC-critical section for wait executes
before the GC-critical section for suspend. However, there
is a difference between the two in terms of their impact on
other threads. In Case 1, Tl still holds all the locks it owns
when it becomes inactive (from suspend executed by T2),
preventing other threads waiting for any of the locks from
proceeding any further. In Case 2, Tl releases all the locks
it owns when it becomes inactive (when it executes wait),
allowing other threads waiting for the locks to proceed.

The implication of the difference between Case 1 and
Case 2 on DejaVu is that DejaVu could produce two dif-
ferent execution behaviors in the replay mode, one corre-
sponding to Case 1 and the other corresponding to Case 2.
The solution to handle such an interaction between wait
and suspend operations is similar to the solution for self-
suspend. The zuaiting thread that is to execute wait sets an
is Waiting flag just before it executes wait. Then, the sus-
pending thread that is about to suspend the waiting thread
checks the is Waiting flag of the thread to be suspended. If
the is Waiting flag is set, the suspending thread checks if the
waiting thread is in the wait state. If it is in the wait state,
the suspending thread safely executes the suspend opera-
tion on the waiting thread. If it is not in the wait state, the
suspending thread waits until it is in the wait state. The
is Waiting flag is reset by the suspending thread immediately
before it suspends the waiting thread or is reset by the wait-
ing thread when it wakes up from its wait state. Note that
this approach essentially enforces Case 2 when either Case 1
or Case 2 is possible.

When there is no system call to determine whether a
thread is in the wait state or not, the suspending thread
waits until it sees the same is Waiting flag value twice be-
fore suspending the waiting thread. Note that in the self-
suspend case described in Section 3.3, all the threads with

priorities not higher than the self-suspending thread get in-
volved in releasing the GCounter-Lock. In the case of wait
and suspend, only the suspending threads is involved, and
the priority of the suspending thread gets temporarily low-
ered to that of the waiting thread if the suspending thread’s
priority is higher than that of the waiting thread’s prior-
ity. This is necessary to ensure that the waiting thread will
have enough time to successfully execute wait. The priority
will be reset to the original value immediately before the
suspending thread suspends the waiting thread or when it
finds the is Waiting flag to be zero again.’

4 Replaying Execution Behavior

At the start of a replay mode, DejaVu reads the thread sched-
ule information from a file created at the end of the record
mode. When a thread is created and starts its execution,
it receives from DejaVu an ordered list of its logical thread
schedule intervals. We use the finite state automaton in Fig-
ure 13 to describe how each thread executes and reproduces
the same execution behavior using this ordered list of sched-
ule intervals.

In the figure, state SO is the initial state for each thread.
At state Si, it reads the next schedule interval to update the
new FiratCriticalEuent and LastCriticalEvent, which are
represented by global clock values. After that, the thread
waits, at 32, until the global clock value becomes the same
as the current FirstCTiticalEvent, at which point it moves
to s3.

sz corresponds to GcEnterCriticalSection of GC-critical
section described in Section 3, and we call it RpEnterCriti-
calSection. There are two major differences between GcEn-
terCriticalSection and RpEnterCriticalSection: (1) the for-
mer is implemented by acquiring a lock (GCounter-Lock),
while the latter is implemented by comparing the global
clock with the FirstCriticalEvent of the current interval and
yielding the thread schedule via sleep; and (2) the former
need be executed for every critical event during record, while
the latter need be executed only for the first event of each
interval during replay.

At 33, the thread executes the next instruction (event).
If the event is a critical event, the thread also increments
the global clock at S3. At the end of S3, the thread ex-
ecutes RpLeaveCriticalSection, corresponding to GcLeave-
CriticalSection of GC-critical section. Since RpEnterCriti-
calSection does not acquire a lock, RpLeaveCriticalSection
does not release any lock. RpLeaveCriticalSection, however,
checks whether the global clock value becomes greater than
LaatCriticalEvent of the current interval, at which point it
moves to S4. If the value is not greater than
LastCriticalEvent, it repeats S3. At S4, the thread in-
crements the current interval number and checks if there
are any more intervals left. If so, it moves back to state Sl,
and repeats the above steps. If no more intervals are left, it
terminates.

We call the following combined steps of S2 and S3 the
RP-critical section:

1. waiting for the global clock value to become the same
as the current FiratCriticalEvent (SZ);

2. executing the critical event and incrementing the global
clock (S3); and

7This can theoretically have an unpleasant effect of starving the
suspending thread if the priorities of all the other threads get raised
above the suspending thread’s new priority and remain there. How-
ever, this should be rare in practice.

3. checking whether the global clock value becomes greater
than LastCriticalEuent of the current interval (S3).

As stated before, the first step of RP-critical section need
be executed only for the first event of each interval.

In the presence of higher-priority threads waiting for
their turn at state S2, a thread with a lower priority can
starve without being able to execute and increment the
global clock. This in turn will make the higher-priority
threads waiting forever at SZ, hanging the whole system.
The solution we adopt for this is to progressively increase the
sleep time after comparing the global clock with the Firat-
CriticalEvent in RpEnterCriticalSection. The sleep time is
reset to the original value when the thread succeeds in en-
tering RpEnterCriticalSection.

The above description applies to all non-synchronization
critical events. In addition, the RP-critical section can be
applied without modification to monitorenter: the thread
waits for the correct global clock value before executing
monitorenter, and increments the global clock after the th-
read successfully executes monitorenter.

Handling wait, notify, notifyAll, suspend, resume,
and interrupt synchronization operations during replay is
similar to their handling during the record mode. The differ-
ences relate to the differences between the GC-critical sec-
tion and the RP-critical section: waiting for and updating
the global clock value are the means of ordering events dur-
ing replay, not acquiring and releasing the GCounter-Lock
as done during record.

5 Implementation and Performance Results

We have implemented the record/replay mechanism discuss-
ed in the previous sections by modifying the Sun Microsys-
tems’ Java Virtual Machine (JVM). The modified JVM,
called DejaVu, is capable of deterministic replay of Java mul-
tithreaded programs, and can be used to implement several
tools. Using DejaVu, we have implemented a simple com-
mand line debugger that uses execution replay for debug-
ging. We considered modifying the application bytecode,
instead of the VM that interprets the application bytecode,
but decided against it because we felt the overhead would
be a lot higher than modifying the VM. The particular java
interpreter we have modified is javag. javag is written
mostly in C and is a lot easier to instrument than the reg-
ular java interpreter. It also has much better support for
debugging the application.

Table 1 shows the performance measurements of DejaVu
with four synthetic-workload applications - Chaos, MM,
SOR, and MTD - and two SPLASH-2 (Stanford Parallel
Applications for Shared Memory) kernel benchmark pro-
grams [14] - Radix and FFT - on a machine with a Pentium
200 MHz processor running Windows NT. Chaos is an ex-
treme case of a highly non-deterministic, compute-intensive
program of multithreads that, without synchronizations, in-
crement two shared variables over and over. MM is a matrix
multiply program, and SOR implements a Successive Over
Relaxation algorithm for a financial application. Both MM
and SOR are highly compute intensive with only a few syn-
chronization operations. MTD is a thread schedule simula-
tor consisting mostly of synchronization operations.

The high instrumented-execution overhead of Chaos, MM,
and SOR reflects their compute-intensiveness with high rate
of shared-variable accesses: each access of a shared variable
is a critical event that incurs the overhead of atomically
updating the global clock with the (light-weighted) synchro-

56

SO: START, i = 0

S 1: update FirstCriticalEvent(i) and
LastCriticalEvent(i)

S2: yield the thread schedule

S3: execute event.
if CriticalEvent Increment global-clock

S4:i=i+ I

S5: END

C I : global-clock < FirstCriticalEvent(i)

C2: not C I

C3: global-clock <= LastCriticalEvent(i)

C4: not C3

C5: I <= last interval

C6: not C5

Figure 13: Replay Finite State Automaton

nization operations of DejaVu. However, their instrumented-
execution time is still well within twice the original exe-
cution time. Their trace sizes are also small, in spite of
their large number of critical events, due to the small num-
ber of thread switch intervals. The smaller replay-execution
overhead of these three programs also reflects the fact that
shared-variable accesses during a replay execution do not
require critical events to update the global clock as they do
during an instrumented execution: shared-variable accesses
are cheaper during replay execution.

MTD is the opposite of Chaos: MTD has almost no
shared-variable accesses and consists mostly of Java syn-
chronization operations, which are expensive by themselves
with or without any instrumentation by DejaVu. Since the
light-weight critical sections of DejaVu have negligible cost
compared with the Java synchronizations, MTD does not
show any detectable overhead in instrumented execution or
in replay execution. We suspect a similar behavior with in-
teractive graphics-oriented Java programs using AWT (Ab-
stract Window Toolkit).

Radix and FFT of SPLASH-2 kernel programs are writ-
ten in C, which we have ported into Java. Flussinovich and
Cogswell also use the same programs (and three additional
programs from the same benchmark suite) in the perfor-
mance measurements for their Repeatable Scheduling [12].
However, it is hard to compare the performance of DejaVu
with that of Repeatable Scheduling solely based on the mea-
surements with these benchmark programs, because DejaVu’s
measurements are for Java programs interpreted by JVM
running on Windows NT while Repeatable Scheduling’s mea-
surements are for C programs compiled into native code run-
ning on Mach 3.O/UX. The overhead of Repeatable Schedul-
ing range between 5.7% and 16.5% for instrumented exe-
cution, and between 8.7% and 15.3% for replay execution.
The space overhead of Repeatable Scheduling ranges be-
tween 6KB and 20KB. The execution and space overheads,
however, will depend on the size of the problem, i.e. in-
put parameters such as the number of threads, which is not
shown in their publication.

As stated above, DejaVu is implemented by modifying
the javag interpreter from Sun, which is mostly written in
C and, therefore, is easier to modify than the regular java
interpreter. Written in C, javag is itself a few times slower
than the regular java interpreter in executing the applica-
tion code. It will be interesting to see the new performance
results when DejaVu is ported to the regular java interpreter

with the instrumentation code written in the assembly lan-
guage.

DejaVu can also work with a DejaVu-aware compilation
system, including just-in-time (JIT) compilers for Java. The
DejaVu-aware compiler, whether a JIT for Java or a full com-
piler for a conventional language like C, needs to generate
native code corresponding to the instrumentation code for
the critical events in DejaVu. A JIT compiler improves the
performance of the java interpreter, and will also improve
the performance of the DejaVu instrumentation for the JIT-
compiled part of the application. Although we suspect the
relative performance of DejaVu will in general become worse
with JIT compilation, it is hard to predict whether that will
be the case, or how much.

Java Native Interface (JNI) allows native methods to
work with application bytecode. DejaVu can replay the or-
der in which the native methods are invoked from within the
bytecode. However, deterministic replay of the native meth-
ods with non-deterministic side effects is beyond the capa-
bility of DejaVu unless the native methods are also compiled
by a DejaVu-aware compiler.

When applied to multiprocessor systems, DejaVu’s over-
head will increase because there will be in general more
than one thread simultaneously active at any given time.
These simultaneously active threads will make the size of
each schedule interval smaller, resulting in larger number
of total schedule intervals for the same application. Each
schedule interval incurs time overhead in accessing the GC-
critical section and space overhead in tracing the interval.
Also, all the critical events will be totally serialized in terms
of the global clock, resulting in loss of parallelism in execu-
tion. We are currently extending DejaVu so that there will
be multiple global clocks to reduce this loss of parallelism.

6 Related Work

Repeated re-execution is a widely accepted technique for
debugging deterministic sequential applications. Repeated
re-execution for debugging, however, fails to work for non-
deterministic multithreaded applications because a bug that
manifested itself during one execution instance might not
manifest itself again in another execution instance.

One approach to debug non-deterministic applications is
to avoid repeated re-execution and generate traces as is done
by PPD [l]. Flowback analysis can then be performed on

57

Synthetic

Work

Load

SPLASH
Kernels

Application
Instrumented Replay

Number Native Execution Execution Trace Critical Thread
of Execution Time Ovrhd Time Ovrhd Size Events Switch

Threads (1 set () set set Intervals

Table 1: Performance of DejaVu Replay System

the traces to show the causality of the program events to
the user to help identify the bugs.

Re-execution approaches for debugging a non-determin-
istic application need to generate sufficient traces to repro-
duce the same execution behavior over and over. Most pre-
vious approaches for re-execution of non-deterministic appli-
cations have focused on replaying multiprocess applications
running on shared memory multiprocessor systems. Like
threads, processes of an application can affect the execu-
tion behavior of other processes via accesses to shared vari-
ables, synchronization operations, or communications.’ Re-
playing multiprocess applications requires capturing interac-
tions among processes - i.e., critical events - and generating
traces for them. The major drawback of these approaches
is the potentially large overhead (in time, and particularly
in space [8, 13, 113) in generating the traces.

To reduce the trace size, Instant Replay [8] assumes that
applications use a correct, coarse-grained operation, called
CREW for concurrent-read-exclusive-write, to access shared
objects, and generates traces only for these coarse opera-
tions. However, this approach fails if critical events within
CREW are non-deterministic. The approach by Carver and
Tai [13] is similar in that they also generate traces only for
coarse-grained critical events, assuming shared variables are
well guarded within well-defined critical-sections.

Russinovich and Cogswell’s approach [12] differs from
the above approaches in that it addresses specifically mul-
tithreaded applications running only on a uniprocessor sys-
tem. To capture the physical thread scheduling information,
Russinovich and Cogswell have modified the Mach operating
system so that it notifies the replay system of each thread
switch. This makes their approach highly dependent on an
operating system and also on the availability of the source
code of the operating system, which is unlikely for commer-
cial third-party operating systems. Their approach is also
strictly for uniprocessor systems and does not work for mul-

‘Strictly speaking, threads are different from processes in that
threads usually share address spaces while processes do not. However,
the issues and techniques described in this paper apply to both.

tiprocessor systems.
Holloman and Mauney’s approach [7, 6] is similar to

Russinovich and Cogswell’s except for the mechanism to
capture the process scheduling information. Their approach
uses exception handlers instrumented into the application
code that capture all the exceptions, including the ones for
process scheduling, sent from the UNIX operating system
to the application processs. Their approach, therefore, does
not require modifying the operating system. Their approach
is still operating-system dependent and strictly for unipro-
cessor systems.

Our approach is similar to Russinovich and Cogswell’s in
that we also generate traces only for thread switches, result-
ing in trace sizes similar to theirs. Our approach, however,
captures the logical thread schedule interval. Our approach
does not require making modifications to the operating sys-
tem, and is, therefore, independent of the operating sys-
tem. Also, our approach works on multiprocessor systems
whose thread schedule is fair according to the assumption
in Section 3. One disadvantage of being independent of the
underlying system is that capturing logical thread schedule
information can potentially incur higher execution-time cost
than getting notified of physical thread schedule information
by the operating system.

Netzer’s Optimal Tracing [lo] reduces the trace size fur-
ther by applying an execution-time algorithm to find the
minimum traces sufficient to replay the execution. Optimal
Tracing can reduce the trace size by one or two orders of
magnitude, but potentially at the cost of substantially in-
creasing the execution time of the application.

Our compact logging scheme for logical thread sched-
ules is similar to the one described by Levrouw et. al. for
event logging [9]. A major difference is that our scheme
uses a single global clock while theirs uses one clock for each
shared object. This difference makes our approach much
simpler and more efficient than theirs on a uniprocessor sys-
tem. They describe an extension of their scheme to reduce
the log size further, but at the cost of counting the number
of instructions executed between critical events to simulate

58

a real time clock.
DejaVu, to our knowledge, is the first tool that com-

pletely addresses the issues in handling all the Java synchro-
nization operations in the context of deterministic replay of
multithreaded Java applications.

7 Conclusions

We have developed a record/replay tool for Java applica-
tions, called DejaVu that provides a deterministic replay of
a non-deterministic execution. DejaVu is is implemented by
modifying Sun Microsystem’s Java Virtual Machine (JVM).
DejaVu is independent of the underlying thread scheduler
such as the operating system. It runs highly efficiently on
a uniprocessor system and can be used on a multiprocessor
system as well, with higher overhead than on a uniprocessor
system expected. While our current implementation of De-
jaVu is in the context of a Java interpreter, the record/replay
mechanisms described in this paper will work just as well in
the context of both traditional compilation environments
that generate object code, and just-in-time compilers, for
general multithreaded programming systems.

Acknowledgements

We thank John Barton, Susan Flynn Hummel, Ravi Konuru
and Peter Sweeney for their comments on an earlier draft of
the paper which greatly helped improve the paper. We also
thank Chris Holt and Monica Lam for their help with the
SPLASH kernel programs.

References

[l] Jong-Deok Choi, Barton P. Miller, and Robert H. B.
Netzer. Techniques for debugging parallel programs
with flowback analysis. ACM Transactions on Program-
ming Languages and Systems, 13(4), October 1991.

[2] Jong-Deok Choi and Sang Lyul Min. Race frontier:
Reproducing data races in parallel-program debugging.
Proc. of Third ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, April 1991.

[3] Jong-Deok Choi and Harini Srinivasan. Deterministic
Replay of Java Multithreaded Applications. Technical
report, IBM, 1998. In Preparation.

[4] Jong-Deok Choi and Janice M. Stone. Balancing run-
time and replay costs in a trace-and-replay system.
Conference Record of the ACM/ONR Workshop on
Parallel and Distributed Debugging, May 1991.

[5] Anne Dinning and Edith Schonberg. An empirical com-
parison of monitoring algorithms for access anomaly
detection. In Second ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages
l-10, Seattle, Washington, March 1990. ACM Press.

[6] Edward Dean Holloman. Design and implementation of
a replay debugger for parallel programs on Unix-based
systems. Master’s Thesis, Computer Science Depart-
ment, North Carolina State University, June 1989.

[7] Edward Dean Holloman and Jon Mauney. Reproducing
multiprocess executions on a uniprocessor. Unpublished
paper, August 1989.

[8] Thomas J. Leblanc and John M. Mellor-Crummy. De-
bugging parallel programs with instant replay. IEEE
Transactions on Computers, C-36(4):471-481, April
198’7.

[9] L.J. Levrouw, K.M.R. Audenaert, and J.M. Van Camp-
enhout. Execution replay with compact logs for shared-
memory systems. Proceedings of the IFIP WG10.3
Working Conference on Applications in Parallel and
Distributed Computing, IFIP Transactions A-44. pages
125-134, April 1994.

[lo] Robert H. B. Netzer. Optimal tracing and replay for de-
bugging shared-memory parallel programs. Proceedings
of ACM/ONR Workshop on Parallel and Dzstrzhuted
Debugging (Also available as ACM SIGPLAN Notzces
Vol. 28, No. 12), pages l-11, May 1993.

[ll] Douglas Z. Pan and Mark A. Linton. Supporting re-
verse execution of parallel programs. Proceedings of
SIGPLAN/SIGOPS Workshop on, pages 124-129, May
1988.

[12] Mark Russinovich and Bryce Cogswell. Replay for
concurrent non-deterministic shared-memory applica-
tions. Proceedings of ACM SIGPLAN Conference on
Programming Languages and Implementatton (PLDI),
pages 258-266, May 1996.

1131 K. C. Tai, Richard H. Carver, and Evelyn E. Obaid.
Debugging concurrent ada programs by deterministic
execution. IEEE Transactions on Software Engzneer-
ing, 17(1):45-63, January 1991.

[14] S. C. Woo, M. Oharai, E. Torrie, J. P. Singh, and
A. Gupta. The splash-2 programs: Characterization
and methodological considerations. Proceedings of the
22nd International Symposium on Computer Architec-
ture, pages 24-36, June 1995.

59

