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Abstract 

Threads and concurrency constructs in Java introduce non- 
determinism to a program’s execution, which makes it hard 
to understand and analyze the execution behavior. Non- 
determinism in execution behavior also makes it impossible 
to use execution replay for debugging, performance monitor- 
ing, or visualization. This paper discusses a record/replay 
tool for Java, DejaVu, that provides deterministic replay of a 
program’s execution. In particular, this paper describes the 
idea of the logical thread schedule, which makes DejaVu ef- 
ficient and independent of the underlying thread scheduler. 
The paper also discusses how to handle the various Java 
synchronization operations for record and replay. DejaVu 
has been implemented by modifying the Sun Microsystems’ 
Java Virtual Machine. 

1 Introduction 

The ubiquity of the Java programming language in current 
software systems has made development of advanced pro- 
gramming environment tools for writing efficient and cor- 
rect Java programs very important. Building such tools, 
however, is non-trivial because of non-determinism in Java, 
introduced by features such as multiple threads, windowing 
events, network events/messages and general input/output 
operations. For example, repeated execution of a program is 
common while debugging a program, and non-determinism 
may disallow a bug that appeared in one execution instance 
of the program from appearing in another execution instance 
of the same program [8, 13, 11, 10, 12, 5, 1, 2, 41. 

A key missing element in current debuggers and moni- 
toring tools for Java is the ability to provide a deterministic 
replay of a non-deterministic execution instance. In this 
paper, we present a record/replay tool for Java, called De- 
jaVu, that enables deterministic replay of concurrent Java 
programs. In particular, we describe how DejaVu determm- 
istically replays non-deterministic execution behavior due to 
threads and related concurrent constructs such as synchro- 
nization primitives. DejaVu, to our knowledge, is the first 
tool that handles all the Java synchronization operations in 
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the context of deterministic replay of multithreaded Java 
applications. 

In addition to threads and concurrent constructs, win- 
dowing events/inputs and network events can also attribute 
to non-deterministic execution behavior. Although the cur- 
rent DejaVu implementation handles network and window- 
ing events, they are the topic of another paper [3]. 

DejaVu, developed as an extension to the Sun Microsys- 
tems’ Java Virtual Machine (JVM), runs in two modes: (1) 
The record mode, wherein, the tool records the logical th- 
read schedzlle information of the execution while the Java 
program runs; and (2) the replay mode, wherein, the tool 
reproduces the execution behavior of the program by enforc- 
ing the recorded logical thread schedule. 

DejaVu uses a portable approach and is independent of 
the underlying thread scheduler, be it an operating system 
scheduler or a user-level thread scheduler. Although de- 
scribed in the context of Java, the techniques employed by 
DejaVu apply to general multithreaded programming sys- 
tems with similar synchronization primitives. Another ad- 
vantage of DejaVu is that it can be used on a multiprocessor 
system as well, though higher overhead than on a unipro- 
cessor system is expected. 

The rest of the paper is organized as follows: Section 2 
discusses the notion of logical thread schedule and how to 
identify a logical thread schedule in a program execution. 
Section 3 discusses our approach for recording logical th- 
read schedule information. This section also describes how 
to handle the various synchronization operations of Java. 
Section 4 discusses how we replay a logical thread schedule. 
Section 5 discusses the DejaVu implementation and some 
performance results. Section 6 compares our approach to 
previous approaches. Finally, Section 7 concludes the pa- 
per. 

2 Deterministic Replay 

Replaying a multithreaded program on a uniprocessor 
system can be achieved by first capturing the thread sched- 
ule information during one execution of the program, and 
then enforcing the exact same schedule when replaying the 
execution [12]. A thread schedule of a program is essen- 
tially a sequence of time intervals (time slices). Each in- 
terval in this sequence contains execution events of a sin- 
gle thread. Thus, interval boundaries correspond to thread 
switch points. Capturing the actual thread schedule infor- 
mation is not always possible, in particular, with commercial 
operating systems. Rather than relying on the underlying 
physical thread scheduler (either an operating system or a 
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class Test { 
static public volatile int f = 0; 

// shared variable 
static public volatile int g = 20; 

// shared variable 
static public void main(String axgvc]) { 

int j; // local variable 
MyThxead tl = nev MyThxeadO; 
ti.starto; 
j = 20; 
System.out.println(“f = “ + f 

+ ” j = ” + j); 

class MyThread extends Thread { 
public void run0 { 

int k; // local variable 
k = 5; 
Test.f = Test.f + k; 
Test.g = Test.g - k; 

1 
1 

Figure 1: Example Program 

user-level thread scheduler) for thread scheduling informa- 
tion, we capture the logical thread schedule information that 
can be computed without any help from the thread sched- 
uler. We refer to the thread schedule information obtained 
from a thread scheduler as the physical thread scheduleinfor- 
mation, and each time interval in a physical thread schedule 
as a physical schedule interval. 

To better understand the notion of logical thread sched- 
ule, consider a simple multithreaded Java program shown in 
Figure 1. Here, thread main starts a child thread, ti. Both 
main and tl can access the (shared) member variables, f 
and g - main reads f and ti reads and writes variables f 
and g.’ Variables k and j are thread-local variables, while 
f and g are thread-shared variables.’ 

Figure 2 depicts a few execution instances (physical th- 
read schedules) of the example program on a uniprocessor 
machine: time is marked in the vertical direction. In Fig- 
ure 2(a), the shared variable f is incremented by ti before 
main can print the value of f. Hence, for this execution, 
the value printed is 5. The difference between the execution 
instances (a) and (b) in Figure 2 is that, in the latter, vari- 
able j is updated before thread tl starts executing. This 
does not affect the execution behavior of the program be- 
cause accessing a local variable is a local event of a thread. 
The value of f printed by thread main is still 5. However, 
in Figure 2(c), main prints the value off before ti updates 
it. Hence, the value printed is 0. Likewise, in Figure 2(d), 
the value off that gets printed by main is 0. The difference 
between the thread schedules (c) and (d) in the figure lies 
in the order of local variable accesses. In (c), k is updated 
before the shared variable f is accessed by thread main; in 
(d), k is updated after f is accessed in main. 

An execution behavior of a thread schedule can be dif- 

‘Declaring the shared variables volatile forces each thread not to 
treat them as locals in the absence of any explicit synchroniaation 
operations. 

2 We use the term variable to denote the unique memory location 
associated with the variable at an execution point. 

ferent from that of another thread schedule, if the order of 
shared variable accesses is different in the two thread sched- 
ules. Thus, it is possible to classify physical thread schedules 
with the same order of shared variable accesses into equiva- 
lence classes. In our example, schedules (a) and (b) belong 
to the same equivalence class. Likewise, schedules (c) and 
(d) belong to one equivalence class. We collectively refer to 
all the physical thread schedules in an equivalence class as 
a logical thread schedule. 

Synchronization events can potentially affect the order of 
shared variable accesses, and thus affect the possible logical 
thread schedules. Java provides several flavors of synchro- 
nization: 

l monitorenter, monitorexit that mark the begin and 
end, respectively, of a critical section. The semantics 
of a critical section is that only one thread can execute 
the section of code at any given time. A different th- 
read can enter the critical section only after the first 
has executed the monitorexit operation. However, 
threads compete to enter a critical section, and dur- 
ing different execution instances, threads may acquire 
access to the critical section in different orders. The 
Java synchronized methods and statement blocks can 
be implemented using monitorenter and monitorexit 
operations. 

wait, notify/notifyAll that can be used to coordi- 
nate the execution order of multiple threads. A thread 
that has executed a wait on an object must wait to be 
notified by a different thread executing a notify op- 
eration on the same object. The thread that executes 
the notify on an object wakes up an arbitrary thread 
waiting on the same object. notifyAl can be used to 
wake up all the corresponding waiting threads. 

suspend and resume are also used to coordinate the 
execution order. A thread can suspend another th- 
read or itself A suspended thread must be explicitly 
resumed by another thread. 

Finally, it is possible to also interrupt the execution of 
a thread at any point by a different thread using the 
interrupt operation. 

All of the above synchronization operations affect the ex- 
ecution order of threads, which in turn can affect the order of 
shared variable accesses and hence the logical thread sched- 
ules. In addition, the interactions between synchronization 
operations in the user application are themselves part of the . . apphcatron and have to be reproduced for the user to cor- 
rectly understand their program behavior. It is therefore 
imperative, in a record/replay tool, to capture all these syn- 
chronization events and the shared variable accesses in order 
to reproduce the exact same execution behavior of the pro- 
gram. We collectively refer to the synchronization events 
and shared variable accesses as critical events. A logical 
thread schedule is a sequence of intervals of critical events, 
wherein each interval corresponds to the critical and non- 
critical events executing consecutively in a specific thread. 
(Note that events of a single thread are well ordered ac- 
cording to their temporal order during the execution of the 
thread.) 

Note that it is not necessary to trace each critical event 
individually - in particular, for a particular logical thread 
schedule, if multiple critical events occur in succession and 
are not separated by a thread switch, it suffices to trace 
the critical event interval, i.e., the first and the last critical 
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main tl 

I tl.sturt 
II 

main tl 

t1..sturt 

j = 20 

- 0 

k=5 

print(f) 

j = 20 

printu) 
k=5 

Cd) (b) 

Figure 2: Possible Physical Thread Schedules for Example Program. Object Updates are indicated by a variable name 
followed by an equals sign. 

threadI I I thread121 thread[last] 

thread[i] * 
B2: 1 localClock = 0; 

rs next event a cr~tlcal event. 

global-clock-copy = global-clock; 

global-clock++; 

execute the next event; 

B6: I 

's IlocalClock < global-clock-copy) 

I 

YES r 

v 
iz 

NO 

BS: t 

B7: LastCriticalEvent[il = localClock; 
i = i + 1; 

FirstCriricalEvent[il = global-clock-copy, 

I 
llocalclock = global_clock_copy+l;I 

* 
B9: 

Is thread[il terminated? 

. . . 

$ I 

YES . 

1, 

threadI I I threadI BlO: V thread[last] 

Save Logical Thread Schedule Information; 

Figure 3: Flowchart to Capture the Logical Thread Schedule 
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event. (In this paper, we use the term tracing events to refer 
to monitoring events and recording the monitored events in 
main memory or a secondary storage place such as disks.) 
Tracing the critical event interval rather than every critical 
event reduces the space requirements for the traces, and con- 
sequently improves the performance of the replay tool. For 
example, in both the logical schedules in Figure 2, the shared 
variables f and g are accessed in thread tl, uninterrupted 
by thread switches, in the order f; f; g; g (corresponding to 
the reads and writes of f and g respectively). Rather than 
trace each of these critical events, we simply trace the first 
access to f, which is a read, and the last access to g, which 
is a write, in t 1. Before proceeding to discussing record and 
replay of critical events, the rest of this section formalizes 
the notion of logical thread schedule and discusses how such 
schedules can be identified. 

2.1 Capturing logical Thread Schedules 

The logical thread schedule, captured by DejaVu, contains 
enough thread schedule information to reproduce the execu- 
tion behavior of the program during a replay. The approach 
to capture logical thread schedule information is based on a 
global clock (i.e., time stamp) for the entire application and 
one local clock for each thread. 

2.1.1 logical Schedule Intervals 

The logical thread schedule of an execution instance on a 
uniprocessor system is an ordered set of critical event inter- 
vals, called logical schedule intervals. Each logical schedule 
interval is a set of maximally consecutive critical events of 
a thread. Formally, a logical schedule interval is a (tempo- 
rally well ordered) non-empty set of critical events with the 
following properties: 

all critical events of the logical schedule interval belong 
to the same thread; 

given any two critical events Ci and Cj of the logical 
schedule interval, all critical events of the thread that 
happened between Ci and Cj also belong to this logical 
schedule interval; and 

no two adjacent intervals belong to the same thread. 

The implication of 3 above is as follows: If there are two 
physical schedule intervals Pi and Pj of a thread such that no 
physical schedule intervals between Pi and Pj have critical 
events, then all the consecutive physical schedule intervals 
of this thread from Pi to Pj are merged into a single log- 
ical schedule interval. The two physical schedule intervals 
of thread main in Figure 2(c) and Figure 2(d) are examples 
of such intervals to be merged into a single logical schedule 
interval. Such a merge is possible because the first physical 
schedule interval of tl in these figures does not contain a 
critical event. We need only two logical schedule intervals 
to capture the four physical schedule intervals in these fig- 
ures: one logical schedule interval for thread main consisting 
oft I. start and print(f) , and the other for thread t 1 con- 
sisting of the assignments to f and g. Assignment to k in 
thread t 1 can be done independent of its timing with respect 
to thread main without affecting the execution behavior of 
the program. 

With the above properties, an execution instance of an 
application on a uniprocessor system has a unique logical th- 
read schedule. We capture this unique logical thread sched- 
ule during the record phase, and enforce it during the replay 

phases to reproduce the same execution behavior. The man- 
ner in which non-critical events between two logical schedule 
intervals are scheduled during a replay does not affect the 
execution behavior of the program. In the rest of the paper, 
we will refer to the logical schedule interval as the schedule 
interval when the meaning is clear. 

Each schedule interval, LSIi, is an ordered set of critical 
events, and can be represented by its first and last critical 
events as follows: 

LSIi =< FirstCriticalEvent;, LastCriticalEvent, >. 
We use a global clock that ticks at each execution of a 

critical event to uniquely identify each critical event. There- 
fore, FirstCdicalEvent; and LastCriticalEvent, can be 
represented by their corresponding global clock values While 
running, each thread captures the FirstCriticalEvent and 
LastCriticalEvent pair of each of its schedule intervals. 
The following section provides a detailed description of how 
we capture FirstCriticalEvent and LastCriticalEvent 

The idea of capturing and tracing schedule interval in- 
formation, and not tracing the exhaustive information on 
each critical event, as is done in previous approaches [8, 13, 
11, lo], is crucial for the efficiency of our replay mechanism. 
In the trace file generated by the system, we have found it 
quite general for a schedule interval to consist of thousands 
of critical events, all of which can be efficiently encoded by 
two, not thousands of, word-long clock values. 

2.1.2 Identifying Schedule Intervals 

Although the global clock and a thread’s local clock start 
with the same time value, the local clock stays behind the 
global clock when a different thread executes a critical event: 
when the thread is scheduled out, the global clock contin- 
ues to tick for each critical event executed by other threads 
while the local clock stays still. We use this observation in 
capturing the schedule interval for each thread as follows: 

s At the beginning, all the local clocks and the global 
clock have the same value (say, zero). 

s When a critical event is executed by a thread, the th- 
read compares its local clock with the global clock. 

a If the two clock values are different, the thread has just 
detected the end of the previous schedule interval and 
also the start of a new schedule interval. 

l The thread executes the critical event, and increments 
the global clock, both as one atomic operation. (De- 
tails of this will be provided below.) The thread then 
synchronizes the local clock with the global clock. 

At the beginning, global-clock is initialized to 0.’ Fig- 
ure 3 shows the steps for thread[i] in detail as a represen- 
tative case. The statements in B5 must be executed atomi- 
cally. Block B7 corresponds to the case when a new thread 
schedule interval is detected. Note that, according to the 
algorithm, all the threads except the main thread will have 
an initial interval < 0, -1 >, which should be ignored. (The 
initial interval of the main thread could also be < 0,O >, 
and should not be ignored. This could happen if the main 
thread is scheduled out after only one critical event. We as- 
sume, however, we can always distinguish the main thread 
from the other threads.) 

Figure 4 shows the timing diagram with four threads: 
7’1, T2, T3, and T4. The vertical lines indicate time. The 

3glabalAxk is shared by all threads in the program. Other vari- 
ables in the flowchart are local to each thread. 
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T1 72 T3 T4 

Lo G3 

IA G4 

L5 G5 

L6 G6 

. : thread-shared variable 
Thread Schedule Intervals: 

0: thread-local variable TI: < 0. 2 >, < 7. X > 

T3: < 6, 6 > 

T4: < 3. 5 > 

Figure 4: Identifying Thread Schedules 3. CriticalEvent - execution of a critical event. 

figure shows that Tl is the first thread scheduled by the 
thread scheduler. Tl executed three accesses to shared vari- 
ables followed by one access to a local variable. Then, a 
thread switch happened, and T2 was scheduled in. After 
accessing two local variables, T2 was scheduled out, and T4 
was scheduled in, and so on. The figure also shows the th- 
read schedule intervals for threads Tl, 2’3, and T4. Note 
that T2’s execution does not contain any critical event and 
hence, nothing has to be traced for T2. Consider Tl: there 
are five critical events in Tl (in this case all of them corre- 
spond to shared variable accesses). The first three critical 
events occur in succession, and then, there are four thread 
switches before the next two critical events. The first three 
critical events of Tl correspond to global clock values 0, 1 
and 2 respectively. The 4th and 5th critical events corre- 
spond to global clock values 7 and 8, respectively. Hence, 
our algorithm computes two logical schedule intervals for 
Tl, < 0,2 > and < 7,8 >. 

3 Tracing Critical Events 

In the previous section, we described how to detect thread 
schedule intervals using a set, of local clocks, one for each 
thread, and a global clock. The global clock is used to order 
the critical events, by assigning a unique, increasing value to 
each critical event. Since multiple threads execute critical 
events and update the same global clock, the following three 
events must be executed as a single atomic action during the 
record phase: 

1. AssignGlobalClock - assigning the global clock value 
to the critical event.; 

GcEnterCriticalSection: 

Enter the GC Critical Section 

GcLeaveCriticalSection: 

(release GCounter-Lock 1 

Figure 5: Acquiring and Releasing locks for general critical 
events 

GcCriticalSection 0 { 
GcEnterCriticalSection ; 
global-clock-copy = global-clock; 
global-clock++; 
execute the critical event; 
GcLeaveCriticalSection: 

Figure 6: GC-critical section for general critical events 

2. UpdateGlobalClock- incrementing the global clock; and 

We have implemented light-weight GC-critical section 
(for Global Clock critical section) codes to implement. a sin- 
gle atomic action of the above three events by guarding them 
with GcEnterCriticalSection and GcLeaveCriticalSection as 
shown in Figure 6. It is used when the critical event is a gen- 
eral event, e.g. a shared variable access, and corresponds to 
the statements in B5 of Figure 3. GcEnterCriticalSection 
and GcLeaueCriticalSection are implemented by acquiring 
and releasing a light-weight lock called GCounterLock as 
shown in Figure 5. 

A straightforward application of the GC-critical section 
works fine for critical events that are accesses to shared vari- 
ables, we will call it the general GC-critical section. How- 
ever, GC-critical sections different from the general GC- 
critical section are used to record most synchronization op- 
erations because of their different semantics. The interrupt 
operation can be handled using the general GC-critical sec- 
tion. The rest of this section discusses the GC-critical sec- 
tions used to record the other Java synchronization opera- 
tions. 

3.1 monitorenter and monitorexit 

Java’s bytecode has two instructions to help implement crit- 
ical sections: monitorenter and monitorexit. Examples of 
Java’s critical sections that can be implemented using these 
instructions are synchronizedmethods or statement blocks. 
Reproducing the same order in which threads enter a user- 
defined critical section is necessary to reproduce the same 
order in which threads access shared variables within the 
critical section. A straightforward application of the general 
GC-critical section code to monitorenter, however, would 
fail, resulting in a deadlock as shown in Figure 7(a). 
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TI n TI I7 

I I I I 
W : monitor-enter Ti T2 TI 

q : monitor-exit 

n : lock and increment the 
global clock 

u : unlock the global clock 

‘_ _I : fail to unlock the global clock 

- - -) : wait-for edge 

l : wait 
0 : notify Cc) (4 

Figure 7: Incorrect and Correct Handlings of monitorenter (a, b) and vait/notify (c. d) 

In the figure, thread Tl first enters the user-defined criti- 
cal section, executing GC-critical section code with 
monitorenter as its critical event. Right after Tl enters 
the critical section but before accessing a shared variable, 
T2 tries to enter the same critical section. In doing so, 
T2 first enters the GC-critical section, then tries to execute 
its critical event, which in this case is monitorenter of the 
critical section that Tl is already in.’ (We ignore that there 
must have been a thread switch from Tl to T2 for T2 to 
try to enter the critical section, and simply describe as if 
there were multiple processors, one for each thread, which 
is easier to understand.) T2 will have to wait until Tl exe- 
cutes monitorexit before it can execute its monitorenter. 
T2, however, has already entered the GC-critical section, 
but is blocked from executing monitorenter. Now, when 
Tl wants to access the shared variable, it will be blocked 
from entering the GC-critical section because T2 is already 
in it. 

This situation is a classical example of a deadlock as 
shown with the zuait-for edges in the figure: (1) Tl is waiting 
for T2 to leave the GC-critical section, but T2 cannot leave 
the GC-critical section until it can execute monitorenter; 
(2) T2 cannot execute monitorenteruntil Tl leaves the GC- 
critical section via monitorexit; (3) Tl, however, is waiting 
for T2 to leave the GC-critical section, which is identical 
to (1) above. The solution, as shown in Figure 7(b), is to 
execute monitorenter before GC-critical section, not in the 
middle of the GC-critical section. Since only one thread can 
be in a user-defined critical section, we can still correctly 
capture the order of threads entering the critical section af- 
ter the execution of monitorenter. We still need the GC- 
critical section to atomically update the global clock. Note 
that monitorexit need not be captured, because capturing 
the order of successfully executing monitorenter is suffi- 
cient for replay. Figure 8 shows the GC-critical section for 
the monitorenter critical event. 

3.2 vait, notify, and notifyAl 

Java provides event-style synchronization operations via vait, 
notify, and notifyAl methods. The language requires 
that vait, not if y and not if yAl1 methods be invoked within 
- 

‘For the simplicity of the discussion, we assume there is only one 
user-defined critical section. 

GcCriticalSectionMonitor 0 ( 
monitorenter; 
GcEnterCriticalSection; 
global-clock-copy = global-clock; 
global-clock++; 
GcLeaveCriticalSection; 

1 

Figure 8: GC critical section for monitorenter 

synchronized methods or statements. For example, the code 
to invoke vait would look as follows: 

synchxonized(ev) c ev.vaitO; ) 

where ev is the object on which the vait is invoked. Thus, a 
thread can successfully invoke a vait, not if y, or not if yAl1 
method on an object ev only within the critical section 
where the thread owns ev. Hence, when a thread success- 
fully invokes ev.aaitO, ev.notify() or ev.notifyAll(), 
no other thread can own ev. Upon (successful) invocation of 
ev. wait 0, the thread releases ownership of the object, ev, 
thus allowing another thread to acquire access to ev and ex- 
ecute a not if y or not if yAl1 on ev. Any invocation of these 
operations on an object not owned by the thread can be sim- 
ply treated as a non-synchronization critical event since it 
fails to perform as a synchronization operation.” 

Since wait is a blocking event (i.e., the thread executing 
wait suspends and cannot proceed until another thread is- 
sues a notify), a straightforward application of the general 
GC-critical section will result in a deadlock. Figure 7(c) il- 
lustrates this situation: Tl cannot leave the GC-critical sec- 
tion, because it becomes suspended as soon as it executes 
wait. T2, which is supposed to execute the not if y event for 
Tl, cannot do that because it cannot enter the GC-critical 
section, which is currently occupied by Tl: a deadlock oc- 
curs. Recall that a thread (Tl in this case) can successfully 
invoke wait on an object only when it already owns the ob- 
ject in a synchronized code block, and that another thread 

‘It throws IllegalMonitorStateException exception, which can be 
caught and handled by an exception handler. 
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GcCriticalSectionWait 0 { 
GcEnterCriticalSection; 
global-clock-copy = global-clock; 
global-clock++; 
GcLeaveCriticalSection; 
vait0; 

Figure 9: GC critical section for vait 

GcCriticalSectionSelfSuspend 0 { 
GcEnterCriticalSection; 
global-clock-copy = global-clock; 
global-clock++; 
isAnySelfSuspended = suspending_threadid; 
suspend(self); 

1 

Figure 10: GC critical section for self-suspend 

(T2 in this case) can invoke notify/notifyAll on an ob- 
ject only when it already owns the object in a synchronized 
code block. Because of this, vait need not be inside the 
GC-critical section to atomically update the global clock; 
we can place wait after the GC-critical section, as shown 
in Figure 7(d). Figure 9 shows the GC-critical section for 
wait. 

When multiple threads are waiting on an object, a notify 
wakes up only one of them in an implementation-dependent 
way. If the wake-up order is deterministic (a stack or a 
queue), forcing each thread to invoke vait on the same ob- 
ject in the same order during the replay as in the original 
execution will suffice to wake up the waiting threads in the 
same order. If the wake-up order is non-deterministic, en- 
forcing the same order to invoke wait on the same object is 
not sufficient, and we use a JVM implementation-dependent 
approach to make the wake-up order deterministic. 

3.3 suspendand resume 

In Java, a thread can suspend itself or others via suspend. 
A thread suspended this way resumes execution when an- 
other thread executes resume on the suspended thread. 
suspend(other), which suspends another thread, can be 
handled with the general GC-critical section code in Fig- 
ure 6. Resuming other threads can also be handled with the 
general GC-critical section. Th e rest of this section discusses 
handling a self-suspend operation, i.e., a suspend(self) 
operation.6 

A thread suspending itself introduces a problem similar 
to, but larger than, the one by vait. The problem is similar 
in that the execution of the thread suspends after the invoca- 
tion of the operation. The difference is that suspend(self) 
need not be in a synchronized block as wait does. In order 
to allow a thread to suspend itself within the GC-critical sec- 
tion while holding the GCounterLock, another thread must 

6The notations suspend(self) and suspend(other) are used here 
only for convenience. The real Java syntax for them are suspend0 
and other.suspend(), respectively 

execute the GcLeaveCriticalSection on behalf of the self- 
suspended thread, i.e., release the GCounter-Lock owned 
by the self-suspended thread. The self-suspending thread 
sets a flag, isAnySeZfSuspend, with a non-zero-valued thread 
id of the self-suspending thread. The flag lets other threads 
know that the GCounter-Lock is currently held by the self- 
suspending thread so that they can release the GCounter-Lo- 
ck on behalf of it. A special-valued thread id (such as zero) 
can be used to reset the flag. Figure 10 shows the GC- 
critical section for suspendfself ). Notice the absence of 
GcLeaueCriticaISection at the end of the critical section. 

We also change the original GcEnterCriticaZSection in 
Figure 5 into the new one in Figure 11(a) for all the GC- 
critical sections in order to handle self-suspend. The differ- 
ence is that, in the latter, when a thread fails to acquire the 
GCounter-Lock and finds isAnySeZfSvspendto be set, it tries 
to release the GCounterLock held by the self-suspending 
thread by executing try UnlockSeljSuspended. try UnlockSelf- 
Suspended, in Figure 11(b), itself is a light-weighted critical 
section. 

Once in tryUnZoc&SeljSuspended, the thread examines the 
isAnySelfSuspended flag again to guard against the case an- 
other thread has reset it before the current thread enters 
the critical section. If the flag is still set, it checks whether 
the thread that set the flag is indeed in a suspended state 
(Bl in the figure). If not, the thread simply exits the criti- 
cal section, waiting for the self-suspending thread to become 
suspended. If the self-suspending thread is in a suspended 
state, the thread resets the isAnySeZfSuspended flag and re- 
leases the GCounterLock, effectively executing GcLeave- 
Cr’riticalSection on behalf of the self-suspended thread. The 
thread then exits the critical section and tries to grab the 
GCounter-Lock again. Determining whether the self-sus- 
pending thread is indeed in a suspended state can be done 
easily if there exists a system call that returns the state of a 
thread. In that case, the isAnySelfSuspend, which is the id 
of the self-suspending thread can be used to query the state 
of the self-suspending thread. 

When there exists no such system call, we force the other 
threads to wait another round of thread scheduling to give 
the self-suspended thread enough time to successfully sus- 
pend itself after setting the flag. More specifically, we use 
a counter, instead of the thread id, as the isAnySelfSuspend 
flag set by a self-suspending thread. The counter, initially 
zero, is incremented at each self-suspend operation. After 
the counter is reset to zero in try UnlockSeZfSuspend, it starts 
from the previous counter value, not from zero. Note that 
this is differnt from Figure 10, where isAnySelfSuspend is 
the id of the self-suspending thread. 

After thread Tl sets the isAnySelfSuspendflag, the state- 
ment Bl in Figure 11(b) by another thread T2 becomes sim- 
ply comparing the new isAnySeZfSuspended flag value with 
the previous one T2 saw before. If they are identical, T2 
assumes Tl has had enough time to suspend itself. If they 
are different, T2 assumes that Tl has not had time to self- 
suspend, remembers the new flag (counter) value, and yields 
the thread schedule. The assumption behind this scheme is 
that the thread scheduling is fair: an active thread gets a 
thread-schedule slot of non-trivial amount of time before any 
other thread with no higher priority gets two of such thread- 
schedule slots. (Only threads with priorities no higher than 
that of the self-suspended thread can participate in unlock- 
ing the GCounterLock on behalf of the self-suspended th- 
read.) To ensure that there exists at least one thread with 
priority no higher than that of the self-suspended thread, 
DejaVu uses a JVM thread that always runs at a lower pri- 
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Figure 11: Modified GcEnterCriticalSection 

ority than any other threads. 
We use Figure 12 to illustrate how the scheme works. In 

the example above, we assume all the threads have the same 
priority. In Figure 12(a), Tl sets the isAnySelfSuapended 
flag with a new value. After this, all the other threads, 
during the same round of the thread scheduling, see this 
new flag value and yield the thread schedule, assuming Tl 
has not had enough time to self-suspend. At the next round 
of the thread scheduling, T2 sees the same flag value again 
and assumes Tl has had enough time to self-suspend: it 
releases the GCounterLock on behalf of Tl and resets the 
flag. T3 now grabs the lock and executes its critical event. 

In Figure 12(b), the events are the same up to T3’s grab- 
bing the lock and executing its critical event during the sec- 
ond round of the scheduling. T3’s critical event, however, is 
another self suspend, and T3 sets the isAnySelfSuspended 
flag with a new value. After that, threads T4 through 
TN during this round fail to release the GCounter-Lock 
on behalf of T3 because the flag value they see is differ- 
ent from what they saw before. During the third round, 
T2 sees a different value of the flag and fails to release the 
GCounter-Lock. T4, however, sees the same flag value sec- 
ond time and releases the GCounter-Lock. T5 then grabs 
the lock and executes its critical event. 

3.4 Interactions between wait and suspend 

Assume a thread Tl is about to wait on an object and has 
just finished the GC-critical section for it, as described in 
Section 3.2. Also assume this is followed by a thread T2 
suspending Tl. There are three possible timings: 

1. T2 suspends Tl before Tl successfully invokes wait; 

r 
I 

(a) 

+: su.spend(self) 

r 

(b) 

0 : CriticalEvent 

Figure 12: Correct Handlings of suspendfself 1 

2. T2 suspends Tl after Tl successfully invokes aait; 
and 

3. T2 suspends Tl after Tl successfully invokes wait and 
a third thread wakes up Tl (via notify or interrupt). 

Case 3 does not introduce any interference between wait 
and suspend, and there is no need for any special treatment 
in this case. Probably this is what the user intended. 

Case 1 and Case 2 are the same as far as Tl is concerned: 
Tl becomes inactive. Also, there is no difference in terms 
of the global clock values for the wait and the suspend: the 
clock value of the wait precedes that of the suspend since, 
in this scenario, the GC-critical section for wait executes 
before the GC-critical section for suspend. However, there 
is a difference between the two in terms of their impact on 
other threads. In Case 1, Tl still holds all the locks it owns 
when it becomes inactive (from suspend executed by T2), 
preventing other threads waiting for any of the locks from 
proceeding any further. In Case 2, Tl releases all the locks 
it owns when it becomes inactive (when it executes wait), 
allowing other threads waiting for the locks to proceed. 

The implication of the difference between Case 1 and 
Case 2 on DejaVu is that DejaVu could produce two dif- 
ferent execution behaviors in the replay mode, one corre- 
sponding to Case 1 and the other corresponding to Case 2. 
The solution to handle such an interaction between wait 
and suspend operations is similar to the solution for self- 
suspend. The zuaiting thread that is to execute wait sets an 
is Waiting flag just before it executes wait. Then, the sus- 
pending thread that is about to suspend the waiting thread 
checks the is Waiting flag of the thread to be suspended. If 
the is Waiting flag is set, the suspending thread checks if the 
waiting thread is in the wait state. If it is in the wait state, 
the suspending thread safely executes the suspend opera- 
tion on the waiting thread. If it is not in the wait state, the 
suspending thread waits until it is in the wait state. The 
is Waiting flag is reset by the suspending thread immediately 
before it suspends the waiting thread or is reset by the wait- 
ing thread when it wakes up from its wait state. Note that 
this approach essentially enforces Case 2 when either Case 1 
or Case 2 is possible. 

When there is no system call to determine whether a 
thread is in the wait state or not, the suspending thread 
waits until it sees the same is Waiting flag value twice be- 
fore suspending the waiting thread. Note that in the self- 
suspend case described in Section 3.3, all the threads with 



priorities not higher than the self-suspending thread get in- 
volved in releasing the GCounter-Lock. In the case of wait 
and suspend, only the suspending threads is involved, and 
the priority of the suspending thread gets temporarily low- 
ered to that of the waiting thread if the suspending thread’s 
priority is higher than that of the waiting thread’s prior- 
ity. This is necessary to ensure that the waiting thread will 
have enough time to successfully execute wait. The priority 
will be reset to the original value immediately before the 
suspending thread suspends the waiting thread or when it 
finds the is Waiting flag to be zero again.’ 

4 Replaying Execution Behavior 

At the start of a replay mode, DejaVu reads the thread sched- 
ule information from a file created at the end of the record 
mode. When a thread is created and starts its execution, 
it receives from DejaVu an ordered list of its logical thread 
schedule intervals. We use the finite state automaton in Fig- 
ure 13 to describe how each thread executes and reproduces 
the same execution behavior using this ordered list of sched- 
ule intervals. 

In the figure, state SO is the initial state for each thread. 
At state Si, it reads the next schedule interval to update the 
new FiratCriticalEuent and LastCriticalEvent, which are 
represented by global clock values. After that, the thread 
waits, at 32, until the global clock value becomes the same 
as the current FirstCTiticalEvent, at which point it moves 
to s3. 

sz corresponds to GcEnterCriticalSection of GC-critical 
section described in Section 3, and we call it RpEnterCriti- 
calSection. There are two major differences between GcEn- 
terCriticalSection and RpEnterCriticalSection: (1) the for- 
mer is implemented by acquiring a lock (GCounter-Lock), 
while the latter is implemented by comparing the global 
clock with the FirstCriticalEvent of the current interval and 
yielding the thread schedule via sleep; and (2) the former 
need be executed for every critical event during record, while 
the latter need be executed only for the first event of each 
interval during replay. 

At 33, the thread executes the next instruction (event). 
If the event is a critical event, the thread also increments 
the global clock at S3. At the end of S3, the thread ex- 
ecutes RpLeaveCriticalSection, corresponding to GcLeave- 
CriticalSection of GC-critical section. Since RpEnterCriti- 
calSection does not acquire a lock, RpLeaveCriticalSection 
does not release any lock. RpLeaveCriticalSection, however, 
checks whether the global clock value becomes greater than 
LaatCriticalEvent of the current interval, at which point it 
moves to S4. If the value is not greater than 
LastCriticalEvent, it repeats S3. At S4, the thread in- 
crements the current interval number and checks if there 
are any more intervals left. If so, it moves back to state Sl, 
and repeats the above steps. If no more intervals are left, it 
terminates. 

We call the following combined steps of S2 and S3 the 
RP-critical section: 

1. waiting for the global clock value to become the same 
as the current FiratCriticalEvent (SZ); 

2. executing the critical event and incrementing the global 
clock (S3); and 

7This can theoretically have an unpleasant effect of starving the 
suspending thread if the priorities of all the other threads get raised 
above the suspending thread’s new priority and remain there. How- 
ever, this should be rare in practice. 

3. checking whether the global clock value becomes greater 
than LastCriticalEuent of the current interval (S3). 

As stated before, the first step of RP-critical section need 
be executed only for the first event of each interval. 

In the presence of higher-priority threads waiting for 
their turn at state S2, a thread with a lower priority can 
starve without being able to execute and increment the 
global clock. This in turn will make the higher-priority 
threads waiting forever at SZ, hanging the whole system. 
The solution we adopt for this is to progressively increase the 
sleep time after comparing the global clock with the Firat- 
CriticalEvent in RpEnterCriticalSection. The sleep time is 
reset to the original value when the thread succeeds in en- 
tering RpEnterCriticalSection. 

The above description applies to all non-synchronization 
critical events. In addition, the RP-critical section can be 
applied without modification to monitorenter: the thread 
waits for the correct global clock value before executing 
monitorenter, and increments the global clock after the th- 
read successfully executes monitorenter. 

Handling wait, notify, notifyAll, suspend, resume, 
and interrupt synchronization operations during replay is 
similar to their handling during the record mode. The differ- 
ences relate to the differences between the GC-critical sec- 
tion and the RP-critical section: waiting for and updating 
the global clock value are the means of ordering events dur- 
ing replay, not acquiring and releasing the GCounter-Lock 
as done during record. 

5 Implementation and Performance Results 

We have implemented the record/replay mechanism discuss- 
ed in the previous sections by modifying the Sun Microsys- 
tems’ Java Virtual Machine (JVM). The modified JVM, 
called DejaVu, is capable of deterministic replay of Java mul- 
tithreaded programs, and can be used to implement several 
tools. Using DejaVu, we have implemented a simple com- 
mand line debugger that uses execution replay for debug- 
ging. We considered modifying the application bytecode, 
instead of the VM that interprets the application bytecode, 
but decided against it because we felt the overhead would 
be a lot higher than modifying the VM. The particular java 
interpreter we have modified is javag. javag is written 
mostly in C and is a lot easier to instrument than the reg- 
ular java interpreter. It also has much better support for 
debugging the application. 

Table 1 shows the performance measurements of DejaVu 
with four synthetic-workload applications - Chaos, MM, 
SOR, and MTD - and two SPLASH-2 (Stanford Parallel 
Applications for Shared Memory) kernel benchmark pro- 
grams [14] - Radix and FFT - on a machine with a Pentium 
200 MHz processor running Windows NT. Chaos is an ex- 
treme case of a highly non-deterministic, compute-intensive 
program of multithreads that, without synchronizations, in- 
crement two shared variables over and over. MM is a matrix 
multiply program, and SOR implements a Successive Over 
Relaxation algorithm for a financial application. Both MM 
and SOR are highly compute intensive with only a few syn- 
chronization operations. MTD is a thread schedule simula- 
tor consisting mostly of synchronization operations. 

The high instrumented-execution overhead of Chaos, MM, 
and SOR reflects their compute-intensiveness with high rate 
of shared-variable accesses: each access of a shared variable 
is a critical event that incurs the overhead of atomically 
updating the global clock with the (light-weighted) synchro- 
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SO: START, i = 0 

S 1: update FirstCriticalEvent(i) and 
LastCriticalEvent(i) 

S2: yield the thread schedule 

S3: execute event. 
if CriticalEvent Increment global-clock 

S4:i=i+ I 

S5: END 

C I : global-clock < FirstCriticalEvent(i) 

C2: not C I 

C3: global-clock <= LastCriticalEvent(i) 

C4: not C3 

C5: I <= last interval 

C6: not C5 

Figure 13: Replay Finite State Automaton 

nization operations of DejaVu. However, their instrumented- 
execution time is still well within twice the original exe- 
cution time. Their trace sizes are also small, in spite of 
their large number of critical events, due to the small num- 
ber of thread switch intervals. The smaller replay-execution 
overhead of these three programs also reflects the fact that 
shared-variable accesses during a replay execution do not 
require critical events to update the global clock as they do 
during an instrumented execution: shared-variable accesses 
are cheaper during replay execution. 

MTD is the opposite of Chaos: MTD has almost no 
shared-variable accesses and consists mostly of Java syn- 
chronization operations, which are expensive by themselves 
with or without any instrumentation by DejaVu. Since the 
light-weight critical sections of DejaVu have negligible cost 
compared with the Java synchronizations, MTD does not 
show any detectable overhead in instrumented execution or 
in replay execution. We suspect a similar behavior with in- 
teractive graphics-oriented Java programs using AWT (Ab- 
stract Window Toolkit). 

Radix and FFT of SPLASH-2 kernel programs are writ- 
ten in C, which we have ported into Java. Flussinovich and 
Cogswell also use the same programs (and three additional 
programs from the same benchmark suite) in the perfor- 
mance measurements for their Repeatable Scheduling [12]. 
However, it is hard to compare the performance of DejaVu 
with that of Repeatable Scheduling solely based on the mea- 
surements with these benchmark programs, because DejaVu’s 
measurements are for Java programs interpreted by JVM 
running on Windows NT while Repeatable Scheduling’s mea- 
surements are for C programs compiled into native code run- 
ning on Mach 3.O/UX. The overhead of Repeatable Schedul- 
ing range between 5.7% and 16.5% for instrumented exe- 
cution, and between 8.7% and 15.3% for replay execution. 
The space overhead of Repeatable Scheduling ranges be- 
tween 6KB and 20KB. The execution and space overheads, 
however, will depend on the size of the problem, i.e. in- 
put parameters such as the number of threads, which is not 
shown in their publication. 

As stated above, DejaVu is implemented by modifying 
the javag interpreter from Sun, which is mostly written in 
C and, therefore, is easier to modify than the regular java 
interpreter. Written in C, javag is itself a few times slower 
than the regular java interpreter in executing the applica- 
tion code. It will be interesting to see the new performance 
results when DejaVu is ported to the regular java interpreter 

with the instrumentation code written in the assembly lan- 
guage. 

DejaVu can also work with a DejaVu-aware compilation 
system, including just-in-time (JIT) compilers for Java. The 
DejaVu-aware compiler, whether a JIT for Java or a full com- 
piler for a conventional language like C, needs to generate 
native code corresponding to the instrumentation code for 
the critical events in DejaVu. A JIT compiler improves the 
performance of the java interpreter, and will also improve 
the performance of the DejaVu instrumentation for the JIT- 
compiled part of the application. Although we suspect the 
relative performance of DejaVu will in general become worse 
with JIT compilation, it is hard to predict whether that will 
be the case, or how much. 

Java Native Interface (JNI) allows native methods to 
work with application bytecode. DejaVu can replay the or- 
der in which the native methods are invoked from within the 
bytecode. However, deterministic replay of the native meth- 
ods with non-deterministic side effects is beyond the capa- 
bility of DejaVu unless the native methods are also compiled 
by a DejaVu-aware compiler. 

When applied to multiprocessor systems, DejaVu’s over- 
head will increase because there will be in general more 
than one thread simultaneously active at any given time. 
These simultaneously active threads will make the size of 
each schedule interval smaller, resulting in larger number 
of total schedule intervals for the same application. Each 
schedule interval incurs time overhead in accessing the GC- 
critical section and space overhead in tracing the interval. 
Also, all the critical events will be totally serialized in terms 
of the global clock, resulting in loss of parallelism in execu- 
tion. We are currently extending DejaVu so that there will 
be multiple global clocks to reduce this loss of parallelism. 

6 Related Work 

Repeated re-execution is a widely accepted technique for 
debugging deterministic sequential applications. Repeated 
re-execution for debugging, however, fails to work for non- 
deterministic multithreaded applications because a bug that 
manifested itself during one execution instance might not 
manifest itself again in another execution instance. 

One approach to debug non-deterministic applications is 
to avoid repeated re-execution and generate traces as is done 
by PPD [l]. Flowback analysis can then be performed on 
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the traces to show the causality of the program events to 
the user to help identify the bugs. 

Re-execution approaches for debugging a non-determin- 
istic application need to generate sufficient traces to repro- 
duce the same execution behavior over and over. Most pre- 
vious approaches for re-execution of non-deterministic appli- 
cations have focused on replaying multiprocess applications 
running on shared memory multiprocessor systems. Like 
threads, processes of an application can affect the execu- 
tion behavior of other processes via accesses to shared vari- 
ables, synchronization operations, or communications.’ Re- 
playing multiprocess applications requires capturing interac- 
tions among processes - i.e., critical events - and generating 
traces for them. The major drawback of these approaches 
is the potentially large overhead (in time, and particularly 
in space [8, 13, 113) in generating the traces. 

To reduce the trace size, Instant Replay [8] assumes that 
applications use a correct, coarse-grained operation, called 
CREW for concurrent-read-exclusive-write, to access shared 
objects, and generates traces only for these coarse opera- 
tions. However, this approach fails if critical events within 
CREW are non-deterministic. The approach by Carver and 
Tai [13] is similar in that they also generate traces only for 
coarse-grained critical events, assuming shared variables are 
well guarded within well-defined critical-sections. 

Russinovich and Cogswell’s approach [12] differs from 
the above approaches in that it addresses specifically mul- 
tithreaded applications running only on a uniprocessor sys- 
tem. To capture the physical thread scheduling information, 
Russinovich and Cogswell have modified the Mach operating 
system so that it notifies the replay system of each thread 
switch. This makes their approach highly dependent on an 
operating system and also on the availability of the source 
code of the operating system, which is unlikely for commer- 
cial third-party operating systems. Their approach is also 
strictly for uniprocessor systems and does not work for mul- 

‘Strictly speaking, threads are different from processes in that 
threads usually share address spaces while processes do not. However, 
the issues and techniques described in this paper apply to both. 

tiprocessor systems. 
Holloman and Mauney’s approach [7, 6] is similar to 

Russinovich and Cogswell’s except for the mechanism to 
capture the process scheduling information. Their approach 
uses exception handlers instrumented into the application 
code that capture all the exceptions, including the ones for 
process scheduling, sent from the UNIX operating system 
to the application processs. Their approach, therefore, does 
not require modifying the operating system. Their approach 
is still operating-system dependent and strictly for unipro- 
cessor systems. 

Our approach is similar to Russinovich and Cogswell’s in 
that we also generate traces only for thread switches, result- 
ing in trace sizes similar to theirs. Our approach, however, 
captures the logical thread schedule interval. Our approach 
does not require making modifications to the operating sys- 
tem, and is, therefore, independent of the operating sys- 
tem. Also, our approach works on multiprocessor systems 
whose thread schedule is fair according to the assumption 
in Section 3. One disadvantage of being independent of the 
underlying system is that capturing logical thread schedule 
information can potentially incur higher execution-time cost 
than getting notified of physical thread schedule information 
by the operating system. 

Netzer’s Optimal Tracing [lo] reduces the trace size fur- 
ther by applying an execution-time algorithm to find the 
minimum traces sufficient to replay the execution. Optimal 
Tracing can reduce the trace size by one or two orders of 
magnitude, but potentially at the cost of substantially in- 
creasing the execution time of the application. 

Our compact logging scheme for logical thread sched- 
ules is similar to the one described by Levrouw et. al. for 
event logging [9]. A major difference is that our scheme 
uses a single global clock while theirs uses one clock for each 
shared object. This difference makes our approach much 
simpler and more efficient than theirs on a uniprocessor sys- 
tem. They describe an extension of their scheme to reduce 
the log size further, but at the cost of counting the number 
of instructions executed between critical events to simulate 
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a real time clock. 
DejaVu, to our knowledge, is the first tool that com- 

pletely addresses the issues in handling all the Java synchro- 
nization operations in the context of deterministic replay of 
multithreaded Java applications. 

7 Conclusions 

We have developed a record/replay tool for Java applica- 
tions, called DejaVu that provides a deterministic replay of 
a non-deterministic execution. DejaVu is is implemented by 
modifying Sun Microsystem’s Java Virtual Machine (JVM). 
DejaVu is independent of the underlying thread scheduler 
such as the operating system. It runs highly efficiently on 
a uniprocessor system and can be used on a multiprocessor 
system as well, with higher overhead than on a uniprocessor 
system expected. While our current implementation of De- 
jaVu is in the context of a Java interpreter, the record/replay 
mechanisms described in this paper will work just as well in 
the context of both traditional compilation environments 
that generate object code, and just-in-time compilers, for 
general multithreaded programming systems. 
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