
Using Cause-Effect Analysis to Understand
the Performance of Distributed Programs*

Wagner Meira Jr. Thomas J. LeBlanc Virgilio A. F. Almeida

Departamento de Cikncia da Computa@o Department of Computer Science
Universidade Federal de Minas Gerais University of Rochester

Be10 Horizonte, MG, Brazil Rochester, NY, USA
{meira,virgilio}@dcc.ufmg.br leblanc@Ics.rochester.edu

Abstract

Understanding the performance of distributed programs can
be very difficult, since a program’s performance depends
on characteristics of the application, the underlying hard-
ware, the software environment, and interactions among all
three. In this paper we present cause-effect analysis (CEA),
a general approach to understanding distributed program
performance that facilitates performance analysis, tuning,
and prediction. Using detailed program traces gathered at
execution time as input, CEA automatically generates ex-
planations for important performance phenomena, identify-
ing code segments that are responsible for the occurrence of
the phenomena.

We illustrate our approach by describing CEA techniques
for three classes of overheads in distributed programs: con-
tention, synchronization, and communication. Using the ex-
planations produced by CEA, we are able to understand
and minimize common performance problems in real appli-
cations including load imbalance, false sharing, and resource
contention.

1 Introduction

In order to understand the performance of a distributed pro-
gram, we must be able to explain performance phenomena
in terms of the decisions a programmer makes while creating
the program. An explanation for a particular phenomenon
(such as excessive time spent waiting at a barrier at the end
of a loop) is the set of statements, implementation decisions
(such as the loop scheduling algorithm or the data layout
scheme), or architectural characteristics that produced the
phenomenon. .4t, present, explanations for program behav-
ior are inferred manually by the programmer, usually based
on an analysis of the source cotle and some dynamic rnca-
surernents. This type of manual analysis is complex, error-
prone, and time-consuming.

‘This research was supported by an NSF grant CCR-9510173, ~111
NSF CISE Institutional Infrastructure Grant CDA-O401142, and ~1
equipment grant from Digital Equipment C’orporation’s External Re-
search Progranl Wagner Meira Jr. was supported b CNPq/I3wiI
grant 200.862/93-6.

Pemksion to make digital or hard copies ofnll or part oftiis work for
Personal or ChWXOO111 USI: is granted without fee provided fiat copies
are not made or distributed for profit or cormnarcial ndvantnge and fiat
Copies hear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on swvers or to redirtrihute to listi,
requires prior specific ponnission at&or n f~c.

SPD?‘ 98 Welches Oli 1 ISA
Copyright ACM 1998 l-581 13-OOl--5/98/8...$5.00

Events whose duration varies significantly during execu-
tion are especially difficult to analyze manually. Any event
whose duration is determined by interactions among pro-
cesses or the duration of other events we will call a non-de-
terministic duration (NDD) event. An example of an NDD
event is a page fault that occurs in a DSM system. The
duration of the page fault is a function of the accesses per-
formed by other processes since the page was last acquired
by the faulting process. To understand why a page fault
occurs, and why so much time is spent handling the fault,
we must examine the interactions between all processes that
share access to the page.

Another example of an NDD event is a process arrival
at a barrier. The duration of the delay experienced by a
process at a barrier depends on the execution path of the last
process to reach the barrier. To understand why processes
waste excessive amounts of time waiting at a barrier, we
must focus on this execution path as the source of the delays.

Discovering explanations for NDD events is difficult how-
ever, both because there may be multiple causes for each
performance phenomenon and because causes and effects
may be spread out in terms of code location and time of oc-
currence. Although there are many tools that can identify
the existence of performance problems (such as an exces-
sive amount of time spent synchronizing during execution),
there are no tools that automatically relate the durations of
performance phenomena to the underlying causes.

In this paper we present a novel approach to under-
standing the duration of NDD events: cause-effect analysis
(CEA) [12]. This approach is a generalization of our previ-
ous work on performance understanding [13, 141, which uses
runtime traces to generate execution profiles that guide the
user in identifying the location and cost associated with var-
ious parallel program overheads. CEA augments our profile-
based analysis by automatically linking instances of per-
formance degradation with the source code that must be
tuned in order to address the performance problem. Both
profiles and CEA techniques are implemented within Carni-
val [12], an integrated framework for performance under-
standing that automates most of the tasks related to perfor-
mance understanding, including instrumentation, monitor-
ing, analysis, visualization, and generation of explanations
for performance phenomena based on CEA.

This paper is organized as follows. The next section
presents a brief overview of Carnival. Section 3 describes
the general idea behind cause-effect analysis and presents
three specific analysis techniques that we have developed.
We present some practical examples that utilize these tech-
niques in Section 4. The last two sections summarize related

101

http://crossmark.crossref.org/dialog/?doi=10.1145%2F281035.281046&domain=pdf&date_stamp=1998-08-01

~oae moatpcanons

Programmer

Figure 1: Carnival: Components

work and our conclusions.

2 Using Carnival for Performance Understanding

Carnival is a framework for performance understanding that
supports four levels of performance description: (i) it char-
acterizes performance at a coarse grain using data such as
sequential and parallel execution times, speedup, and ef-
ficiency; (ii) it classifies the program’s execution time by
dividing it among all sources of parallel overhead, as well
as normal computation; (iii) it identifies the code locations
where parallel overheads and computation costs arise; and
(iv) it predicts the effects of implementation decisions on
program performance using analytic models that are auto-
matically generated from execution information.

Programmers may use Carnival for either analyzing in-
dividual executions or investigating trends across multiple
executions. There are three main components in Carnival(as
depicted in Figure 1):

Instrumentation: Instrumentation comprises tools and li-
braries that are used to acquire detailed runtime traces
of an application during its execution. Instrumen-
tation is the only platform-dependent component, so
Carnival can be ported easily to new architectures.

Analysis: The analysis component consists of tools that
analyze trace files, produce execution profiles, and au-
tomatically generate a graphical interface that allows
these profiles to be visualized. Figure 2 shows a Pro-
file Map produced by Carnival Each line represents
a scope from the application, which can be a loop, a
procedure, or a block of code. Each scope has a grey-
scale bar that indicates the cumulative execution time

(across all processors) spent in that scope. The colors
in the horizontal bar at the top of each scope describe
a breakdown of the execution time spent in the scope
into categories. By using this profile map, the pro-
grammer can easily identify the scopes that dominate
the execution time of the application.

Modeling: Carnival incorporates the Lost Cycles Toolkit
(LCT) [5], which automates the process of construct-
ing a performance model for a parallel application by
integrating empirical model-building techniques from
statistics with measurement and modeling techniques
for parallel programs.

Carnival differs from other performance tools by integrat-
ing five features that are essential for understanding perfor-
mance:

Static Information: The static information in Carnival is
the source code of the application and its structure.
The source code is organized as a hierarchy of nested
scopes, according to the semantic structure of the ap-
plication. This static information is exploited in dy-
namic data collection, visual interface generation, and
modeling.

Dynamic Information: Carnival provides an instrumen-
tation and tracing library for acquisition of execution-
time performance data. Each call to a library function
generates an event that registers a processor identifier,
scope, processing category, and time of occurrence.
These events are stored in a trace file for further pro-
cessing.

102

Hierarchical Abstraction of Performance Data:
Performance information is organized hierarchically ac-
cording to the source code structure in Carnival, allow-
ing analysis and modeling at, several levels of abstrac-
tion.

Integration of Dynamic and Static Data: Carnival in-
tegrates dynamic and static information by associat-
ing with each dynamic event the corresponding code
segment and processing category.

Support for Generating Models Automatically: Car-
nival automates experimental design and multivariate
modeling. It also provides feedback to the program-
mer on the quality of the resulting model, and allows
the programmer to trace inaccuracies back to the com-
ponent models and performance data.

Carnival comprises about 50000 lines of C and Tcl/Tk
code. We have implemented program tracing for message-
passing programs on the IBM SP2 and shared-memory pro-
grams on the SGI Challenge. We also have implementations
for Treadmarks [2] and PIOUS [16] on clusters of DEC Al-
phas connected by the DEC Memory Channel, PVM pro-
grams on a network of workstations, and Squid cache prox-
ies [6]. More than two thirds of the Carnival code is devoted
to the user interface, profile generation, and modeling sup-
port. Of the 15000 lines devoted to cause-effect analysis
techniques, roughly one half are common to all the tech-
niques (and are encapsulated in a library), with the remain-
ing 7500 lines divided roughly equally among the three tech-
niques we have implemented.

3 Cause-Effect Analysis

Cause-effect analysis is an automated technique for gen-
erating explanations for non-deterministic duration events
(NDD). CEA exploits knowledge about the causal relation-
ships between execution events [9], but differs from previous
work in one key aspect: we are concerned primarily with
the duration of events, and not simply with their occur-
rence. Under CEA, an event a causally affects an event
b when the duration of a affects the duration of b. From
this definition, it follows that cause-effect analysis subsumes
other causality-based approaches, since a non-zero duration
represents an occurrence.

CEA techniques are based on Weighted Causality Graphs
(WCG) [12], which abstract the execution of distribute<1 pro-
grams. Distributed programs are a collection of processes
that reside on multiple processors. For the purposes of ex-
position, we assume that processors are homogeneous, the
variance among their clock rates is negligible and bounded,
and all processes start simultaneously. (We can apply a
variety of techniques to relax these assumptions.) We ab-
stract the execution of each process as a sequence of events,
where each event corresponds to the contiguous execmion
of one or more instructions by the process. The granular-
ity of an event ranges from single instructions to function
calls, depending on the level of detail needed for program
analysis and the instrumentation overhead introduced dur-
iug execution. Earh rvent has four attributes: code location,
processor, type, and duration (which is always non-zero).

A weighted causality graph is an acyclic directed graph,
where the vertices are execution events and the edges are
causal relationships among those events. Each vertex in a
WCG has a weight, which is equal to the duration of the cor-
responding event. There are two types of edges in WCGs.

Intra-processor edges connect vertices that represent con-
secutive events on a single processor. Interrprocessor edges
connect synchronization or communication events on one
processor with the corresponding event on another proces-
sor.

The transition between consecutive events on the same
processor occurs instantaneously. However, the transition
between consecutive events that occur on different proces-
sors, such as a send operation and the corresponding receive
operation, is rarely instantaneous, due to transmission de-
lays and other transient effects. To capture these delays in
the WCG, during instrumentation we measure the time at
which the send operation completes on one processor and the
time at which a message is received on the other processor.
We then post-process the trace and insert a synchroniza-
tion event of the proper duration before the receive event
(see [12] for details). Although this technique produces an
approxunation for transmission durations, any inaccuracies
are eventually accounted for in the WCG, usually in a sub-
sequent synchronization interval.

The time spent during execution by a processor is equal
to the sum of the weights of the vertices for that processor
in the WCG. Since there is a duration associated with each
event in the WCG, and all processors start simultaneously,
we can calculate a starting and ending time for each event
in the WCG. All CEA techniques assume as input a WCG
with these properties; in our implementation, we use the
runtime traces gathered by Carnivalto construct the WCG.

From the perspective of a process P, we divide events
into three groups (as depicted in Figure 3): (1) useful com-
putation associated with the problem being solved by P;
(2) unrelated computation performed by other processes that
share the processor with P; and (3) excess computation per-
formed by P that represents the overhead of parallelization
and distribution. These groups of events characterize three
possible sources of performance degradation in a distributed
program: (1) contention ~ the execution of a process is de-
layed because it is contending with another process for the
same shared resource; (2) synchronization - the execution
of a process is delayed because it is idle waiting for another
process at a synchronization operation; and (3) parallel over-
heads - the execution of a process takes longer than its
sequential counterpart because it is performing additional
operations, such as process creation or communication, that
are needed for the parallel execution. These three sources of
performance degradation are depicted in Figure 4, where we
observe how they affect the execution of a simple program
that consists of three events (as depicted in the sequence of
events labeled “Normal Execution”).

Different phenomena may require different analysis tech-
niques, but all CEA techniques are designed and imple-
mented as follows:

Identify Phenomena: We determine the execution events
that characterize the occurrence of the phenomena of
interest. For example, a process entering a barrier
is an event that signals the onset of synchronization
overhead, whosr duration will vary depending on other
events in the execution.

Determine Possible Causes: We determine the execution
events that must be considered as a possible expla-
nation for the duration of the events of interest. For
example, the duration of a page fault event is indepen-
dent of any preceding computation events (assuming
those events did not themselves result in a coherence
operation).

103

Perfotmence Understandin

Line
121
128
133
138
14l
14

151
156
161
168

ldentier
truWataJmp3
f*rd-my-bodtts

SW@Y&@-
stopsyatcmJnitJantcr

stepsystomloopl
stepsystemJsop2

*wwSt#*J=w
stcqmystem~bankr
stepsystemJbat

SlaveStart

Proflie Cum. Time Time

Figure 2: Code Profile from Barnes

Execution Time

(Computation Idle I

(d) (Excess Computation

Figure 3: Decomposition of process execution time

104

Normal

Execution

Contention Synchronization Parallelization
Overhead

i Time

0
Useful Unrelated Excess

Computation Computation
Wait Computation

Figure 4: Sources of performance degradation in weighted causality graphs

Derive Explanations: Use the properties of the WCG and
the phenomena of interest to isolate the set of events
that must be considered in deriving an explanation.
For example, when attempting to explain why a pro-
cessor waited for another in a barrier, we need not an-
alyze any events that happened prior to the last time
these processors synchronized, since those events could
not possibly affect the observed waiting time.

Simplify explanations: Design and implement routines to
detect and automatically eliminate redundancies in ex-
planations. For example, if two processes executed
the same code for the same amount of time, the cor-
responding events cannot (by themselves) cause one
processor to subsequently wait for another.

Merge similar explanations into characterizations:
Determine any explanation attributes that can be ab-
stracted when creating general characterizations of a
phenomena. For example, in SPMD (Single Program
Multiple Data) programs, we can abstract the proces-
sor identifier, because all processors execute the same
code.

Generate visualization: Use Tcl/Tk [17] to implement
the GIJI that allows programmers to visualize both
characterizations for performance phenomena and ex-
ecution-time profiles.

In the following sections we describe three CEA tech-
niques we developed and scenarios where these techniques
can be employed for performance tuning.

3.1 Contention Analysis

Contention is a common source of performance degradation
in distributed programs. Contention arises when multiple
clients make requests to the same shared resource simulta-
neously. Client requests for data from a parallel file system

or from a WWW cache proxy hierarchy are examples of op-
erations whose duration may be affected by contention.

Contention analysis is a CEA technique that identifies
requests that are contending for a shared resource and quan-
tifies the impact of each source of contention on the over-
all performance of the distributed application. Contention
analysis exploits the property of WCGs that all paths be-
tween two events have the same duration. The two events of
interest are the request for a resource by a process and the
granting of that resource by the server. The two execution
paths of interest are the events performed by the client and
server processes between these two events; any event per-
formed by the server on behalf of another client contributes
to the contention delay experienced by the original client.

To implement contention analysis, we first execute the
program and collect traces of events. We then modify the
trace file to adjust the durations of three classes of events
(request resource, wait, and receive resource) so as to ac-
count for transmission delays (as described above). After
adjusting the trace file, we build the WCG, including events
on both the client and server processor.

The next step is to generate explanations for the dura-
tions of the various requests. Each explanation includes the
amount of time spent satisfying the request, serving other
requests, and internal server bookkeeping. For each event
associated with an interfering request, the explanation de-
scribes its attributes (e.g., code location, type of operation,
server) and its duration.

After generating an explanation for the duration of each
individual request, we combine explanations into character-
izations for classes of requests by merging the explanations
for each request in that class. For example, a single char-
acterization can summarize the sources of contention for all
requests generated by a particular source code statement.
We then generate a visualization of these characterization,
which the programmer can use to discover interfering re-
quests, and to quantify the impact of interference on each
request’s duration.

105

Contention characterizations can be used to pinpoint
common resource allocation problems, such as load imbal-
ance among parallel file servers. By analyzing these charac-
terizations, programmers can detect resource-related opera-
tions that need to be optimized. and determine how best to
redistribute resources.

3.2 Synchronization Analysis

Waiting time arises whenever a process is idle waiting for an-
other process at a synchronization point. Waiting time can
be reduced either by optimizing the code executed by the
process causing the delay, or by reordering code segments on
the delayed process, overlapping waiting time with computa-
tion. Synchronization analysis identifies the code segments
that are responsible for the occurrence of waiting time, and
quantifies the contribution of each code segment to the de-
lay.

Synchronization analysis is based on the fact that two
processes that perform exactly the same operations will ex-
perience no delays when they synchronize; it is the di%fer-
ences in their execution paths that introduce delays during
synchronization. Since all execution paths in a WCG be-
tween two consecutive synchronization events have the same
duration, the wait event executed by one processor must be
the same duration as some set of computation events per-
formed by the other processor. We generate an explanation
for each wait event in the execution by traversing the WCG
back up to the last synchronization event between the same
two processes and comparing the two execution paths going
forward. We identify any differences in the execution paths
as the cause of the subsequent synchronization delay.

As with contention analysis, we can group explanations
for a class of events into a single characterization, which
summarizes the explanations for all events in the class. Thus,
a single characterization can be used to explain all instances
of waiting that arise from a single source code statement
(e.g., a barrier). By analyzing these characterizations, the
programmer can identify code segments that need to be op-
timized or reordered, so as to reduce overall waiting time.

3.3 Communication Analysis

Communication is a major source of performance degrada-
tion in distributed programs, since it always represents over-
head introduced by the distributed implementation. Com-
munication analysis (CA) exposes execution-time relation-
ships that explain the duration of communication opera-
tions. In DSM systems, for instance, where the duration of
a page fault is a function of preceding events (such as writes
to the page or an invalidation of the page), these relation-
ships capture the chain of events that result in the migration
of a page across processors.

We have implemented a CEA technique that explains
the cause and durations of page faults in a DSM system.
(Similar ideas can be used to explain other forms of com-
munication in distributed programs.) Our implementation
of communication analysis exploits a property of the release
consistency memory model used in Treadmarks [2]: multi-
ple modifications to a page are grouped together and sent
to other processors only once (usually at a synchronization
point), and therefore we do not need to examine every indi-
vidual page reference to understand the cause of a fault or
its duration.

Our implementation of communication analysis explains
the durations of remote requests (page faults) by analyzing

traces of program executions that contain a record of ev-
ery page fault and synchronization operation, with a global
timestamp for each. Each page fault records the source code
line that generated the fault, the nature of the fault (read or
write), and the page number. Each synchronization opera-
tion records the list of pages that were invalidated as part
of the operation. From the trace file, we build a WCG for
each page. The vertices in the graph represent page faults
(and their cause), and edges in the graph represent causal
relationships. There is an edge between two vertices if the
write fault explained by one vertex generates a write notice
that is a cause for the fault in the other vertex. We assign
weights to the edges according to the frequency that the edge
is traversed. Also, each vertex is assigned an access pattern
that reflects how the page is accessed. The access patterns
are: multiple-producer-single-consumer, multiple-producer-
multiple-consumer, single-producer-single-consumer, single-
producer-multiple-consumer, cold start, and migratory.

From the WCG, the cause of each remote request is de-
termined automatically, where a cause is the invalidation
that preceded the page fault, and the write faults that gen-
erated the write notices at the synchronization point. As
with the other CEA techniques, explanations are merged
into characterizations, which summarize page fault behavior
for a single page over the course of the execution or for mul-
tiple pages with similar behavior. With this information,
the programmer can identify the source code, data struc-
tures, and access patterns that result in page requests, and
thereby discover optimizations in data layout or scheduling
to improve performance.

4 Examples

In this section, we describe how cause-effect analysis tech-
niques can be used to understand and improve the perfor-
mance of applications.

4.1 Contention in Parallel File Systems

The PIOUS file system [16] provides transparent access to
data that is striped across multiple disk servers. In PIOUS,
every file operation is a transaction, and strict two-phase
locking is used to ensure sequential consistency. When a
process issues a file operation, messages requesting the oper-
ation are sent to the appropriate disk servers, which perform
the operation and return a result. The results are collected
and, assuming all of them indicate successful completion of
the operation, a commit message is sent to each participat-
ing disk server; otherwise, an abort message is sent. Commit
messages cause the disk servers to make the changes perma-
nent, while abort messages restore the previous state, after
which the operation is typically tried again.

In the context of parallel file systems, contention analysis
explains the duration of each request by its transmission
durations, the durations of the request-related operations
on a server, and other computation performed by the server
between the request arrival and the response to the client,
which includes the server’s overhead and computation on
behalf of other interfering requests. With this knowledge, we
can adopt alternate file layouts that reduce the contention
among the requests (and presumably their duration).

We can use contention analysis to understand the perfor-
mance of PIOUS programs. We first inspect the Operation
Map produced by Carnival (see Figure 5a), where each line
represents an operation that composes a class of requests.
For each operation, the display presents its attributes (e.g.,

106

I Weiaht OP Desc File I

Figure 5: Contention Characterization from TPC-C

file, server), its cumulative duration, and a color bar that
describes a breakdown of the cumulative duration into the
three categories of interest (computation, system overhead,
and interference). By browsing this display, we can eas-
ily determine the classes of requests that have the highest
cumulative duration across the execution, as well as any
significant interference, both subjects for further analysis.
Clicking on the color bar produces summaries of the various
characterizations for the operation displayed in the bottom
of the window. A user can inspect a characterization by
clicking on its summary, causing Carnival to pop-up a con-
tention characterization (see Figure 5b), which lists the re-
quests that interfere with this class. Information about the
class of requests being explained is given at the top of the
window, as is the relative weight of the interference.

Below this information, there is a color bar that serves
as a reference for identifying the various PIOUS operations
and the interfering classes of requests, one per line. Each
line describes the attributes of the class (application, file,
description, and basic block identifier), the percentage of
interference caused by the class, and the amount of interfer-
ence that occurred in each server. Each server is identified
by number within the table; the intensity of the surround-
ing grey scale represents the percentage of the interference
generated happened at that server (with darker squares cor-
responding to greater interference).

Next we describe how contention analysis helped im-
prove the performance of TPC-C [8], a benchmark for on-line
transaction processing systems. This benchmark is inspired
by activities performed by a supplier of wholesale parts and
simulates an environment where terminal operators execute
transactions on a database, which include entering and de-
livering orders, recording payments, checking the status of
orders, and monitoring the level of stock. There are five
types of transactions in TPC-C: neu~ order, payment, deliv-
ery, order status, and stock level. Each transaction occurs
with a different frequency and accesses a different set of the
following nine files: Warehouse, District, Item, Stock, Cus-
tomer, History, Order, Order Line, and New Order. Four of
these files, History, Order, Order Line, and New Order, are ac-
cessed in global mode, since transactions perform insertions
on them during the execution.

In our implementation of TPC-C, each client represents a

-a

-b

terminal operator that issues transactions continuously. We
executed the TPC-C program on sixteen clients and eight
servers, and each client performed twenty transactions. The
experiments were performed on a cluster of eight DEC Alpha
Server 2100 nodes connected by a DEC Memory Channel.
Each Alpha Server node has four 233 MHz Alpha processors
with 256 Mb of memory.

The operation map generated by Carnival (see Figure 5a)
shows that 97% of the execution time is spent in accesses
to Order, Order Line, and New Order. These files dominate
the PIOUS operation costs because (a) they are the most
frequent and (b) they are the most expensive (requiring ac-
cess to global file pointers). Clicking on the operation map
causes Carnival to display contention characterizations such
as the display shown in Figure 5b. This figure shows a
characterization for “acquire lock” operations from new OT-

der transactions, which account for 40.9% of the overall in-
terference costs. This characterization indicates that this
operation interferes with accesses to both Order and New
Order. This interference happens more frequently on server
0 (indicated by the darker entries), which records the global
pointer, but requests to all eight servers are affected. After
verifying similar characterizations for other operations, we
conclude that accesses to Order, Order Line, and New Order
contend with accesses to all files, including themselves. We
also find that accesses to District contend with accesses to
Customer and vice-versa. Thus, in order to improve the per-
formance of our TPC-C implementation, we have to isolate,
as much as possible, Order, Order Line, and New Order from
the other files. Furthermore, District and Customer should
not share servers.

Knowing the sizes of files and which files and operations
contend, we can determine the minimum number of servers
that should be assigned to each file. For example, due to
their size, Stock and Order Line require all eight servers.
Based on both contention information and storage require-
ments, we determine file layouts that will allow better per-
formance. In this case, since Order and New Order represent
the majority of the accesses and usually contend with each
other, we reserve a pair of servers for each of them, which are
shared only with Stock and Order Line. The remaining files
are spread across the other servers, each using at least two
servers, while avoiding other minor sources of interference.

107

stepsystsmJeop1

flnd_myJadiss

t
a b’

I I
IIWSCOPO 25 -

13.00% Raqscop 11

Figure 6: Synchronization and Communication Characterizations from Barnes

We executed the program using the new layout and the
number of transactions per second (tps) increased for four of
the five transaction types. Moreover, the total improvement
(i.e., the weighted sum of the per-transaction improvements)
is 40%, which reflects the overall improvement attained by
the changes in the file layout. Only delivery exhibited worse
performance, due to the reduction in the concurrency of ac-
cesses to New Order and Order. The contention characteriza-
tions for this last execution show that a lack of concurrency
is the major source of the remaining contention, which is
expected given that the number of clients is larger than the
number of servers. Although there are other possible file
layouts that satisfy the constraints inferred from the char-
acterizations, they will not improve the performance of the
program, since the main source of remaining contention is a
consequence of the implementation of PIOUS.

4.2 Scheduling in Barnes

Our second example examines Barnes [19], an application
that simulates the interaction of a system of bodies, in three
dimensions, using the Barnes-Hut hierarchical N-body meth-
od. The computational domain of this application is mod-
eled as an octree, where the leaves contain body informa-
tion and internal nodes represent space cells. The experi-
ments were performed on the same hardware described in
Section 4.1. Applications are linked to an instrumented im-
plementation of Treadmarks (version 0.9.6), which employs
DEC’s implementation of TCP/IP on the Memory Channel.

Execution of the original code for Barnes on four proces-
sors with 16384 bodies for 5-time steps takes 202 seconds,
with an efficiency of only 39%. When we examine the exe-
cution profiles provided by Carnival, we find that processors
are blocked on barriers for about 35% of the execution time,
while another 25% of the execution time is spent commu-
nicating. Knowing that waiting time is a significant source
of performance degradation, we proceed by analyzing the
Characterization Maps (see Figure 6a). These maps pro-

-d

vide color-coded operations for each code segment that is
responsible for the observed waiting time: operations from
the longer path (identified by “+“) are on the right side of
the window, and operations from the shorter path on the left
(“-“), The number of occurrences of each operation is given,
as is the percentage of the waiting time associated with each
operation. From the analysis of these characterizations, we
learn that two thirds of the waiting time is caused by differ-
ences in communication costs in the loops that traverse the
octree, while the remaining third is caused by load imbal-
ance in the same loops. Thus, communication is responsible,
both directly or indirectly, for almost half of the execution
time of the application.

Synchronization analysis also identifies a single function,
findmy-bodies, as a main source of communication over-
head, being responsible for 45% of the communication costs
(see Figure 6a). Profiles also show that the variable bodytab,
an array where all bodies are stored, accounts for 75% of the
overall communication costs.

At this point, WC know that communication is a major
source of overhead and the variable bodytab is responsible
for most of it. We inspect the communication characteriza-
tions of bodytab (Figure 6b,c, and d). A communication
characterization, which is organized as a table, presents in-
formation about a variable (or set of pages). Each graph is
represented as an incidence matrix, where the column header
(Figure 6b) identifies the access pattern (using a color code),
the source code location of the faults (R for request, I for
invalidation, and W for preceding writes), and the percent-
age of total page fault cost in the graph associated with
that vertex. The entries (Figure 6c) quantify the relative
frequency of transitions between vertices in the graph. It is
also possible to obtain per-processor information by clicking
on the header of each column (Figure 6d). After analyzing
the access patterns to bodytab, we found that most of the ac-
cesses in f indmy-bodies have a multiple-producer-multiple-
consumer pattern (as seen in figure 6b), and all (or almost
all) processors read or write to each page of bodytab (as seen

108

in figure 6d). Since each page contains several bodies, false
sharing occurs as a consequence of the dynamic distribution
of bodies to processors, causing several processors to access
each page during every iteration of the algorithm. It is not
surprising that a program written for a shared-memory ma-
chine with small coherence units presents false sharing when
executed on a machine with large coherence units. However,
in porting programs such as Barnes, which may consist of
several thousand lines of code and many shared variables,
it can be difficult for programmers to determine the code
segments and variables that need attention without some
automated support.

One approach to minimizing this false sharing is to avoid
changing the allocation of bodies to processors at every iter-
ation and to consider page boundaries when distributing the
bodies among processors. Although the static distribution
of bodies increases the load imbalance among processors, we
expect this increase to be compensated for by a reduction in
communication costs, which dominate the execution time.
Following up on this analysis, we added a 25.line function
that distributes bodies statically, and disabled the per-iter-
ation dynamic redistribution. The modified program exe-
cuted 28% faster than the original version. As shown by the
Carnival profiles, we observed that this improvement comes
from the reduction of the waiting times at barriers by more
than one third, and the reduction of communication costs
by about a half. This example illustrates how synchroniza-
tion analysis and communication analysis can be used to
find the sources of excess communication in the source code
and suggest changes. In this particular example, CEA lead
us to focus on a single small procedure, even though profiles
would have suggested a focus on barriers located elsewhere
in the program.

4.3 Tuning Squid Hierarchies

Squid [6] caches Internet data by acting as a proxy server for
Internet users. That is, whenever a user requests a page to
a WWW browser, the browser asks Squid to get the page.
If the requested page is available at the proxy server, Squid
returns it. Otherwise, Squid connects to the remote server
and requests the page. It then transparently streams the
data through itself to the client machine, while keeping a
copy of the data. The next time a request is made for that
page, Squid simply reads it off disk, transferring the data to
the client machine almost immediately.

Squid servers can be arranged hierarchically for enharic-
ing response time and reducing network traffic. The hierar-
chy works as one cluster that answers requests, and pages
can be cached at one or more levels of the hierarchy. Also,
each machine in the hierarchy can be assigned to a specific
range of domains (e.g., . corn, .net) so that it is possible to
balance the load and exploit the reference locality inherent
to accesses. Thus, there are two configuration parameters
for each machine in a hierarchy: the relationships that each
machine has with other machines (sibling, parent) and the
domain(s) that are served by each machine. Note that there
is no standard recipe for configuring a Squid hierarchy, be-
cause machine configurations, network resources, and traffic
characteristics may vary drastically among sites. Our expe-
rience is that system managers usually tune hierarchy pa-
rameters using trial-and-error, which is both laborious and
error-prone.

We used CEA techniques to identify sources of perfor-
mance degradatiori in Squid hierarchies and to determine
configuration parameters that allow an increase in the qual-

ity of service provided by those hierarchies. In particular,
our goal was to find the best configuration for a cluster of
four Pentium machines connected by a 1OOMB fast Ethernet.
Each of these machines has 300Mb of disk for WWW caching
and is also connected to an Ethernet network, from which
requests arrive. All machines run FreeBSD 2.5.2 and our
instrumented Squid 1.1.17. Both clients and WWW servers
are emulated by other workstations in the same LAN.

The workload used in our tests is based on logs from
POP-MG [l], which is the Internet backbone that serves the
state of Minas Gerais, Brazil. POP-MG has several national
and international links that represent a bandwidth of up to
9 Mbps and an average traffic rate that is close to 6 Mbps.
The average load of the caching proxy servers is 1,800,OOO
requests per day. We analyzed a log containing 4,235,511 re-
quests for 1,079,044 unique objects, which results in about
12 Gbytes of data that has to be stored in our machines.
Since our machines can only store up to 1.2 Gbytes, the
cache holds up to 10% of all data. For our experiments, we
characterized the workload, and generated a smaller stream
of requests that is feasible for experimentation, while main-
taining the same cache ratio. In the case of POP-MG for
example, we generated a set of 96,000 requests that follow
the workload and determined the total size of unique objects
(Z 400 Mbytes). We then used 10% of this size as our total
cache size, leading to 10 Mbytes of disk cache per machine.

Since we did not know in advance how to configure a
hierarchy to obtain the best performance, we started with
a flat configuration of four children. This configuration was
able to answer a request in 2.8 seconds on average. We start
our analysis by verifying the Request Map produced by Car-
nival, which displays both static attributes (e.g., domain,
source host) and profile data (e.g., number of requests, cu-
mulative response time) associated with the various classes
of requests. There is a color bar that represents a breakdown
of the cumulative response time into five categories: com-
putation, synchronization, contention, communication, and
server overhead. By clicking on this display, the user can
verify both contention characterizations, which show classes
of requests that contend in the servers of the hierarchy, and
waiting time characterizations, which explain the causes of
delays in queries between servers.

Both synchronization and contention analysis of the most
frequent classes of requests point to sibling requests as a
main source of performance degradation, representing 33%
of the overall response time. Knowing that sibling requests
represent a source of performance degradation, we exam-
ine the communication graphs produced by communication
analysis, which tell the user the access patterns of the ob-
jects stored in the hierarchy. Figure 7 presents the com-
munication graph for a set of objects frequently requested.
We can observe that most of the time (73%) the objects are
either available locally (l-cached Locally) or replicated in
the other sibling caches, (4-Cached Remotely(S)) and the
graph transitions are usually among these two states (49%).
In summary, there is too much replication in the hierarchy,
and a large number (50%) of the cached pages are replicated
in more than one server.

Since the most frequently accessed web pages tend to
be the most popular web pages (and therefore are accessed
widely), the flat hierarchy ends up storing the same docu-
ments in all of the siblings. One strategy to minimize the
excessive replication of pages is to configure the machines as
a hierarchy, where pages accessed less frequently are stored
in the upper levels of the hierarchy.

We then configured our four machines as a two-level hi-

109

Figure 7: Communication Characterizations for Squid Cache Proxy

erarchy with three children and one parent. Surprisingly,
the average response time of this configuration increased to
4.1 seconds. The profiles provided by Carnival indicated con-
tention as the major source of performance degradation and
our analysis of the contention characterizations confirmed
that simultaneous accesses to the single parent were the
main source of contention, accounting for 36% of the re-
sponse time on average. Moreover, the same characteriza-
tions also showed that sibling-related interference was re-
sponsible for 20% of the response time. Also, the commu-
nication graphs showed that the utilization of a hierarchy
reduced the amount of replication by only lo%, resulting in
frequent requests to the parent.

In order to reduce contention at the parent, we config-
ured a hierarchy with two parents and two children, where
each child communicates with its sibling and the parents.
The average response time decreased to 2.3 seconds, a 22%
improvement over the initial configuration, although each
child had to handle twice the number of requests. In this
case, contention among requests increased, accounting for
5% of the response time (compared to 1% in the flat con-
figuration), while both sibling intrusion and contention for
parents decreased (7% and 23%, respectively).

In this example, CEA helped us to understand the dy-
namic behavior of a cache hierarchy. Since the performance
of the hierarchy depends on the client workload, the ob-
served phenomena and their causes may vary significantly
across sites, making our automated approach extremely valu-
able for these types of analyses.

5 Related Work

Much of the work intended to assist the programmer in un-
derstanding the relationships between execution events in
parallel and distributed programs is based on causality, as
defined by Lamport’s happened-before relation [9]. Parallel
debugging tools and techniques [lo, 151 often employ causal-
ity graphs to delimit the sets of events that must be in-
spected in order to find the source of execution errors or to
detect potential race conditions. Critical path analysis (201

uses causality graphs to identify the execution path that
dominates program performance, focusing attention on the
code segments where tuning should be performed.

There are other tools and techniques that express dy-
namic relationships among program operations and data.
The PPUTTS toolkit [ll] provides a graphical view of the
program behavior based on a directed acyclic graph repre-
sentation of processes and communication operations. An-
other example is StormWatch [3], which is a visualization
tool for memory system protocols that presents multiple
views of memory access operations, including performance
slices that capture relationships between individual memory
events, exposing causality in memory operations. The main
limitation of these two tools, and other event-based tools,
is that they can overwhelm the programmer with detailed
data.

Rajamony and Cox [18] implemented a performance de-
bugger that automatically identifies code transformations
that reduce synchronization and communication. This per-
formance debugger is similar in approach to our work, al-
though it is specific to the target programming environment
and focuses on one class of overheads.

Our work is distinguished primarily by its emphasis on
understanding the durations of events, rather than the oc-
currence of events. Our techniques are designed to assist
the programmer in improving program performance by re-
ducing the durations of events that cannot (in general) be
eliminated entirely. The novelty in our approach is to use
causality information, augmented by appropriate timing in-
formation, to reason about the underlying causes of perfor-
mance phenomena.

6 Conclusions

In this paper we presented a novel approach for performance
understanding called cause-effect analysis. We illustrated
our approach by analyzing the performance of a parallel file
system, a DSM parallel application, and a WWW cache
proxy server. Our experience demonstrates that these tech-
niques can be used effectively to understand the causes of

110

poor performance, and to identify specific improvements in
the source code. We are currently working on the use of
CEA techniques in other environments, and are also inves-
tigating the utilization of characterizations for performance
prediction.

References

PI

PI

[31

[41

[51

PI

171

PI

PI

PO1

1111

[=I

[I31

V. Almeida, M. CesBrio, R.Fonseca, W. Meira Jr., and
C. Murta. The influence of geographical and cultural
issues on the cache proxy server workload. Proc. of
WWW7, 1998.

C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu,
R. Rajamony, W. Yu, and W. Zwaenepoel. Treadmarks:
shared memory computing on networks of workstations.
IEEE Computer, February 1996.

T. Chilimbi, T. Ball, S. Eick, and J. Larus. Stormwatch:
A tool for visualizing memory system protocols. Proc.
Supercomputing’95, San Diego, CA, December 1995.

M. Crovella and T. LeBlanc. Performance debug-
ging using parallel performance predicates. Proc. 3rd
ACM/ONR Workshop on Parallel and Distributed De-
bugging, pages 140-150, May 1993.

M. Crovella, T. LeBlanc, and W. Meira Jr. Parallel
performance prediction using the Lost Cycles Toolkit.
TR 580, Department of Computer Science, University
of Rochester, May 1995.

National Laboratory for Applied Network Research.
Squid Internet Object Cache. Information available at
http: //squid.nlanr.net/Squid/.

S. Graham, P. Kessler, and M. McKusick. gprof: a call
graph execution profiler. Proc. SIGPLAN ‘82 Symp. on
Compiler Construction, pages 120-126, June 1982.

J. Gray. The Benchmark Handbook GOT Database and
Transactzon Processing Systems. Morgan Kaufmann,
second edition, 1993.

L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of ACM,
21(7):558-565, July 1978.

T. LeBlanc and J. Mellor-Crummey. Debugging parallel
programs with Instant Replay. IEEE Transactions on
Computers, C-36(4):471-482, April 1987.

T. LeBlanc, .J. Mellor-Crummey, and R. Fowler. Ana-
lyzing parallel program executions using multiple views.
Journal of Parallel and Distrabuted Computing, 9:203
217, June 1990.

W. Meira Jr. Understanding Parallel Program Per-
formance Uszng Cause-Eflect Analysis. TR 663 (PhD
thesis), Dept. of Computer Science ~ University of
Rochester, Rochester, NY, July 1997.

W. Meira Jr., T. LeBlanc, and A. Poulos. Waiting
time analysis and performance visualization in Carni-
val. Proc. SIGMETRICS Symp. on Parallel and Dis-
tributed Tools, pages 1 --lo, May 1996.

1141

[I51

P61

[I71

P81

PI

PO1

W. Meira Jr., T. J. LeBlanc, N. Hardavellas, and
C. Amorim. Understanding the performance of DSM
applications. PTOC. IEEE Workshop on Communicataon
and Architectural Support for Network-based Cornput-
ing (CANPC), volume 1199 of Lecture Notes in Com-
puter Science, pages 198-211, February 1997. Springer-
Verlag.

B. Miller and J. Choi. A mechanism for efficient debug-
ging of parallel programs. PTOC. ACM SIGPLAN and
SIGOPS Workshop on Parallel and Distributed Debug-
ging, pages 141~150, May 1988.

S. Moyer and V. Sunderan. PIOUS for PVM: User’s
guide and reference manual - Version 1, 1995. Technical
report, Emory University, 1995.

John K. Ousterhout. Tel and Tk Toolkit. Addison Wes-
ley, 1994.

R. Rajamony and A. Cox. Performance debugging
shared memory parallel programs using run-time de-
pendence analysis. Proc. 1997 ACM SIGMETRICS
Int ‘1 Conj. on Measurement and Modeling of Computer
Systems, June 1997.

S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and
methodological considerations. PTOC. 22nd Annual Int ‘1
Symp. on Computer Architecture, pages 24-36, June
1995.

C. Yang and B. Miller. Critical path analysis for the ex-
ecution of parallel and distributed programs. PTOC. 8th
Int ‘1 Conj. on Distributed Computing Systems, pages
366-373, June 1988.

111

