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Abstract 

Understanding the performance of distributed programs can 
be very difficult, since a program’s performance depends 
on characteristics of the application, the underlying hard- 
ware, the software environment, and interactions among all 
three. In this paper we present cause-effect analysis (CEA), 
a general approach to understanding distributed program 
performance that facilitates performance analysis, tuning, 
and prediction. Using detailed program traces gathered at 
execution time as input, CEA automatically generates ex- 
planations for important performance phenomena, identify- 
ing code segments that are responsible for the occurrence of 
the phenomena. 

We illustrate our approach by describing CEA techniques 
for three classes of overheads in distributed programs: con- 
tention, synchronization, and communication. Using the ex- 
planations produced by CEA, we are able to understand 
and minimize common performance problems in real appli- 
cations including load imbalance, false sharing, and resource 
contention. 

1 Introduction 

In order to understand the performance of a distributed pro- 
gram, we must be able to explain performance phenomena 
in terms of the decisions a programmer makes while creating 
the program. An explanation for a particular phenomenon 
(such as excessive time spent waiting at a barrier at the end 
of a loop) is the set of statements, implementation decisions 
(such as the loop scheduling algorithm or the data layout 
scheme), or architectural characteristics that produced the 
phenomenon. .4t, present, explanations for program behav- 
ior are inferred manually by the programmer, usually based 
on an analysis of the source cotle and some dynamic rnca- 
surernents. This type of manual analysis is complex, error- 
prone, and time-consuming. 
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Events whose duration varies significantly during execu- 
tion are especially difficult to analyze manually. Any event 
whose duration is determined by interactions among pro- 
cesses or the duration of other events we will call a non-de- 
terministic duration (NDD) event. An example of an NDD 
event is a page fault that occurs in a DSM system. The 
duration of the page fault is a function of the accesses per- 
formed by other processes since the page was last acquired 
by the faulting process. To understand why a page fault 
occurs, and why so much time is spent handling the fault, 
we must examine the interactions between all processes that 
share access to the page. 

Another example of an NDD event is a process arrival 
at a barrier. The duration of the delay experienced by a 
process at a barrier depends on the execution path of the last 
process to reach the barrier. To understand why processes 
waste excessive amounts of time waiting at a barrier, we 
must focus on this execution path as the source of the delays. 

Discovering explanations for NDD events is difficult how- 
ever, both because there may be multiple causes for each 
performance phenomenon and because causes and effects 
may be spread out in terms of code location and time of oc- 
currence. Although there are many tools that can identify 
the existence of performance problems (such as an exces- 
sive amount of time spent synchronizing during execution), 
there are no tools that automatically relate the durations of 
performance phenomena to the underlying causes. 

In this paper we present a novel approach to under- 
standing the duration of NDD events: cause-effect analysis 
(CEA) [12]. This approach is a generalization of our previ- 
ous work on performance understanding [13, 141, which uses 
runtime traces to generate execution profiles that guide the 
user in identifying the location and cost associated with var- 
ious parallel program overheads. CEA augments our profile- 
based analysis by automatically linking instances of per- 
formance degradation with the source code that must be 
tuned in order to address the performance problem. Both 
profiles and CEA techniques are implemented within Carni- 
val [12], an integrated framework for performance under- 
standing that automates most of the tasks related to perfor- 
mance understanding, including instrumentation, monitor- 
ing, analysis, visualization, and generation of explanations 
for performance phenomena based on CEA. 

This paper is organized as follows. The next section 
presents a brief overview of Carnival. Section 3 describes 
the general idea behind cause-effect analysis and presents 
three specific analysis techniques that we have developed. 
We present some practical examples that utilize these tech- 
niques in Section 4. The last two sections summarize related 
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Figure 1: Carnival: Components 

work and our conclusions. 

2 Using Carnival for Performance Understanding 

Carnival is a framework for performance understanding that 
supports four levels of performance description: (i) it char- 
acterizes performance at a coarse grain using data such as 
sequential and parallel execution times, speedup, and ef- 
ficiency; (ii) it classifies the program’s execution time by 
dividing it among all sources of parallel overhead, as well 
as normal computation; (iii) it identifies the code locations 
where parallel overheads and computation costs arise; and 
(iv) it predicts the effects of implementation decisions on 
program performance using analytic models that are auto- 
matically generated from execution information. 

Programmers may use Carnival for either analyzing in- 
dividual executions or investigating trends across multiple 
executions. There are three main components in Carnival(as 
depicted in Figure 1): 

Instrumentation: Instrumentation comprises tools and li- 
braries that are used to acquire detailed runtime traces 
of an application during its execution. Instrumen- 
tation is the only platform-dependent component, so 
Carnival can be ported easily to new architectures. 

Analysis: The analysis component consists of tools that 
analyze trace files, produce execution profiles, and au- 
tomatically generate a graphical interface that allows 
these profiles to be visualized. Figure 2 shows a Pro- 
file Map produced by Carnival Each line represents 
a scope from the application, which can be a loop, a 
procedure, or a block of code. Each scope has a grey- 
scale bar that indicates the cumulative execution time 

(across all processors) spent in that scope. The colors 
in the horizontal bar at the top of each scope describe 
a breakdown of the execution time spent in the scope 
into categories. By using this profile map, the pro- 
grammer can easily identify the scopes that dominate 
the execution time of the application. 

Modeling: Carnival incorporates the Lost Cycles Toolkit 
(LCT) [5], which automates the process of construct- 
ing a performance model for a parallel application by 
integrating empirical model-building techniques from 
statistics with measurement and modeling techniques 
for parallel programs. 

Carnival differs from other performance tools by integrat- 
ing five features that are essential for understanding perfor- 
mance: 

Static Information: The static information in Carnival is 
the source code of the application and its structure. 
The source code is organized as a hierarchy of nested 
scopes, according to the semantic structure of the ap- 
plication. This static information is exploited in dy- 
namic data collection, visual interface generation, and 
modeling. 

Dynamic Information: Carnival provides an instrumen- 
tation and tracing library for acquisition of execution- 
time performance data. Each call to a library function 
generates an event that registers a processor identifier, 
scope, processing category, and time of occurrence. 
These events are stored in a trace file for further pro- 
cessing. 
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Hierarchical Abstraction of Performance Data: 
Performance information is organized hierarchically ac- 
cording to the source code structure in Carnival, allow- 
ing analysis and modeling at, several levels of abstrac- 
tion. 

Integration of Dynamic and Static Data: Carnival in- 
tegrates dynamic and static information by associat- 
ing with each dynamic event the corresponding code 
segment and processing category. 

Support for Generating Models Automatically: Car- 
nival automates experimental design and multivariate 
modeling. It also provides feedback to the program- 
mer on the quality of the resulting model, and allows 
the programmer to trace inaccuracies back to the com- 
ponent models and performance data. 

Carnival comprises about 50000 lines of C and Tcl/Tk 
code. We have implemented program tracing for message- 
passing programs on the IBM SP2 and shared-memory pro- 
grams on the SGI Challenge. We also have implementations 
for Treadmarks [2] and PIOUS [16] on clusters of DEC Al- 
phas connected by the DEC Memory Channel, PVM pro- 
grams on a network of workstations, and Squid cache prox- 
ies [6]. More than two thirds of the Carnival code is devoted 
to the user interface, profile generation, and modeling sup- 
port. Of the 15000 lines devoted to cause-effect analysis 
techniques, roughly one half are common to all the tech- 
niques (and are encapsulated in a library), with the remain- 
ing 7500 lines divided roughly equally among the three tech- 
niques we have implemented. 

3 Cause-Effect Analysis 

Cause-effect analysis is an automated technique for gen- 
erating explanations for non-deterministic duration events 
(NDD). CEA exploits knowledge about the causal relation- 
ships between execution events [9], but differs from previous 
work in one key aspect: we are concerned primarily with 
the duration of events, and not simply with their occur- 
rence. Under CEA, an event a causally affects an event 
b when the duration of a affects the duration of b. From 
this definition, it follows that cause-effect analysis subsumes 
other causality-based approaches, since a non-zero duration 
represents an occurrence. 

CEA techniques are based on Weighted Causality Graphs 
(WCG) [12], which abstract the execution of distribute<1 pro- 
grams. Distributed programs are a collection of processes 
that reside on multiple processors. For the purposes of ex- 
position, we assume that processors are homogeneous, the 
variance among their clock rates is negligible and bounded, 
and all processes start simultaneously. (We can apply a 
variety of techniques to relax these assumptions.) We ab- 
stract the execution of each process as a sequence of events, 
where each event corresponds to the contiguous execmion 
of one or more instructions by the process. The granular- 
ity of an event ranges from single instructions to function 
calls, depending on the level of detail needed for program 
analysis and the instrumentation overhead introduced dur- 
iug execution. Earh rvent has four attributes: code location, 
processor, type, and duration (which is always non-zero). 

A weighted causality graph is an acyclic directed graph, 
where the vertices are execution events and the edges are 
causal relationships among those events. Each vertex in a 
WCG has a weight, which is equal to the duration of the cor- 
responding event. There are two types of edges in WCGs. 

Intra-processor edges connect vertices that represent con- 
secutive events on a single processor. Interrprocessor edges 
connect synchronization or communication events on one 
processor with the corresponding event on another proces- 
sor. 

The transition between consecutive events on the same 
processor occurs instantaneously. However, the transition 
between consecutive events that occur on different proces- 
sors, such as a send operation and the corresponding receive 
operation, is rarely instantaneous, due to transmission de- 
lays and other transient effects. To capture these delays in 
the WCG, during instrumentation we measure the time at 
which the send operation completes on one processor and the 
time at which a message is received on the other processor. 
We then post-process the trace and insert a synchroniza- 
tion event of the proper duration before the receive event 
(see [12] for details). Although this technique produces an 
approxunation for transmission durations, any inaccuracies 
are eventually accounted for in the WCG, usually in a sub- 
sequent synchronization interval. 

The time spent during execution by a processor is equal 
to the sum of the weights of the vertices for that processor 
in the WCG. Since there is a duration associated with each 
event in the WCG, and all processors start simultaneously, 
we can calculate a starting and ending time for each event 
in the WCG. All CEA techniques assume as input a WCG 
with these properties; in our implementation, we use the 
runtime traces gathered by Carnivalto construct the WCG. 

From the perspective of a process P, we divide events 
into three groups (as depicted in Figure 3): (1) useful com- 
putation associated with the problem being solved by P; 
(2) unrelated computation performed by other processes that 
share the processor with P; and (3) excess computation per- 
formed by P that represents the overhead of parallelization 
and distribution. These groups of events characterize three 
possible sources of performance degradation in a distributed 
program: (1) contention ~ the execution of a process is de- 
layed because it is contending with another process for the 
same shared resource; (2) synchronization - the execution 
of a process is delayed because it is idle waiting for another 
process at a synchronization operation; and (3) parallel over- 
heads - the execution of a process takes longer than its 
sequential counterpart because it is performing additional 
operations, such as process creation or communication, that 
are needed for the parallel execution. These three sources of 
performance degradation are depicted in Figure 4, where we 
observe how they affect the execution of a simple program 
that consists of three events (as depicted in the sequence of 
events labeled “Normal Execution”). 

Different phenomena may require different analysis tech- 
niques, but all CEA techniques are designed and imple- 
mented as follows: 

Identify Phenomena: We determine the execution events 
that characterize the occurrence of the phenomena of 
interest. For example, a process entering a barrier 
is an event that signals the onset of synchronization 
overhead, whosr duration will vary depending on other 
events in the execution. 

Determine Possible Causes: We determine the execution 
events that must be considered as a possible expla- 
nation for the duration of the events of interest. For 
example, the duration of a page fault event is indepen- 
dent of any preceding computation events (assuming 
those events did not themselves result in a coherence 
operation). 
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Derive Explanations: Use the properties of the WCG and 
the phenomena of interest to isolate the set of events 
that must be considered in deriving an explanation. 
For example, when attempting to explain why a pro- 
cessor waited for another in a barrier, we need not an- 
alyze any events that happened prior to the last time 
these processors synchronized, since those events could 
not possibly affect the observed waiting time. 

Simplify explanations: Design and implement routines to 
detect and automatically eliminate redundancies in ex- 
planations. For example, if two processes executed 
the same code for the same amount of time, the cor- 
responding events cannot (by themselves) cause one 
processor to subsequently wait for another. 

Merge similar explanations into characterizations: 
Determine any explanation attributes that can be ab- 
stracted when creating general characterizations of a 
phenomena. For example, in SPMD (Single Program 
Multiple Data) programs, we can abstract the proces- 
sor identifier, because all processors execute the same 
code. 

Generate visualization: Use Tcl/Tk [17] to implement 
the GIJI that allows programmers to visualize both 
characterizations for performance phenomena and ex- 
ecution-time profiles. 

In the following sections we describe three CEA tech- 
niques we developed and scenarios where these techniques 
can be employed for performance tuning. 

3.1 Contention Analysis 

Contention is a common source of performance degradation 
in distributed programs. Contention arises when multiple 
clients make requests to the same shared resource simulta- 
neously. Client requests for data from a parallel file system 

or from a WWW cache proxy hierarchy are examples of op- 
erations whose duration may be affected by contention. 

Contention analysis is a CEA technique that identifies 
requests that are contending for a shared resource and quan- 
tifies the impact of each source of contention on the over- 
all performance of the distributed application. Contention 
analysis exploits the property of WCGs that all paths be- 
tween two events have the same duration. The two events of 
interest are the request for a resource by a process and the 
granting of that resource by the server. The two execution 
paths of interest are the events performed by the client and 
server processes between these two events; any event per- 
formed by the server on behalf of another client contributes 
to the contention delay experienced by the original client. 

To implement contention analysis, we first execute the 
program and collect traces of events. We then modify the 
trace file to adjust the durations of three classes of events 
(request resource, wait, and receive resource) so as to ac- 
count for transmission delays (as described above). After 
adjusting the trace file, we build the WCG, including events 
on both the client and server processor. 

The next step is to generate explanations for the dura- 
tions of the various requests. Each explanation includes the 
amount of time spent satisfying the request, serving other 
requests, and internal server bookkeeping. For each event 
associated with an interfering request, the explanation de- 
scribes its attributes (e.g., code location, type of operation, 
server) and its duration. 

After generating an explanation for the duration of each 
individual request, we combine explanations into character- 
izations for classes of requests by merging the explanations 
for each request in that class. For example, a single char- 
acterization can summarize the sources of contention for all 
requests generated by a particular source code statement. 
We then generate a visualization of these characterization, 
which the programmer can use to discover interfering re- 
quests, and to quantify the impact of interference on each 
request’s duration. 
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Contention characterizations can be used to pinpoint 
common resource allocation problems, such as load imbal- 
ance among parallel file servers. By analyzing these charac- 
terizations, programmers can detect resource-related opera- 
tions that need to be optimized. and determine how best to 
redistribute resources. 

3.2 Synchronization Analysis 

Waiting time arises whenever a process is idle waiting for an- 
other process at a synchronization point. Waiting time can 
be reduced either by optimizing the code executed by the 
process causing the delay, or by reordering code segments on 
the delayed process, overlapping waiting time with computa- 
tion. Synchronization analysis identifies the code segments 
that are responsible for the occurrence of waiting time, and 
quantifies the contribution of each code segment to the de- 
lay. 

Synchronization analysis is based on the fact that two 
processes that perform exactly the same operations will ex- 
perience no delays when they synchronize; it is the di%fer- 
ences in their execution paths that introduce delays during 
synchronization. Since all execution paths in a WCG be- 
tween two consecutive synchronization events have the same 
duration, the wait event executed by one processor must be 
the same duration as some set of computation events per- 
formed by the other processor. We generate an explanation 
for each wait event in the execution by traversing the WCG 
back up to the last synchronization event between the same 
two processes and comparing the two execution paths going 
forward. We identify any differences in the execution paths 
as the cause of the subsequent synchronization delay. 

As with contention analysis, we can group explanations 
for a class of events into a single characterization, which 
summarizes the explanations for all events in the class. Thus, 
a single characterization can be used to explain all instances 
of waiting that arise from a single source code statement 
(e.g., a barrier). By analyzing these characterizations, the 
programmer can identify code segments that need to be op- 
timized or reordered, so as to reduce overall waiting time. 

3.3 Communication Analysis 

Communication is a major source of performance degrada- 
tion in distributed programs, since it always represents over- 
head introduced by the distributed implementation. Com- 
munication analysis (CA) exposes execution-time relation- 
ships that explain the duration of communication opera- 
tions. In DSM systems, for instance, where the duration of 
a page fault is a function of preceding events (such as writes 
to the page or an invalidation of the page), these relation- 
ships capture the chain of events that result in the migration 
of a page across processors. 

We have implemented a CEA technique that explains 
the cause and durations of page faults in a DSM system. 
(Similar ideas can be used to explain other forms of com- 
munication in distributed programs.) Our implementation 
of communication analysis exploits a property of the release 
consistency memory model used in Treadmarks [2]: multi- 
ple modifications to a page are grouped together and sent 
to other processors only once (usually at a synchronization 
point), and therefore we do not need to examine every indi- 
vidual page reference to understand the cause of a fault or 
its duration. 

Our implementation of communication analysis explains 
the durations of remote requests (page faults) by analyzing 

traces of program executions that contain a record of ev- 
ery page fault and synchronization operation, with a global 
timestamp for each. Each page fault records the source code 
line that generated the fault, the nature of the fault (read or 
write), and the page number. Each synchronization opera- 
tion records the list of pages that were invalidated as part 
of the operation. From the trace file, we build a WCG for 
each page. The vertices in the graph represent page faults 
(and their cause), and edges in the graph represent causal 
relationships. There is an edge between two vertices if the 
write fault explained by one vertex generates a write notice 
that is a cause for the fault in the other vertex. We assign 
weights to the edges according to the frequency that the edge 
is traversed. Also, each vertex is assigned an access pattern 
that reflects how the page is accessed. The access patterns 
are: multiple-producer-single-consumer, multiple-producer- 
multiple-consumer, single-producer-single-consumer, single- 
producer-multiple-consumer, cold start, and migratory. 

From the WCG, the cause of each remote request is de- 
termined automatically, where a cause is the invalidation 
that preceded the page fault, and the write faults that gen- 
erated the write notices at the synchronization point. As 
with the other CEA techniques, explanations are merged 
into characterizations, which summarize page fault behavior 
for a single page over the course of the execution or for mul- 
tiple pages with similar behavior. With this information, 
the programmer can identify the source code, data struc- 
tures, and access patterns that result in page requests, and 
thereby discover optimizations in data layout or scheduling 
to improve performance. 

4 Examples 

In this section, we describe how cause-effect analysis tech- 
niques can be used to understand and improve the perfor- 
mance of applications. 

4.1 Contention in Parallel File Systems 

The PIOUS file system [16] provides transparent access to 
data that is striped across multiple disk servers. In PIOUS, 
every file operation is a transaction, and strict two-phase 
locking is used to ensure sequential consistency. When a 
process issues a file operation, messages requesting the oper- 
ation are sent to the appropriate disk servers, which perform 
the operation and return a result. The results are collected 
and, assuming all of them indicate successful completion of 
the operation, a commit message is sent to each participat- 
ing disk server; otherwise, an abort message is sent. Commit 
messages cause the disk servers to make the changes perma- 
nent, while abort messages restore the previous state, after 
which the operation is typically tried again. 

In the context of parallel file systems, contention analysis 
explains the duration of each request by its transmission 
durations, the durations of the request-related operations 
on a server, and other computation performed by the server 
between the request arrival and the response to the client, 
which includes the server’s overhead and computation on 
behalf of other interfering requests. With this knowledge, we 
can adopt alternate file layouts that reduce the contention 
among the requests (and presumably their duration). 

We can use contention analysis to understand the perfor- 
mance of PIOUS programs. We first inspect the Operation 
Map produced by Carnival (see Figure 5a), where each line 
represents an operation that composes a class of requests. 
For each operation, the display presents its attributes (e.g., 
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Figure 5: Contention Characterization from TPC-C 

file, server), its cumulative duration, and a color bar that 
describes a breakdown of the cumulative duration into the 
three categories of interest (computation, system overhead, 
and interference). By browsing this display, we can eas- 
ily determine the classes of requests that have the highest 
cumulative duration across the execution, as well as any 
significant interference, both subjects for further analysis. 
Clicking on the color bar produces summaries of the various 
characterizations for the operation displayed in the bottom 
of the window. A user can inspect a characterization by 
clicking on its summary, causing Carnival to pop-up a con- 
tention characterization (see Figure 5b), which lists the re- 
quests that interfere with this class. Information about the 
class of requests being explained is given at the top of the 
window, as is the relative weight of the interference. 

Below this information, there is a color bar that serves 
as a reference for identifying the various PIOUS operations 
and the interfering classes of requests, one per line. Each 
line describes the attributes of the class (application, file, 
description, and basic block identifier), the percentage of 
interference caused by the class, and the amount of interfer- 
ence that occurred in each server. Each server is identified 
by number within the table; the intensity of the surround- 
ing grey scale represents the percentage of the interference 
generated happened at that server (with darker squares cor- 
responding to greater interference). 

Next we describe how contention analysis helped im- 
prove the performance of TPC-C [8], a benchmark for on-line 
transaction processing systems. This benchmark is inspired 
by activities performed by a supplier of wholesale parts and 
simulates an environment where terminal operators execute 
transactions on a database, which include entering and de- 
livering orders, recording payments, checking the status of 
orders, and monitoring the level of stock. There are five 
types of transactions in TPC-C: neu~ order, payment, deliv- 
ery, order status, and stock level. Each transaction occurs 
with a different frequency and accesses a different set of the 
following nine files: Warehouse, District, Item, Stock, Cus- 
tomer, History, Order, Order Line, and New Order. Four of 
these files, History, Order, Order Line, and New Order, are ac- 
cessed in global mode, since transactions perform insertions 
on them during the execution. 

In our implementation of TPC-C, each client represents a 

-a 

-b 

terminal operator that issues transactions continuously. We 
executed the TPC-C program on sixteen clients and eight 
servers, and each client performed twenty transactions. The 
experiments were performed on a cluster of eight DEC Alpha 
Server 2100 nodes connected by a DEC Memory Channel. 
Each Alpha Server node has four 233 MHz Alpha processors 
with 256 Mb of memory. 

The operation map generated by Carnival (see Figure 5a) 
shows that 97% of the execution time is spent in accesses 
to Order, Order Line, and New Order. These files dominate 
the PIOUS operation costs because (a) they are the most 
frequent and (b) they are the most expensive (requiring ac- 
cess to global file pointers). Clicking on the operation map 
causes Carnival to display contention characterizations such 
as the display shown in Figure 5b. This figure shows a 
characterization for “acquire lock” operations from new OT- 

der transactions, which account for 40.9% of the overall in- 
terference costs. This characterization indicates that this 
operation interferes with accesses to both Order and New 
Order. This interference happens more frequently on server 
0 (indicated by the darker entries), which records the global 
pointer, but requests to all eight servers are affected. After 
verifying similar characterizations for other operations, we 
conclude that accesses to Order, Order Line, and New Order 
contend with accesses to all files, including themselves. We 
also find that accesses to District contend with accesses to 
Customer and vice-versa. Thus, in order to improve the per- 
formance of our TPC-C implementation, we have to isolate, 
as much as possible, Order, Order Line, and New Order from 
the other files. Furthermore, District and Customer should 
not share servers. 

Knowing the sizes of files and which files and operations 
contend, we can determine the minimum number of servers 
that should be assigned to each file. For example, due to 
their size, Stock and Order Line require all eight servers. 
Based on both contention information and storage require- 
ments, we determine file layouts that will allow better per- 
formance. In this case, since Order and New Order represent 
the majority of the accesses and usually contend with each 
other, we reserve a pair of servers for each of them, which are 
shared only with Stock and Order Line. The remaining files 
are spread across the other servers, each using at least two 
servers, while avoiding other minor sources of interference. 
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We executed the program using the new layout and the 
number of transactions per second (tps) increased for four of 
the five transaction types. Moreover, the total improvement 
(i.e., the weighted sum of the per-transaction improvements) 
is 40%, which reflects the overall improvement attained by 
the changes in the file layout. Only delivery exhibited worse 
performance, due to the reduction in the concurrency of ac- 
cesses to New Order and Order. The contention characteriza- 
tions for this last execution show that a lack of concurrency 
is the major source of the remaining contention, which is 
expected given that the number of clients is larger than the 
number of servers. Although there are other possible file 
layouts that satisfy the constraints inferred from the char- 
acterizations, they will not improve the performance of the 
program, since the main source of remaining contention is a 
consequence of the implementation of PIOUS. 

4.2 Scheduling in Barnes 

Our second example examines Barnes [19], an application 
that simulates the interaction of a system of bodies, in three 
dimensions, using the Barnes-Hut hierarchical N-body meth- 
od. The computational domain of this application is mod- 
eled as an octree, where the leaves contain body informa- 
tion and internal nodes represent space cells. The experi- 
ments were performed on the same hardware described in 
Section 4.1. Applications are linked to an instrumented im- 
plementation of Treadmarks (version 0.9.6), which employs 
DEC’s implementation of TCP/IP on the Memory Channel. 

Execution of the original code for Barnes on four proces- 
sors with 16384 bodies for 5-time steps takes 202 seconds, 
with an efficiency of only 39%. When we examine the exe- 
cution profiles provided by Carnival, we find that processors 
are blocked on barriers for about 35% of the execution time, 
while another 25% of the execution time is spent commu- 
nicating. Knowing that waiting time is a significant source 
of performance degradation, we proceed by analyzing the 
Characterization Maps (see Figure 6a). These maps pro- 

-d 

vide color-coded operations for each code segment that is 
responsible for the observed waiting time: operations from 
the longer path (identified by “+“) are on the right side of 
the window, and operations from the shorter path on the left 
(“-“), The number of occurrences of each operation is given, 
as is the percentage of the waiting time associated with each 
operation. From the analysis of these characterizations, we 
learn that two thirds of the waiting time is caused by differ- 
ences in communication costs in the loops that traverse the 
octree, while the remaining third is caused by load imbal- 
ance in the same loops. Thus, communication is responsible, 
both directly or indirectly, for almost half of the execution 
time of the application. 

Synchronization analysis also identifies a single function, 
findmy-bodies, as a main source of communication over- 
head, being responsible for 45% of the communication costs 
(see Figure 6a). Profiles also show that the variable bodytab, 
an array where all bodies are stored, accounts for 75% of the 
overall communication costs. 

At this point, WC know that communication is a major 
source of overhead and the variable bodytab is responsible 
for most of it. We inspect the communication characteriza- 
tions of bodytab (Figure 6b,c, and d). A communication 
characterization, which is organized as a table, presents in- 
formation about a variable (or set of pages). Each graph is 
represented as an incidence matrix, where the column header 
(Figure 6b) identifies the access pattern (using a color code), 
the source code location of the faults (R for request, I for 
invalidation, and W for preceding writes), and the percent- 
age of total page fault cost in the graph associated with 
that vertex. The entries (Figure 6c) quantify the relative 
frequency of transitions between vertices in the graph. It is 
also possible to obtain per-processor information by clicking 
on the header of each column (Figure 6d). After analyzing 
the access patterns to bodytab, we found that most of the ac- 
cesses in f indmy-bodies have a multiple-producer-multiple- 
consumer pattern (as seen in figure 6b), and all (or almost 
all) processors read or write to each page of bodytab (as seen 
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in figure 6d). Since each page contains several bodies, false 
sharing occurs as a consequence of the dynamic distribution 
of bodies to processors, causing several processors to access 
each page during every iteration of the algorithm. It is not 
surprising that a program written for a shared-memory ma- 
chine with small coherence units presents false sharing when 
executed on a machine with large coherence units. However, 
in porting programs such as Barnes, which may consist of 
several thousand lines of code and many shared variables, 
it can be difficult for programmers to determine the code 
segments and variables that need attention without some 
automated support. 

One approach to minimizing this false sharing is to avoid 
changing the allocation of bodies to processors at every iter- 
ation and to consider page boundaries when distributing the 
bodies among processors. Although the static distribution 
of bodies increases the load imbalance among processors, we 
expect this increase to be compensated for by a reduction in 
communication costs, which dominate the execution time. 
Following up on this analysis, we added a 25.line function 
that distributes bodies statically, and disabled the per-iter- 
ation dynamic redistribution. The modified program exe- 
cuted 28% faster than the original version. As shown by the 
Carnival profiles, we observed that this improvement comes 
from the reduction of the waiting times at barriers by more 
than one third, and the reduction of communication costs 
by about a half. This example illustrates how synchroniza- 
tion analysis and communication analysis can be used to 
find the sources of excess communication in the source code 
and suggest changes. In this particular example, CEA lead 
us to focus on a single small procedure, even though profiles 
would have suggested a focus on barriers located elsewhere 
in the program. 

4.3 Tuning Squid Hierarchies 

Squid [6] caches Internet data by acting as a proxy server for 
Internet users. That is, whenever a user requests a page to 
a WWW browser, the browser asks Squid to get the page. 
If the requested page is available at the proxy server, Squid 
returns it. Otherwise, Squid connects to the remote server 
and requests the page. It then transparently streams the 
data through itself to the client machine, while keeping a 
copy of the data. The next time a request is made for that 
page, Squid simply reads it off disk, transferring the data to 
the client machine almost immediately. 

Squid servers can be arranged hierarchically for enharic- 
ing response time and reducing network traffic. The hierar- 
chy works as one cluster that answers requests, and pages 
can be cached at one or more levels of the hierarchy. Also, 
each machine in the hierarchy can be assigned to a specific 
range of domains (e.g., . corn, .net) so that it is possible to 
balance the load and exploit the reference locality inherent 
to accesses. Thus, there are two configuration parameters 
for each machine in a hierarchy: the relationships that each 
machine has with other machines (sibling, parent) and the 
domain(s) that are served by each machine. Note that there 
is no standard recipe for configuring a Squid hierarchy, be- 
cause machine configurations, network resources, and traffic 
characteristics may vary drastically among sites. Our expe- 
rience is that system managers usually tune hierarchy pa- 
rameters using trial-and-error, which is both laborious and 
error-prone. 

We used CEA techniques to identify sources of perfor- 
mance degradatiori in Squid hierarchies and to determine 
configuration parameters that allow an increase in the qual- 

ity of service provided by those hierarchies. In particular, 
our goal was to find the best configuration for a cluster of 
four Pentium machines connected by a 1OOMB fast Ethernet. 
Each of these machines has 300Mb of disk for WWW caching 
and is also connected to an Ethernet network, from which 
requests arrive. All machines run FreeBSD 2.5.2 and our 
instrumented Squid 1.1.17. Both clients and WWW servers 
are emulated by other workstations in the same LAN. 

The workload used in our tests is based on logs from 
POP-MG [l], which is the Internet backbone that serves the 
state of Minas Gerais, Brazil. POP-MG has several national 
and international links that represent a bandwidth of up to 
9 Mbps and an average traffic rate that is close to 6 Mbps. 
The average load of the caching proxy servers is 1,800,OOO 
requests per day. We analyzed a log containing 4,235,511 re- 
quests for 1,079,044 unique objects, which results in about 
12 Gbytes of data that has to be stored in our machines. 
Since our machines can only store up to 1.2 Gbytes, the 
cache holds up to 10% of all data. For our experiments, we 
characterized the workload, and generated a smaller stream 
of requests that is feasible for experimentation, while main- 
taining the same cache ratio. In the case of POP-MG for 
example, we generated a set of 96,000 requests that follow 
the workload and determined the total size of unique objects 
(Z 400 Mbytes). We then used 10% of this size as our total 
cache size, leading to 10 Mbytes of disk cache per machine. 

Since we did not know in advance how to configure a 
hierarchy to obtain the best performance, we started with 
a flat configuration of four children. This configuration was 
able to answer a request in 2.8 seconds on average. We start 
our analysis by verifying the Request Map produced by Car- 
nival, which displays both static attributes (e.g., domain, 
source host) and profile data (e.g., number of requests, cu- 
mulative response time) associated with the various classes 
of requests. There is a color bar that represents a breakdown 
of the cumulative response time into five categories: com- 
putation, synchronization, contention, communication, and 
server overhead. By clicking on this display, the user can 
verify both contention characterizations, which show classes 
of requests that contend in the servers of the hierarchy, and 
waiting time characterizations, which explain the causes of 
delays in queries between servers. 

Both synchronization and contention analysis of the most 
frequent classes of requests point to sibling requests as a 
main source of performance degradation, representing 33% 
of the overall response time. Knowing that sibling requests 
represent a source of performance degradation, we exam- 
ine the communication graphs produced by communication 
analysis, which tell the user the access patterns of the ob- 
jects stored in the hierarchy. Figure 7 presents the com- 
munication graph for a set of objects frequently requested. 
We can observe that most of the time (73%) the objects are 
either available locally (l-cached Locally) or replicated in 
the other sibling caches, (4-Cached Remotely(S)) and the 
graph transitions are usually among these two states (49%). 
In summary, there is too much replication in the hierarchy, 
and a large number (50%) of the cached pages are replicated 
in more than one server. 

Since the most frequently accessed web pages tend to 
be the most popular web pages (and therefore are accessed 
widely), the flat hierarchy ends up storing the same docu- 
ments in all of the siblings. One strategy to minimize the 
excessive replication of pages is to configure the machines as 
a hierarchy, where pages accessed less frequently are stored 
in the upper levels of the hierarchy. 

We then configured our four machines as a two-level hi- 
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Figure 7: Communication Characterizations for Squid Cache Proxy 

erarchy with three children and one parent. Surprisingly, 
the average response time of this configuration increased to 
4.1 seconds. The profiles provided by Carnival indicated con- 
tention as the major source of performance degradation and 
our analysis of the contention characterizations confirmed 
that simultaneous accesses to the single parent were the 
main source of contention, accounting for 36% of the re- 
sponse time on average. Moreover, the same characteriza- 
tions also showed that sibling-related interference was re- 
sponsible for 20% of the response time. Also, the commu- 
nication graphs showed that the utilization of a hierarchy 
reduced the amount of replication by only lo%, resulting in 
frequent requests to the parent. 

In order to reduce contention at the parent, we config- 
ured a hierarchy with two parents and two children, where 
each child communicates with its sibling and the parents. 
The average response time decreased to 2.3 seconds, a 22% 
improvement over the initial configuration, although each 
child had to handle twice the number of requests. In this 
case, contention among requests increased, accounting for 
5% of the response time (compared to 1% in the flat con- 
figuration), while both sibling intrusion and contention for 
parents decreased (7% and 23%, respectively). 

In this example, CEA helped us to understand the dy- 
namic behavior of a cache hierarchy. Since the performance 
of the hierarchy depends on the client workload, the ob- 
served phenomena and their causes may vary significantly 
across sites, making our automated approach extremely valu- 
able for these types of analyses. 

5 Related Work 

Much of the work intended to assist the programmer in un- 
derstanding the relationships between execution events in 
parallel and distributed programs is based on causality, as 
defined by Lamport’s happened-before relation [9]. Parallel 
debugging tools and techniques [lo, 151 often employ causal- 
ity graphs to delimit the sets of events that must be in- 
spected in order to find the source of execution errors or to 
detect potential race conditions. Critical path analysis (201 

uses causality graphs to identify the execution path that 
dominates program performance, focusing attention on the 
code segments where tuning should be performed. 

There are other tools and techniques that express dy- 
namic relationships among program operations and data. 
The PPUTTS toolkit [ll] provides a graphical view of the 
program behavior based on a directed acyclic graph repre- 
sentation of processes and communication operations. An- 
other example is StormWatch [3], which is a visualization 
tool for memory system protocols that presents multiple 
views of memory access operations, including performance 
slices that capture relationships between individual memory 
events, exposing causality in memory operations. The main 
limitation of these two tools, and other event-based tools, 
is that they can overwhelm the programmer with detailed 
data. 

Rajamony and Cox [18] implemented a performance de- 
bugger that automatically identifies code transformations 
that reduce synchronization and communication. This per- 
formance debugger is similar in approach to our work, al- 
though it is specific to the target programming environment 
and focuses on one class of overheads. 

Our work is distinguished primarily by its emphasis on 
understanding the durations of events, rather than the oc- 
currence of events. Our techniques are designed to assist 
the programmer in improving program performance by re- 
ducing the durations of events that cannot (in general) be 
eliminated entirely. The novelty in our approach is to use 
causality information, augmented by appropriate timing in- 
formation, to reason about the underlying causes of perfor- 
mance phenomena. 

6 Conclusions 

In this paper we presented a novel approach for performance 
understanding called cause-effect analysis. We illustrated 
our approach by analyzing the performance of a parallel file 
system, a DSM parallel application, and a WWW cache 
proxy server. Our experience demonstrates that these tech- 
niques can be used effectively to understand the causes of 

110 



poor performance, and to identify specific improvements in 
the source code. We are currently working on the use of 
CEA techniques in other environments, and are also inves- 
tigating the utilization of characterizations for performance 
prediction. 
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