
Please do not remove this page

Efficient testing based on logical architecture
Liu, Huai; Spichkova, Maria; Schmidt, Heinrich; Ulrich, Andreas; Sauer, Horst; Wieghardt, Jan
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Efficient-testing-based-on-logical-architecture/9921862875201341/file
sAndLinks?index=0

Liu, H., Spichkova, M., Schmidt, H., Ulrich, A., Sauer, H., & Wieghardt, J. (2015). Efficient testing based on
logical architecture. Proceedings of the 24th Australasian Software Engineering Conference (ASWEC
2015), 49–53. https://doi.org/10.1145/2811681.2811691

Published Version: https://doi.org/10.1145/2811681.2811691

Document Version: Accepted Manuscript

Downloaded On 2024/04/24 03:31:42 +1000
© 2015 ACM
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Efficient-testing-based-on-logical-architecture/9921862875201341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Efficient-testing-based-on-logical-architecture/9921862875201341
http://doi.org/doi:https://doi.org/10.1145/2811681.2811691
https://researchrepository.rmit.edu.au

Thank

Citatio

See th

Version

Copyri

Link to

you for do

on:

is record i

n:

ght Statem

o Published

wnloading

in the RMI

ment: ©

d Version:

 this docum

IT Researc

ment from

ch Reposit

the RMIT R

ory at:

Research RRepository

PLEASE DO NOT REMOVE THIS PAGE

 Liu, H, Spichkova, M, Schmidt, H, Ulrich, A, Sauer, H and Wieghardt, J 2015, 'Efficient
testing based on logical architecture', in Proceedings of the 24th Australasian Software
Engineering Conference (ASWEC 2015), United States, 28 September - 1 October 2015,
pp. 49-53

https://researchbank.rmit.edu.au/view/rmit:34629

Accepted Manuscript

2015 ACM

http://dx.doi.org/10.1145/2811681.2811691

http://researchbank.rmit.edu.au/

Efficient Testing based on Logical Architecture

Huai Liu, Maria Spichkova,
Heinz W. Schmidt

RMIT University
Melbourne, Australia

{huai.liu, maria.spichkova,
heinz.schmidt}@rmit.edu.au

Andreas Ulrich, Horst Sauer,
Jan Wieghardt

Siemens AG, Corporate Technology
Munich, Germany

{andreas.ulrich, horst.sauer,
jan.wieghardt}@siemens.com

ABSTRACT
The rapid increase of software-intensive systems’ size and
complexity makes it infeasible to exhaustively run testing
on the low level of source code. Instead, the testing should
be executed on the high level of system architecture, i.e., at
a level where component or subsystems relate and interop-
erate or interact collectively with the system environment.
Testing at this level is system testing, including hardware
and software in union. Moreover, when integrating complex,
distributed systems and providing support for conformance,
interoperability and interoperation tests, we need to have
an explicit test description. In this vision paper, we discuss
(1) how to select tests from logical architecture, especially
based on the dependencies within the system, and (2) how to
represent the selected tests in explicit and readable manner,
so that the software systems can be cost-efficiently main-
tained and evolved over their entire life-cycle. In addition,
we further study the relevance between different tests, based
on which, we can optimise the test suites for efficient test-
ing, and propose optimal resource allocation strategies for
cloud-based testing.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.11 [Software Engineering]: Software Architectures

Keywords
logical architecture, dependencies between services, testing

1. INTRODUCTION
With the increase of system size and complexity in software-

intensive distributed systems, it has become necessary to co-
ordinate and integrate the work from various technical and
human-centered disciplines under the generic context of sys-
tem engineering. The latest engineered systems should com-
ply with the principles of different fields, such as software
engineering, control engineering, project management, etc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASWEC ’ 15 Vol. II, September 28-October 01, 2015, Adelaide, SA, Aus-
tralia
c© 2015 ACM. ISBN 978-1-4503-3796-0/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2811681.2811691

Nowadays, engineered systems are becoming more and more
software-intensive; as a result, software engineering has be-
come an indispensable and crucial practice in the system en-
gineering process that interconnects the various disciplines.

As an example of engineered systems we consider the class
of automation systems that are used in factory automa-
tion or process automation solutions as they occur today
in many different production systems ranging from electro-
mechanical assembly units for goods such as cars to chemical
or biological reaction processes and many more. The heart
of an automation system is a programmable logic controller
(PLC) that executes a control program in hard real-time
to observe signals from the plant and control the industrial
process near instantly via sensors and actors.

Today’s automation systems resemble highly complex large-
scale systems. They consist of 100 and more PLCs that pro-
cess up to 100,000 I/O signals. The lifespan of an automa-
tion system is typically in the range of 10 to 15 years. During
this time uninterrupted operation of the plant is expected.
Nevertheless the plant has a much higher lifespan of 30 and
more years, which implies a modernization of the automa-
tion system, sometimes even during continued operation of
the plant. These conditions require tremendous efforts for
quality assurance for the automation system as the whole
and the control programs of the PLCs in particular.

Automation solutions of the future need to cope with
higher flexibility, better integration and improved efficiency
at highest quality level. To design, develop and operate such
upcoming future automation systems, new approaches are
required that address the paradigm shift that is currently
happening from statically planned, centrally controlled and
hierarchically built systems towards flexible, highly meshed
and autonomously operating, so called cyber-physical sys-
tems. Engineering such systems includes a commissioning
phase that is itself one of the more complex and costly
phases due to specific deployment constraints, architectures
and processes. Post commissioning testing has to deal with
many combinatorial elements resulting from a myriad of con-
figuration options, different interconnections and communi-
cations choices in different deployments despite high levels
of reuse across projects and the increase in sheer volume,
velocity and variety of data to be processed and reacted to
in the deployment environment.

One of the major objective of software engineering is to
guarantee the quality of the system under development and
in operation. Testing, a mainstream approach to quality as-
surance through detecting failures, is confronted with new
challenges on today’s distributed, global, and complex cyber-

physical systems that are increasingly deployed using cloud-
enabling with services and/or service compositions. One
major challenge is the infeasibility of testing on the low
level of source code. In the context of component-based
and service-oriented architecture, a service is developed and
owned by a third-party organisation and realised in one or
more specific self-contained third-party components. The
service consumer can only access the service through the
service’s description. In other words, source code of the ser-
vices are normally unavailable to users. Even though the
source code is accessible, the complexity of today’s large-
scale systems will make the testing based on source code
time-consuming, very expensive, and even infeasible.

As a matter of fact, we do not need the complete infor-
mation about the system to conduct testing in a fairly ef-
fective way. We need to find which local information (at
the level of one or more components or subsystems) is suf-
ficient for system-level testing. In our previous work, we
elaborated a formal approach that (1) allows modelling and
analysis of data and control flow dependencies, and (2) pro-
vides a logical system architecture based on the dependen-
cies within/among services [10] and components [8].

Contribution: In this vision paper, we propose a test-
ing framework based on the logical architecture. We con-
vert the traditional white-box control-flow and data-flow
based testing into a new technique using the information of
data and control flow dependencies among services on the
level of system architecture. The new testing technique can
help testers generate and select tests that can satisfy certain
architecture-level control-flow or data-flow coverage criteria.
In addition, we present an approach to further minimising
test suite with the purpose of using as few tests as possible
to achieve the highest coverage. Given that the tests are
generated based on the dependencies between services, we
also discuss how to describe the relevance between tests. We
further investigate how to improve the testing efficiency by
precisely allocating resources for testing in the cloud com-
puting environments. One of the aim of the proposed frame-
work is to incorporate the ideas of cloud-based testing into
the Test Description Language (TDL, cf. [13]). The main
advantage of TDL is the representation test descriptions as
scenarios, i.e., on a higher abstraction level than program-
ming or scripting languages. This allows better readability
and understandability of tests, and also conforms with the
human-oriented software development, cf. [9, 11].

Outline: The rest of the paper is structured as follows:
In Section 2, we discuss the testing-oriented methodology
we are implementing in our framework, and introduce the
core ideas of analysis of dependencies within systems, with
the aim to find the minimal part of model/system needed
to run a specific test suite or to verify a particular property.
In Section 3, we discuss the related work on test selection
and propose a family of architecture-level testing coverage
criteria based on the dependencies within systems. We also
present some potential research directions for further im-
proving the efficiency of testing. Section 4 concludes the
paper by highlighting the main contributions and describ-
ing the future work directions.

2. OUR FRAMEWORK

2.1 Testing-oriented optimisation
The development of innovative, flexible and sustainable

systems means stronger requirements on the development
and testing methodologies, as well as new challenges on the
optimisations of the system architecture and the testing ap-
proaches. Following the idea of test-driven development (cf.,
e.g., [5]), we aim at testing-oriented optimisation of the log-
ical architecture of the system, which means that we would
improve testing efficiency and the overall system quality, as
well as cost-efficiently maintain and evolve the systems over
their entire life-cycle. Thus, this would contribute to the
technical sustainability (i.e., cost-effective longevity and en-
durance, cf. [7]) of software architecture, and as result to
the technical sustainability of the system itself.

In many cases, to run a test suite, the complete informa-
tion about the system is not required. However, it might be
complicated to identify which parts of the system are suffi-
cient for this check. To allow the automation of the analysis,
we solve this problem on a formal level first.

In our work we focus on the following questions:

• How we optimise the engineered system making its ar-
chitecture more suitable for efficient testing? To solve
this problem, we suggest to use testing-oriented opti-
misation of the system architecture. The optimisation
is based on the analysis of the dependencies between
components (cf. Section 2.2).

• How we select the minimal set of required test suites?
We suggest a solution based on logical architecture
analysis (cf. Section 3.1).

• How we optimise the testing effectiveness? To solve
this problem, we suggest to analyse relevance between
tests, based on which we can further improve the test-
ing cost-effectiveness through improving the diversity
among tests (cf. Section 3.3). In addition, we suggest
to take the cloud computing into consideration and al-
locate different computing resources for different tests,
aiming at enhancing testing efficiency in cloud.

Figure 1 presents the general methodology we implement in
our framework. On the one hand, the architecture of the
engineered system have to be optimised for the testing: the
dependencies within the system have to be analysed also
taking into account the kind of properties we have to check
for the system (cf. Section 2.2 for more details). On the
other hand, we have to generate optimized test suites also
taking into account the relevance among tests (cf. Section
3.3) and the test suites coverage (cf. Section 3.1). On this
basis, we can perform testing on a cloud-based platform such
as Chiminey [14], a bioscience data platform.

Op#mised	 	
Test	 Suites	 	

(TDL)	

Op#mised	
Engineered	 	
System	

Engineered	
System	

Tests	
Suites	

Tes#ng-‐Oriented	
Op#misa#on	

Cloud-‐Based	 Tes#ng	 	

Cloud-‐Oriented	
Op#misa#on	

Proper#es	 to	 check	

Figure 1: Testing Framework: Methodology

One aim of our frameworks is to incorporate the ideas
of sustainable software development and cloud-based test-
ing into the upcoming ETSI standards [4]. We also aim at
increasing the readability and understandability of tests, to
conform with the ideas of human-oriented software develop-
ment, cf. [9, 11]. For this purpose, we are going to represent
the optimized test suites using the Test Description Lan-
guage (TDL, cf. [13]). In our approach, we see TDL as
an intermediate representation of automatically generated
tests. TDL allows to represent test suites (test descriptions)
as scenarios, which helps to bridge the gap between high-
level test purpose specifications and executable test cases.
Thus, TDL can be used as an intermediate representation
of tests generated from simulators, test case generators, or
logs from previous test runs. It provides a generic language
for the formal specification of test suites and makes a clear
distinction between concrete syntax and a common abstract
syntax.

2.2 Dependencies within the system
Any additional information about the system can make

the whole process of verification or testing slower, more ex-
pensive or even infeasible, especially if we are speaking about
formal verification. Thus, we have to find the minimal part
of model needed to run a specific test suite or to verify a par-
ticular property. We suggest an approach focusing on data
and control flow dependencies between services [10] as well
as between components [8]. The dependencies are analysed
with the aim to provide a logical decomposition of the sys-
tem architecture that is especially appropriate for the case
of remote monitoring, testing and/or verification. Thus, by
adapting this approach to our framework, we can perform
a testing-oriented optimisation of the logical architecture of
the system. It is also crucial to have an efficiency analy-
sis wrt. which test suites should be performed locally, and
which should be sent to the Cloud platform. Therefore, we
extend our framework by an appropriate model covering all
these aspects. Moreover, the resulting architecture will be
more sustainable [7].

Figure 2 gives an example to illustrate the dependencies
among services in a system consisting of 8 services. The
input/output dependencies within a service are represented
by dashed lines. Green ovals denote local variables. The
channels with large size of data packages within a data flow
and frequency they are produced, are denoted by thick red
arrows. The services requiring the use of high-performance
computing and Cloud virtual machines, are marked by white
colour. All other channel and services are marked blue.

A1	
	

A6	 A2	

A3	

data0	

A5	

data2	

data6	 data8	

data7	 data9	

stA3

stA6

stA1

data3	

data1	

A7	

data5	

A4	
A0	

data11	

data10	

data12	

data13	

data16	
data4	 data15	

data14	

stA3

Figure 2: Analysis of dependencies within a system

Following the definition of services introduced in [2], we
specify a service S as a partial function from input streams
I(S) to output streams O(S). Then, on the logical level,
a test suite (as well as a system property) can be repre-

sented by relations over data and control flows on the sys-
tem’s channels.

For the test suite ts, let Its and Ots be the sets of in-
put and output channels, respectively, for which data are
required to perform the testing. For each channel from Ots

we recursively compute all the sets of the dependent input
channels. We define by IDts the union of these sets. IDts should
be equal to Ir, otherwise we should check whether the test
suite was specified correctly. In such a way we can exclude
some results of (human) errors [9] in the specification of the
test suite. This also helps to make the test suite more precise
it or eliminate unnecessary elements.

This allowed us, especially in the case of cloud-supported
processing, to reduce the costs of monitoring, testing or ver-
ification.

3. TESTING STRATEGIES

3.1 Test selection: Related work
In the testing on the level of source code, coverage-based

testing is a mainstream technique which selects tests based
on the information relevant to the structure of the software
under test [15]. Two main types of code coverage criteria
are those based on control flow and data flow, respectively.
Control-flow coverage makes use of the control constructs of
the software under test. Statement coverage, for instance,
requires the selected tests to run each executable statement
at least once. In addition, branch coverage requires the se-
lected tests to exercise every feasible branch at least once.
Data-flow coverage considers certain patterns of data manip-
ulations, including the definition (normally abbreviated as
def) and the usage (abbreviated as use) of a datum. Many
data-flow based techniques have been proposed based on dif-
ferent criteria, such as all-defs, all-uses, etc.

Though the concept of coverage was originally proposed
for unit testing on the code level, it has been extended to
different contexts. Spillner [12] has proposed some coverage
criteria for integration testing. In the context of control-flow
based integration testing, the interactions among modules
and operations were considered. The simplest criterion is
that every module has been executed at least once. More
complicated criteria include export operation coverage, im-
port operation coverage, etc. In the context of data-flow
based integration testing, the focus was on the parameters
among different operations/modules. Parameters are nor-
mally defined in the calling operations/modules, and used
in the called operations/modules.

Hashim et al. [6] also worked on integration testing, but
using the basic concepts in the traditional component-based
architecture. They proposed three criteria, namely gate link,
gate prefix, and gate path coverage criteria, which are analo-
gous to control-flow criteria. In addition, probabilities were
introduced to these criteria such that one could precisely
measure how well the components and connectors are cov-
ered given a test suite.

Bartolini et al. [1] introduced coverage testing into service-
oriented systems. One major challenge of testing in the
service-oriented architecture is the infeasibility of white-box
testing techniques (including traditional code-level coverage
testing). A methodology called SOCT (service-oriented cov-
erage testing) was proposed to measure to what extent var-
ious service features are covered. SOCT makes use of the
interfaces defined in WSDL (Web Service Description Lan-

guage) to provide a variety of operations for coverage mea-
surement. The SOCT methodology has been applied into
the testing of service orchestrations based on BPEL (Busi-
ness Process Execution Language) to evaluate the coverage
of message exchange operations.

3.2 Test selection based on logical architecture
In contrast to all studies that were discussed in the pre-

vious section, we attempt to propose coverage criteria on a
more abstract level, more specifically, on the level of logic
architecture. Based on the logical dependencies among ser-
vices proposed in our previous study [10] and discussed in
Section 2.2, we can have the architecture-level control-flow
and data-flow coverage criteria as follows:

Architecture-level service coverage The selected tests
should exercise every service at least once. This cri-
terion is the counterpart to the code-level statement
coverage.

Architecture-level branch coverage The selected tests
should exercise every possible branch between services
at least once.

Architecture-level all-defs coverage The selected tests
should cover each def of every datum at least once.

Architecture-level all-uses coverage The selected tests
should cover each use of every datum at least once.

Among the above five criteria, the first two can be con-
sidered as architecture-level control-flow coverage criteria,
while the remaining two as architecture-level data-flow cov-
erage criteria.

Consider the example given in Figure 2. A test suite con-
taining the tests in Table 1 is sufficient for achieving 100%
of the architecture-level service coverage.

Table 1: Tests for architecture-level service coverage
Test than can traverse the path:

TC#1 data0 → A1 → data2 → A3 → data6 → A4 →
data8 → A5 → data15

TC#2 data0 → A1 → data2 → A6 → data11 → A7 →
data12 → A5 → data16

TC#3 data0 → A0 → data1

TC#4 data0 → A2 → data3

However, to achieve 100% of the architecture-level branch
coverage, another test (given in Table 2) is required besides
the above four tests.

Table 2: An extra test for architecture-level branch
coverage

Test than can traverse the path:
TC#5 data0 → A1 → data2 → A3 → data7 → A4 →

data9 → A5 → data15

As the basis for the architecture-level data-flow coverage,
we define the architecture-level def as the data output from
a service, while architecture-level use as the data input into a
service. In the system depicted in Figure 2, the architecture-
level defs include data1 from A0, data2 from A1, data3 from
A2, data5 from A3, data6 from A3, data7 from A3, data8

from A4, data9 from A4, data10 from A6, data11 from A6,
data12 from A7, data15 from A5, and data16 from A5; while
the architecture-level uses include data0 into A0, data0 into
A1, data0 into A2, data2 into A3, data2 into A6, data4 into
A3, data6 into A4, data7 into A4, data8 into A5, data9 into
A5, data11 into A7, data12 into A5, data13 into A5, and
data14 into A5.

The test suite consisting of TC#1 to TC#5 and the tests
given in Table 3 can achieve 100% of the architecture-level
all-defs coverage.

Table 3: Extra tests for architecture-level all-defs
coverage

Test than can traverse the path:
TC#6 data0 → A1 → data2 → A3 → data5

TC#7 data0 → A1 → data2 → A6 → data10

In the test suite for architecture-level all-defs coverage,
TC#1 covers data2 from A1, data6 from A3, data8 from A4,
and data15 from A5; TC#2 additionally covers data11 from
A6, data12 from A7, and data16 from A5; TC#3 additionally
covers data1 from A0; TC#4 additionally covers data3 from
A2; TC#5 additionally covers data7 from A3 and data9 from
A4; TC#6 additionally covers data5 from A3; and TC#7
additionally covers data10 from A6.

To achieve 100% of the architecture-level all-uses coverage,
we can use the test suite containing TC#1 to TC#5 and the
tests given in Table 4.

Table 4: Extra tests for architecture-level all-uses
coverage

Test than can traverse the path:
TC#8 data4 → A3 → data5

TC#9 data13 → A5 → data15

TC#10 data14 → A5 → data16

In the test suite for architecture-level all-defs coverage,
TC#1 covers data0 into A1, data2 into A3, data6 into A4,
and data8 into A5; TC#2 additionally covers data2 into A6,
data11 into A7, and data12 into A5; TC#3 additionally cov-
ers data0 into A0; TC#4 additionally covers data0 into A2;
TC#5 additionally covers data7 into A4 and data9 into A5;
TC#8 additionally covers data4 into A3; TC#9 addition-
ally covers data13 into A5; and TC#10 additionally covers
data14 into A5.

3.3 Relevance among tests
The relationship among architecture-level tests is compli-

cated. Recall the tests (TC#1 to TC#5) in the previous
Section 3.1, no pair of tests has the simple relation of “one is
executed before the other”. All of them show certain degrees
of relevance to one another. For example, TC#1 and TC#5
are similar to each other in the former part of their paths,
but quite different in the latter part. We propose the use of
similarity between two tests to reflect their relevance.

One popularly used similarity metric is Jaccard index,
which is defined as the ratio between the size of the inter-
section and the size of the union of two sets. For example,
the similarity between TC#1 and TC#5 can be calculated
as 2

11
= 0.18, if we treat datai and Aj as equal elements

in a test and do not consider the sequence in the path of
each test. Given a test suite, we can then calculate the
relevance between each pair of tests that can show how sim-
ilar/different one test is from others.

Table 5: Another two possible tests for the system
shown in Figure 2

Test than can traverse the path:
TC#11 data0 → A1 → data2 → A3 → data6 → A4 →

data9 → A5 → data15

TC#12 data0 → A1 → data2 → A3 → data7 → A4 →
data8 → A5 → data16

Diversity among tests has been widely acknowledged as
an important factor to affect the fault-detection effective-
ness [3]: Normally, the more diversified the selected tests
are, the more likely they can detect more faults. Given two
test suites, we can select the suite with higher degree of di-
versity, which can be indicated by a lower similarity. For
example, for two test suites {TC#1, TC#5} and {TC#1,
TC#11} (TC#11 is given in Table 5), TC#5 is less simi-
lar to (or more diversified from) TC#1 than TC#11, so we
would prefer to use the suite {TC#1, TC#5} in the testing.

In addition, the relevance information can also help se-
lecting new tests. Suppose that we already generated the
test TC#11, and we have two candidates TC#5 and TC#12
((TC#12 is given in Table 5)) for the next test, based on the
similarity information, we should select TC#12 instead of
TC#5 as the next test to be executed. In a word, the cover-
age criteria can help us achieve a certain degree of adequacy
in testing, while the test relevance can further help increase
the diversity among tests; both adequacy and diversity can,
in turn, significantly enhance the testing effectiveness.

Tests can include more information, for example, where a
service should be executed (such as locally or in the cloud).
With such information, we can further improve the test suite
such that some tests are mainly associated with service(s)
that must be tested locally, while other tests with those that
can be executed in the cloud. We can also add the informa-
tion about the required resources for running a service, and
thus design various tests that are associated with different
resource requirements. Based on such arrangements, we can
precisely allocate testing resources in the cloud computing
environments, including which tests need to be run on the
local machines, which tests can be executed in the cloud,
and how many resources can be assigned to certain tests.

4. CONCLUSION
Nowadays, large-scale distributed systems are rapidly en-

gineered and widely deployed in the cloud. The large scale
and high complexity of such systems make it almost infea-
sible to run the comprehensive testing on the level of source
code. In this paper, we propose a series of techniques for the
testing on the level of system architecture, so that the soft-
ware systems can be cost-efficiently maintained and evolved
over their entire life-cycle. This would increase the techni-
cal sustainability of the system architecture and, as result,
of the overall system.

We proposed a family of architecture-level coverage crite-
ria based on the data and control flow dependencies within
the system. These criteria, in turn, can help generate test
cases that can achieve a certain degree of test adequacy, as
well as facilitate the minimisation of existing test suites with-
out largely jeopardising the fault-detection effectiveness. We
further presented how to evaluate the relevance between two
tests, on the basis of which, we can further improve the test-
ing effectiveness by pursuing the diversity among tests. Fi-
nally, we discussed how to make use of cloud computing to
optimise the testing efficiency by precisely allocating various
resources among well-designed tests.

In this paper we focus on the problem of incremental
architecture-based testing, ignoring (for now) the specifics of
real-time embedded nature of many of the components/sub-
systems in cyber-physical and post-commissioning testing.
In the future work, we aim to cater for cloud-based soft
commissioning in which significant portions of the deploy-

ment environment are simulated on high-performance cloud
servers. For simplicity and focus, the paper is also content
with an architecture based notion of testing that does not
fully articulate the combinatorial variation resulting from
architectural variation points in product lines. However we
believe that our approach can be extended to such more
general architectures with further investigations.

5. REFERENCES
[1] C. Bartolini, A. Bertolino, and E. Marchetti.

Introducing service-oriented coverage testing. In Proc.
of ASE’08, pages 57–64, 2008.

[2] M. Broy. Service-oriented Systems Engineering:
Specification and design of services and layered
architectures. The JANUS Approach. Eng. Theor.
Software Intens. Syst., pages 47–81, 2005.

[3] T. Y. Chen, F.-C. Kuo, H. Liu, and W. E. Wong.
Code coverage of adaptive random testing. IEEE T.
Reliab., 62(1):226–237, 2013.

[4] European Telecommunications Standards Institute
(ETSI). http://www.etsi.org/.

[5] J. Fröhlich, S. Jell, and A. Ulrich. Applying TDL to
describe tests of a distributed RT control system. In
Proc. of UCAAT’14, 2014.

[6] N. L. Hashim, S. Ramakrishnan, and H. W. Schmidt.
Architectural test coverage for component-based
integration testing. In Proc. of QSIC’07, pages
262–267, 2007.

[7] H. Koziolek. Sustainability evaluation of software
architectures: A systematic review. In Proc. of
QoSA-ISARCS’11, pages 3–12, 2011.

[8] M. Spichkova. Formalisation and analysis of
component dependencies. Archive of Formal Proofs.

[9] M. Spichkova, H. Liu, M. Laali, and H. Schmidt.
Human factors in software reliability engineering. In
Proc. of WAHESE’15, 2015. in press.

[10] M. Spichkova and H. Schmidt. Towards logical
architecture and formal analysis of dependencies
between services. In Proc. of APSCC’14, 2014. in
press.

[11] M. Spichkova, X. Zhu, and D. Mou. Do we really need
to write documentation for a system? In Proc. of
MODELSWARD’13, 2013. arXiv:1404.7265.

[12] A. Spillner. Test criteria and coverage measures for
software integration testing. Software Qual. J.,
4(4):276–286, 1995.

[13] A. Ulrich, S. Jell, A. Votintseva, and A. Kull. The
ETSI Test Description Language TDL and its
application. In Proc. of MODELSWARD’14, pages
601–608, 2014.

[14] I. Yusuf, I. Thomas, M. Spichkova, S. Androulakis,
G. Meyer, D. Drumm, G. Opletal, S. Russo,
A. Buckle, and H. Schmidt. Chiminey: Reliable
computing and data management platform in the
cloud. In Proc. of ICSE’15, pages 677–680, 2015.

[15] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit
test coverage and adequacy. ACM Comp. Surv.,
29(4):366–427, 1997.

	Due Diligence Record Log.pdf
	Iyer-Raniga, Usha- n2006046404- A greenhouse gas.pdf
	Abstract
	Introduction
	Method
	Unit of assessment and system boundary
	Inventory
	Impact assessment

	Results
	Discussion
	Limitations
	Exclusion of travel
	Partition methodology
	Stadium life time and attendance
	Exclusion of upstream construction processes

	Conclusion
	Acknowledgement
	Funding
	References

