The Oprop Verification Tool: Object Propositions in Action

Ligia Nistor

School of Computer Science, Carnegie Mellon University

Inistor@cs.cmu.edu

Abstract

We have recently introduced object propositions as a modular
verification technique that combines abstract predicates and frac-
tional permissions. The Oprop tool implements the theory of object
propositions and verifies programs written in a simplified version
of Java, augmented with the object propositions specifications. Our
tool parses the input files and automatically translates them into
the intermediate verification language Boogie, which is verified by
the Boogie verifier. We present the details of our implementation,
the lessons that we learned and a number of examples that we have
verified using the Oprop tool.

1. Motivation

The formal verification of object oriented code is still an open prob-
lem. The presence of aliasing makes modular verification difficult:
if there are multiple clients depending on the properties of an ob-
ject, one client may break the property that others depend on. Ex-
isting verification approaches use the classical invariant technique
[8] or separation logic [14] but they have limitations such as all ob-
jects of the same class needing to satisfy the same invariant or the
specification of methods needing to reveal the exact structure of the
objects that they modify.

Object propositions bypass these limitations and they are a step
forward in the modular verification of object oriented code. They
are unique in providing a separation logic with fractions, in which
developers can unpack an object that is shared with a fractional
permission, modify its fields, and pack it again as long as the new
field values validate the original abstract predicate.

2. The Theory of Object Propositions

The object proposition methodology [13] uses abstract predicates
[14] to characterise the state of an object, embeds those predicates
in a logical framework, and specifies sharing using fractional per-
missions [9]. Object propositions are associated with object refer-
ences in the code. Programmers can use them in writing method
pre- and post-conditions and in the packing/unpacking annotations
that they can insert in the code as part of verification.

To verify a method, the abstract predicate in the object proposi-
tion for the receiver object is interpreted as a concrete formula over
the current values of the receiver object’s fields (including for fields
of primitive type ¢nt). Following Fihndrich and DeLine [10], our

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright © ACM [to be supplied]. .. $10.00

class DoubleCount {
int val; int dbl;
predicate OK() =
exists int v, int d :
this.val -> v && this.dbl -> d && d == 2x%v
void increment ()

“double k:

requires this#k 0K()

ensures this#k 0K()

{ unpack(this#k 0K());
this.val = this.val + 1;
this.dbl = this.dbl + 2;
pack(this#k 0KQ); > }

Figure 1. DoubleCount.java

verification system maintains a key (represented o. f — x) for each
field of the receiver object, which is used to track the current values
of those fields through the method.

The programming language that we are using is inspired by
Featherweight Java [11], extended to include object propositions.
Our tool, Oprop, is unique because it implements the theory of
object propositions. There are other formal verification tools for
object oriented programs, such as KeY [6] or Dafny [2], but they
implement other methodologies. We have formal translation rules
from the Oprop language into the Boogie intermediate verification
language.

3. Example

The class DoubleCount.java is given in given in Figure 1. The
DoubleCount example has been previously briefly covered in the
AI4FM’ 14 workshop [12]. There we only presented a sketch of a
manual translation while here the example is translated automati-
cally by our Oprop tool. The class DoubleCount represents objects
which have a field val and a field dbl, such that dbl==2%*val. This
property represents the invariant of objects of type Doublecount.
We want to verify that this invariant is maintained by the method
increment. The tilde sign in the specification of the increment
method in Figure 1 is there to differentiate between variables k
used for fractions and other variables that are used as parameters
to predicates.

4. Translating the Oprop Language into Boogie

The Boogie tool [1] uses the first order logic theorem prover Z3 [4]
for the verification of input programs. This means that we need to
encode our extended fragment of linear logic representing Oprop
into first order logic. The crux of the encoding is in how we treat
fractions, how we keep track of them and how we assert statements
about them. Fractions are intrinsically related to keeping track of
resources, the main idea of linear logic. We are working on proving
that our Boogie translation and Oprop are semantically equivalent.

At the start of each Boogie program we declare the type Ref that
represents object references. We declare a map from the parameters
of a predicate and a reference r to a real in the interval [0,1]

representing the fraction k of the object proposition @k Q(%). We
declare a second map from the parameters of a predicate ((Q for the
above object proposition) and a reference r to a boolean, keeping
track of which objects are packed. Each key points to true if and
only if the corresponding object proposition is packed. For each
predicate Q, we have a map keeping track of fractions and a map
keeping track of the packed objects.
trans(Prog) = type Ref;

var fracQ [Ref] real;

var packedQ [Ref] bool;

const null : Ref;

trans(ClDecl) trans(e)

A class declaration is made of the field, predicate, constructor

and method declarations. Because of lack of space, we stop here in
presenting the translation rules.

5. The Oprop Tool

The Oprop tool [5] takes as input any number of files written in
Java and annotated with object propositions specifications. For each
file, it produces the corresponding Boogie translation file. If the
user has provided multiple files as input, there will be multiple files
produced as output. The user will have to manually concatenate
the multiple files into a single one. The user will then go to the
webpage http://risedfun.com/boogie, that is the web interface to the
Boogie verification system, to find out whether the original Java file
augmented with the object propositions annotations was verified or
not. If an error message is displayed, the user has the option of
going back to the original Java file and adding more annotations
that might help the formal verification.

The Oprop tool is composed of two parts: JExpr [7] and the
Boogie translation. JExpr is a parser for a very small subset of
Java, developed by Paul Cager. We took his off-the-shelf parser
and added support for the parsing of object propositions annota-
tions. The JExpr system consists of the following components: a
JavaCC parser found in the file JExpr.jj, a set of Abstract Syntax
Tree classes, a Contextual Semantic Analysis visitor and a type res-
olution class used by the Contextual Visitor. We implemented the
Boogie translation in a file called BoogieVisitor,java. In this file we
implement our formal translation rules. By implementig the visitor
design pattern, we visit all the nodes of the Abstract Syntax Tree
and perform the translation for each one.

6. Translation of Example

In this section we describe how the translation rules are applied in
practice. The Boogie translation of DoubleCount.java is given in
Figure 2. We have global map variables for the fields of the class,
for keeping track of which objects are packed and for the fraction
corresponding to each object proposition. We have the translation
of the constructor ConstructDoubleCount, procedures PackOK
and UnpackOK that are being called when an object has to be
packed or unpacked. In the specification of procedure increment,
we require that all objects are packed on the entrance to the pro-
cedure. In our methodology, all the objects that are not explic-
itly unpacked are considered packed. The ensures forall and
requires forall specifications act as frame conditions and re-
strict the number of objects that the Boogie verifier assumes have
changed at method boundaries. We need this restriction because of
the modifies that Boogie needs for each method: the modifies
is very general and assumes that all the global variables have been
changed, thus nullifying any previous (old) properties about those
variables.

Examples SimpleCell.java, Link.java and Share.java can be
seen in our tool directory [5]. The current version of the code
behind Oprop can be found on GitHub [3]. We created the Simple-

type Ref;
const null: Ref;
var val: [Ref]int;
var dbl: [Reflint;
var packedOK: [Ref] bool;
var fracOK: [Ref] real;
procedure ConstructDoubleCount
(vall :int, dbll :int, this: Ref);

ensures (val[this] == vall) && (dbl[this] == dbll);

procedure PackOK(this:Ref);

requires packedOK[this]==false && ((dbl[this]==(2%vallthis])));

procedure UnpackOK(this:Ref);
requires packed0K[this] &&(fracOK[this] > 0.0);
ensures ((dbl[this]==(2%val[this])));

procedure increment(this:Ref)
modifies dbl,packedOK,val;
requires packedOK[this] && (fracOK[this] > 0.0);
ensures packedOK[this] && (fracOK[this] > 0.0);
requires (forall x:Ref :: packedOK[x]);

ensures (forall x:Ref::(packed0K[x] == old(packedOK[x])));

{ call UnpackOK(this);
packedOK[this] := false;
val[this] :=val[this]+1;
dbl[this] :=dbl[this]+2;
call PackOK(this);
packedOK[this] := true;}

Figure 2. doublecount.bpl
Cell example to illustrate how we add fractions in the cases when
we need a larger fraction to an object proposition than we currently
have. The example Link illustrates how we deal with predicates
that have parameters. We created the Share example to exemplify
objects that have a reference to a shared common object.

7. Aknowledgements

We thank Prof. Jonathan Aldrich, who is Ligia Nistor’s doctoral
advisor, for his guidance. Jihyun Lee (jhlee248 @ gmail.com), who
was a Master’s student at Carnegie Mellon University, also con-
tributed to the implementation of Oprop.

References

[1] http://rise4fun.com/boogie.

[2] http://rise4fun.com/dafny.

[3] https://github.com/ligianistor/0prop.

[4] https://github.com/Z3Prover/z3.

[5] http://www.cs.cmu.edu/ Inistor/srcl15.zip.

[6] http://www.key-project.org.

[7] http://www.paulcager.org/products/minijava/.

[8] Mike Barnett, Robert DeLine, Manuel Fihndrich, K. Rustan M. Leino,
and Wolfram Schulte. Verification of object-oriented programs with
invariants. Journal of Object Technology Special Issue: ECOOP 2003
workshop on Formal Techniques for Java-like Programs, 3(6):27-56,
June 2004.

[9] John Boyland. Checking interference with fractional permissions. In

Static Analysis Symposium, pages 55-72, 2003.

[10] Manuel Fihndrich and Robert DeLine. Adoption and focus: practical
linear types for imperative programming. In PLDI, pages 13-24, 2002.

[11] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Feather-
weight Java: a minimal core calculus for Java and GJ. In TOPLAS,
pages 132-146, 2001.

[12] Ligia Nistor and Jonathan Aldrich. Using machine learning in the
automatic translation of object propositions. In AI4FM, 2014.

[13] Ligia Nistor, Jonathan Aldrich, Stephanie Balzer, and Hannes Mehn-
ert. Object propositions. In FM, 2014.

[14] Matthew Parkinson and Gavin Bierman. Separation logic and abstrac-
tion. In POPL, pages 247-258, 2005.

