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Abstract
The actor model has been a model of choice for build-
ing reliable distributed systems. On one hand, it ensures
that message-processing is serialized within each actor, pre-
serving the familiar sequential programming model. On the
other hand, programs written in the actor model are location-
transparent. The model is sufficiently low-level to express ar-
bitrary message protocols. Composing these protocols is the
key to high-level abstractions. Unfortunately, it is difficult to
reuse or compose message protocols with actors.

Reactive isolates, proposed in this paper, simplify pro-
tocol composition with first-class typed channels and event
streams. We compare reactive isolates and the actor model
on concrete programs. We identify obstacles for composi-
tion in the classic actor model, and show how to overcome
them. We then show how to build reusable, composable dis-
tributed computing components in the new model.

Categories and Subject Descriptors Software [Program-
ming Techniques]: Distributed Programming; Program-
ming Languages [Language Classifications]: Concurrent,
distributed, and parallel languages

General Terms distributed programming, message passing

Keywords actors, distributed, event streams, isolates

1. Introduction
Today, there exists a gap between high-level distributed com-
puting frameworks and low-level distributed programming
models. High-level frameworks such as Map-Reduce [10],
distributed file-systems and databases, and peer-to-peer net-
works [30] are used to build programs for specific domains.
Low-level distributed programming models, such as remote

procedure calls (RPCs) [33], and actors [5], form the basis
for building distributed systems. There does not seem to be a
strong middle ground – a set of reusable intermediate com-
ponents is missing. High-level frameworks are complex sys-
tems, built from low-level primitives during countless en-
gineer hours, whose efforts are repeated every time a new
distributed system is created.

This gap between the high-level and the low-level dis-
tributed computing did not significantly decrease in the last
30 years, since the formalization of the actor model [5].
Where sequential programmers today build their programs
from iterators, monads, zippers, generic collection frame-
works, parser combinators, I/O libraries, and UI toolkits,
distributed systems engineers think in terms of low-level
RPCs and message passing. While sequential programming
paradigms realized the importance of structured program-
ming and high-level abstractions long ago [11] [21], dis-
tributed computing has still not moved far from message
passing – its own assembly. To date, there exist middle-
ware frameworks tailored towards specific tasks, such as Er-
lang/OTP [3], various message queues or generic application
servers, but no unified standard library of reusable high-level
components. This situation is rooted in the following: exist-
ing low-level distributed programming models expose prim-
itives that do not compose well.

Distributed systems consist of message exchanges. Mes-
sage protocols are specific patterns of message exchanges
between concurrent computations. In the past, researchers
identified an entire ecosystem of different message protocols
[13] [19]. These message protocols should be exposed as
reusable components of distributed programs, and should be
composable. Protocols compose if they can be implemented
independently, and combined into more complex protocols.

In this paper, we present constructive criticism of the
actor programming model, and propose a solution that ad-
dresses those complaints. Our goal is not to rebuke the estab-
lished distributed programming methodologies, but to sug-
gest the necessary next steps in their evolution. Concretely:

• We propose a programming model based on isolates,
typed event channels and event streams. The model is
minimalistic, but sufficient to build stronger abstractions.
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• We compare reactive isolates model with the actor model,
and identify specific obstacles for composability, out-
lined in Section 2, and studied in Section 4. We show
how to overcome these obstacles with reactive isolates.
• We show how to build a stack of distributed programming

abstractions in a composable way using reactive isolates.

Semantics of event streams are explained in previous
work, which shows how to compose event streams and use
them in incremental data structures in the context of single-
threaded reactive programming [28]. This paper shows de-
tailed semantics of isolates and channels as foundational
abstractions for distributed programming, and shows how
channels and event streams compose into already established
software components for distributed computing.

Our framework [4] is implemented in the Scala program-
ming language [22]. Scala is a statically typed language run-
ning on the JVM and is similar to most mainstream lan-
guages. Variables are declared with var like in JavaScript or
C#, and their type is inferred from the initialization. Methods
are defined with the keyword def like in Python or Ruby,
and type ascriptions come after a : sign. First-class func-
tions consist of an argument list followed by a body after
=>, similar to Java 8 lambdas. Keyword val denotes fields
and local variables that cannot be reassigned. The keyword
trait denotes an interface, but traits can also have con-
crete members. Generic types come in [] brackets, similar
to <> in other languages. Type Unit is the analogue of the
void type in C or Java. Statements in the body of a class

are parts of its primary constructor. In several places we re-
fer to specific collection types, such as maps, sets, sequences
and buffers. Although these are a part of the Scala collection
library [23], their equivalents exist in most other languages.

The paper is organized as follows. In Section 2, we
present two existing actor models, and show the reactive
isolates in Section 3. In Section 4, we compare actors and
reactive isolates, and outline our vision in Section 5. We
survey related work in Section 6, and conclude in Section 7.

2. Actor Model
Erlang is a programming language used for building fault-
tolerant applications [32]. Units of concurrent execution are
called processes in Erlang. Processes communicate only by
exchanging messages – shared memory synchronization is
very limited. Each process has a process ID, which is re-
quired by the tell operation (!) to send messages. In the fol-
lowing, we send a message "Hello" to the process Server:

Server ! "Hello"

Processes are created with the spawn method. Every pro-
cess can call the receive method, which suspends execution
until one of the matching messages arrives. In the following,
we start the Server process that suspends until it receives
the "Hello" message:

server() ->
receive
"Hello" -> io::format("Hola.~n");

end.
Server = spawn(?MODULE, server, []);

Akka [2] is an actor framework for the JVM, which bor-
rows much of its design from Erlang. Units of concurrent
execution are called actors, and can send messages with !.
Each actor has an actor reference, an equivalent of Erlang’s
process ID. Every actor has a top-level message-handling
loop – while receive calls can nest in Erlang, an Akka actor
only suspends after the top-level receive block completes:

class Server extends Actor {
def receive = {
case "Hello" => println("Holla.") } }

Each receive block has a set of cases – an actor resumes
when an incoming message can be matched to some case.
Messages not conforming to the specified cases are either
discarded, as is the case in Akka, or buffered until the ac-
tor decides to process them, as is the case in Erlang. Since
in Akka messages can arrive before their message-handling
case is installed, and in Erlang messages can be buffered
without being received, these approaches are a tradeoff be-
tween potential race conditions and memory leaks.

The actor model has multiple advantages, and we outline
those that are relevant for this paper. The first advantage is
location-transparency – actor programs can be implemented
on a single machine and then deployed on multiple machines
connected with a network. Although program performance
depends on the network layout and can be compromised
when the actors are distributed on different machines, pro-
gram correctness typically does not change.

The second advantage is that incoming messages are pro-
cessed serially within each actor. Although programmers
need to reason about different message delivery orders, they
do not need to worry about race conditions when manipulat-
ing the state of an actor. This is illustrated in the following:

class Counter extends Actor {
var count = 0
def receive = {
case "inc" => count += 1

}
}
val counter = actorOf(Counter())
class Inc() extends Actor {
def receive = PartialFunction.empty
counter ! "inc"

}
for (i <- 0 until 2) actorOf(Inc())

Above, the two actors of type Inc simultaneously send an
"inc" message to the Counter actor, which increments the
count variable each time it receives a message. The mes-
sages can be received in any order, but they are processed
one after the other. The count variable is never accessed
concurrently, and is always 2 when the program ends.
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Signature Description
onEvent(f: T => Unit): Unit Executes the function f when an event arrives.
onCase(pf: PartialFunction[T, Unit]): Unit Executes the function pf if the event matches a case.
on(b: =>Unit): Unit Executes the function b, which ignores the event value.
map[S](f: T => S): Events[S] Returns an event stream with events of type S, where

every event is mapped using the function f.
zip[S](that: Events[S]): Events[(T, S)] Returns an event stream with events of type (T, S),

triggered after an event is emitted on both this and that.
union[T](xs: Seq[Events[T]]): Events[T] Returns an event stream that forwards events from all the

event streams in the xs collection.

Table 1. Examples of Event Stream Operations

Another important advantage of the actor model is that
message sends are non-blocking. After an actor sends a mes-
sage, it does not suspend execution until the message reaches
its destination. Asynchronous message sends are one of the
preconditions for scalability [7].

The actor model also has some limitations. First, in the
basic actor model, actors cannot simultaneously contain
multiple message entry points. Separate protocols within the
actor must be encoded in a single message-handling con-
struct, and consequently need to be aware of each other.

Second, in the basic actor model, actors cannot await
specific combinations of messages. The receive block sus-
pends computation until one of the specified message types
arrives, but cannot suspend until a pair of messages arrives.

Third, receive is not a first class entity. Instead of a
value that can be passed to and returned from functions,
receive is a static construct.

These limitations, which we study closely in Section 4,
do not entirely prevent modularity in actor programs. Sepa-
ration of concerns is typically achieved by dividing responsi-
bilities across different actors, while composition is achieved
through message passing – actors are clustered into groups
that exchange messages. However, as we argue in Section
4, separating responsibilities across actors makes programs
complicated and error-prone. At the same time, these limita-
tions make protocol composition within a single actor cum-
bersome, convolute abstractions and restrict code reuse.

3. Reactive Isolates Model
In this section, we present the reactive isolates model, whose
goal is to address the aforementioned limitations of the actor
model. The model retains properties such as asynchronicity,
location-transparency and serial message handling. To avoid
ambiguities with actors, we refer to messages as events.

The reactive isolates model describes programs in terms
of three basic abstractions: isolates, channels and event
streams. An isolate specifies a concurrent computation and
the associated program state. To communicate, isolates send
events to channels, which represent communication paths.
Every channel is owned by a single isolate. Any isolate can

send an event to a channel, but only the channel owner can
process that event. Communication is split into inter-isolate
event propagation based on channels, and intra-isolate event
propagation based on event streams. Event streams are enti-
ties that propagate events within an isolate, and they cannot
be shared between isolates. An event stream is associated to
every channel. Event streams can be composed with declar-
ative combinators, and are used to implement operations on
incremental data structures, as shown in previous work [28].

An isolate, represented with the type Iso[T], is a set of
channel and event stream pairs that manipulate the isolate
state. A new isolate is created with the isolate function.
With respect to the actor model, an isolate corresponds to
an actor. The following program declares an isolate Hello,
which prints to the standard output after it starts.

class Hello extends Iso[Unit] {
sysEvents onCase {
case IsoStarted =>
println("Hello World!")

}
}
sys.isolate(Hello)

When created, an isolate comes with the default channel
and event stream pair, called channel and events, which
handle events of type T. Additionally, an isolate has a sys-
tem channel and event stream pair, called sysChannel and
sysEvents, used for events such as the start or the termina-
tion of the isolate. The Hello isolate extends Iso[Unit], so
it can only receive Unit events from events.

A channel, represented with the type Channel[T], is used
to send events of type T to the channel owner. Events are sent
using the channel’s ! method. An isolate can gain additional
channels with the open method, which returns a new channel
and event stream pair, called a connector:

def open[T]: (Channel[T], Events[T])

Channels can be sent to other isolates, enabling them
to communicate with the channel owner. Owner closes the
channel by calling seal. An isolate terminates after its chan-
nels are sealed and pending events processed. With respect
to the actor model, channels correspond to actor references.

173



t = isolate(f) ; t′ f: (Id, (Channel[T], Events[T])) => Unit (c, r) = open[T]

E ∪ (t, i) | S −→ E ∪ (c ; t′, i) ∪ (f(fresh, (c, r)), ∅) | S
(SPAWN)

t = open[T] ; t′ c: Channel[T] r: Events[T]

E ∪ (t, i) | S −→ E ∪ ((c, r) ; t′, i ∪ (ε,c,r)) | S
(OPEN)

E ∪ (v, i) | S −→ E | S ∪ (ε, i)
(SLEEP)

i = i′ ∪ (Q · x,c,r) r = {f1, f2, . . . , fn} t = f1(x) ; f2(x) ; . . . ; fn(x)

E | S ∪ (ε, i) −→ E ∪ (t, i′ ∪ (Q,c,r)) | S
(AWAKE)

t = c ! x ; t′ c: Channel[T] x: T 6 ∃X.Events[X] ∈ T
E ∪ (t, i) | S ∪ (ε, j ∪ (Q,c,r)) −→ E ∪ (t′, i) | S ∪ (ε, j ∪ (x ·Q,c,r))

(SEND1)

t = c ! x ; t′ c: Channel[T] x: T 6 ∃X.Events[X] ∈ T
E ∪ (t, i) ∪ (u, j ∪ (Q,c,r)) | S −→ E ∪ (t′, i) ∪ (u, j ∪ (x ·Q,c,r)) | S

(SEND2)

t = r onReaction f ; t′ r: Events[T] f: T => Unit

E ∪ (t, i ∪ (Q,c,r)) | S −→ E ∪ (t′, i ∪ (Q,c,r ∪ f)) | S
(REACT)

Figure 1. Operational Semantics of Reactive Isolates

The following program creates two isolates that execute
the ping protocol – Pingy isolate sends a "ping" event, to
which Pongy must respond with a "pong" event.

Pongy accepts (String, Channel[String]) pairs, with
a string and the sender channel. When Pongy receives an
event "ping", it sends back a "pong" and seals its channel.

class Pongy
extends Iso[(String, Channel[String])] {
events onCase {

case ("ping", sender) =>
sender ! "pong"
channel.seal()

}
}

Pingy takes Pongy’s channel as an argument p. After
Pingy starts, it sends a pair with "ping" and its channel to
Pongy. When Pingy receives an answer "pong", it seals its
channel and the program terminates.

class Pingy(
val p: Channel[(String, Channel[String])]

) extends Iso[String] {
sysEvents onCase {

case IsoStarted => p ! ("ping", channel)
}
events onCase {

case "pong" => channel.seal()
}

}
sys.isolate(Pingy(sys.isolate(Pongy)))

Event streams have the type Events[T], where T is the
type of their events. An event stream exists only within a
specific isolate. Two event streams in different isolates con-

currently propagate events, but at most one event stream si-
multaneously propagates events within one isolate. An event
stream corresponds to the actor message-handling loop.

Whenever an event stream propagates an event, we say
that it reacts. At any point, an event stream can unre-
act, indicating that it will not propagate any additional
events. A Events[T] has a method onReaction that takes
a pair of functions T => Unit and () => Unit invoked
when the event stream reacts or unreacts, respectively. The
onReaction method is used to implement convenience
methods on Events[T], such as onCase, which takes a par-
tial function, defined only for some events:

def onCase(pf: PartialFunction[T, Unit]) =
onReaction(
ev => if (pf.isDefinedAt(ev)) pf(ev),
() => {})

The onReaction method is also used in methods that
transform event streams. For example, the map method,
given an event stream of type Events[T] and a function
T => S, creates an event stream of type Events[S]:

def map[S](f: T => S): Events[S] = {
val (ch, result) = open[S]
this.onReaction(x => ch ! f(x), () => {})
result }

The following Logger isolate transforms events into
strings, and appends them into a buffer with the += method.

class Logger[T] extends Iso[T] {
val log = new Buffer[String]()
events.map(x => x.toString).onEvent(log +=)

}

174



We use several other event stream transformers through-
out the paper. A list of relevant transformers and their mean-
ing is shown in Table 1.

So far, we have left out some details. For example,
in our implementation, the isolate statement accepts a
Scheduler argument, which decides when the isolate exe-
cutes. We do not study such features, as they are not essential
for understanding the programming model.

3.1 Operational Semantics
To precisely define the reactive isolates model, we present its
operational semantics as a set of reduction rules. Since our
programming model is implemented as a Scala library, these
reduction rules can extend existing Scala core calculi [6]
[8]. Alternatively, they can be used to extend more general
models, such as the simply typed lambda calculus [24].

We show formal operational semantics of a simplified
reactive isolates model in Figure 1, which introduces the
isolate, open, ! and onReaction statements. Isolate pro-
grams are represented as a pair of isolate sets called execut-
ing and sleep, denoted E and S. An isolate is represented as
a tuple with the currently executing term t, and the set i of
event queue Q, channel s and event stream r triples. Event
streams are represented as sets of callback functions. The
sleep set contains only isolates whose term is empty (ε). The
program terminates when the executing set E is empty, and
all the isolates in the sleep set S have empty event queuesQ.

The evaluation rule SPAWN reduces the isolate invoca-
tion by adding a new isolate toE. The OPEN rule reduces the
open invocation into a channel and event stream tuple, and
adds the same tuple with an empty event queue to the set i.
The SLEEP rule is triggered when the isolate reduces its term
to a value. SLEEP moves the isolate to S. The AWAKE rule
does the opposite – if there is a non-empty event queue, it
invokes the corresponding callbacks on the first element in
the queue. The SEND1 and SEND2 rules send an event x to
a channel c. They can only trigger if Events is not a part
of the event – event streams cannot be shared across isolate
boundaries. Finally, the REACT rule adds a callback function
into the event stream.

The rest of the rewrite rules deal with sequential term re-
duction, which is unrelated to concurrency aspects of reac-
tive isolates, and treated elsewhere [6] [8] [24].

4. Comparison Between Actors and Reactive
Isolates

In this section, we study aspects of program composition
in actors and reactive isolates. We expect that the protocols
are isolated. Two separately implemented protocols should
work correctly within the same actor or isolate. Then, ex-
pressing protocols that involve multiple parties should be
concise and straightforward. Finally, protocols should com-
pose – it should be possible to combine protocol instances to
form more complex protocols.

For comparison, we need to choose a specific actor
model. Although we will use Akka to compare the two pro-
gramming models, we note that a similar comparison can be
made with Erlang and other actor models.

4.1 Protocol Isolation
To build distributed systems in a scalable way, separate mes-
sage protocols in the same actor must be isolated. In this
section, we consider how to achieve this isolation on an ex-
ample of name resolution protocol.

In the request-reply communication pattern, a machine
sends a request to another machine, which then sends back a
response. Request-reply is the basic part of the client-server
model. In Akka, we declare a generic server actor as follows:

class Server[T, S](f: T => S) extends Actor {
def receive = { case x:T => sender ! f(x) }

}

A generic server is an actor that receives requests of type
T, and replies with objects of type S, where T and S are type
parameters. The Server actor uses the function f and the
special value sender to send back a response to the client.

We similarly define a client that takes the actor reference
server, a request of type T and a function g that accepts the
reply. The preStart method is overridden to send a request
to the server, and receive invokes g with the reply.

class Client[T, S](
server: ActorRef, x: T, g: S => Unit

) extends Actor {
override def preStart() { server ! x }
def receive = { case y: S => g(y) }

}

The identify actor protocol is a specific instance of the
request-reply protocol, where the server keeps a map from
actor names to actor references, and provides them to clients,
much like a DNS server. In the following, the names map is
a function of type String => ActorRef, so we use it to
create a Server actor. We then define the Client actor that
requests the reference for the actor called "/p", and prints it.

val names = Map[String, ActorRef]()
val reg = actorOf(Server(names))
val p = actorOf(Client(reg, "/p", println))

This pattern is not very reusable. Let’s say that we want to
address contention on Server with a Cache actor that caches
a particular actor reference "/p". Cache is a specific instance
of the Client actor, which stores the server response into a
variable cached. Occasionally, the name server changes, so
Cache receives a reference to the new server, in which case
it needs to update its cache.

class Cache(var cached: ActorRef = null)
extends Client(reg, "/p", r => cached = r) {
def receive = super.receive orElse {
case newReg: ActorRef => newReg ! "/p"

}
}
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Cache uses the orElse method to add a new message-
handling case to receive defined in Client. In doing so,
Cache encodes two protocols: a request-reply to obtain the
actor reference, and a push protocol that updates its state.

However, Cache implementation is not correct. Cache
cannot correctly disambiguate between the actor reference
sent from the name server reg, and the new name server ref-
erence. The super.receive consumes all ActorRef mes-
sages, and the case defined in Cache is never invoked. The
two protocols are not isolated.

To avoid this, the actual Akka implementation uses
ActorIdentity objects to encapsulate the identify actor
protocol. Only a name server can send an ActorIdentity

message. In the following, the Printer actor receives an
ActorIdentity message with an actor reference ref.

class Printer extends Actor {
def receive = {
case ActorIdentity("print", Some(ref)) =>
println(ref)

}
}

Actor models achieve protocol isolation through protocol-
specific wrapper types, such as ActorIdentity above. This
approach is lacking when there are multiple instances of the
same protocol in the same actor. For example, if two pro-
tocols both expect ActorIdentity, there is a danger that
one will consume the message intended for the other. This is
why the ActorIdentity object in the previous program also
contains a "print" value, called a tag. Different protocols
must take care not to reuse the same tag value.

In reactive isolates there is no need for protocol-specific
wrappers or message tags. To show this, we encode the
request-reply pattern as a channel that takes request object
and reply channel pairs:

type Req[T, S] = Channel[(T, Channel[S])]

Method server, given a request-reply function f, cre-
ates a new channel ch and event stream events. The event
stream computes a reply using f and sends it on the specified
channel. Finally, server returns the channel ch.

def server[T, S](f: T => S): Req[T, S] = {
val (ch, events) = open[(T, Channel[S])]
events onEvent { case (x, c) => c ! f(x) }
ch

}

The Req[T, S] channel is used with the ? operator,
which sends a event of type T to the server, and returns
an event stream of type Events[S] with the server reply:

def ?[T, S](req: Req[T, S], x: T) = {
val (chan, events) = open[(T, Channel[S])]
req ! (x, chan)
events

}

The identify channel protocol retrieves channels given
their names. It is a specific instance of the request-reply

protocol. We define a NameServer, which instantiates the
request-reply channel from channel names to channels.

class NameServer
extends Iso[(String, Channel[Channel[_]])] {

val s = server(Map[String, Channel[_]]())
events.onEvent(x => s ! x)

}
val nameServer = sys.isolate(NameServer)

The Printer isolate uses the ? operator to send a name
request to the nameServer instance. The resulting event
stream response of type Events[Channel[_]] eventually
emits the channel and prints it:

class Printer extends Iso[Unit] {
sysEvents onCase {
case IsoStarted =>
val response = nameServer ? "/p"
response.onEvent(println)

}
}

Above, response is tied to the specific invocation of the
? operator. Only events corresponding to that invocation are
delivered to response, and different protocols invoking ?

cannot see each other’s events.
Actors provide weaker protocol isolation, because they

have a single message entry point. Their protocol reuse is
burdened with protocol-specific types and message tags.

4.2 Multiple Party Protocols
Some message exchange protocols involve more than two
participants. Consider an Authenticator actor that receives
a Login message, and then simultaneously sends two mes-
sages GetCert and GetAuth to the key server and the au-
thorization server, respectively. Upon receiving both a cer-
tificate response Cert and an authorization Auth, the server
computes a token and returns it to the requester. In Akka,
one way to implement Authenticator is as follows:

class Authenticator extends ActorRef {
var user: ActorRef = null
var cert: Cert = null
var auth: Auth = null
val tokens = Map[ActorRef, String]()
def check() {

if (cert != null && auth != null) {
tokens(user) = compute(cert, auth)
user ! tokens(user) } }

def receive = {
case Login(u) =>
user = u
keyCenter ! GetCert(u)
authServer ! GetAuth(u)

case c: Cert => cert = c; check()
case a: Auth => auth = a; check() } }

This implementation manually stores the user actor ref-
erence, and whether the Cert and Auth messages have ar-
rived. To avoid this, Akka defines its own ? operator, which
sends a message to the target actor, and returns an object
called a future. A future is a placeholder for asynchronously
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created values [15]. The ? operator returns a future object
containing the reply from the destination actor:

(kc ? GetCert(u)): Future[Any]

Sending the GetCert message to the keyCenter returns a
future of type Future[Any], where Any is the top type. This
is because the type of the reply is not known in advance. The
mapTo operation casts the future to a specific type:

(kc ? GetCert(u)).mapTo[Cert]: Future[Cert]

We use futures to express Authenticator more el-
egantly. Upon creating the futures fc and fa with the
certificate and the authorization, we use them in a for-
comprehension to create a future that contains a user, certifi-
cate and authorization triple. Parts of this for-comprehension
execute asynchronously, when fc and fa are completed.
Since futures are an external concurrency framework that is
unaware of the serial message-handling in actors, modifying
the tokens map from the for-comprehension body is illegal,
as it possibly executes concurrently with the actor. Instead,
we have to use the pipeTo operator to send the triple in the
resulting future ft back to the actor. The actor then pro-
cesses the triple as part of its message-handling loop:

def receive = {
case Login(u) =>

val fc = keyCenter ? GetCert(u)
val fa = authServer ? GetAuth(u)
val ft = for {
cert <- fc.mapTo[Cert]
auth <- fa.mapTo[Auth]

} yield (u, cert, auth)
ft.pipeTo(self)

case (u: ActorRef, c: Cert, a: Auth) =>
tokens(user) = compute(c, a)
user ! tokens(user)

}

Omitting the call to pipeTo is a source of subtle errors
in Akka programs, which manifest themselves as data races
when accessing the shared state of the actor.

In reactive isolates, different event streams can inde-
pendently receive events, and compose into complex event
streams that trigger on combinations of events. Serial event
stream semantics eliminate the possibility of a data race
within an isolate. In the Authenticator isolate, we use the
zip combinator that produces pairs of events arriving from
the two input event streams. Events are emitted serially, so
there is no danger of concurrently accessing the isolate state:

events onCase {
case Login(u) =>

val ec = keyCenter ? GetCert(u)
val ea = authServer ? GetAuth(u)
(ec zip ea) onCase { case (cert, auth) =>

tokens(user) = compute(cert, auth)
user ! tokens(user)

}
}

The actor implementation is verbose because an actor
cannot await for specific combinations of message types. Fu-
tures are a step in the right direction to address this problem,
but they break the serial semantics and can only receive a
single reply. Isolates use event stream composition to over-
come the need for a dedicated multi-receive construct.

4.3 Protocol Composition
We next consider how to compose protocols in the reactive
isolates model. Composition allows building complex sys-
tems from independently developed components. The fact
that channels and event streams are first class entities sim-
plifies composition. Consider the server method defined in
Section 4.1 – it satisfies the following type:

type Server[T, S] = (T => S) => Req[T, S]

This reads: given a function from T to S, return a request-
reply channel. Generally, a protocol can be expressed as a
function type, and its implementation as a function instance.
Instantiating a protocol implementation corresponds to ap-
plying the function to its arguments. However, we choose an
alternative, arguably more intuitive representation of mes-
sage protocols, based on Scala traits. Traits are similar to
Java interfaces, but can additionally have concrete members.
The alternative encoding of Server using traits is as follows:

trait Server[T, S] {
val mapping: T => S
val channel: Req[T, S]

}

We define a generic protocol as a trait with a method that
retrieves the isolate system, and a method that retrieves the
unique ID of the isolate. All other protocols extend this trait:

trait Protocol {
def sys: IsoSystem
def id: Id

}

In what follows, we encode several classic distributed
computing algorithms as protocols in the reactive isolates
model to show that they compose. Recall that a distributed
system spans multiple machines, some of which may at any
point stop working. A distributed system is fault-tolerant if
it can continue to function after some of the machines crash.
A failure detector [13] is one of the basic components of
most distributed systems, and we start with its specifica-
tion. Failure detector protocol defines a boolean event stream
failed that emits true when it suspects that a specific iso-
late crashed. The failure detector can decide that its previous
suspicion was incorrect, in which case it emits false.

trait FailureDetector extends Protocol {
val failed: Events[Boolean]

}

The HeartbeatFailureDetector is a simple imple-
mentation of the FailureDetector protocol. The request
channel target is the requirement of this protocol, so it
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is undefined. The protocol opens a connector beats to
send periodic heartbeat events. It also opens the connec-
tor failures to signal failures. State of the failure detector
is defined by two boolean flags seen, which is true if there
was a heartbeat event during the last second, and suspect,
which denotes what the detector previously reported.

trait HeartbeatFailureDetector
extends FailureDetector {
val target: Req[Unit, Unit]
val beats = open[Unit]
val failures = open[Boolean]
val failed = failures.events
var (seen, suspect) = (false, false)
sys.timer(1.second) on {

target ! ((), beats.channel)
if (seen) seen = false
else if (!suspect) {
failures.channel ! true
suspect = true

}
}
beats.events on {

if (suspect) failures.channel ! false
suspect = false
seen = true

}
}

The detector creates a timer event stream, that produces
an event every second. On each of these events, the detector
sends a heartbeat request to target. The heartbeat request
specifies that the reply should come on the beats channel. If
the target was seen since the last beat request, seen is reset to
false. If not and the failure was not reported, a true event
is sent to the failures channel and suspect is set to true.
When beats delivers an event, the detector concludes that
the target did not fail, so it resets the flags and emits a false
event if necessary.

To instantiate this protocol, we provide a channel of type
Req[Unit, Unit]. In the following, isolate Monitored in-
stantiates the heartbeat channel and registers it with the
name server. The isolate Monitor requests the heartbeat
channel from the name server, and then uses it to instanti-
ate the failure detector.

class Monitored extends Iso[Unit] {
val heartbeat = server[Unit, Unit](u => u)
nameServer ! ("/heartbeat", heartbeat)

}
class Monitor extends Iso[Unit] {
(nameServer ? "/heartbeat") onCase {

case heartbeat: Req[Unit, Unit] =>
val fd = new HeartbeatFailureDetector {

val target = heartbeat
}
fd.failed.onEvent(println)

}
}

Note that the FailureDetector protocol reports the fail-
ure of a single isolate. We can use this protocol to define a
bulk failure detector protocol, which uses a map of isolate

IDs and corresponding failure detectors, and reports the ID
of the failing isolate. The BulkFailureDetector creates a
set of event streams of type Events[(Id, Boolean)], and
then calls union to produce an event stream that collects all
of the events from that collection.

trait BulkFailureDetector {
val detectors: Map[Id, FailureDetector]
val failed: Events[(Id, Boolean)] =
union(for ((id, d) <- detectors)

yield d.failed.map(x => (id, x)))
}

Best-effort broadcast [13] is another distributed program-
ming protocol. For a set of isolate IDs that participate in
the protocol, best-effort broadcast exposes channel, used to
send events to other participants, and events, which emits
events sent from other participants. The events stream guar-
antees to deliver an event sent to channel to all the partici-
pants if the sender does not fail, hence the name best-effort.

trait BestEffortBroadcast[T]
extends Protocol {

val targets: Set[Id]
val events: Events[T]
val channel: Channel[T]

}

BestEffortBroadcast takes a type parameter T, denot-
ing the type of events it broadcasts. BasicBroadcast[T]
implements best-effort broadcast – given a set of participant
channels, and an events stream corresponding to one of the
channels in that set, the protocol exposes a channel that for-
wards events to all participants:

trait BasicBroadcast[T]
extends BestEffortBroadcast[T] {

val channels: Set[Channel[T]]
val events: Events[T]
val targets = channels.keys
val (channel, sends) = open[T]
sends onEvent { x =>

for (ch <- channels) ch ! x
}

}

Above, if the sender fails in the middle of the for-loop,
only a subset of all the isolates receive the event. Regular
reliable broadcast [13] is a stronger primitive, which guar-
antees that the same set of messages are delivered to all the
participants, even if some of the machines fail.

trait RegularReliableBroadcast[T]
extends BestEffortBroadcast[T]

LazyReliableBroadcast[T] in Figure 2 is a concrete
implementation of regular reliable broadcast. This protocol
requires a bulk failure detector fd and a best-effort broad-
cast beb that delivers events of type (Id, T). Lazy re-
liable broadcast uses two connectors (channel, sends)

and (receives, events), the set of correct isolates called
correct, initially containing all isolates, and a map from

of all the events received for each isolate. Sending is sim-
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trait LazyReliableBroadcast[T]
extends RegularReliableBroadcast[T] {
val fd: BulkFailureDetector
val beb: BestEffortBroadcast[(Id, T)]
val targets = beb.targets
val (channel, sends) = open[T]
val (receives, events) = open[T]
val correct = Set(fd.targets.keys)
val from = Map[Id, Set[T]]()
for (i <- targets) from(i) = Set()

sends.onEvent(x => beb.channel ! (id, x))

beb.events.onCase { case (i, x) =>
if (!(from(i) contains x)) {
receives ! x
from(i).add(x)
if (!correct(i)) beb.channel ! (i, x)

}
}

fd.failed onCase {
case (i, true) if correct(i) =>
correct.remove(i)
for (x <- from(i)) beb.channel ! x

}
}

Figure 2. Lazy Reliable Broadcast

ple – all the events from channel are tupled with the iso-
late ID and forwarded to the underlying best-effort broadcast
protocol. If an isolate I fails in the middle of executing the
best-effort protocol, then the failure detector ensures that the
isolates that received the event also resend it. Hence, every
event could be delivered to beb multiple times. When beb

delivers an ID i and the event, the protocol checks from to
see if the message was already delivered. If not, the event is
delivered to events, added to from, and optionally resent if
i is not in the correct set. When the failure detector reports
a failure for a correct isolate i, the ID i is removed from the
correct set, and all the events from i are resent.

A replicated sequence is a fault-tolerant distributed or-
dered dataset. Informally, a replicated sequence guarantees
that the participants eventually observe the same dataset de-
spite machine failures. While a sequence from sequential
programming associates an integer index to each element,
ReplicaSeq[T] protocol is more general – it does not have a
concrete index representation. Instead, ReplicaSeq[T] pro-
tocol represents the indices with the abstract type Tag.

trait ReplicaSeq[T] extends Protocol {
type Tag
def apply(): Seq[(Tag, T)]
def remove(t: Tag): Unit
def insert(t: Tag, x: T): Unit

}

To obtain a sequence of elements, ReplicaSeq[T] de-
fines the method apply, which returns an ordinary sequence

trait TreedocSeq[T] extends ReplicaSeq[T] {
type Tag = (List[Id], Id)

trait Op
case class Non() extends Op
case class Ins(t: Tag, x: T) extends Op
case class Rem(t: Tag) extends Op

class Node(path: List[Id]) {
val values = SortedMap[Id, Op]()
val children = SortedMap[Id, Node]()
for (t <- targets) values ++= t -> Non()

}

val rb: RegularReliableBroadcast[Op]
val targets = rb.targets + dummyMaxId

def remove(t: Tag) {
val (path, i) = t
val node = find(root, path)
node.values(i) = Rem(t)
rb.channel ! node.values(i)

}

def insert(t: Tag, x: T) {
val node = findLessThan(root, t)
node.values(id) = Ins((node.path, id), x)
rb.channel ! node.values(id)

}

def apply(): Seq[(Tag, T)] =
filterIns(root)

rb.events onCase {
case Rem((path, i)) =>
val n = ensure(path)
n.children(i) = Rem((path, i))

case op @ Ins((path, i), x) =>
val n = ensure(path)
n.children(i) match {
case Non() => n.children(i) = op
case _ => // do nothing

}
}

}

Figure 3. Treedoc CRDT

of pairs of tags and elements. Clients can traverse this se-
quence to inspect the elements and the respective tags. To re-
move an element, clients call remove with the previously ob-
served tag. To insert an element before a specific tag, clients
call insert.

We use a conflict-free replicated data type [31], or CRDT,
to implement the replicated sequence protocol. CRDTs are
distributed data structures that achieve strong eventual con-
sistency – replicas of the data structure that have observed
the same updates are in the same state [31]. This consistency
is achieved by commutative update operations. After an iso-
late updates its copy of the data structure, it broadcasts the
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Figure 4. Protocol Stack for the Treedoc CRDT

update to other participants. Due to commutativity, the order
in which participants receive the updates does not matter.

We implement a CRDT called Treedoc [26], shown in
Figure 3. Treedoc maintains an n-ary tree, where n is the
number of participating isolates. Each Node contains a list of
IDs called path. Every child of a node is associated with an
ID of the participating isolates, so path uniquely describes
a path to a node in the tree. Each Node also contains n
elements, and each element is uniquely identified with the
path and its ID, which together comprise Treedoc’s Tag type:

type Tag = (List[Id], Id)

An isolate can only insert an element at a tag that ends
with its own ID by replacing the Non value with an Ins

value. An isolate can remove any Ins from the tree by re-
placing it with a Rem value, which serves as a tombstone. Re-
moving takes precedence over insertion. As shown before,
operations defined this way are commutative [26].

Treedoc uses regular reliable broadcast to broadcast oper-
ations performed by each isolate. The remove operation uses
find to locate the node with the specified path, and sets the
value at the specified ID to Rem. It then broadcasts the up-
date. Similarly, the insert operation uses findLessThan to
find the node immediately preceding the specified tag, sets
values at current isolate ID to Ins, and broadcasts the up-
date. Finally, apply filters all values in the tree whose last
operation is Ins. For brevity, we do not show implementa-
tions of find, findLessThan and filterIns methods.

Note that the efficiency of the protocol implementations
in this section can be improved. The reliable broadcast and
CRDT memory consumption is unbounded, the failure de-
tector can overwhelm the target with messages, the reliable
broadcast starts using O(n2) messages after the first spuri-
ous failure, and the Treedoc CRDT can become unbalanced.
However, these issues can be addressed at the cost of con-
ciseness. For example, we can use exponential backoff when
the failure detector does not receive a reply, rely on vector
clocks [12] along with false-positive events to remove old
entries in the from map, or use consensus [13] [18] to rebal-
ance Treedoc and garbage collect removed nodes.

Our goal is not to present optimal algorithms, but to
demonstrate that these algorithms compose – the preceding
protocol specifications form an abstraction stack, shown in

Figure 4. Each of these protocol implementations can be
reasoned about, developed, tested, debugged and replaced
in isolation. A working system can be prototyped using
suboptimal protocol components, and then made robust by
improving these components independently.

Protocol composability is a consequence of having chan-
nels and event streams as first-class values. First-class prim-
itives can be passed to and returned from functions, or speci-
fied as module members. Event streams and channels specify
requirements at the layer boundaries in the protocol stack.
Although we did not show an equivalent actor-based imple-
mentation of the example protocol stack, we note that ac-
tor references are the first-class equivalent of channels and
event streams. As a consequence, components can be sep-
arated across different actors in the actor model. However,
this approach has several drawbacks:

1. Efficiency: Passing messages is less efficient than method
calls – every message that crosses the protocol boundary
must be buffered, with a context switch between actors.
Conversely, event propagation between protocols within
the same isolate is done by method invocation [28].

2. Type-safety: Type information is lost on the protocol
boundaries in the actor model, as actors can receive and
send messages of any type. As a result, type-related er-
rors only manifest at runtime, and protocol correctness is
compromised.

3. Program comprehension: Concurrent dataflow is harder
to debug and comprehend. A stack dump of an event
propagation within an isolate directly coincides with the
protocol stack. On the other hand, understanding the mes-
sage origin requires retaining traces across actors. Simi-
larly, program analysis tools and IDEs can easily track
protocol dependencies, but are less effective at determin-
ing the actor referred to by a specific actor reference.

5. Future Work and Vision
In Section 4, we studied the protocol stack on an example of
several distributed algorithms. We envision a more general
stack of reusable components, which forms a standard dis-
tributed computing library. This standard library should be
divided into the following layers:

1. Foundational layer: This layer constitues the core pro-
gramming model, based on event streams for intra-isolate
event propagation, and channels for inter-isolate commu-
nication, backed by facilities such as name resolution,
schedulers, networking infrastructure and system isolates
such as timers and I/O. Other abstractions are built in
terms of these canonical primitives.

2. Algorithm layer: These are the basic distributed algo-
rithms, such as failure detectors, broadcast and consensus
primitives, resource allocation algorithms, vector clocks,
leader election and gossip protocols. These abstractions
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solve fundamental distributed computing problems, but
are too low-level to describe application logic directly.

3. Component layer: This is the set of out-of-the-box com-
ponents with standardized interfaces, which can be com-
posed into applications. They include lease references,
CRDTs, distributed caches, distributed hash tables, reac-
tive data stores, and peer-to-peer primitives.

4. Middleware layer: Components in this layer can be
directly used as applications, or main parts thereof.
They include peer-to-peer networks, streaming and map-
reduce engines, logging modules, distributed message
queues, distributed file systems and databases.

Components in one layer are built mostly in terms of
components in the same or preceding layer. Existing compo-
nents can be reused or modified, as is the case with standard
libraries for sequential programming.

6. Related Work
Actors were studied and formally described by Gul Agha
[5], and have appeared in different forms in many languages
and programming frameworks. Languages like D, E, Go,
Scala, and Rust support both message-passing and shared-
memory synchronization. The recent Dart language [1] com-
pletely separates different computations into isolates, which
communicate exclusively by message passing.

Erlang [32] is a general purpose concurrent programming
language and runtime for implementing distributed, fault-
tolerant applications. The actor model in Erlang is based
on the receive statement, which suspends execution until
one of the specified message types arrive. The receive

statement must encode the message types of all the protocols
currently executing in the actor, limiting composition.

Akka [2] is an actor framework for the JVM with fron-
tends in both Java and Scala. It differs from the Erlang actor
model in that its receive statement cannot be called at ar-
bitrary points in the actor. Instead, Akka handles the next
message only after the call stack in receive unwinds, since
it is unable to capture the program continuation like Erlang.
Some actor frameworks on the JVM attempt to remedy this
[14], but are unable to emulate the exact Erlang semantics.
To switch the message-handling loop in the receive state-
ment, Akka instead uses the become statement.

Selectors [16] are actors with multiple untyped mail-
boxes, which allow specifying which mailboxes can deliver
the next message, and which must buffer it. Optional buffer-
ing allows synchronization patterns that rely on the message
delivery order, such as join patterns and bounded buffers.
Multiple mailboxes are akin to different channels in reac-
tive isolates, but do not allow receiving specific message
combinations directly. Selectors do not have first-class event
streams, and their protocol composition is limited.

Rx [20] is a programming framework for event-based
asynchronous programming, initially developed at Microsoft.

Rx uses first class event streams to express asynchronous
programs. These event streams are transformed using a large
corpus of declarative combinator methods. Rx implemen-
tations exist in many different languages, including Java,
Scala, JavaScript, Python, C++ and Objective C. One differ-
ence is that event streams in reactive isolates are by default
push-based, and Rx event streams are pull-based. In the pull-
based model, events are propagated through the dataflow
graph once per each subscriber, whereas, in the push-based
model, events are propagated exactly once. Concurrency in
Rx is achieved with the schedule combinator, which trans-
fers event propagation to another thread.

FlowPools [29] is a deterministic dataflow framework,
which defines similar combinators used to transform event
streams. Events are buffered in mailboxes associated with
each event stream, and handled asynchronously, on separate
computation threads. FlowPools are based on a lock-free
queue data structure, similar to SnapQueue [27].

AmbientTalk [9] [25] is an actor-based, domain-specific
language incorporating primitives such as lease references,
and eventually consistent distributed collections. We envi-
sion its high-level abstractions as parts of the protocol stack,
as they can be implemented with actors or reactive isolates.

High-level frameworks provide abstractions such as re-
silient distributed data types from Apache Spark [34],
Google’s MapReduce [10], or publish-subscribe systems
like Apache Kafka [17]. These frameworks are complex sys-
tems built in terms of low-level RPCs, and do not expose a
reusable stack of distributed programming components.

7. Conclusion
We introduced a foundational distributed programming
model called reactive isolates. The model expresses concur-
rent computations with isolates, which use typed channels
for inter-isolate communication, and event streams for intra-
isolate event propagation. Our model retains serial event
processing and location-transparency associated with the ac-
tor model. As opposed to traditional actor models, channels
and event streams in reactive isolates are first-class objects.
By implementing failure detectors, several broadcast prim-
itives, and a conflict-free replicated data type, we showed
that first-class channels and event streams improve separa-
tion between protocols, and enhance protocol reuse.

The proposed model enables building a protocol stack
of reusable distributed computing components. These com-
ponents specify requirements in terms of lower-level com-
ponents, and expose their own capabilities. Separation into
components improves composition in distributed programs,
and helps bridge the gap between low-level and high-level
frameworks for distributed computing.
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