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Abstract
Role-based modeling has been investigated for over 35 years
as a promising paradigm to model complex, dynamic sys-
tems. Although current software systems are characterized
by increasing complexity and context-dependence, all this
research had almost no influence on current software de-
velopment practice, still being discussed in recent literature.
One reason for this is the lack of a coherent, comprehensive,
readily applicable notion of roles. Researchers focused ei-
ther on relational roles or context-dependent roles rather then
combining both natures. Currently, there is no role-based
modeling language sufficiently incorporating both the rela-
tional and context-dependent nature of roles together with
the various proposed constraints. Hence, this paper formal-
izes a full-fledged role-based modeling language supporting
both natures. To show its sufficiency and adequacy, a real
world example is employed.

Categories and Subject Descriptors I.6.4. [Simulation
and Modeling]: Model Validation and Analysis—Role-
based Modeling; I.6.5. [Simulation and Modeling]: Model
Development—Formal Modeling

Keywords Role-based Modeling

1. Introduction
Charles W. Bachmann was the first researcher to investigate
roles back in the year 1977. He proposed role-based mod-
eling [1] to capture both context-dependent and collabora-
tive behavior of objects. Since then, a large variety of ap-
proaches in different research areas, ranging from data mod-
eling [1, 16, 24] via conceptual modeling [15, 31] through
to programming languages [3, 5, 19, 27] emerged. More im-
portantly, because current software systems are character-
ized by increased complexity and context-dependence [26],
there is a strong demand for new concepts beyond object-
oriented design. Although mainstream object-oriented mod-
eling languages are good at capturing a system’s structure,
they lack ways to model the systems behavior, as it dynam-
ically emerges through collaborating objects [28]. In turn,
roles are a natural concept capturing the behavior of partici-
pants in a collaboration. Moreover, roles permit the specifi-
cation of interactions independent from the interacting ob-
jects. Similarly, more recent approaches use roles to cap-
ture context-dependent properties of objects [19, 24]. The
notion of roles can help to tame the increased complexity
and context-dependence. Despite all that, these years of re-
search had almost no influence on current software develop-
ment practice.

To enable the practical application of roles, two major
requirements have to be fulfilled. First, besides the intu-
itive semantics underlying the role concept, its notions must
be formally specified to create a coherent understanding
of relational and context-dependent roles. Second, to per-
mit scalability of role-based modeling languages automatic
mechanisms to validate the well-formedness and consistency
are required. Therefore, a formal model is indispensable. In
sum, a major blocking factor for the practical application of
roles is their lack of a consistent formal model. Thus, this pa-
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per provides a formal model for a role-based modeling lan-
guage supporting both natures of roles. This allows for the
formal and automatic verification of well-formedness, com-
pliance, and validity of models at design time and their in-
stances at runtime.

The paper is structured as follows: Section 2 introduces a
small running example used for the remainder of the paper.
Afterwards, Section 3 elaborates on the nature of roles and
surveys contemporary role-based modeling languages. The
main contribution of this paper, a formal modeling language
for context-dependent, relational roles, is presented in Sec-
tion 4. Section 5 discusses our reference implementations,
classifies our formal model, and its limitations. Section 6
compares the presented formal model to related approaches.
A brief overview on completed and future research efforts
concludes the paper.

2. Running Example
Before diving into role-based modeling, we first employ the
real world scenario of a small banking application, extracted
from [28]. A bank is a financial institution that employs con-
sultants and provides banking services to their customers,
who are either persons or companies. Customers can be ad-
vised by consultants, own several savings and checking ac-
counts, and perform transactions. Transactions encapsulate
the process of transferring money from exactly one source
account to one target account. They are initiated by a cus-
tomer, however, managed and executed by the bank. Addi-
tionally, financial regulations require that consultants should
not advise themselves as a customer and checking accounts
must have exactly one owner whereas savings accounts can
have multiple owners. Furthermore, no account can be both
a checking and a savings account as well as both the source
and target of the same transaction.

3. Nature of Roles
Roles are not a new concept in modeling languages, how-
ever, the only generally accepted feature of roles is that they
can be played by unrelated objects [22, 31]. The role of a
customer of a bank, for instance, can be played by either a
person or a company, regardless of them being related or not.
Besides that, [31] and [22] have shown that there is no com-
mon understanding of roles in the literature. They identified
26 classifying features attributed to roles, shown in Figure 1.
For now, two of these features are important, because they
help to classify approaches to support either the relational
nature or context-dependent nature of roles, namely Feature
2 and 19. Additionally, several features indicate that roles
and role models are subject to constraints, e.g., Features 6,
16, 17, and 18. In accordance to that, the following discus-
sion is trisected.

3.1 Relational Nature
Modeling languages usually feature some notion of role.
Consider, ER [7] and UML [30], where roles denote the
named ends of relationships or associations.

Either way, they neither have properties (Feature 1) nor
the ability to be played by unrelated objects (Feature 7).
In the case of UML, one could argue that this can be re-
solved by modeling roles as classes and use inheritance to
relate them to their players. This, however, fails to cap-
ture the intended dynamism of roles and results in exponen-
tially many classes [31]. Several role-based modeling lan-
guages [1, 4, 16, 21, 31] introduced roles tied to relation-
ships as first-class citizens. Hence, these approaches can rep-
resent the advises relationship between consultants and cus-
tomers and the latter be played by either persons or compa-
nies. These languages assume that all roles and relationships
are equally relevant to an object’s properties. Thus, there is
no notion of context, scope, or institution on which roles and
relationships depend on. In most approaches (except [4, 16])
relationships cannot play roles themselves. In the banking
application, the transaction must be modeled as a relation-
ship, but cannot be tied to the specific bank owning this
transaction. This, in turn, prevents reusing the notion of a
financial transaction, as it is now tied to the modeled bank.
To resolve this dilemma it must be understood that relation-
ships themselves are context-dependent.

3.2 Context-Dependent Nature
To incorporate the missing contextual-dependency of roles,
recent role-based modeling languages [11, 18, 28] focused
on the context-dependent nature. These approaches intro-
duce some sort of context to encapsulate the roles relevant
to a certain situation or interaction. Due to the fact that the
term itself is massively overloaded, several researchers in-
troduced other terms to denote the context of a role, e.g.,
environment [32], institution [2], ensemble [18], and com-
partment [22]. Henceforth, the term compartment is used be-
cause its definition, as “objectified collaboration with a lim-
ited number of participating roles and a fixed scope” [22],
encompasses all of the other notions. In conclusion, these
approaches capture the contextual dependence of roles by
making the compartments their definitional boundary. For
the banking example, the transaction can be considered a
compartment, as it captures the transfer of money from a
source to a target account. While most of these approaches
assume that roles depend on (some kind of) compartment
(Feature 19) and have properties (Feature 20), only few con-
sider compartments as objects able to play roles themselves
(Feature 22). The latter is crucial to ensure that the transac-
tion compartment (instance) can be owned by a bank com-
partment (instance) managing its creation and execution.
Nevertheless, most approaches relied solely on compart-
ments [2, 11, 28, 32] and did not include context-dependent
relationships between roles.
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1. Roles have properties and behaviors
2. Roles depend on relationships
3. Objects may play different roles simultaneously
4. Objects may play the same role (type) several times
5. Objects may acquire and abandon roles dynamically
6. The sequence of role acquisition and removal may be

restricted
7. Unrelated objects can play the same role
8. Roles can play roles
9. Roles can be transferred between objects

10. The state of an object can be role-specific
11. Features of an object can be role-specific
12. Roles restrict access
13. Different roles may share structure and behavior

14. An object and its roles share identity
15. An object and its roles have different identities
16. Relationships between roles can be constrained
17. There may be constraints between relationships
18. Roles can be grouped and constrained together
19. Roles depend on compartments
20. Compartments have properties and behaviors
21. A role can be part of several compartments
22. Compartments may play roles like objects
23. Compartments may play roles which are part of themselves
24. Compartments can contain other compartments
25. Different compartments may share structure and behavior
26. Compartments have their own identity

Figure 1: Classifying features of roles, extracted from [22, 31]

3.3 Constraining Role Models
So far the discussion revolved around the nature of roles
in role-based modeling languages and did not cover their
capabilities to specify particular constraints for roles and
relationships. Typically, modeling languages support vari-
ous constraints on relationships (Feature 16). Cardinality
constraints, for instance, are featured in most modeling lan-
guages, e.g., ER [7] and UML [30]. They limit the num-
ber of entities related by a relationship. In our example,
the owns checking account relationship must be constrained
with cardinality one on the customer side and zero-to-many
on the checking account to ensure that checking accounts
are owned by exactly one customer. Intra-relationship con-
straints [4] represent mathematical constraints for relations
that additionally constrain relationships. The advises rela-
tionship, for instance, can be constrained to be irreflexive
ensuring that persons playing the consultant role cannot
advise themselves as a customer. Inter-relationship con-
straints [16] are constraints between individual relation-
ships (Feature 17). They can be used to define subsets or
disjunctions between relationships. An example for the for-
mer is a father son relationship required to be a subset of
the parent child relationship. While these constraints limit
relationships, there are two kinds of constraints for roles.
Role constraints limit the types of roles that can be played
simultaneously by one object. They include notions to pro-
hibit or require another role to be played if the other role
is played [29]. In our example, the statement that an ac-
count cannot be a checking account and a savings account at
the same time can be expressed with a role-prohibition be-
tween these roles. Moreover, [22, 32] suggested to employ
notions to group and constrain roles together. In contrast,
occurrence constraints [18, 32] limit the number of roles

present in a compartment, i.e., the number of role instances
of a particular type in a compartment instance. Consider the
transaction compartment that requires the presence of ex-
actly one source and one target role. Although various role-
based modeling languages have introduced different kinds
of constraints, no approach has included all of them into one
coherent model.

4. A Formal Role-Based Modeling Language
This section introduces our formal model for Compartment
Role Object Models (CROM) [22], Compartment Role Ob-
ject Instances (CROI) and Constraint Models by first defin-
ing the underlying ontological foundations; then introducing
their graphical notation; and finally providing their formal
definitions.

4.1 Ontological Foundation
Before providing any formal definition, it is crucial to clas-
sify the different kinds of concepts employed by our mod-
eling language. Without this distinction, designers of role-
based systems cannot decide whether a concept should be
modeled as either Natural Type, Role Type, Compartment
Type, or Relationship Type. To provide a clear ontological
distinction, three well-established ontological properties are
used: Rigidity, Foundedness and Identity [12–14, 25]. The
first denotes that instances of a rigid type belong to that type
until they cease to exist [13, 14]. A person, for instance, can
be considered a rigid type, because you can only stop being
a person if you die. The second describes that instances of
a founded type can only exist if another instance exists at
the same time [12, 13, 25, 31]. The customer of our bank
application is such a founded type, because a customer can
only exist if the bank exists, as well. The last property dis-
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tinguishes whether instances of a certain type have a unique,
derived, or composed identity [12]. A person, for instance,
has a unique identity throughout its live time, whereas a
customer derives its identity from the person in that role.
The trans relationship, in turn, is identified by the combined
identities of the source and target accounts.

These three ontological properties are sufficient to distin-
guish four kinds of concepts. Natural Types are rigid, not
founded, and their instances carry their own unique identity.
Thus, instances of natural types have an immutable, inde-
pendent type and identity. The entities person, company, and
account are natural types in our banking application. Role
Types, in contrast, are not rigid [15], founded and their in-
stances only derive their identity from their players. As such,
role instances depend on both the identity of their player and
a foundational relation to their context [25] (i.e., compart-
ment). Thus, instances of a rigid type can dynamically adopt
role types by playing its instances. As a result, most entities
in our banking application become role types, e.g.: consul-
tants, customer, checking account, savings account. Com-
partment Types are rigid, founded, and their instances have
a unique identity, hence, their instances are founded on the
existence of participating roles. For example, both the bank
and transaction are considered compartment types. Rela-
tionship Types are rigid, founded and have a composed iden-
tity. They represent binary relationships between two distinct
role types.1 The identity of links (relationship instances) is
composed from the identities of the players of the participat-
ing role. In sum, these concepts form the foundations for our
modeling language.

4.2 Graphical Notation
This section facilitates the graphical notation for CROM and
CROI by illustrating a role model and a possible instance for
the banking application. Figure 2a depicts the example role
model. It describes a Bank as a compartment managing Cus-
tomers, who own CheckingAccounts and SavingsAccounts.
They can be advised by one or more Consultants. However,
the advises relationship is constrained to be irreflexive, to
prohibit self advising consultants. The Transaction compart-
ment is specified to orchestrate the transfer of money be-
tween exactly two Accounts by means of the roles Source
and Target. Moreover, a unique Target counterpart for each
Source has to exist. This is ensured by the one-to-one cardi-
nality of the trans relation. Additionally, the role group with
1..1 cardinality enforces that one account cannot be Source
and Target in the same Transaction. Finally, Persons can
play the roles Consultant and Customer; Companies only
Customer; and Accounts the roles CheckingAccount, Sav-
ingsAccount, Source, and Target. Figure 2b, in turn, shows
one possible instance of this model. It comprises two Per-
sons Peter and Klaus, as well as a Company Google that

1 Note that each n-ary relationship can be represented with n binary rela-
tionships.

play roles in the bank compartment instance. Each role is
placed at the border of its respective player. For brevity, we
omitted their individual attributes. Klaus and Google play
the Customer role. The former owns a CheckingAccount
and the latter owns a SavingsAccount. Besides that, Google
is advised by Peter playing the Consultant role. Addition-
ally, the model contains one Transaction compartment t
where Account1 and Account2 play the Source and Tar-
get role, respectively. Thus, it represents a transaction from
Google’s savings account to Klaus’s checking account. This
transaction itself plays the role of a MoneyTransfer within
the bank compartment. Intuitively, it is possible to check that
the instance adheres to the intuitive semantics of the role
model, however, to formally validate these models they have
to be formalized.

4.3 Type Level
After introducing the ontological foundations and the graph-
ical notation, we can introduce our formal model, starting
on the type level. For brevity, we omitted the notion of at-
tributes from these definitions. Nevertheless, the necessary
additions are presented in the Appendix.

Definition 1 (Compartment Role Object Model). Let NT ,
RT , CT , and RST be mutual disjoint sets of Natural Types,
Role Types, Compartment Types, and Relationship Types, re-
spectively. ThenM = (NT,RT,CT,RST, fills, parts, rel)
is a Compartment Role Object Model (CROM), where
fills ⊆ (NT ∪ CT )× RT is a relation, parts : CT → 2RT

and rel : RST → (RT ×RT ) are total functions. A CROM
is denoted well-formed if the following axioms hold:

∀rt ∈ RT ∃t ∈ (NT ∪ CT ) : (t, rt) ∈ fills (1)

∀ct ∈ CT : parts(ct) 6= ∅ (2)

∀rt ∈ RT ∃!ct ∈ CT : rt ∈ parts(ct) (3)

∀rst ∈ RST : rel(rst) = (rt1, rt2) ∧ rt1 6= rt2 (4)

∀rst ∈ RST ∃ct ∈ CT : rel(rst) = (rt1, rt2) ∧
rt1, rt2 ∈ parts(ct) (5)

In detail, fills denotes that rigid types can play roles of a
certain role type, parts maps compartment types to their
contained role types, and rel captures the two role types
at the respective ends of each relationship type. The well-
formedness rules ensure that the fills-relation is surjective
(1); each compartment type has a nonempty, disjoint set of
role types as its parts (2, 3); and rel maps each relationship
type to exactly two distinct role types that are part of the
same compartment type (4, 5). Consequently, we can now
apply this definition to model the small banking application.
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(a) Model

(b) Instance

Figure 2: Compartment Role Object Model and Instance of the banking application

Example 1 (Compartment Role Object Model). Let B =
(NT,RT,CT,RST, fills, parts, rel) be the model of the
bank (Figure 2a), where the idividual components are de-
fined as follows:

NT := {Person,Company,Account}
RT := {Customer,Consultant,CA, SA, Source,Target,

MoneyTransfer}
CT = {Bank,Transaction}

RST = {own_ca, own_sa, advises, trans}
fills := {(Person,Consultant), (Person,Customer),

(Company,Customer), (Account, Source),

(Account,Target), (Account,CA),

(Account, SA), (Transaction,MoneyTransfer)}
parts := {Bank→ {Consultant,Customer,CA, SA,

MoneyTransfer},
Transaction→ {Source,Target}}

rel := {own_ca→ (Customer,CA),

own_sa→ (Customer, SA),

advises→ (Consultant,Customer),

trans→ (Source,Target)}
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The bank model B is simply created from Figure 2a in four
steps. First, all the natural types, compartment types, role
types, and relationship types are collected into the corre-
sponding set.1 Second, the set of role types contained in each
compartment type is assigned to the parts-function. Third,
it is specified which natural type can fill which role type,
and finally the rel-function is defined for the role types at
the ends of each relationship type. Thus, CROMs can be
retrieved from their graphical representation. The presented
bank model B is well-formed, because each defined role type
is filled by at least one natural type or compartment type
(1), each compartment type consists of a non-empty (2) and
disjoint (3) set of role types, and each relationship type is
established between two distinct role types (4) of the same
compartment type (5).

4.4 Instance Level
On the instance level, we distinguish naturals, roles, com-
partments and links as instances of their respective types.

Definition 2 (Compartment Role Object Instance). Let
M = (NT,RT,CT,RST, fills, parts, rel) be a well-formed
CROM and N , R, and C be mutual disjoint sets of Natu-
rals, Roles and Compartments, respectively. Then a Com-
partment Role Object Instance (CROI) of M is a tuple
i = (N,R,C, type, plays, links), where type : (N →
NT ) ∪ (R → RT ) ∪ (C → CT ) is a labeling function,
plays ⊆ (N∪C)×C×R a relation, and links : RST×C →
2R

ε×Rε

is a total function (such that Rε := R ∪ {ε} with
ε 6∈ R∪N∪C). Moreover, O := N∪C denotes the set of all
objects in i and Oc := {o ∈ O | ∃r ∈ R : (o, c, r) ∈ plays}
the set of objects played in a compartment c ∈ C. To be
compliant to the model M the instance i must satisfy the
following conditions:

∀(o, c, r) ∈ plays : (type(o), type(r)) ∈ fills ∧
type(r) ∈ parts(type(c)) (6)

∀(o, c, r),(o, c, r′) ∈ plays :

r 6= r′ ⇒ type(r) 6= type(r′) (7)

∀r ∈ R ∃!o ∈ O ∃!c ∈ C : (o, c, r) ∈ plays (8)

∀rst ∈ RST ∀c ∈ C : (ε, ε) 6∈ links(rst, c) (9)

∀rst ∈ RST ∀c ∈ C ∀r ∈ R ∀o ∈ O ∃r̂ ∈ Rε :

rel(rst) = (rt1, rt2) ∧((
(o, c, r) ∈ plays ∧ type(r) = rt1

)
⇔
(
(r, r̂) ∈ links(rst, c)

))
∧((

(o, c, r) ∈ plays ∧ type(r) = rt2
)

⇔
(
(r̂, r) ∈ links(rst, c)

))
(10)

∀rst ∈ RST ∀c ∈ C ∀(r1, r2) ∈ links(rst, c) ∩R×R :

(r1, ε), (ε, r2) /∈ links(rst, c) (11)

The type function assigns a distinct type to each instance,
plays identifies the objects (either natural or compartment)
playing a certain role in a specific compartment, and links
captures the roles currently linked by a relationship type
in a certain compartment. A compliant CROI has to satisfy
the given six axioms that guarantee consistency of both the
plays-relation and the links-function with the modelM. Ax-
ioms (7) and (8) restrict the plays-relation, such that an ob-
ject is prohibited to play instances of the same role type mul-
tiple times in one compartment and each role has one distinct
player in one distinct compartment. Axiom (10) ensures that
if and only if a role participates in a compartment and its
role type is linked by a relationship type, then a correspond-
ing tuple in the links-function for that compartment exists.
To reflect that a role is not related to any counter role (11), a
role can also be linked to the empty role ε. This ensures that
each role played in a compartment c is presented in the cor-
responding links(rst, c)-function without forcing this role
to be linked to a counter role. However, because an object
can play only one role of a certain type in one compartment
(7), the traditional semantics of cardinality constraints of re-
lationships is retained in this compartment. This ensures the
cardinality constraints only locally to compartments, i.e., a
natural can play a role of a certain type multiple times if each
of them is played in a different compartment. Hence, ε is in-
troduced to capture zero-to-one and zero-to-many relation-
ships without leaving out roles participating in that relation-
ship while allowing to play roles of the same type multiple
times. Besides, these definitions entail that links(rst, c) = ∅
for each compartment c with a type not containing the rela-
tionship type rst.2

Example 2 (Compartment Role Object Instance). Let B =
(NT,RT,CT,RST,fills, parts, rel) be the well-formed
CROM defined in Example 1; then b = (N,R,C, type,
plays, links) is an instance of that model (Figure 2b), where
the components are defined as follows:

N := {Peter,Klaus,Google,Account1,Account2}
R := {Cu1,Cu2,Con,Ca, Sa, S,T,M}
C := {bank, t}

type := {(Peter→ Person), (Klaus→ Person),

(Google→ Company),

(Account1 → Account), (Account2 → Account),

(Cu1 → Customer), (Cu2 → Customer),

(Con→ Consultant), (Ca→ CA), (Sa→ SA),

(S→ Source), (T→ Target),

(M→ MoneyTransfer),

(bank→ Bank), (t→ Transaction)}

1 Henceforth, SA and CA are abbreviations for SavingsAccount and
CheckingAccount, respectively.
2 A sufficient proof can be found in the Appendix.
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plays := {(Klaus, bank,Cu1), (Google, bank,Cu2),

(Peter, bank,Con), (Account1, bank, Sa),

(Account2, bank,Ca), (t, bank,M),

(Account1, t, S), (Account2, t,T)}
links := {(own_ca, bank)→ {(Cu1,Ca), (Cu2, ε)},

(own_sa, bank)→ {(Cu1, ε), (Cu2, Sa)},
(advises, bank)→ {(ε,Cu1), (Con,Cu2)},
(trans, t)→ {(S,T)}}

The CROI b is created, from Figure 2b, by collecting all
the naturals, compartments, and roles accordingly; mapping
their respective types; linking the roles to their players; and
assigning a tuple for each depicted relationship. Notably,
b must contain a tuple for the roles Cu1 and Cu2 in the
own_ca, own_sa and advises relationships regardless of their
actual relation to a counter role. These tuples link those roles
to the empty counter role ε instead. It can be shown that
the CROI b is compliant to the CROM B. Due to space
limitations, this proof had to be omitted. Next, we introduce
three auxiliary functions used to validate both the cardinality
and the intra-relationship constraints.

Definition 3 (Auxiliary Functions). Let RST be the set
of relationship types of a well-formed CROM M, and
i = (N,R,C, type, plays, links) a CROI compliant to that
model M. Then the auxiliary functions pred and succ, as
well as the inverse of the plays-relation for roles · : Rε →
Oε and its extension to the links-function are defined for
r ∈ R, rst ∈ RST , and c ∈ C (with Oε := O ∪ {ε}):

pred(rst, c, r) :={r′ | (r′, r) ∈ links(rst, c) ∧ r′ 6= ε}
succ(rst, c, r) :={r′ | (r, r′) ∈ links(rst, c) ∧ r′ 6= ε}

r :=

{
ε if r = ε

o if ∃(o, _, r) ∈ plays

links(rst, c) :={(r1, r2) | (r1, r2) ∈ links(rst, c)}

The first two functions collect all the predecessors or suc-
cessors of a given role in a relationship within a spe-
cific compartment instance. For the CROI b (Example 2)
pred(own_ca, bank,Ca) would return the set containing
Cu1. The existence of the next two functions, i.e., the inverse
plays and inverse links-function, is assured by (8) requiring
a unique player and compartment for each role instance. For
the bank instance, links(trans, t) would return a singleton
set with (Account1,Account2) This function is used later
on to evaluate whether a relationship is irreflexive, surjec-
tive, acyclic, and so forth [4, 16].

4.5 Constraint Level
This section extends the formal model to represent the vari-
ous constraints by first introducing Role Groups as a new
construct to specify role constraints; then defining Con-

straint Models; and finally specifying when a given CROI
fulfills the imposed constraints.

Definition 4 (Syntax of Role Groups). Let RT be the set
of role types; then the set of Role Groups RG is defined
inductively:

• If rt ∈ RT , then rt ∈ RG, and
• If B ⊆ RG and n,m ∈ N ∪ {∞} with n ≤ m, then
(B,n,m) ∈ RG.

Definition 5 (Semantics of Role Groups). Let RT be the set
of role types of a well-formed CROM M,
i = (N,R,C, type, plays, links) a CROI compliant to M,
c ∈ C a compartment, and o ∈ Oc an object playing a role
in c. Then the semantics of Role Groups is defined by the
evaluation function (·)Ico : RG→ {0, 1}:

aI
c
o :=


1 if a ∈ RT ∧ ∃(o, c, r) ∈ plays : type(r) = a

or a ≡ (B,n,m) ∧ n ≤
∑

b∈B bI
c
o ≤ m

0 otherwise

Role groups constrain the set of roles an object o is allowed
to play simultaneously in a certain compartment c. In case
a is a role type, rtI

c
o checks whether o plays a role of type

rt in c. If a is a role group (B,n,m), it checks whether the
sum of the evaluations for all b ∈ B is between n and m.

Example 3 (Role Groups). The following role groups can
be extracted from Figure 2a:

bankaccounts :=({CA, SA}, 1, 1)
participants :=({Source,Target}, 1, 1)

The formal representation of role groups directly corre-
spond to their graphical representation. In general, it can
be shown that both Riehle’s role constraints [29] and any
propositional formula are representable with role groups. As
such, both role groups represent role-prohibitions, as they
model an exclusive-or. Similarly, a role-implication, for in-
stance, from consultant to customer, could be modeled as:
({({Consultant}, 0, 0),Customer}, 1, 2). This, in turn, is
equivalent to the formula ¬Consultant ∨ Customer and
thus to the intended semantics of the role-implication.

Definition 6 (Constraint Model). Let M = (NT,RT,
CT,RST, fills, parts, rel) be a well-formed CROM and
Card ⊂ N× (N ∪ {∞}) the set of cardinalities represented
as i..j with i ≤ j. Then C = (rolec, card, intra) is a Con-
straint Model over M, where rolec : CT → 2Card×RG

and card : RST → (Card × Card) are total functions,
intra ⊆ RST ×E is a relation with E as the set of functions
e : 2D×D → {0, 1}. A Constraint Model is compliant toM
if the following axiom holds:

∀ct ∈ CT ∀(c, a) ∈ rolec(ct) : atoms(a)⊆parts(ct) (12)

Here, the atoms : RG→ 2RT function recursively computes
all role types within a given role group.
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In detail, rolec collects the set of root role groups for each
compartment type combined with a cardinality limiting the
occurrence of role groups in each compartment, card as-
signs a cardinality to each relationship type, and intra is a
relation between relationship types and evaluation functions
mapping a given set of tuples over D × D to either zero or
one. Moreover, (12) ensures that each role group can only
encompass role types that are part of the same compartment
type. Notably, all these constraints are defined locally to a
compartment type, i.e., no constraint crosses the boundary
of a compartment type.

Example 4 (Constraint Model). Let B be the bank model
from Example 1. Then CB = (rolec, card , intra) is the
constraint model, derived from Figure 2a, defined as:

rolec := {Bank→ {(1..∞,Consultant),

(0..∞, bankaccounts)},
Transaction→ {(2..2, participants)}}

card := {own_ca→(1..1, 0..∞), own_sa→(1..∞, 0..∞),

advises→(0..∞, 1..∞), trans→(1..1, 1..1)}
intra := {(advises, irreflexive)}

Here, irreflexive(R) returns 0 if there is a tuple (a, a) ∈ R
and otherwise 1.

A constraint model can be obtained by basically mapping
the graphical constraints to their formal counterparts: role
groups with cardinalities to the rolec-mapping, relationship
cardinality to the card-function, and intra relationship con-
straints to the intra-relation. Because each role group con-
tains only role types of the same compartment type (12), CB
is compliant to the CROM B. The last step is to define when
a given CROI is considered valid wrt. a constraint model.

Definition 7 (Validity). Let M = (NT,RT,CT,RST,
fills, parts, rel) be a well-formed CROM, C = (rolec, card,
intra) a constraint model compliant toM, and i = (N,R,
C, type, plays, links) a CROI compliant toM. Then i is valid
with respect to C iff the following conditions hold:

∀ct ∈ CT ∀(i..j, a) ∈ rolec(ct) ∀c ∈ Cct :

i ≤
(∑

o∈Oc
aI

c
o
)
≤ j (13)

∀(o, c, r) ∈ plays ∀(crd, a) ∈ rolec(type(c)) :

type(r) ∈ atoms(a)⇒ aI
c
o = 1 (14)

∀rst ∈ RST ∀c ∈ C ∀(r1, r2) ∈ links(rst, c) :

card(rst) = (i..j, k..l)∧(
r2 6= ε⇒ i ≤

∣∣pred(rst, c, r2)
∣∣ ≤ j

)
∧(

r1 6= ε⇒ k ≤
∣∣succ(rst, c, r1)

∣∣ ≤ l
)

(15)

∀c ∈ C ∀(rst, f) ∈ intra : links(rst, c) = ∅ ∨
f(links(rst, c)) = 1 (16)

Here, Cct := {c ∈ C | type(c) = ct} denotes the subset of
C containing only instances of type ct ∈ CT .

Each axiom verifies a particular set of constraints. The first
two validate the occurrence and fulfillment of role groups,
such that only those objects (naturals or compartments) are
checked that play a corresponding role in the constrained
compartment (14), and such that there are enough of such
objects in that compartment (13). In contrast to them, (15)
checks whether relationships respect the imposed cardinality
constraints. Last, (16) applies the evaluation function to the
set of players in a relationship by instantiating the domain
D × D of this function to Oε × Oε. Finally, the formal
model is not only able to capture the relational and context-
dependent nature of roles, but also allows for the validation
of various constraints imposed on these models.

Example 5 (Validity). To prove that the instance b (Example
2) of the bank model B is valid wrt. the constraint model CB,
each of these axioms must hold. For (13), at least one per-
son must play a Consultant role in the bank compartment,
as well as exactly two distinct accounts fulfilling the partici-
pants role group in the transaction compartment. Because
Peter is a consultant in the bank, Account1 and Account2
are the respective source and target in the transaction t, it
is fulfilled. For (14), each object playing a role in a com-
partment must fulfill those role groups containing the cor-
responding role type. In b, Peter fulfills the Consultant role
group and both accounts individually satisfy the participants
and bankaccounts role group, and thus (14) also holds. For
(15), the number of successors for the first place and prede-
cessors for the second place for each link (relationship in-
stance) is computed and checked against the limits imposed
by the cardinality constraints. In case of b, the number of
successors and predecessors ranges from zero (for Cu1 in
the own_sa and advises relationship and Cu2 in the own_ca
relationship) to one (for all other roles and relationships). As
it turns out, the former cases all correspond to zero-to-many
cardinality. As a result, (15) is satisfied, as well. For (16),
the irreflexivity of the inverse advises relationship must be
checked, i.e., irreflexive(links(advises, bank)) = 1. Triv-
ially, {(ε,Klaus), (Peter ,Google)} is irreflexive. Hence, all
axioms are fulfilled, and thus b is valid wrt. CB.

Despite of this informal validation, the idea of our formal
model is to support both formal and automated validation of
well-formedness, compliance, and validity. Notably, a for-
mal proof of b’s validity can be found in the technical report
[23]. In conclusion, the presented formal model is designed
to capture both the relational and context-dependent nature
of roles as well as various constraints.

5. Discussion
This section indicates the adequacy and sufficiency of the
presented formal model by discussing reference implemen-
tations developed as a proof of concept; classifying our ap-
proach wrt. to the features of roles; and pointing out limita-
tions of the presented formal model.
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∀rt ∈ RT ∃t ∈ (NT ∪ CT ) : (t, rt) ∈ fills

(a) Formal

1 def axiom1 ( crom ) :
2 re turn a l l ( any ( ( t , r t ) in crom . f i l l s

f o r t in ( crom . n t | crom . c t ) ) f o r
r t in crom . r t )

(b) Python
Figure 3: Representation of Axiom (1)

5.1 Reference Implementation
The formal model solely relies on set semantics and first-
order logic. Hence, it is readily applicable for implementa-
tion and thus automation. To prove this, two reference im-
plementations were developed based on Python3 and Scala4,
respectively. These implementations can be used to create
CROMs, CROIs and constraint models, as well as automat-
ically check their well-formedness, compliance, and valid-
ity. The provided implementations directly correspond to the
formal definitions. In particular, each individual axiom is
implemented by means of all and any functions and gen-
erator expressions that directly correspond to universal and
existential quantification in first-order logic.5 Besides imple-
menting the banking application, a series of tests have been
specified to check the implemented axioms not only testing
positive and negative cases but also the various combinations
for the 16 axioms. This indicates the orthogonality of the ax-
ioms, i.e. that no axiom entails another. In sum, the reference
implementations can be used to develop and test other im-
plementations of our formal model, as well as to investigate
specializations and extensions to our formal model.

As pointed out previously, we translated each axiom
to a function returning a boolean. Figure 3 shows an ex-
ample of such a translation, for the first axiom. Basi-
cally, the universal quantification ∀rt ∈ RT is written
as all( ... for rt in crom.rt ) and the existential
quantification ∃t ∈ (NT ∪ CT ) as any( ... for t in
(crom.nt | crom.ct) ), where crom.nt | crom.ct
computes the union of NT and CT . The final test (t,rt)
in crom.fills is then embedded into these generator ex-
pressions resulting in Figure 3b. An excerpt of the Python
implementation can be found in the technical report [23].

5.2 Classification
To confirm the adequacy of our formal model to capture both
natures of roles, we apply the 26 features of roles [22, 31] to
our model. Table 1 summarizes the classification of our ap-
proach and compares it to other related approaches. In fact,
only 23 features apply to modeling languages without oper-
ational semantics [22]. As a result, our formal model fully

3 https://github.com/Eden-06/formalCROM
4 https://github.com/max-leuthaeuser/ScalaFormalCROM
5 A detailed example is presented in the technical report [23].

supports 17 features of roles, whereas only one feature is
possible to represent, namely Feature 24 stating that com-
partments can contain compartments. In our model this can
be simulated by having the contained compartment play a
role in the container compartment. For instance, the trans-
action compartment is contained inside the bank compart-
ment, because it is playing the MoneyTransfer role in the
bank (Figure 2 b). In turn, only five features are not sup-
ported by our model. Feature 8, for instance, stating that
roles can play roles could have been easily modeled within
our formalization. However, we argue that there is no differ-
ence between a football player playing the role of a striker
or a person playing both roles at the same time. As it turns
out, the underlying rationale that only football players can
be strikers would simply be modeled as a role constraint. For
similar reasons, we disregard Feature 21, stating that a role
can be part of several compartments. Although a role is ex-
istentially dependent on a compartment, it would not make
sense to define a role within two compartments. Arguably,
while it makes sense to have a customer role in both a shop
and a bank, they do not have the same properties and thus
can not have the same type. In sum, the presented formal
model supports not only most features of roles but also both
natures of roles.

5.3 Limitations
Despite that, the formal model has three known shortcom-
ings. First, the current constraint model does not encompass
inter-relationship constraints (Feature 17). Consequently,
neither subset nor mutual exclusion constraints between re-
lationships can be expressed. Nevertheless, these constraints
can be added easily by augmenting the constraint model
adding a relation as well as compliance and validation rules.
Second, the current constraint model does not permit con-
straints between two compartments. This restriction hinders
the specification of role constraints between compartments,
e.g., that each account participating in a Transaction com-
partment must also play the role of either a savings or check-
ing account in a Bank compartment. To integrate global
constraints like these, the notion of role groups, the con-
straint model, and their validation must be extended. This
is not trivial, because it includes quantifying over multi-
ple compartment instances within one constraint. The next
shortcoming is the lack of inheritance among natural types,
role types, as well as compartment types (Features 13, 25).
It was left out, because it entails several semantical issues
and unresolved questions regarding the interaction of natural
inheritance and role inheritance together with family poly-
morphism [10] via compartment inheritance. Thus, adding
inheritance must be postponed until these semantical issues
can be resolved. At large, while the last two limitations are
incurred by major semantical issues, all of them can be re-
solved by augmenting the presented formal definitions.
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3. � � � � � � � � � � �
4. � � � � � � � ∅ � � �
5. � � � � � ∅ � ∅ � � ∅
6. � � � � ∅ � � � � � �
7. � � � � � � � � � � �
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9. � � ∅ � � ∅ � ∅ � � ∅

10. � � ∅ � � � � � � � �
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12. ∅ � ∅ � ∅ ∅ � ∅ � ∅ ∅
13. � � � � � � � � � � �
14. � � � � � � � � � � �
15. � � � � � � � � � � �

16. � � � � � � � � � � �
17. � � � � � � � � � � �
18. � � � � � � � � � � �

19. � � � � � � � � � � �
20. � � � � � � � � � � �
21. � � � � � � � � � � �
22. � � � � � � � � � � �
23. � � � � � � � � � � �
24. � � � � � � � � � � �
25. � � � � � � � � � � �
26. � � � � � � � � � � �

�: yes, �: possible, �: no, ∅: not applicable

Table 1: Comparison of role-based modeling languages, ex-
tracted from [22].

6. Related Work
This section compares related role-based modeling lan-
guages by means of the 26 features of roles [22, 31], in-
troduced in Section 3. A general comparison of these related
role-based modeling languages, is extracted from [22] and
depicted in Table 1. Henceforth, we distinguish four classes
of related approaches wrt. the two natures of roles they sup-
port as plain, relational, context-dependent, or hybrid.

The Generic Role Model for Dynamic Objects [9] be-
longs to the first class, because its roles neither depend on
a relationship nor on any kind of compartment. Hence, the
presented formalism focuses solely on the dynamics of the

plays-relation between roles and their players. Besides that,
it provided a semi-formal model for the type and the instance
level including an operational semantics based on guarded
role transitions. On the down side, the presented semantics
is rather limited.

Next, relational approaches, have already been surveyed
in the year 2000 by Steimann [31]. In an effort to unify
and formalize preceding role-based modeling languages,
like [6, 8, 17], he introduced LODWICK as a unified role-
based modeling language [31]. Like our approach, its formal
model focused on the structure of role models. Additionally,
it supports the definition of n-ary relations between natu-
rals and includes two disjoint inheritance relations. Despite
all that its instance model does not include role instances,
and thus cannot capture the structure and features of roles at
runtime. Henceforth, we investigate more recent approaches
featuring relational roles. Onto-UML [15] is a top level on-
tology including roles. It uses similar ontological predicates
to distinguish Naturals, Roles and Relators for both univer-
sals (types) and individuals (instances). However, the model
lacks a notion of context-dependence and the ability to let
unrelated objects play the same role. Object-Role Model-
ing (ORM) 2 [16] is a well-established, fact-oriented data
modeling language. However, it only includes roles as un-
named places at the ends of relationships connecting entity
types [16]. Nevertheless, ORM supports a large number of
constraints for these relationships including role constraints,
inter- and intra-relationship constraints [16]. RSQL [20, 21]
is a role-based query language for a role-based database
system. It provides a formal data model featuring Naturals,
Roles, and Relationship Types on both the type and instance
level. This model has many similarities to our formalization
of CROMs and CROIs, e.g., the notion of ε roles or cardi-
nality constraints for relationships. Nonetheless, it features
neither context-dependent roles nor other kinds of role or
relationship constraints.

In contrast, the next approaches have introduced context-
dependent roles to modeling languages. The E-CARGO
model [32], introduced for computer-supported coopera-
tive work, distinguishes between several entities ranging
from Agents playing Roles defined in either Environments
or Groups. Still, only agents can play roles and the model
only includes occurrence constraints for roles. The Meta-
model for Roles [11] tries to be the most general formal-
ization of context-dependent roles. Similar to our model, it
distinguishes between Players, Roles, and Context on the
type and the instance level. Moreover, it introduces prop-
erties and inheritance for each of these kinds [11]. Yet, the
metamodel is too general to be useful, because the sets of
entities are not required to be disjoint (on both the type and
instance level). Thus, every definition might effect the same
entity, rendering the three distinct inheritance relations use-
less. Moreover, each definition is accompanied by a set of
unspecified constraints to capture the desired structure of the
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metamodel; things a metamodel should capture at least. The
Information Networking Model (INM) [24] is a data model-
ing approach [24] designed to overcome the inability of data
models to capture context-dependent information. While this
approach allows to model nested Contexts with attributes
containing Roles, the various kinds of relations cannot be
constrained [24]. Data Context Interaction (DCI) [28] is a
new paradigm beyond object-oriented design that revolves
around the notions of Data playing Roles in interactions en-
capsulated in a Context. Although the paradigm is described
both abstractly and by example, its semantics is not formally
specified.

The only hybrid model, to our best knowledge, is pre-
sented in the HELENA approach [18]. It features Ensembles
as compartments to capture a collaborative task by means of
roles that are played by Components. An Ensemble (Struc-
ture) contains a set of Role Connectors that act as directed
communication channels between roles. In particular, HE-
LENA provides formal definitions for both type and instance
level, as well as an operational semantics based on sets and
labeled transition systems [18]. In contrast to our model, role
connectors are not bidirectional like our relationships. Fur-
thermore, HELENA only supports occurrence constraints on
roles, and none of the other kinds of constraints.

7. Conclusion
This work is based on the classification of roles by [22, 31]
and the family of role-based modeling languages, proposed
in [22]. However, as our goal was to provide a comprehen-
sive definition for role-based modeling, the presented model
only encompasses simple, formal definitions for the type
and instance level. Additionally, it comprises definitions for
cardinality and intra-relationship constraints, as well as the
newly introduced role groups. Moreover, we have shown that
our formal model is suitable for both manual and automatic
evaluation of well-formedness, compliance, and validity. Fi-
nally, the provided reference implementations can be used to
apply, further explore, and extend our role-based modeling
language.

In future, we will augment the formal model to include
inheritance for naturals and compartments, as well as global
role constraints. Moreover, our goal is to use the formal
model as a reference to develop a customizable family of
formal role-based modeling languages with full tool support,
e.g.: graphical editor, schema, and code generators. In fact,
our goal is to include these rules into an integrated develop-
ment environment for role-based systems to check the well-
formedness of role models as well as the compliance and
validity of their instances.
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Appendix
As mentioned previously, the presented definitions of CROMs
and CROIs can be augmented easily to incorporate Fields
and Attributes on the type and instance level, respectively.

Definition 8 (Additions to CROM). Let M = (NT,RT,
CT, RST, fills, parts, rel) be a CROM, and Attr a finite set
of attribute names. Then N = (NT,RT,CT,RST,Attr,
fills, parts, rel, fields) denotes the augmented CROM, where
fields : (NT ∪RT ∪CT )×Attr→(NT ∪CT ) is a partial
function assigning a distinct rigid type to the attribute of
an entity type. It is assumed that fields(t, a) = ⊥ for all
undefined attributes a ∈ Attr of t ∈ (NT ∪RT ∪ CT ).

In detail, fields captures the defined type of a given field
with a given name in a given type. However, to ensure
referential integrity a field can only reference rigid types,
such as natural or compartment types.

Definition 9 (Additions to CROI). LetN = (NT,RT,CT,
RST,Attr, fills, parts, rel, fields) be a well-formed, aug-
mented CROM. Then an augmented Compartment Role Ob-
ject Instance (CROI) of N is a tuple j = (N,R,C, type,
plays, links, attr) where attr : (N ∪ R ∪ C) × Attr →
(N ∪ C) is a partial function assigning the objects to the
respective attributes of the entities. Notably, an augmented
CROI is well-formed wrt. to the CROM N iff all axioms of
Definition 2 as well as the following axiom holds:

∀o ∈(N ∪R ∪ C) ∀a ∈ Attr : fields(type(o), a) 6= ⊥
⇒ type(attr(o, a)) = fields(type(o), a) (17)

Similar to fields, attr collects the object currently referenced
by an attribute in a given instance.

Theorem 1 (Emptyness). Let M = (NT,RT,CT,RST,
fills, parts, rel) be a well-formed CROM, i = (N,R,C, type,
plays, links) a CROI compliant toM, rst ∈ RST an arbi-
trary relationship type, ct ∈ CT an arbitrary compartment
type, and c ∈ C an arbitrary compartment; then the follow-
ing implication holds:

rel(rst) = (rt1, rt2) ∧ rt1, rt2 ∈ parts(ct) ∧ type(c) 6= ct

⇒ links(rst, c) = ∅

Proof. Assume links(rst, c) 6= ∅ and hence let (r1, r2) ∈
links(rst, c). From (9) we know that either r1 6= ε or
r2 6= ε. If r1 6= ε, we get by (10) that (o, c, r1) ∈ plays
for some o ∈ N ∪ C and type(r1) = rt1. Due to (6)
this implies rt1 ∈ parts(type(c)) which contradicts rt1 ∈
parts(ct) ∧ type(c) 6= ct. The same arguments hold for
r2 6= ε. Hence, it follows that links(rst, c) = ∅.

Final edited form was published in "SLE '15: Software Language Engineering. Pittsburgh 2015", S. 113–124. ISBN: 978-1-4503-3686-4 
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