SLE 2015: Tool Paper submission

Designing Languages using Lightning

Loic Gammaitoni

University of Luxembourg
loic.gammaitoni@uni.lu

Abstract

Modelling languages are defined by specifying their abstract
syntax, concrete syntax and semantics. In the Lightning tool
the definition of all these language components is based on
the lightweight formal language Alloy. Lightning makes use
of the powerful automatic analysis features of Alloy to allow
language designers to develop and validate the definition of
a modelling language in an incremental fashion. By provid-
ing immediate visual feedback, it allows errors in the lan-
guage definition to be quickly identified and corrected. Fur-
thermore Lightning introduces a novel interpretation mecha-
nism that allows efficient execution of transformations used
in the language definition. We illustrate the use of the tool
on the language of structured business processes.

Categories and Subject Descriptors D.2.2 [Design Tools
and Techniques]: Computer-aided software engineering

General Terms Design, Verification

Keywords Language Design, Alloy , Language Work-
bench, Lightweight Formal Method, Agile Design, Light-
ning

1. Introduction

The formal language Alloy was developed to “capture the
essence of software abstractions simply and succinctly, with
an analysis that is fully automatic, and can expose the sub-
tlest of flaws” [9]. It is termed a lightweight formal language
because of its fully automated analysis features. These fea-
tures allow software modellers to develop software designs
in an incremental fashion with immediate visual feedback.
The Lightning tool [1] aims at carrying over the auto-
mated analysis features of Alloy to the domain of software
language design. The suitability of Alloy for specifying the

[Copyright notice will appear here once ’preprint’ option is removed.]

Designing Languages using Lightning

Pierre Kelsen

University of Luxembourg
pierre.kelsen@uni.lu

Christian Glodt

University of Luxembourg
christian.glodt@uni.lu

different syntactic and semantic aspects of a language has
already been studied earlier in [12]. The present paper may
be viewed as a concrete validation of these ideas.

The Lightning tool, in its current form, may be considered
as a prototypical language workbench. Compared to existing
language workbenches it lacks sophisticated editor support
and code generation facilities. On the other hand it innovates
by providing advanced verification capabilities for all main
components of a language definition — abstract syntax, con-
crete syntax and semantics.

Two major challenges have to be dealt with when creating
an environment based on a formal language: first, the diffi-
culty of writing formal specifications has to be taken into
account; secondly, performance issues (that may hinder a
practical adaptation) have to be considered. Regarding the
first challenge we observe that the automatic and continu-
ous validation of language models ! via Alloy’s analysis as
well as the object-oriented nature of the language and its tiny
core based on the notion of a mathematical relation facili-
tate the writing of language definitions. As for the second
challenge the performance issue was particularly problem-
atic when writing transformations (the combinatorial size of
transformation models increases drastically the analysis time
complexity). Lightning makes use of a sublanguage of Alloy,
named F-Alloy[7], that allows transformations to be written
using syntax compatible with Alloy, but also to be efficiently
interpreted (rather than analysed).

The remainder of this paper is structured as follows: in
the next section we give general information on the tool ar-
chitecture. In section 3 we introduce the structured business
process language (SBP) as a case study to illustrate our ap-
proach. In section 4 we describe which models compose a
language definition in Lightning, and motivate those design
choices. In section 5 we clarify where analysis and inter-
pretation are used and how the tool benefits from the union
of those two technologies. In section 6, we give an exam-
ple of the incremental design cycle by showing how the SBP
language introduced in section 3 can be specified. We then
compare Lightning features to those of some fully-fledged
language workbenches in section 7. In the final section we
present concluding remarks and future work.

' We use the term language model throughout the paper to mean a model
conforming to a language.

2015/6/16

..

| SEQ block
)

} | AND block

{Legend |
{ |
i(-\ Start E
@ o |
| }
| I
:® XOR

Figure 1: A Structured Business Process

2. Tool Architecture

The Lightning tool is a java 1.6-compliant environment dis-
tributed as an Eclipse plugin 2. It relies on

e Alloy 4.2 for the analysis and syntactic validation of
Alloy Models.

e UML2Alloy, UML2, OCL4KMEF, oclxmi2Ecore and
dresden OCL lib for Ecore 2 Alloy and language model
to XMI conversions.

e Draw?2D for all the visualizations rendering.

3. Case Study

In this paper, we illustrate language design using Lightning
with the help of a concrete language, the Structured Business
Process (SBP) language?. This case study was first presented
in [8].

Structured business processes consist of tasks represent-
ing actions performed towards the completion of the process
and of control nodes structuring the process. Those tasks and
control nodes are interconnected using transitions so that the
following holds:

e The process has a unique start and end, represented by
the Start and End control nodes, so that no transition is
incoming to Start or outgoing from End.

e Each task has exactly one incoming and one outgoing
transition.

® XOR and AND are control nodes used to delimit blocks
representing the nesting of processes. The difference be-
tween XOR and AND is purely semantical. While AND
means that all sub-processes (outgoing transitions) need
to be processed, XOR specifies that exactly one of them
has to be processed.

® XOR and AND control nodes have one incoming and
more than one outgoing transition if they are used to open
a new block (in which case they are called XOR split and

2 Official website: http:/lightning.gforge.uni.lu

3The full implementation in Lightning of this language can be found at
http://lightning.gforge.uni.lu/examples/SBP.zip

Designing Languages using Lightning

oplional component

! Semantics i
) Step / o
Y F-Alloy Alloy
N W Transformation Module

Figure 2: Representation of languages in Lightning

AND split), or more than one incoming and one outgoing
transition if they are used to close a new block (in which
case they are called XOR join and AND join)

® A Block opened by an AND split or XOR split needs to
be closed by an AND join or XOR join, respectively.

e The process is acyclic (all tasks are traversed at most
once)

An example business process representing a model ex-

pressed in this language is represented in fig. 1 using tra-

ditional notation from the business process community.
This choice of case study is based on the fact that:

e The SBP’s specification has been formalized in [14],
thus providing a precise description of the syntax and
semantics of this language.

e [t has sufficient complexity to illustrate the usefulness of
our tool.

e It is practically relevant since many existing business
processes are expressible in this form [14].

4. Language Definition

The Lightning tool allows the definition of languages follow-
ing the approach proposed by Kleppe[13]. Hence, in Light-
ning, a language definition consists of an Abstract Syntax
Model (ASM) specifying the set of valid language models,
a Concrete Syntax Model (CSM) defining the relations be-
tween language models and their graphical representations,
and a Semantics Model (SM) providing a meaning to those
models. In this section, we detail how those aspects are rep-
resented in the Lightning tool.

4.1 Abstract Syntax

An ASM consists, in Lightning, of an Alloy model that
formally defines the concepts, inter-concept relations, and
constraints of a language. It determines the set of valid
language models and plays a central role in the language
definition as shown in fig.2. In the remainder of this section

2015/6/16

we explain how the concrete syntax and semantics both
depend on the abstract syntax.

Two features related to abstract syntax are accessible to
Alloy neophytes: the first feature allows import of abstract
syntax specifications expressed as Ecore models (which may
contain OCL constraints), which are then translated into cor-
responding Alloy models. These models can then be anal-
ysed and the obtained instances can be exported (using the
second feature) as Ecore instances.

4.2 Concrete Syntax

The Concrete Syntax support provided by the Lightning tool
is limited to the visualization of language models. Thus,
the tool does not allow editing language models by directly
manipulating their concrete representation (this is further
discussed in sec.7).

The visualization of language models is formally defined
as a model transformation, expressed in F-Alloy[7], from
the ASM to the Lightning Visual Language Model (Light-
ningVLM).

F-Alloy is a sublanguage of Alloy in the sense that every
module expressed in F-Alloy is also a valid Alloy module.
F-Alloy has a translational semantics, allowing transforma-
tions to be expressed more succinctly than if we were using
plain Alloy. The main reason for defining a sublanguage for
Alloy is the possibility of efficiently interpreting (rather than
analysing) modules expressed in F-Alloy. Interpretation will
be discussed in more depth in the next section.

This visualisation transformation is represented by a
hexagonal shape in the upper right corner of figure 2. Light-
ningVLM consists of :

e a set of visual elements that can be connected to each
other and composed

e layout and color declarations that can be used as proper-
ties of visual elements

¢ well-formedness rules enforcing that any instance can be
correctly rendered once interpreted by the tool (e.g., by
preventing the presence of cyclic compositions)

The VLM instance, resulting from this transformation, can
then be interpreted by Lightning in order to be rendered
graphically. Further information about this feature can be
found in [6].

4.3 Semantics

The Lightning tool currently supports the definition of oper-
ational semantics of a language via two artefacts :

e A semantic domain model, taking the form of an Al-
loy module importing the ASM, that aims at adding the
concept of state to the abstract syntax. It can also con-
tain functions — i.e. set-valued parametrized expressions
— defining a succession relation between states as well as
a predicate —i.e. boolean-valued parametrized expression

Designing Languages using Lightning

— defining the conditions under which an execution state
can be initial.

¢ A semantic step transformation, taking the form of an F-
Alloy endogenous model transformation — from semantic
domain model to semantic domain model — that defines
how to obtain the next state in the execution of a language
model.

Additionally, as displayed in dashed lines in fig.2, the se-
mantics model can be accompanied by an extra F-Alloy
transformation from the semantic domain model to Light-
ningVLM, generally extending the ASM to VLM transfor-
mation , so that the execution of a language model according
to its operational semantics can be visualised.

S. Analysis versus Interpretation

In this section, we give more details on the key mechanisms
that are used by the Lightning tool, namely the analysis of
Alloy models and the interpretation of F-Alloy transforma-
tions.

5.1 Analysis

The analysis carried out by the Alloy Analyzer is integrated
in the Lightning tool and allows, given a command defining a
scope 4, to generate a finite set of instances from Alloy mod-
els. It is used to generate language models from ASMs. The
time complexity of such analysis depends on the scope given
in the command. According to the small scope hypothesis
[9] small scopes will generally suffice to detect most design
errors.

Analysis is also used for calculating the initial state of a
model when executing it, i.e., when applying its operational
semantics. Calculation of the initial state is a two step pro-
cess: first a given language model is converted into an Alloy
model which is constrained so as to admit only this partic-
ular language model as unique instance. Next, the seman-
tic domain model is analysed, taking into account the pre-
viously constrained model, to determine the initial state for
the given language model. This analysis is usually efficient
since the language model itself is fixed and only the state
portion (specified in the semantic domain model) needs to
be analysed.

5.2 Interpretation

Transformations expressed in F-Alloy can be computed effi-
ciently in a backtrack-free manner, as described in [7]. This
is essential to the operation of the Lightning tool. Indeed,
executing transformations via analysis has proven to be very
time consuming thus making it impractical for visualisation
for instance. The extra time complexity for analysing trans-
formations is not surprising since transformations involve

4 an upperbound on the number of atoms composing instances to be gener-

ated.

2015/6/16

\

Design Design
ASM CSM /) Language model

Design generation
SM
3
2
errors
1

detection

Legend

ASM: Abstract Syntax Model
CSM: Concrete Syntax Model
SM : Semantics Model

Figure 3: Spiral diagram depicting how languages are incre-
mentally designed in Lightning

two metamodels, the input and output metamodels, both rep-
resented by Alloy models.

Interpretation of transformations expressed in F-Alloy is
done in several places:

e to visualise language models using their concrete syntax.

e to execute a language model by repeating the semantic
step transformation

e to visualise the execution of language models

e to compute simple language to language (ASM to ASM)
transformations (see [7])

6. Language Design Cycle

In this section, we describe how Lightning can be used to
design languages in an incremental (see fig. 3) manner. We
illustrate this approach using the case study introduced in
sec. 3. The main focus of this section will be the design of
the language semantics. Indeed the process of defining the
abstract and concrete syntax has already been described in
[8]7 ; it will only be sketched in the next subsection.

6.1 Abstract and Concrete Syntax Design

As mentioned earlier the abstract syntax model (ASM) is
represented by an Alloy model defining the concepts and
constraints of the language. Here is an excerpt of the SBP
abstract syntax:

module SBP/AbstractSyntax /ASM

abstract sig Node{}{
this not in successors|[this] // no cycles
this in successors[Start] + Start //reachable

sig Task,End, Start extends Node {}
abstract sig Control extends Node {}
sig AND_JOIN, XOR_JOIN, AND_SPLIT , XOR_SPLIT
extends Control {}
sig Flow{
source : Node,
target: Node

}

fun nextNodes(n: set Node) : set Node {
n.("source). target

}

fun successors(n: set Node) : set Node {

3[8] also presents an analysis based approach to semantics, differing from

the transformation based approach described here

Designing Languages using Lightning

n."((~source).target)

At any stage of defining the abstract syntax we can debug
the current description by generating instances for the Alloy
model. Some errors can be spotted and corrected in this
way (cycle 1 in fig. 3). In general however it will be easier
to debug the abstract syntax if we can view the instances
Lightning produces using the concrete syntax. If we detect
an error with the help of the concrete syntax representation,
the error may be of two kinds: either an error in the abstract
syntax or an error in the concrete syntax itself. Fixing an
error of the first kind corresponds to passing into cycle 1;
errors of the second type correspond to a passage into cycle
2. For more details the reader is referred to [8].

6.2 Semantics Design

As mentioned earlier, Lightning allows the specification of
operational semantics. The first step in semantics design is
thus to identify what notions are missing in the ASM to ex-
press a step of language execution. Our SBP language as de-
fined during the abstract syntax design phase induces a node
structure with a start node, an end node, and precedence re-
lations in the form of flows. But to model an execution step,
the notion of active node is missing. Indeed, nothing in the
ASM allows us to define which node is active in a given
state of execution. Once the missing concept is identified,
it is added to the ASM in what we call a semantic domain
model. Here is an excerpt of the semantic domain model as-
sociated to the SBP language. Note the presence of the init
predicate that ensures that in the initial state only the Start
node is active.

module SBP/Semantics/Semantics
open SBP/ AbstractSyntax /ASM

one sig State{
activeNodes: some Node

pred init [s:State] {
s.activeNodes = Start

}

run init

Given this semantic domain model, it is possible to model
a step of language execution as an endogenous transforma-
tion from the semantic domain model to itself.

In our SBP example, the transformation is described as
follows :

module SBP/Semantics/Semantics
open SBP/Semantics/Semantics

one sig Bridge{
map: State —>

}

pred guard_map(s: State) {
not s = End.(" activeNodes)

State

pred value_map(sl: State, s2: State) {
s2.activeNodes = nextActiveNodes[sl.activeNodes]

2015/6/16

& semantics: on 0% BUSCS g semanticsion 0 1 & @usecs & SemanticssOn < 2 & [UseCS

XOR_SPLITSO

XOR_SPLITSO XOR_SPLITSO

Task$2 Task$1 Task$0 Tasks2 Tasks1 Task$0

XOR_JOINSO XOR_JOINSO

(b) state 1

o

(a) starting state (c) state 2

Figure 4: Faulty semantics execution of an SBP language
model containing XORs

Note that endogenous transformations in F-Alloy con-
serve elements that are not part of a mapping. Hence, this
transformation only enforces that the state of execution of a
given semantic domain model instance should be replaced
(if the state’s active node is not an End) by a new execu-
tion state where the active nodes are given by the function
nextActiveNodes [n:Node]. This helper function is de-
fined in the semantic domain model as it is meant to be eval-
uated in a semantic domain model instance and has been de-
fined as follows :

fun nextActiveNodes(n: set Node): set Node {
//return nextNodes in general except :
nextNodes[n — AND_JOIN — XOR_SPLIT] +
//if and_join: wait no nodes in n are preceding it
nextNodes[{x: n & ANDJOIN | n & predecessors[x]=none}]+
//'if xor_split: return solely one successor .
{x: Node | some y: n & XOR_SPLIT |
x= order/max[successors[y]]}

An execution of this semantics definition leads to the
sequential visualisation depicted in figure 4. This execution
reveals an error since one of the task nodes needs to become
active between the activation of XOR_SPLIT and XOR_JOIN.

This visualisation thus points to an error in the
nextActiveNodes function for XOR control nodes. A
closer look at the XOR related specifications allows us to
realize that the error is due to an ambiguous naming of func-
tions. Indeed, the successors function defined in the ASM
returns the set of all nodes succeeding the nodes given in
parameter. Replacing the call to the function successors
by a call to the nextNodes function, which only returns di-
rect successors of the nodes given in parameter, will fix the
error.

7. Discussion

The term “language workbench” was made popular by Mar-
tin Fowler [5]; it denotes a tool that supports the efficient
definition, reuse and composition of languages and their
IDEs[3]. While Lightning is not yet a full-fledged language
workbench (as we will see below) it clearly aims at facilitat-
ing the development of new (domain-specific) languages. To
understand what Lightning brings to the software language
engineering research, it is therefore instructive to analyse its

Designing Languages using Lightning

Features Language Workbf:nch Lightning
mandatory | optional
Notation v X graphical
Semantics 4 X operational
Editor Support v X tree editor
Syntactic services X v X
Semantics services X v X
Validation X v Alloy Validation
Formal Verification X X Alloy Verification
Testing X v exhaustive testing
Composability X v only syntactic

Table 1: Comparative table of Language workbench fea-
tures(as proposed in [3]) and of Lightning features

features in the context of existing language workbenches.
We base our comparison on the domain analysis performed
by [3] which resulted in table 1. In this table we have also
indicated the features of the Lightning tool.

The notation that Lightning uses for presenting models to
the user is graphical: models are either shown in a concrete
syntax notation (defined by a transformation of the abstract
syntax model to a visual language) that is not editable, or in
the form of a tree representation that can be edited.

The only editor support that Lightning currently offers is
a tree based editor, supplemented by a graphical view of the
model being edited (based on the concrete syntax of the lan-
guage). Compared to mature language workbenches Light-
ning is lacking comfortable editor support. This is shown in
the lack of syntactic and semantic editor services. In con-
trast, the language workbenches MetaEdit+[11], MPS[15],
Spoofax[10], and Xtext[4] offer the full range of syntac-
tic editor services — highlighting, outline, folding, syntactic
completion, diff, and auto formatting. These same language
workbenches also offer a range of semantic editor service
such as reference resolution, semantic completion, refactor-
ing and error marking.

While many existing workbenches offer advanced editor
support, features that support validation and testing are less
commonly found. Lightning offers at this point limited vali-
dation of models: upon saving a model that does not conform
to the language a textual error message is shown.

The strength of Lightning lies in the validation mecha-
nisms at the level of the language definition which is not
an expected feature of Language workbenches according to
[3]. At the level of the language definition Lightning offers
advanced syntactical validation via Alloy. More importantly
Alloy’s automatic analysis verifies the consistency of the
language definition by generating sample instances. If no in-
stances can be found, the abstract syntax definition is incon-
sistent. A similar validation can be carried out at the level of
the semantics definition. For both syntax and semantics the
visualisation based on the concrete syntax definition aids in
understanding the generated instances and the ensuing prob-
lems in the current specification.

2015/6/16

Although some workbenches such as MPS offer support
for testing at the level of the language definition, the SAT
based analysis of Alloy is arguably more complete since it
exhaustively tests all instances up to a given size. Assum-
ing that the small scope hypothesis which Alloy is based on
- stating that errors usually admit small counter examples -
does indeed hold for language definitions, then the Lightning
tool will indeed uncover problems in the language specifica-
tion.

Regarding the last category of features, composability,
Lightning at this point offers mostly syntactic composition
via module imports in Alloy. Other workbenches such as
Metaedit and Spoofax offer a complete set of composability
features covering all aspects of a language: syntax, valida-
tion, semantics, and editor services.

There are two more aspects that need to be considered and
that are not covered by the features in table 1: formality and
the underlying paradigm. By formality we mean the exis-
tence of a formal/mathematical foundation for the language
workbench. The formal nature of Lightning is a distinguish-
ing characteristics. The workbenches reviewed in [3] do not
have a direct formal foundation. The ATOM3 tool[2] (men-
tioned in [3]) has a formal basis in graph transformations.

Another aspect is the basic paradigm underlying the tool.
A distinguishing feature of Lightning is its model-driven
nature: the abstract syntax, concrete syntax and semantics
represent metamodels which the generated instances will
conform to. Most of the language workbenches reviewed in
[3] use other means of specifying languages (e.g. grammars),
a notable exception being Metaedit+ which is also fully
model-based.

8. Conclusion and Future Work

The tool presented in this paper provides an Alloy-based ap-
proach to software language engineering. Two basic mech-
anisms are implemented in the tool: on one hand the au-
tomated analysis of Alloy models with its immediate vi-
sual feedback permits quick detection of design errors; on
the other hand, the interpretation of modules written in F-
Alloy allows an efficient computation of transformations in
the tool, thus making for instance the specification of visu-
alisation transformations in Alloy (via F-Alloy) practical.

Future work will explore two main avenues: on one hand
we would like to open the use of the tool to users not
familiar with Alloy. This is already possible to some extent
by importing an Ecore specification of an abstract syntax
and exporting associated instances. We will explore other
ways to reduce the onus of writing specifications. One could
envisage for instance that transformations could be designed
largely graphically, with only small text snippets needing to
be written at some points.

Another avenue of research concerns the use of Lighning
as a language workbench. Further editor support as well as
code generation capabilities have to be provided to broaden

Designing Languages using Lightning

the applicability of the tool. This will also be the occasion to
explore the scalability of the tool on larger case studies.

References
[1] Lightning tool web site, http://lightning.gforge.uni.lu.

[2] DE LARA, J., AND VANGHELUWE, H. Atom3: A tool for
multi-formalism and meta-modelling. In Fundamental ap-
proaches to software engineering. Springer, 2002, pp. 174—
188.

[3] ERDWEG, S. E. A. The state of the art in language work-
benches. In Software Language Engineering, M. Erwig,
R. F. Paige, and E. Wyk, Eds., vol. 8225 of Lecture Notes in
Computer Science. Springer International Publishing, 2013,
pp. 197-217.

[4] EYSHOLDT, M., AND BEHRENS, H. Xtext: implement your
language faster than the quick and dirty way. In Proceedings.
2010, pp. 307-309.

[5] FOWLER, M. Language workbenches: The killer-app for
domain specific languages.

[6] GAMMAITONI, L., AND KELSEN, P. Domain-specific visu-
alization of alloy instances. In ABZ. 2014, pp. 324-327.

[71 GAMMAITONI, L., AND KELSEN, P. F-Alloy: an Alloy
Based Model Transformation Language. In International
Conference on Model Transformations. 2015, to appear.

[8] GAMMAITONI, L., KELSEN, P., AND MATHEY, F. Verify-
ing modelling languages using lightning: a case study. In /th
Workshop on Model Design, Verification and Validation Inte-
grating Verification and Validation in MDE (MoDeVVa 2014).
2014, pp. 19-28.

[9] JACKSON, D. Software abstractions. MIT Press Cambridge,
2012.

[10] KATs, L. C., AND VISSER, E. The spoofax language work-
bench: rules for declarative specification of languages and
IDEs. In ACM Sigplan Notices, vol. 45. 2010, pp. 444-463.

[11] KELLY, S., LYYTINEN, K., AND ROSSI, M. Metaedit+
a fully configurable multi-user and multi-tool CASE and
CAME environment. In Advanced Information Systems En-
gineering. 1996, pp. 1-21.

[12] KELSEN, P., AND MA, Q. A lightweight approach for defin-
ing the formal semantics of a modeling language. In Model
Driven Engineering Languages and Systems. Springer, 2008,
pp. 690-704.

[13] KLEPPE, A. Software Language Engineering: Creating
Domain-Specific Languages Using Metamodels. Addison-
Wesley Professional, 2008.

[14] ToSATTO, S. C., GOVERNATORI, G., AND KELSEN, P. To-
wards an abstract framework for compliance. IEEE Computer
Society, Los Alamitos, CA, USA, 2013, pp. 79-88.

[15] VOELTER, M., AND PECH, V. Language modularity with the
mps language workbench. In 34th International Conference
on Software Engineering (ICSE). 2012, pp. 1449-1450.

2015/6/16

APPENDIX:
Lightning Tool Demo : How to Define a
Structured Business Process Language with
Lightning

Loic Gammaitoni, Pierre Kelsen, and Christian Glodt

University of Luxembourg

Introduction

In this appendix, we present the content and structure of the demonstration
we propose to give in SLE 2015. Our demonstration will follow a step by step
approach with a Structured Business Process language as supporting case study.
We will provide an overview of the main features offered by Lightning, including:

— Language definition

— Language verification

— Language model edition
— semantics execution

Step 1: Language Definition

The presentation will start with a brief introduction of Lightning and of the
chosen case study: the design of a Structured Business Process language. Then,
we will show how languages are structured in Lightning, in theory (fig.1a) and
in the tool (fig. 1b).

We also identify two kinds of modules: ".als"() files represent regular Alloy
file, while ".fals" (]2-'{) files represent F-Alloy modules.

Step 2: ASM Design

We propose an SBP abstract syntax design to the audience (fig 2 shows the alloy
code and the associated graphical view), and show how to verify it’s correctness
using the tool by generating several model instances using Alloy analysis.

We will observe that ASM instances can directly be used to debug such specifi-
cations. Indeed we notice that some tasks are not connected to any flows (fig.3).
After correcting this error we will also note that the unintuitive visualisation of
abstract syntax instances may stand in the way of efficient verification.

Step 3 : Use of Concrete Syntax

We specify here from scratch an F-Alloy transformation model that specifies the
concrete syntax of the language and explain its structure.

This can be performed seamlessly with the predicate auto-generation feature of
the Lightning F-Alloy editor.

Once the transformation is specified we generate and visualise several instances
of our SBP language to realise that the ASM definition still contains error (fig.
4 suggests indeed that the control nodes are underspecified).

After fixing the error we visualise several instances one last time to increase our
confidence in the correctness of the ASM (fig.5).

We then save one of the instance displayed to edit it in the next section.

Step 4 : Edit Instances

We open the previously saved instance using the instance editor.

We notice that an instance viewer is open at the same time than the editor. Each
modification brought to the instance is directly reflected to the visualisation
and a colourful indicator will let the user know if the instance obtained after
modification is conforming to its metamodel (see fig.6 and 7).

Step 5 : Define, Execute and Verify Semantics

Proceeding to the definition of semantics, we import three models to our lan-
guage: a semantic domain model, a semantic step transformation and a semantic
visualization transformation. After going briefly through them while highlight-
ing their purpose, we execute a language model (obtained by analysis). The
execution is depicted in figure 8, and indicates an error in the behaviour of
XOR_SPLIT control nodes. After explaining the cause of this error, and fixing
it, we execute several other language models obtained via analysis to increase
our confidence in the correctness of our language definition.

v (£ SLE-2015
¥ SBP
¥ [E] AbstractSyntax
> &) ASM.als
¥ 1% ConcreteSyntax
> B ASM2VLM.fals
» [LightningvLM.als
R » O SEM2VLM.fals

Semantics
Wrapper

,,,,,,,, ® Instances
Legena: ¥ £t Semantics
---- optional companent > @ Semantics.als
FoAlloy Alloy) .
Q*’E"S“”ma“"” [» & Semantics.fals
(a) Theoretical Overview (b) in-tool view

Fig. 1: Language Structure in Lightning

*ASM.als 2 = 8 O Metamodel - /ControlFlowDiagram/SBP/AbstractSyntax/ASM.als 2
1 module SBP/AbstractSyntax/ASM

stract sig Node{

[T SN

ab:
°H
this not in successors[this] // no cycles

}

9 one sig Start extends Node {}

16 one sig End extends Node {} Control ‘ End ‘ ‘ Task ‘ ‘ Start ‘
11 sig Task extends Node {}

12 N
13- sig Flow{

14 source: Node,
15 target: Node

16 } ‘ XOR_JOIN ‘ ‘ AND_JOIN ‘ ‘ AND_SPLIT ‘ ‘ XOR_SPLIT ‘
17

18 abstract sig Control extends Node {}
19-sig AND JOIN,XOR JOIN extends Control {}{

20 #this.~source=1 and #this.~target>1

21 }

22-sig AND SPLIT,XOR SPLIT extends Control {}{
23 #this.~source=1 and #this.~target=1

24 }

25

Fig. 2: Alloy specification of the SBP language’s abstract syntax and its associ-
ated graphical metamodel view

‘ Task$1 ‘ Flowss

soyrce

Start$0

‘ Task$0 ‘ ‘ Flows$1 ‘ ‘ Flows2 ‘

taiéet %ﬂ&‘ target

‘ End$0 ‘ ‘ XOR_JOINS1 ‘

‘ Flows3 ‘ ‘ Flowso ‘ ‘ Flows4 ‘

Fig. 3: Instance visualization highlights that tasks may not be connected

{8

Taskso

XOR_SPLITSO

AND_JOINSO

Fig. 4: Instance visualization with concrete syntax applied highlights design error
in the control specifications

El console | 2 Instance &3

0 = [| Semantics: OFf 0

Task$1 Taskso

Fig. 5: Visualizing an instance using the concrete syntax

® *instance.instance %2 = 8 2 viewer instance.instance &2

Elements Type
P AND_JOIN
AND_SPLIT

ControlsBox Tasks2
as
» End

Flow
» Flowso
* Flows1
L3

Flow$2
» Flows3
» Flows4
¥ Flowss

StartSo source : Node

AND_SPLITS0 target: Node k c
» Start TaskS1 Tasks0

v

v

4

¥ Task
Task$0
Task§1
Tasksz

AND_JOINSO

Fig.6: Adding task to instance of fig.5 results in a non conforming instance

® *instance.instance 2 = 0 % viewer instance.instance 2

Elements Type
» AND_JOIN
P AND_SPLIT
» ControlsBox @
» End
¥ Flow
¥ FlowS0
AND_JOINSO source : Node
End$0 target: Node
¥ Flows1
AND_JOINSO target: Node
Tasks2 source: Node
¥ Flows2 Task$1 TaskS0
Task$o source : Node
AND_JOINSO target: Node \
¥ Flows3
AND_SPLITSO source : Node Tasks2
Task$1 target: Node
¥ FlowS4
AND_SPLITSO source : Node
Task$0 target: Node AND_JOINSO
¥ Flowss
Start$o source : Node
AND_SPLITS0 target: Node
> FlowSé
» Start

Fig.7: Connecting this newly created task to the rest of the flow makes the
instance conform to the ASM

& semantics: On 0 Y [UseCs & Semantics:on | <2 1 % | @ UseCs [semantics:on = <¥ 2 Y & UseCs
startso Startso
XOR_SPLITSO XOR_SPLITS0
Tasks2 Task§1 Tasks0 Task$2 Task$1 Task$0 Task$2 Task$1 Tasks$0

XOR_JOINSO
(a) starting state (b) state 1 (c) state 2

Fig. 8: Faulty semantics execution of an SBP language model containing XORs

	Introduction
	Tool Architecture
	Case Study
	Language Definition
	Abstract Syntax
	Concrete Syntax
	Semantics

	Analysis versus Interpretation
	Analysis
	Interpretation

	Language Design Cycle
	Abstract and Concrete Syntax Design
	Semantics Design

	Discussion
	Conclusion and Future Work

