
26 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

The Chemical Approach to Typestate-Oriented Programming

Publisher:

Published version:

DOI:10.1145/2814270.2814287

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

ACM

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1528100 since 2016-11-08T10:59:06Z

The Chemical Approach to Typestate-Oriented Programming

Silvia Crafa
Università di Padova, Italy

crafa@math.unipd.it

Luca Padovani
Università di Torino, Italy
luca.padovani@di.unito.it

Abstract
We study a novel approach to typestate-oriented program-
ming based on the chemical metaphor: state and operations
on objects are molecules of messages and state transfor-
mations are chemical reactions. This approach allows us
to investigate typestate in an inherently concurrent setting,
whereby objects can be accessed and modified concurrently
by several processes, each potentially changing only part of
their state. We introduce a simple behavioral type theory to
express in a uniform way both the private and the public in-
terfaces of objects, to describe and enforce structured object
protocols consisting of possibilities, prohibitions, and obli-
gations, and to control object sharing.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming]; D.2.4 [Software/Program Verification]: Class
invariants; F.3.3 [Studies of Program Constructs]: Type
structure

Keywords Typestate, concurrency, behavioral types, join
calculus

1. Introduction
In an object-oriented program, the interface of an object de-
scribes the whole set of methods supported by the object
throughout its entire lifetime. However, the usage of the ob-
ject is more precisely explained in terms of its protocol [2],
describing the sequences of method calls that are legal, pos-
sibly depending on the object’s internal state. Typical exam-
ples of objects with structured protocols are files, iterators,
and locks: a file can be read or written only after it has been
opened; an iterator can be asked to access the next element
of a collection only if such element has been verified to exist;
a lock should be released if (and only if) it was previously
acquired. Usually, such constraints on the legal sequences of

method calls are only informally documented as comments
along with method descriptions; in this form, however, they
cannot be used by the compiler to detect protocol violations.

In [14], DeLine and Fähndrich have adapted the con-
cept of typestate [47], originally introduced for imperative
programs, to the object-oriented paradigm. Typestates are
machine-understandable abstractions of an object’s internal
state that can be used (1) to identify the subset of fields and
operations that are valid when the object is in some given
state and (2) to specify the effect of such operations on the
state itself. For example, on a file in state CLOSED the com-
piler would permit invocations of the open method and for-
bid invocations of the read method, whereas on a file in state
OPEN it would only permit invocations of read, write, and
close methods and forbid open. Furthermore, the type of
open would be refined so as to specify that its invocation
changes the state of the file from CLOSED to OPEN.

Typestate-oriented programming (TSOP for short) [1, 11,
21, 48] goes one step further and promotes typestates to
a native feature of the programming language that encour-
ages programmers to design objects around their protocol.
Languages supporting TSOP provide explicit constructs for
defining state-dependent object interfaces and implementa-
tions, for changing and possibly querying at runtime an ob-
ject’s typestate, and for annotating the signature of methods
so as to describe their effect on the state of an object [1]. In
order to track the points in the code where the state of an ob-
ject changes, hence to detect – at compile time – potential vi-
olations of an object’s protocol using typestate information,
references to objects with structured protocols are required
to be stored and shared in controlled ways. Not surprisingly,
then, all languages supporting static typestate checking rely
on more or less sophisticated forms of aliasing control [5]
which may hinder the applicability of typestate to objects
simultaneously accessed/modified by concurrent processes.
Damiani et al. [11] have proposed an approach to conjugate
typestate and concurrency in a Java-like language relying
on some runtime support: users of an object can invoke any
method at any time, even when the state of the object is un-
certain; a method invocation is suspended until the object
is in a state for which that method is legal; typestate infor-
mation is used within methods, to make sure that only valid
fields are accessed. This approach has both computational

and methodological costs: it requires all methods of a con-
current object to be synchronized, it limits parallelism by
sequentializing all concurrent accesses to the same object,
and it guarantees protocol compliance only within methods,
where some form of aliasing control can be used.

The first contribution of this paper is a foundational study
of TSOP in an inherently concurrent setting, whereby ob-
jects can be shared and accessed concurrently, and (por-
tions of) their state can be changed while they are simul-
taneously used by several processes. We base our study on
the Objective Join Calculus [16, 17] and we show that the
idiomatic modeling of objects in the Objective Join Calcu-
lus has strong connections with the main TSOP features, in-
cluding state-sensitive operations, explicit state change, and
runtime state querying. Such connections draw heavily from
the chemical metaphor that inspired the Objective Join Cal-
culus: programs are modeled as chemical soups of molecules
(i.e. multisets of messages sent to objects) that encode both
the current state of the objects and the (pending) operations
on them, while reaction rules correspond to object’s meth-
ods definitions. In particular, chemical reactions explicitly
specify both the valid combinations of state and operations
as well as the changes performed by each operation on the
state of an object. Incidentally, we observe that the Objective
Join Calculus natively supports high-level concepts such as
compound and multidimensional states [48]. This allows us
to formally investigate the issues arising when states are par-
tially/concurrently updated.

The second contribution of this paper is a theory of be-
havioral types for TSOP in the Objective Join Calculus and
a corresponding substructural type system. We exploit the
chemical metaphor once more to express in a unified and
compositional way the combination of the encapsulated part
of objects (state) and their public interface (operations) and
to describe objects protocols in terms of the legit configura-
tions of messages that the objects can/must handle. The key
idea underpinning the type system is that distinct references
to the same object may be given different types. This feature
accounts for the fact that several processes may use the same
object concurrently. For example, a lock could be shared by
two processes P and Q and be acquired by one of them, say
P . Then, the reference to the lock held by P would have
a type stating that P must (eventually) release the object,
whereas the reference to the lock held by Q would have a
type stating that Q can (but need not) attempt to acquire the
lock. The overall type of the lock would be the combination
of these two types, defined in terms of a suitable behavioral
connective. It should be remarked that the type of an object
is defined once and for all by the programmer and does not
depend on the number of references to the object. In fact, the
mismatch between an object’s unique type and the combina-
tion of the types of all of its references is explained in terms
of a behavioral subtyping relation. Such relation serves other
purposes as well: aside from realizing the obvious form of

1 def o = FREE | acquire(r) . o.BUSY | r.reply(o)

2 or BUSY | release . o.FREE

3 in o.FREE

4 | def c = reply(o’) . o’.release in o.acquire(c)

Listing 1. A lock in the Objective Join Calculus.

subtype polymorphism, it supports the characterization of
safe/partial concurrent state transitions and it provides – at
no additional cost – a key tool for deriving the protocol of
objects with uncertain state. On objects without typestates,
subtyping collapses to the traditional one.

With these ingredients in place, we are able to provide a
simple static analysis ensuring that well-typed, concurrent
processes comply with the protocols of the objects they
use. Compared to [11], our approach enables a fine-grained
tuning of the kind of concurrency allowed on objects with
structured protocols: non-aliased objects can fully benefit
from static typestate checking, while shared/aliased objects
can rely on runtime synchronization to resolve races and
execute methods at the right time. The typing of objects
regulates the tradeoff between these extremes and allow for
a whole range of intermediate scenarios.

Structure of the Paper. We start with an informal overview
of TSOP in the Objective Join Calculus (Section 2) before
presenting its syntax and semantics (Section 3). We define
syntax and semantics of types (Section 4), we describe the
rules of the type system (Section 5), and comment on its
safety properties (Section 6). In the latter part of the paper,
we discuss the key aspects to implement the proposed frame-
work (Section 7), we discuss related work (Section 8) as well
as future research directions (Section 9). Proofs of the results
can be found in the companion technical report [10].

2. The Chemistry of Typestates
The Chemical Metaphor. The Join Calculus [16, 17] orig-
inates from the Chemical Abstract Machine [4], a formal
model of computations as sequences of chemical reactions
transforming molecules. The Objective Join Calculus [19] is
a mildly sugared version of the Join Calculus with object-
oriented features: a program is made of a set of objects and
a chemical soup of messages that can combine into com-
plex molecules; each object consists of reaction rules corre-
sponding to its methods; reaction rules are made of a pattern
and a body: when a molecule in the chemical soup matches
the pattern of a reaction, the molecule is consumed and the
corresponding body produces other molecules.

Listing 1 shows the idiomatic implementation and use
of a lock in the Objective Join Calculus. The definition on
lines 1-2 creates a new object o with two reaction rules,
separated by or. The symbol . separates the pattern from the
body of each rule, while | combines messages into complex
molecules. The first reaction “fires” if a FREE message and
an acquire message (with argument r) are sent to o: the

two messages are consumed and those on the right hand side
of . are produced. In this case, the argument r of acquire
is a reference to another object representing the process that
wants to acquire the lock. Hence the effect of triggering the
first reaction is that a BUSY message is sent to o (in jargon,
to “self”) and a reply message is sent to r to notify the
receiver that the lock has been successfully acquired. The
second reaction specifies that the object can also consume
a molecule consisting of a BUSY message and a release

message. The reaction just sends a FREE message to o. The
lock is initialized on line 3, by sending a FREE message to o.

The process on line 4 shows a typical use of the lock.
Since communication in the Join Calculus is asynchronous,
sequential composition is modeled by means of continua-
tion passing: the process creates a continuation object c that
reacts to the reply message sent by the lock; then, the pro-
cess manifests its intention to acquire the lock by sending
acquire(c) to o. When the reaction on line 1 fires, the
reply triggers the reaction in c on line 4, causing the lock to
be released. One aspect not explained in the above descrip-
tion is the passing of o in the reply message on line 1 which
is bound to o’ on line 4. Since on line 1 o corresponds to
“self”, sending o in the message reply(o) enables method
chaining. In fact, with some appropriate syntactic sugar we
could rewrite the process on line 4 just as

o.acquire.release

We will introduce a generalization of such syntactic sugar
later on (see Example 3.3 and Listing 3). We will also see
that method chaining is not just a trick for writing compact
code, but is a key feature that our type system hinges on.

In the next section we will discuss a more complex use
case (Example 3.4) where the lock defined in lines 1-2 is
shared by two processes that compete for acquiring it. In that
case, we will see that the complex molecules in the patterns
of the lock’s reaction rules are essential to make sure that
the lock behaves correctly, namely that only one process can
hold the lock at any time. In particular, if an acquire(c’)

message is available but there is no FREE message in the
soup (because another process has previously acquired the
lock thereby consuming FREE), the reaction in line 1 cannot
fire and the process waiting for the reply message on c’ is
suspended until the lock is released.

State and Operations in the Join Calculus. Listing 1 pro-
vides a clear illustration of TSOP in the Join Calculus: a
lock is either free or busy; it can only be acquired when it
is free, and it can only be released when it is busy; acqui-
sition makes the lock busy, and release makes it free again.
The compound molecules in the patterns specify the valid
combinations of state and operations, and the state is explic-
itly changed within the body of reactions.

These observations lead to a natural classification of mes-
sages in two categories: FREE and BUSY encode the state of
the lock, while acquire and release represent its oper-

ations (we follow the convention that “state” messages are
written in upper case and “operation” messages in lower
case). Ideally, lock users should not even be aware of the
existence of FREE and BUSY, if only to prevent accidental or
malicious violations of the lock protocol. Our type system
will enforce an encapsulation mechanism to prevent users
from sending state messages (Section 5).

Messages in the chemical soup encode the current state
of the object and the (pending) operations on it: for instance,
the presence of a message o.FREE in the soup encodes
the fact that the object o is in state FREE; the presence of
a message o.acquire in the soup encodes the fact that
there is a pending invocation to the acquire method of the
object o. Representing state using (molecules of) messages
makes it simple to model so-called and-states [48], which
we will see at work in Example 5.8. On the contrary, FREE
and BUSY are examples or-states which mutually exclude
each other. The typing of the lock object will guarantee that
there is always exactly one message among FREE and BUSY,
i.e. that the state of the lock is always uniquely determined.

Behavioral Types for the Join Calculus. Since in the Join
Calculus there is no sharp distinction between (private) mes-
sages that encode the object’s state and (public) messages
that represent the object’s operations, we can devise a type
language to describe the legit configurations of messages,
both private and public, that objects can/must handle. In fact,
we can use types to specify (and enforce) the object proto-
col. Object types are built from message types m(t̃) using
three behavioral connectives, the product ⊗, the choice ⊕,
and the exponential ∗. An object of type m(t̃) must be used
for sending an m-tagged message with a (possibly empty) tu-
ple of arguments of type t̃; an object of type t ⊗ s must be
used both as specified by t and as specified by s; an object
of type t⊕s must be used either as specified by t or as spec-
ified by s; an object of type ∗t can be used any number of
times (even zero), each time as specified by t.

As an example, let us illustrate the type of the lock object.
It is useful to keep in mind the intuition that the type of the
lock should describe the whole set of legit configurations of
messages targeted to the lock. In this respect, we recall that:

• there must be exactly one message among FREE and BUSY
that encodes the state of the lock;

• there can be an arbitrary number of acquire messages
regardless of the state of the lock (the lock is useful only
if it is shared among several processes);

• there must be one release message if the lock is BUSY
(this is an eventual obligation).

We express all these constraints with the type

tlock
def
= ∗acquire(reply(release))

⊗
(
FREE⊕ (BUSY⊗ release)

)
It is no coincidence that the only occurrence of ∗ is used

in front of the only message (acquire) for which there

P,Q ::= Process
null (null process)

| u.M (message sending)
| P |Q (process composition)
| def a = C in P (object definition)

M,N ::= Molecule / Pattern
m(ũ) (message)

| M |N (molecule composition)

C,D ::= Class
J . P (reaction rule)

| C or D (class composition)

Table 1. Syntax of the Objective Join Calculus.

are no obligations: the lock can but need not be acquired.
However, if the lock is acquired, then it must be released;
whence the lack of ∗ in front of release. There is no ∗
in front of FREE and BUSY either, meaning that there is an
obligation to produce these messages too, but since FREE

and BUSY occur in different branches of a ⊕ type, only
one of them must be produced. In addition to possibilities
and obligations, tlock expresses prohibitions: all message
configurations containing multiple FREE or BUSY messages
or both FREE and release messages are prohibited by the
type. Our type system will guarantee that any lock object
is always in a configuration that is legal according to tlock .
This implies, for example, that a well-typed process never
attempts to release a lock that is in state FREE.

There is one last thing to discuss before we end this infor-
mal overview, that is the type of the argument of acquire,
named r in Listing 1. If we look at the code, we see that
r is the reference to an object to which the lock sends a
reply(o) message. Not surprisingly then, the argument of
acquire has type reply(release) in tlock . This means
that the reference o’ in Listing 1 has type release, which
is consistent with the way it is used on line 4. In other words,
we use method chaining to express the change in the (public)
type of an object as methods are invoked. Both o and o’ re-
fer to the same lock object, but they have different interfaces:
the former can be used for acquiring the lock; the latter must
be used (once) for releasing it.

3. The Objective Join Calculus
The syntax of the Objective Join Calculus is defined in
Table 1. We assume countable sets of object names a, b,
c, . . . and of variables x, y, We let u, v, . . . denote
names, which are either object names or variables, and use
m, . . . to range over message tags. We write ũ for a (possibly
empty) tuple u1, . . . , un of names; we will use this notation

extensively for denoting tuples of various entities. In a few
occasions, we will also use ũ as the set of names in ũ.

The syntax of the calculus comprises the syntactic cat-
egories of processes, molecules, and classes. Molecules are
assemblies of messages and each message m(ũ) is made of a
tag m and a tuple ũ of arguments; we will abbreviate m()with
m; join patterns (or simply patterns) J , . . . are molecules
whose arguments are all variables and that satisfy two lin-
earity conditions: variables and message tags occurring in
the same pattern are pairwise distinct. These conditions are
typical of most presentations of the Join Calculus and are
motivated by efficiency reasons: variable linearity avoids the
need for equality tests when matching molecules; tag linear-
ity allows the implementation to represent the state of each
message queue with just one bit, according to whether there
is no message or at least one message with a given tag. In
our case, tag linearity is in fact necessary for the soundness
of the type system (see Remark 5.4).

The process null is inert and does nothing. The process
u.M sends the messages in the molecule M to u. The pro-
cess P |Q is the parallel composition of P and Q. Finally,
def a = C in P creates a new instance a of the class C. The
name a is bound both in C (where it plays the role of “self”)
and in P . A class is a disjunction of reaction rules, which we
will often represent as a set {Ji . Pi}i∈I . Each rule consists
of a pattern Ji and a body Pi. The variables in Ji are bound
in Pi. An instance of Pi is spawned each time a molecule
matching Ji is sent to an object that is instance of the class.

We omit the formal definition of free and bound names,
which can be found in [19]. We write fn(P) for the set of
free names in P and we identify processes up to renaming of
bound names. In this paper we use an additional constraint,
which is not restrictive and simplifies the type system: we
require classes to have no free names other than “self”.

We now turn to the operational semantics of the calculus,
which describes the evolution of a solution D P made of
a set D = {ai = Ci}i∈I of object definitions and a multiset
P of parallel processes. Intuitively, P is a “soup” of pro-
cesses and molecules that is subject to changes in the temper-
ature (expressed by a relation
) and reactions (expressed
by a relation →). Heating ⇀ breaks things apart, while
cooling ⇁ recombines them together, in possibly different
configurations. Heating and cooling are reversible transfor-
mations of the soup, defined by the first four rules in Ta-
ble 2: rule [NULL] states that null processes may evaporate
or condense; rule [DEF] moves objects definitions to/from the
D component of solutions, having care not to capture free
names (disposing of a countable set of object names, we can
always silently perform suitable alpha-renamings to avoid
captures); rule [COMP-1] breaks and recombines processes
and rule [COMP-2] does the same with molecules. To avoid
unnecessary clutter, following [19], in all rules except [DEF]
we omit unaffected definitions and processes. In rule [DEF], it
is important to mention the whole set of definitions D to

[NULL] null

[DEF] D P, def a = C in P
 D , a = C P, P a 6∈ fn(P)

[COMP-1] P |Q
 P,Q
[COMP-2] a.(M |N)
 a.M,a.N

[RED] a = {Ji . Pi}i∈I a.σJk → a = {Ji . Pi}i∈I σPk k ∈ I

Table 2. Reduction semantics of the Objective Join Calculus.

make sure that the name a of the object being defined is
fresh. Rule [RED] defines reactions as non-reversible trans-
formations of the soup. A reaction may happen whenever
the soup contains a molecule targeted to some object a such
that the shape of the molecule matches the pattern of one of
the rules in the class of a, up to some substitution σ mapping
variables to object names (recall that {Ji . Pi}i∈I stands for
an or-composition of reaction rules, as by Table 1). In this
case, the molecule is consumed by the reaction and replaced
by the body of the rule, with the substitution σ applied.

Remark 3.1. The operational semantics presents three forms
of non-determinism, due to the heating/cooling of molecules
in the soup, the interleaving of reactions pertaining different
objects, and the choice of reactions pertaining each single
object. The first form of non-determinism is only relevant in
the formal model. In practice, it is resolved since the Ob-
jective Join Calculus enjoys locality: each reaction involves
messages targeted to the same object, therefore all messages
sent to an object a travel to and react at the unique loca-
tion of a. The second form of non-determinism accounts for
the concurrent setting that we are modeling: when the soup
contains molecules that can trigger reactions pertaining dif-
ferent objects, these reactions may fire in any order or even
simultaneously, depending on the system architecture. The
last form of non-determinism arises when there are enough
molecules in the soup to trigger different reactions pertain-
ing the same object. This is usually resolved by the compiler,
which translates join patterns into code that processes the
messages targeted at one given object according to a deter-
ministic scheduler. In this case, the fact that the formal op-
erational semantics is underspecified (i.e. non-deterministic)
accounts for all possible implementations of join patterns.�

In the rest of the section we illustrate the calculus by
means of examples. For better clarity, we augment the calcu-
lus with conditionals and a few native data types, which can
be either encoded or added without difficulties.

Example 3.2 (iterator). Listing 2 shows a possible model-
ing of an array iterator class in the Objective Join Calculus.
Like in object-based languages, the class is modeled as an
object ArrayIterator providing just one factory method,
new (line 1), whose arguments are an array a and a contin-
uation object r to which the fresh instance of the iterator
is sent. The iterator itself is an object o that can be in one
of three states, INIT, SOME, or NONE. States INIT and SOME

have arguments a (the array being iterated) and n (the in-

1 def ArrayIterator = new(a,r) .
2 def o =

3 INIT(a,n) .
4 if n < #a then o.SOME(a,n) else o.NONE

5 or SOME(a,n) | next(r) .
6 o.INIT(a,n+1) | r.reply(a[n],o)

7 or SOME(a,n) | peek(r) . o.SOME(a,n) | r.some(o)

8 or NONE | peek(r) . o.NONE | r.none(o)

9 in o.INIT(a,0) | r.reply(o)

10 in ...

Listing 2. An array iterator.

dex of the current element in the array). INIT is a transient
state used for initializing the iterator (lines 3–4): the iterator
spontaneously moves into either state SOME or state NONE,
depending on whether n is smaller than the length #a of the
array or not. When in state SOME, the iterator provides a next
operation (lines 5–6) for reading the current element a[n]
of the array and moving onto the next one. Since n might be
the index of the last element of the array, the iterator transits
to state INIT, which appropriately re-initializes the iterator.
The iterator also provides a peek operation that can be used
for querying the state of the iterator (lines 7–8). The oper-
ation does not change the state of the iterator and sends a
message on the continuation r with either tag some or tag
none, depending on the internal state of the iterator. �

Example 3.3 (sequential composition). In this example we
see how to encode a sequential composition construct

let ũ = u.m(ṽ) in P

in the Objective Join Calculus. Intuitively, this construct
invokes method m on object u with arguments ṽ, waits for
the results ũ of the invocation, and continues as P . We let

let ũ = u.m(ṽ) in P
def
=

def c = WAIT(x̃) | reply(ũ) . P{x̃/w̃}
in c.WAIT(w̃) |u.m(ṽ, c)

where c and x̃ are fresh, w̃ = fn(P)\ũ, and P{x̃/w̃} denotes
P where ũ have been replaced by x̃. The twist in this encod-
ing is that all the free names of P except ũ are temporar-
ily spilled into a message WAIT and then recovered when
the callee sends the reply message on c. Normally, such
spilling is not necessary in the encoding with continuation
passing. We do it here to comply with our working assump-
tion that classes have no free names other than “self”.

1 def Lock = new(r) .
2 def o = FREE | acquire(r) . o.BUSY | r.reply(o)

3 or BUSY | release . o.FREE

4 in o.FREE | r.reply(o)

5 in let lock = Lock.new (* lock : tACQUIRE *)

6 in let lock = lock.acquire (* lock : tRELEASE *)

7 in lock.release

Listing 3. Lock class definition.

1 def Philosopher = new(fork) .
2 def o = THINK | FORK(fork) .
3 o.FORK(fork) |

4 let f = fork.acquire in o.EAT(f)

5 or EAT(f) . o.THINK | f.release

6 in o.THINK | o.FORK(fork)

7 in let fork = Lock.new (* fork : tACQUIRE *)

8 in Philosopher.new(fork) | Philosopher.new(fork)

Listing 4. Two dining philosophers.

Using this construct we rephrase the code of Listing 1 into
that of Listing 3, which also encapsulates the lock definition
into the Lock class. The re-binding of the lock name on
lines 5 and 6 is typical of languages with explicit continua-
tions [22]. An actual language would provide either adequate
syntactic sugar or a native synchronous method call [17].
The types in comments will be described in Section 4. �

Example 3.4 (dining philosophers). We now discuss an ex-
ample where the same lock is shared by two concurrent pro-
cesses. Listing 4 models two philosophers that compete for
the same fork when hungry. The fork is created on line 7 and
shared by two instances of the Philosopher class (line 8).
Each philosopher alternates between states THINK and EAT.
In addition, the FORK message holds a reference to the shared
fork and is meant to be an invariant part of each philoso-
pher’s state. Transitions occur non-deterministically: while
in state THINK, the reaction on line 2 may fire; at that point,
the philosopher restores the FORK message (line 3) and at-
tempts to acquire the fork; when the fork is acquired, the
philosopher transits into state EAT (line 4). While in state
EAT, the philosopher holds a reference f to the acquired fork;
when the reaction on line 5 fires, the fork is released and the
philosopher goes back to state THINK. Note that this reac-
tion consumes only part of the philosopher’s state, which
also comprises the FORK message. �

4. Syntax and Semantics of Types
In this section we define a type language to describe object
protocols in terms of the valid configurations of messages
they accept. Types t, s, . . . are the regular trees [9] coinduc-
tively generated by the productions below:

t, s ::= 0 | 1 | m(t̃) | t⊕ s | t⊗ s | ∗t

The type m(t̃) denotes an object that must be used for
sending a message with tag m and arguments of type t̃; when
t̃ is the empty tuple, we omit the parentheses altogether.
Compound types are built using the behavioral connectives
⊕, ⊗, and ∗: an object of type t ⊕ s must be used either
according to t or according to s; an object of type t ⊗ s
must be used both according to t and also according to s;
an object of type ∗t can be used any number of times, each
time according to t. Finally, we introduce the constants 0
and 1, which respectively represent the empty sum and the
empty product. Intuitively, 0 is the type of all objects and 1
is the type of all objects without obligations. Occasionally
we will also use basic types such as int and real.

Some examples: an object of type m(int) must be used
for sending an m message with one argument of type int;
an object of type m(int) ⊕ 1 can be used for sending an m

message, or it can be left alone; an object of type m⊕m′ must
be used for sending either an m message or an m′ message,
while an object of type m⊗ m′ must be used for sending both
an m message and an m′ message; finally, an object of type
∗(m ⊕ m′) can be used for sending any number of m and m′

messages. There is no legal way to use an object of type 0.
We do not devise an explicit syntax for recursive types.

We work instead with (possibly infinite) regular trees di-
rectly. Recall that regular trees can always be finitely rep-
resented either as systems of equations or using the well-
known µ notation; [9] is the standard reference for the theory
of regular trees. For example, the type satisfying the equation
t = 1⊕ m(t) denotes an object that can be used for sending
an m-tagged message with an argument which is itself an ob-
ject with type t. We require every infinite branch of a type to
go through infinitely many message type constructors. This
condition (a strengthened contractiveness) excludes mean-
ingless terms such as t = t ⊕ t or t = ∗t and provides us
with an induction principle on the structure of types that we
will use in Definition 4.1 below.

We reserve some notation for useful families of types: we
use M to range over message types m(t̃) and T , S to range
over molecule types, namely types of the form

⊗
i∈I Mi; we

identify molecule types modulo associativity and commuta-
tivity of ⊗ and product with 1; if T =

⊗
i∈I mi(t̃i), we

write T for its signature, namely the multiset {mi}i∈I .
The following definition formalizes the idea that types

describe the valid configurations of messages that can be
sent to objects. Whenever X and Y are sets of molecule
types, we let XY def

= {T ⊗ S | T ∈ X∧ S ∈ Y} and we write
Xn for the n-th power of X for n ∈ N, where X0 = {1}.
Definition 4.1 (valid configuration). The interpretation of a
type t, denoted by JtK, is the set of molecule types induc-
tively defined by the following equations:

J0K def
= ∅

J1K def
= {1}

Jt⊕ sK def
= JtK ∪ JsK

Jt⊗ sK def
= JtKJsK

JMK def
= {M}

J∗tK def
=
⋃

n∈NJtKn

We say that T is a valid configuration for t if T ∈ JtK.

For instance, Jm⊕m′K = {m, m′} and Jm⊗m′K = {m⊗m′}.
Indeed, in the first case one can choose to send either m or
m′, whereas in the second case one must send both. Note
that 0 has no valid configurations and that type ∗t has, in
general, infinitely many valid configurations. For instance,
J∗mK = {1, m, m⊗ m, m⊗ m⊗ m, . . . }.

We have collected all the ingredients for defining the
subtyping relation. Since types are possibly infinite terms,
we must resort to a coinductive definition:

Definition 4.2 (subtyping). We write 6 for the largest rela-
tion between types such that t 6 s and

⊗
i∈I mi(s̃i) ∈ JsK

imply
⊗

i∈I mi(t̃i) ∈ JtK and s̃i 6 t̃i for every i ∈ I . If
t 6 s holds, then we say that t is a subtype of s and s a
supertype of t. We write t ' s if t 6 s and s 6 t.

To understand subtyping, it helps keeping in mind the
usual safe substitution principle: when t 6 s, it is safe to
use an object of type t where an object of type s is expected.
In our setting, “using an object of type s” means sending to
the object a message configuration that is valid for s. Defi-
nition 4.2 requires each valid configuration for s to also be a
valid configuration for t, modulo contravariant subtyping of
argument types. More specifically, whenever S ∈ JsK, there
exists some T ∈ JtK with the same signature as S such that
the arguments of corresponding messages in T and S are
related contravariantly. For instance, if s = m(int), then
using an object of type s means sending to the object one
message of the form m(n), where n is an integer number.
Then, assuming int 6 real, it is safe to replace such ob-
ject with another one of type t = m(real): the message
m(n) sent to the former object will be understood without
problems also by the latter object, as any integer number is
also a real number. Therefore, m(real) 6 m(int).

We wish to reassure the reader bewildered by Defini-
tion 4.2 that 6 shares many traits with conventional sub-
typing relations for object-oriented languages (see Exam-
ple 4.5). Let us discuss a few notable relations in more de-
tail.

• We have that m ⊕ m′ 6 m. The user of an object of type
m must send m to it. This is also a particular valid use
(although not the only valid use) of an object of type
m⊕ m′, which requires its users to send either m or m′.

• We have m⊗m′ 66 m and m 66 m⊗m′. The user of an object
of type m ⊗ m′ must send both m and m′, hence sending
only m is an illegal way of using it. Vice versa, the user of
an object of type m must send only m, hence sending also
m′ is an illegal way of using it.

• We have that m(t) 6 m(t ⊕ s) and m(s) 6 m(t ⊕ s),
namely m(t ⊕ s) is an upper bound of both m(t) and
m(s) (in fact, it is the least upper bound of these two
types). The user of an object of type m(t⊕ s) must send
m with an argument that can be used according to either
t or s, hence this is also a valid use for an object of type

m(t) or an object of type m(s). We will see a key instance
of these relations in Example 4.7.

The interested reader can verify a number of additional
useful properties: that 0 and 1 are indeed the units of ⊕ and
⊗; that 0 is absorbing for ⊗; that ⊕ distributes over ⊗. We
capture all these properties by the following proposition.

Proposition 4.3. The following properties hold:

1. 6 is a pre-order and a pre-congruence;
2. the language of types taken modulo the ' equivalence is

a commutative Kleene algebra [8].

We give a useful taxonomy of types: linear types denote
objects that must be used; non-linear types denote objects
without obligations; usable types denote objects that can be
used, in the sense that there is a valid way of using them.

Definition 4.4 (type classification). We say that t is non
linear, notation nl(t), if t 6 1; that t is linear, notation lin(t),
if t 66 1; that t is usable, notation usable(t), if t 6' 0.

If t 6 1, then 1 ∈ JtK namely it is allowed not to send
any message to an object of type t. If t ' 0, then t is linear
but not usable, hence it denotes absurd objects that must be
used, but at the same time such that there is no valid way of
using them.

Example 4.5 (standard class type). The class of a conven-
tional object-oriented language can be described as the type⊗

i∈I ∗mi(t̃i), saying that the objects of this class can be
used for unlimited invocations of all of the available meth-
ods, in whatever order. Our subtyping relation is consis-
tent with that typically adopted in such languages, since⊗

i∈I ∗mi(t̃i) 6
⊗

j∈J ∗mj(s̃j) if and only if I ⊇ J and
t̃j > s̃j for all j ∈ J (the subclass has more methods, with
arguments of larger type). �

Example 4.6 (lock interfaces). We illustrate the typing of
the lock object used in Listings 1 and 3. Observe that the type
tlock , discussed in Section 2, describes both states and oper-
ations and is a valid type for the lock object as a whole. Cor-
respondingly, tlock can be correctly assigned to the binding
occurrence of o on line 2 in Listing 3 according to the type
system we will define in Section 5. Lock users are solely
concerned with the public interfaces of the lock, which only
refer to the acquire and release methods. We define:

tACQUIRE
def
= ∗acquire(reply(tRELEASE))

tRELEASE
def
= release

respectively for the interface of unacquired and acquired
locks. Observe that tACQUIRE is non linear, indicating no obli-
gations on unacquired locks (they can be used any number
of times) whereas tRELEASE is linear, indicating that acquired
locks must be released (eventually). These interfaces can be
“derived” (quite literally) by removing the state types from
tlock ; we will make this relation precise in Section 5.

INIT⊕ SOME⊕ NONE

SOME

NONE

peek(some)

peek(none)

next
peek(some)

peek(none)

Figure 1. Transition diagram of the iterator.

The fact that (unacquired) locks can be shared without
constraints is a consequence of the relation

tACQUIRE ' tACQUIRE ⊗ tACQUIRE

stating a well-known property of the exponential/Kleene
star. This property is precisely the one needed for typing
the code in Listing 4, where one fork of type tACQUIRE is cre-
ated (line 7) and then shared by two philosophers (line 8).
Thanks to this property, the type of a lock is independent
of the number of processes trying to acquire it. Note that
different references to the same lock, like the references to
the fork shared by the two philosophers in Listing 4, may
have different types corresponding to the different public
interfaces exposed by the references. For instance, the refer-
ence f held by an eating philosopher has type tRELEASE, hence
it prescribes a release, while the reference fork held by a
thinking philosopher has type tACQUIRE, hence it allows an
acquisition. �

Example 4.7 (iterator interfaces). Let us consider the array
iterator defined in Listing 2. We postpone the description of
the whole type of the iterator object until Section 5, and we
discuss here just the public interfaces exposed by the object
in the different states, with the help of the transition diagram
in Figure 1. When in state NONE, the iterator has reached
the end of the array and there is only one method available,
peek, which replies with a none message containing the
iterator unchanged. Therefore, the public interface of the
iterator in state NONE is the type satisfying the equation

tNONE = peek(none(tNONE))⊕ 1

The 1 term makes tNONE non linear, allowing the disposal
of the iterator when in state NONE. Without it, linearity would
force us to keep using the iterator even at the end of the
iteration. This is depicted in Figure 1 with a shaded box.

The interface of the iterator in state SOMEmust give access
to both the next and peek operations. A tentative type for
the iterator in this state is the one satisfying the equation

tSOME = peek(some(tSOME))⊕ next(reply(int, t?))

where peek replies with a some message containing the it-
erator unchanged, whereas next returns the current element
of the array being scanned (of type int) and the iterator in

an updated state. Inspection of Listing 2 reveals that, after
a next operation, the iterator temporarily moves into state
INIT and then eventually reaches either state SOME or state
NONE. Therefore, the type t? exposing the public interface in
this unresolved state is obtained as the “intersection” of the
interfaces of the two possible states. More precisely, t? must
be a supertype of both tNONE and tSOME. It is not difficult to
verify that the 6-least upper bound of tNONE and tSOME is

tBOTH = peek(some(tSOME)⊕ none(tNONE))

showing that, when the state of the iterator is uncertain, only
peek is allowed. Observe also that peek has different types
depending on whether the state of the iterator is known or
not: when the state is known, the type of peek is more
precise (only some or only none is sent); when the state is
unknown, the type of peek is less precise (either some or
none is sent). Subtyping tunes the precision of the types of
objects, according to the knowledge of their state. �

5. Type System
We use type environments for tracking the type of the objects
used by processes. A type environment Γ is a finite mapping
from names to types, written u1 : t1, . . . , un : tn or ũ : t̃
or {ui : ti}i∈I as convenient. We write ∅ for the empty
environment, dom(Γ) for the domain of Γ , and Γ1, Γ2 for the
union of Γ1 and Γ2, when dom(Γ1) ∩ dom(Γ2) = ∅.

Since each object may be used in different parts of a pro-
gram according to different interfaces, we need a more flexi-
ble environment combination operator than (disjoint) union.
The environment in which a process is typed describes how
the process uses the objects for which there is a type assign-
ment in the environment. If the same object is simultane-
ously used by two (or more) processes, its type will be the
combination (i.e., the product) of all the types it has in the
environments used for typing the processes. For example, if
some object u is shared by two distinct processes P and Q
running in parallel, P uses u according to t and Q uses u ac-
cording to s, then the parallel composition of P and Q uses
u according to t ⊗ s. If, on the other hand, the object u is
used by only one of the two processes, say P , according to
t, then it is used according to t also by the parallel compo-
sition of P and Q. Formally, we define an operation ⊗ for
combining type environments, thus:

Definition 5.1 (environment combination). The combina-
tion of Γ1 and Γ2 is the type environment Γ1 ⊗ Γ2 such that
dom(Γ1 ⊗ Γ2) = dom(Γ1) ∪ dom(Γ2) defined by:

(Γ1 ⊗ Γ2)(u)
def
=

Γ1(u) if u ∈ dom(Γ1) \ dom(Γ2)
Γ2(u) if u ∈ dom(Γ2) \ dom(Γ1)
Γ1(u)⊗ Γ2(u) otherwise

Many substructural type systems define analogous oper-
ators for combining type environments. See for example +
in [30] or] in [44].

It is also convenient to extend the subtyping relation to
type environments, to ease the application of subsumption.
Intuitively, the relation t 6 s indicates that an object of type
t “has more features” than an object of type s. Similarly, we
wish to extend 6 to environments so that Γ 6 ∆ indicates
that the environment Γ has more resources with possibly
more features than ∆. We must be careful not to introduce
in Γ linear resources that are not in ∆, for this would allow
processes to ignore objects for which they have obligations.
Technically, we allow weakening for non-linear objects only.
The extension of 6 to type environments is formalized thus:

Definition 5.2 (environment subtyping). We write Γ 6 ∆ if:

1. dom(∆) ⊆ dom(Γ), and
2. Γ(u) 6 ∆(u) for every u ∈ dom(∆), and
3. nl(Γ(u)) for every u ∈ dom(Γ) \ dom(∆).

Using environment subtyping, we can express the fact
that an environment Γ only contains non-linear resources by
checking whether Γ 6 ∅ holds. In this case, we write nl(Γ).

With these notions, we can start commenting on the rules
of the type system, shown in Table 3. The rules allow de-
riving various judgments, for processes, molecules, patterns,
classes, and solutions.

Rule [T-NULL] states that the idle process is well typed
only in an empty environment. Since the idle process does
nothing, the absence of linear objects in the environment
makes sure that no linear object is left unused. On the other
hand, non-linear objects can always be discharged using
subsumption [T-SUB], which will be described shortly.

Rule [T-SEND] types message sending u.M , where u is
an object and M a molecule of messages. This process is
well typed if the type of the object coincides with that of the
molecule, which as we will see is just the ⊗-composition
of the types of the messages in it. Note the use of ⊗ in the
type environment allowing u to possibly occur in M as the
argument of some message.

Rule [T-PAR] types parallel compositions P1 |P2. The rule
combines the type environments used for typing P1 and P2

to properly keep track of the overall use of the objects shared
by the two processes.

Rule [T-OBJECT] types object definitions def a = C in P .
A type t is guessed for the object a and checked to be appro-
priate for the class C (“appropriateness” will be discussed
along with the typing rules for classes) and assigned to a
also for typing P . Note that the class C is checked in an en-
vironment that contains only a (that is “self”). That is, the
type system forces classes to contain no free names other
than the reference to self. In principle this is not a restric-
tion, as we have seen in Example 3.3, although in practice
it is desirable to allow for more flexibility. We have made
this choice to keep the type system as simple as possible.
In fact, the type system would remain sound if we allowed
C to access non-linear objects. Allowing C to access linear
objects is a much more delicate business that requires non-

Typing rules for processes Γ ` P

[T-NULL]

∅ ` null

[T-SEND]
Γ `M :: T

Γ ⊗ u : T ` u.M

[T-PAR]

Γi ` Pi
(i=1,2)

Γ1 ⊗ Γ2 ` P1 |P2

[T-OBJECT]
a : t ` C Γ , a : t ` P
Γ ` def a = C in P

[T-SUB]
∆ ` P
Γ ` P

Γ 6 ∆

Typing rules for molecules Γ `M :: T

[T-MSG-M]
usable(t̃)⊗

i=1..n ui : ti ` m(ũ) :: m(t̃)

ũ = u1, . . . , un
t̃ = t1, . . . , tn

[T-COMP-M]

Γi `Mi :: Ti
(i=1,2)

Γ1 ⊗ Γ2 `M1 |M2 :: T1 ⊗ T2

Typing rules for patterns Γ ` J :: T

[T-MSG-P]
usable(t̃)

x̃ : t̃ ` m(x̃) :: m(t̃)

[T-COMP-P]

Γi ` Ji :: Ti (i=1,2)

Γ1, Γ2 ` J1 | J2 :: T1 ⊗ T2

Typing rules for classes u : t ` C

[T-REACTION]
Γ ` J :: T Γ , a : s ` P

a : t ` J . P
t ↓ T
t 6 t[T]⊗ s

[T-CLASS]

a : t ` Ci
(i=1,2)

a : t ` C1 or C2

Typing rules for solutions ` D P

[T-DEFINITIONS]

ai : ti ` Ci
(i∈I)

{ai : ti}i∈I ` {ai = Ci}i∈I

[T-PROCESSES]

Γi ` Pi
(i∈I)⊗

i∈I Γi ` {Pi}i∈I

[T-SOLUTION]
Γ ` D ∆ `P

` D P
Γ 6 ∆

Table 3. Typing rules.

trivial reasoning on the sequence of firings of the rules in C;
we leave this as a future extension.

Rule [T-SUB] is the subsumption rule, allowing us to en-
rich the type environment of a process according to Defi-
nition 5.2. Intuitively, if P is well typed using the objects
described by ∆, then it certainly is well typed in an environ-
ment Γ 6 ∆ where the same objects have more features than
those actually used by P . This rule is also useful for rewrit-
ing the types in the environment as well as for weakening ∆
with non-linear objects.

The typing rules for molecules derive judgments of the
form Γ ` M :: T . The environment Γ describes the type of
the arguments sent along the messages in M . The only re-
markable feature is the side condition usable(t̃) in [T-MSG-M],
which requires the arguments of a message to be usable or, at
least, discardable. This condition is essential for the sound-
ness of the type system (see Example 6.7).

The typing rules for patterns have the form Γ ` J :: T and
are similar to those for molecules. Recall that patterns occur
on the left hand side of reaction rules. In this case, the envi-
ronment Γ describes the type of the arguments received when
the pattern matches a molecule in the soup. There is a tech-
nical difference between [T-COMP-M] and [T-COMP-P]: the for-
mer uses the operator ⊗ for combining type environments,
as it may happen that the same object is sent as argument in
different messages; the latter takes the union of the environ-
ments, which are known to have disjoint domains because of
the linearity restrictions we have imposed on patterns. Also
recall that joined patterns must have disjoint signatures.

Before looking at the typing rules for classes, let us get
rid of those for solutions D P , which are essentially
unremarkable. Each object definition in D is typed as in
rule [T-OBJECT] and the processes in the multiset P are typed
as if they were all composed in parallel. The two typings
are kept consistent by the fact that [T-SOLUTION] uses related
environments Γ and ∆ for both D and P . The reason why
∆ is not exactly Γ is purely technical and accounts for the
fact that the subsumption rule [T-SUB] can be applied to the
parallel composition of processes P1 |P2, but not after the
two processes have been heated and split into the multiset
P1, P2. More details are provided in [10].

The type system described so far is rather ordinary: the
typing rules track the usage of objects, most of the heavy
lifting is silently done by subtyping and the ⊗ operator. The
heart of the type system is [T-REACTION], which verifies that a
reaction rule J . P is appropriate for an object a of type t.
The rule determines the type T and bindings Γ of the pattern
J and checks that the body P of the rule is well typed in the
environment Γ , a : s. Having a in the environment grants P
access to “self”. Now, we have to understand which relations
should hold among t, T , and s in order for the reaction rule
to be safe. In this context “safe” means that:

(1) T describes correctly the type of the received arguments.
This is not obvious, because the same tag can be used

in messages with arguments of different types (see for
example peek in Example 3.2) while reduction picks
messages solely looking at their tag (Table 2).

(2) By using a according to s, P restores the state of a into
one of its valid configurations, described by t. Again this
is not obvious, because the only knowledge that P has
regarding the state of a comes from the matching of J ,
which in general is a fraction of all the messages targeted
to a at the time of the reaction.

Condition (1) is verifies by a predicate t ↓ T saying when
a given molecule type T is not ambiguous in t:

Definition 5.3 (clear pattern). We say that T is clear in t,
notation t ↓ T , if {S | S ⊗R ∈ JtK ∧ S = T} = {T}.

In words, t ↓ T holds if for each valid configuration
S ⊗R of t that includes a molecule type S sharing the same
signature as T , the molecule type is exactly T . In addition,
there must be a valid configuration of t that includes T . This
implies that, whenever t ↓ T holds, t is usable.

For example, take t def
= (A ⊗ m(int)) ⊕ (B ⊗ m(real))

and observe that the argument of message m has different
types depending on whether the state of the object is A

or B. Then, neither t ↓ m(int) nor t ↓ m(real) holds,
for matching an m-tagged message does not provide enough
information for deducing the type of its argument. However,
both t ↓ A ⊗ m(int) and t ↓ B ⊗ m(real) do hold,
since in these cases the signature of the matched molecule
disambiguates the type of m’s argument.
Remark 5.4. Suppose t = (m(foo)⊗ m(bar))⊕ 1 and that
the reaction J . x.foo | y.bar where J = m(x) | m(y) is
allowed, despite m occurs twice in J . We have

x : foo, y : bar ` J :: T

where T = m(foo) ⊗ m(bar). Now t ↓ T does hold,
because t has only one valid configuration with the same
signature as T . However, there is no guarantee that, once
J matches a molecule, x is actually bound to the object of
type foo and y is actually bound to the object of type bar,
and not vice versa. For this reason, pattern linearity is a key
restriction in our type system, where messages with the same
tag can have arguments with different types. �

To find guidance for verifying condition (2) it helps re-
calling the chemical interpretation of the Objective Join Cal-
culus: the effect of a reaction J . P where J has type T and
P uses the object according to s is to consume a molecule
of messages of type T and to produce molecules according
to type s. The reaction is safe if the overall balance between
what is consumed and what is produced preserves the ob-
ject’s configuration as one that is described by its type t. For-
mally, this is expressed by the side condition t 6 t[T] ⊗ s,
where the type t[T] represents the “residual” of t after a
molecule with type T (the pattern of the reaction rule) has
been removed; such residual is combined (in the sense of⊗)

with s, which is what P sends to the object; the resulting
type t[T] ⊗ s is compatible with the object’s type t if it is a
supertype of t. The type residual operator is defined thus:

Definition 5.5 (type residual). The residual of twith respect
to M, written t[M], is inductively defined thus:

0[M] = 1[M] = 0
m(t̃)[m′(s̃)] = 0 if m 6= m′

m(t̃)[m(s̃)] = 1
(t⊕ s)[M] = t[M]⊕ s[M]
(t⊗ s)[M] = (t[M]⊗ s)⊕ (t⊗ s[M])

(∗t)[M] = t[M]⊗ ∗t

We extend the residual to molecule types in the obvious
way, that is t[1] = t and t[M⊗ T] = t[M][T].

Note that the type residual operator (Definition 5.5) is
nothing but Brzozowski derivative [6, 8] adapted to a com-
mutative Kleene algebra over message types.

To better illustrate the side condition, we work out some
examples in which we consider different objects a of type t
and we write T . s for denoting a reaction J . P where J
has type T and P is typed in an environment that includes
a : s. We will say that T . s is valid or invalid depending on
whether the condition holds or not.

• If t def
= A ⊕ (B ⊗ m), then A . B ⊗ m and B ⊗ m . A are

valid but B . A is not. For example, we have t[B] = m and
t 66 m⊗ A. When in state B, there is also a message m that
is forbidden in state A.

• If t def
= (A ⊗ m) ⊕

(
B ⊗ (1 ⊕ m)

)
, then A . B is valid but

B . A is not. We have t[B] = 1 ⊕ m and t 66 (1 ⊕ m)⊗ A.
In general, the transition from a state in which a message
is linear (m) to another where the message is not linear
(1⊕ m) cannot be reversed, because the object may have
been discarded or aliased.

• If t def
= A⊕(B⊗∗foo)⊕(C⊗∗foo⊗∗bar), then A.B and

B.C are valid, but neither B.A nor C.B is. It is unsafe for
the object to move from state C to state B because there
could be residual bar messages not allowed in state B.
In general, non-linear messages such as foo and bar can
only accumulate monotonically across state transitions.

• If t def
= (A ⊗ m(int)) ⊕ (B ⊗ m(real)), then A . B

is valid, but B . A is not. Indeed t[B] = m(real) and
t 66 m(real)⊗A. The transition A .B is safe because the
int argument of message m in state A can be subsumed
to real in state B, but not vice versa.

Example 5.6 (lock). We illustrate the type system at work
showing that the two reactions of the lock (lines 2–3 in
Listing 3) are well typed using tlock , the types tACQUIRE and
tRELEASE of Example 4.6, and also tREP

def
= reply(tRELEASE).

Consider the first reaction; for its pattern we derive

r : tREP ` FREE | acquire(r) :: T

where T def
= FREE⊗acquire(tREP). Let s def

= BUSY⊗tRELEASE,
then for the body of the reaction we derive

o : BUSY ` o.BUSY

o : tRELEASE ` reply(o) :: tREP

r : tREP, o : tRELEASE ` r.reply(o)

r : tREP, o : s ` o.BUSY | r.reply(o)

Now tlock ↓ T holds and furthermore

tlock 6 tlock [T]⊗ s = tACQUIRE ⊗ BUSY⊗ tRELEASE

hence the side conditions of [T-REACTION] are satisfied. For
the pattern in the second reaction we derive

` BUSY | release :: BUSY⊗ release

and it is easy to see that the body of the reaction is also well
typed. Now, we have tlock ↓ BUSY⊗ release and

tlock 6 tlock [BUSY⊗ release]⊗ FREE ' tACQUIRE ⊗ FREE

so the side conditions of [T-REACTION] are again satisfied, this
time taking s def

= FREE. �

Example 5.7 (iterator). We conclude the typing of the array
iterator in Example 3.2 (Listing 2). By composing the public
interfaces defined in Example 4.7, we can define the type of
the iterator object o as follows:

titer
def
= (INIT(int[], int)⊗ tBOTH)
⊕ (SOME(int[], int)⊗ tSOME)
⊕ (NONE⊗ tNONE)

Notice that titer is obtained as a disjunction of three types,
each corresponding to a pair encoding a possible state and
the public interface of the iterator in that state.

In order to check the typing of the definition of the object
o in Listing 2, we have to check four reactions; we just
discuss two of them and, for readability, we only consider
message tags omitting argument types. The first reaction
INIT . SOME⊕ NONE is valid since titer [INIT] = tBOTH and

titer 6 (SOME⊕ NONE)⊗ tBOTH
' (SOME⊗ tBOTH)⊕ (NONE⊗ tBOTH)

because tSOME 6 tBOTH and tNONE 6 tBOTH as we have argued
in Example 4.7. The reaction SOME⊗ next . INIT⊗ tBOTH is
also valid since titer [SOME⊗ next] = 1 and now

titer 6 1⊗ INIT⊗ tBOTH ' INIT⊗ tBOTH

Observe that the code in Listing 2 does not contain any
reaction involving both the state INIT and the operation
peek, since the iterator in state INIT eventually moves into
either state SOME or NONE; nevertheless titer exposes the
interface tBOTH while in state INIT, instead of the empty
interface. This is because, in lines 6 and 9, a reference o

1 def Channel = new(c) .
2 def o =

3 LE | lsend(v,c) . o.LF(v) | c.reply(o)

4 or LF(v) | rrecv(c) . o.LE | c.reply(v,o)

5 or RE | rsend(v,c) . o.RF(v) | c.reply(o)

6 or RF(v) | lrecv(c) . o.RE | c.reply(v,o)

7 in o.LE | o.RE | c.reply(o)

8 in · · ·
Listing 5. Full-duplex channel.

LE⊗ RE

LF⊗ RE LE⊗ RF

LF⊗ RF

LF⊗ RE LE⊗ RF

lsend rsend

rsend lsend

lrecv rrecv

rrecv lrecv

Figure 2. Transition diagram of the full-duplex channel.

to the iterator is returned to the caller while the iterator is
moving to state INIT. Such reference could be used by a
quick caller to send a peek message to the iterator while the
iterator is still in the transient state INIT, and this requires
INIT⊗ peek to be a valid configuration of titer .

It is possible to make sure that the reference o returns to
the caller only once the iterator has moved away from state
INIT, by reshaping INIT into a synchronous operation. �

Example 5.8 (full-duplex channel). Listing 5 shows the
modeling of a bidirectional, full-duplex channel for connect-
ing two peer processes, called “left” and “right” and identi-
fied by a letter p ∈ {l, r}. The channel provides two pairs of
operations psend and precv used by peer p for sending and
receiving messages. The state of the channel is modeled by
two 1-place buffers, one for each peer. For the left peer, LE
represents the Empty buffer and LF(v) the Full buffer with a
value v. Tags RE and RF are used for representing the buffer
of the right peer in a similar way. Observe that each buffer
is either empty or full, but the two buffers coexist and can
change state independently. This means that LE and LF are
or-states, and so are RE and RF: on the contrary, Lx and Ry
are and-states. This will be reflected in the type of the chan-
nel, where different states of the same buffer are combined
by⊕, whereas states of different buffers are combined by⊗.

We want to enforce a usage protocol of the full-duplex
channel such that each peer p alternates send and receive
operations. In this way, the psend of peer p fills the corre-
sponding buffer and enables the precv of the other peer p,

but only after p has sent its own message. Figure 2 depicts
the transition diagram of the full-duplex channel used ac-
cording to this protocol. The interface of the channel from
the viewpoint of p is described by the type tps defined by

tps = psend(int, reply(tpr))
tpr = precv(reply(int, tps))

The types of the interfaces are combined with state mes-
sage types to form the type of the channel as follows

tchan
def
= (LE⊗ RE⊗ tls ⊗ trs)⊕ (LF⊗ RF⊗ tlr ⊗ trr)
⊕ (LF⊗ RE⊗ tlr ⊗ trs)⊕ (LE⊗ RF⊗ tls ⊗ trr)
⊕ (LF⊗ RE⊗ tls ⊗ trr)⊕ (LE⊗ RF⊗ tlr ⊗ trs)

where we have elided the type of values in the buffers.
Inspection of tchan reveals that the reference o returned

on line 7 has type tls ⊗ trs, that is the composition of the
two public interfaces of the channel, each corresponding to
one of the peers. Therefore, the same channel object can be
used by two parallel processes, according to these two types,
as illustrated by the code snippet below:

let c = Channel.new in (* c : tls ⊗ trs *)

{ let c = c.lsend(1) in (* c : tlr *)

let v,c = c.lrecv in ... (* c : tls *)

| let c = c.rsend(2) in (* c : trr *)

let v,c = c.rrecv in ... } (* c : trs *)

The internal state of the full-duplex channel is the com-
bination of distinct messages Lx and Ry that are consumed
and produced concurrently by the users of the channel. In
particular, each reaction rule in Listing 5 changes only part
of the channel’s state, leaving the rest unchanged. The last
side condition of rule [T-REACTION] verifies that such partial
change maintains the channel’s overall state in one of the
configurations described by tchan . The interested reader can
verify that each reaction rule is indeed well typed with re-
spect to tchan .

As a final consideration, the fact that tchan and the dia-
gram in Figure 2 list 6 configurations (instead of the 4 cor-
responding to all possible combinations of Lx and Ry) sug-
gests that the interface of the channel depends not only on
its current state (encoded as a pair Lx ⊗ Ry) but also on its
past history. For instance, in the two states identified by the
combination of messages LF ⊗ RE, the peer l has produced
its own message while the buffer of peer r is empty. But this
can be either because r has not produced its own message
yet, or because r has indeed produced the message, and peer
l has already received it. �

6. Properties of Well-Typed Processes
In this section we prove a few properties enjoyed by well-
typed processes. To begin with, we state a completely stan-
dard, yet fundamental result showing that typing is preserved
under heating, cooling, and reductions.

Theorem 6.1 (subject reduction). If ` D P and

D P R D ′ P ′

where R ∈ {⇀,⇁,→}, then ` D ′ P ′.

Theorem 6.1 is key for the next results, since it assures
that the properties enjoyed by well-typed processes are in-
variant under arbitrarily long process reductions.

The first proper soundness result states that a well-typed
process respects the prohibitions expressed by the types of
the objects it manipulates. We formulate this property stating
that if a well-typed solution contains messages m1, . . . , mn
targeted at some object a and a has type t, then there is a
valid configuration of t that includes at least all the mi, and
possibly more messages.

Theorem 6.2 (respected prohibitions). If

Γ , a : t ` P | a.m1(c̃1) | · · · | a.mn(c̃n) ,

then there exist S and s̃i such that t 6 S ⊗
⊗

i=1..n mi(s̃i).

The theorem can be rephrased in terms of prohibitions
as follows: if the type of an object prohibits invocation of a
particular method when the object is in some particular state,
then there is no well-typed soup of processes containing
pending invocations to that method when the object is in
that state. To illustrate, consider the lock object in Listing 1.
The type tlock of the lock we have defined in Section 2
prohibits invocation of method release when the lock is
in state FREE. Also recall that the lock being in the FREE

state is identified by the presence of the o.FREE molecule in
the solution. Then, the following judgment is not derivable

Γ , o : tlock ` P | o.FREE | o.release

Similarly, the type tlock states that, when in state BUSY,
there can be exactly one pending invocation to release. So,

Γ , o : tlock ` P | o.BUSY | o.release | o.release

is another judgment that cannot be derived. Remarkably, we
can infer a great deal of information regarding the state of an
object by solely looking at its type, knowing virtually noth-
ing about the rest of the (well-typed) program. For instance,
no soup containing both a FREE and a BUSY message simul-
taneously targeted to the same lock is well typed, meaning
that the state of every lock is always uniquely determined.

The second soundness result states that a well-typed pro-
cess fulfills all the obligations with respect to the objects it
owns. More precisely, that if a process P is typed in an en-
vironment that contains a linear object a, that is an object
whose type mandates the (eventual) invocation of a partic-
ular method, then a cannot be discarded by P , but must be
held by P and used according to its type.

Theorem 6.3 (weakly fulfilled obligations). If Γ ` P and
a ∈ dom(Γ) and lin(Γ(a)), then a ∈ fn(P).

1 def Lock = ... (* see Listing 3 *)

2 in let lock = Lock.new (* lock : tACQUIRE *)

3 in let lock1 = lock.acquire (* lock1 : tRELEASE *)

4 in let lock2 = lock.acquire (* lock2 : tRELEASE *)

5 in lock1.release | lock2.release

Listing 6. Modeling of a deadlock.

Another way of reading this theorem is that well-typed
processes can only drop non-linear objects, namely objects
for which they have no pending obligations. For example,
since tlock mandates the invocation of method release once
the lock has been acquired, omitting the f.release from
line 5 in Listing 4 would result into an ill-typed philosopher.

We have labeled Theorem 6.3 “weak” obligation fulfill-
ment because the property may indeed look weaker than
desirable. One would probably expect a stronger property
saying that every method that must be invoked is eventually
invoked. Such stronger property, which is in fact a liveness
property, is however quite subtle to characterize and hard to
enforce with a type system. In particular, it would require
well-typed processes to be free from both deadlocks and
livelocks, which is something well beyond the capabilities
of the type system we have presented in Section 5. The next
two examples illustrate why this is the case.

Example 6.4 (deadlock). Assuming a Lock class defined
as in Listing 3, the code in Listing 6 attempts at acquiring
the same lock twice, resulting in a deadlock. In particular,
a new lock is created on line 2 and used twice on lines 3
and 4 for acquisition. This is possible because of the rela-
tion tACQUIRE ' tACQUIRE ⊗ tACQUIRE. Clearly, only the first ac-
quisition succeeds, and the program blocks while perform-
ing the second one. Note that the program is well typed, as
both lock1 and lock2, which have a linear type, are used
in line 5 for releasing the lock, according to the lock proto-
col. However, such “usage” is merely syntactic, for neither
of the two release messages on line 5 will ever be received,
and the lock will never be released. Note that static deadlock
detection is undecidable in general and non-trivial to approx-
imate. In the above example, for instance, it would require
understanding that the acquire method is a blocking one
(this information cannot be inferred merely from the type
of Lock) and that it is the same lock being acquired twice,
in a fragment of sequential code (this is easy to detect in
the above example, where lock syntactically occurs twice,
but in general the code could invoke the acquire method
on distinct variables that are eventually instantiated with the
same reference to lock). �

Example 6.5 (livelock). There is one trivial way to honor all
pending obligations (as by Theorem 6.3), namely postponing
them forever. For example, let

forever(u)
def
= def c = m(x) . c.m(x) in c.m(u)

where c is a fresh name. The judgment a : t ` forever(a) is
derivable for any t such that usable(t). In particular, t may
be linear, and yet forever(a) never invokes any method on
a. Although forever(a) fools the type system into believing
that all pending obligations on a have been honored, pro-
cesses like forever(a) are sufficiently contrived to be rarely
found in actual code. In other words, we claim that Theo-
rem 6.3 provides practically useful guarantees about the ac-
tual use of objects with non-linear types. �

Finally, we draw the attention on a general property of the
type system that is key for proving Theorem 6.2:

Lemma 6.6. There exist no Γ and P such that Γ , u : 0 ` P .

This property states that there is no well-typed process
that can hold an unusable object. The result may look obvi-
ous, but it has important consequences: we have remarked
the role of subtyping for deducing the interface of objects
with uncertain state. For instance, tBOTH (Example 4.7) is ob-
tained as the least upper bound of tNONE and tSOME. Since 0 is
the top type, the least upper bound of two (or more) types al-
ways exists, but it can be 0. For example, had we forgotten to
equip the iterator with a peek operation in state SOME (line 7
of Listing 2), tBOTH would be 0 and the iterator would be es-
sentially unusable. Lemma 6.6 tells us that the type system
detects such mistakes.

Example 6.7. The side condition in rule [T-MSG-M] requires
the arguments of a message to have a usable type. If this
condition were not enforced, the following derivation would
be legal and Theorem 6.2 would not hold:

...

a : 0 ` forever(a)

[T-MSG-M]
` bar :: bar

[T-SEND]
a : bar ` a.bar

[T-PAR]
a : 0⊗ bar ` forever(a) | a.bar

[T-SUB]
a : foo ` forever(a) | a.bar

Since foo 6 0 ⊗ bar ' 0, the subsumption rule could
be used for allowing spurious method invocations (bar)
knowing that these would be absorbed by 0 types in other
parts of the derivation. Note that the message invocation in
forever(a) sends an object with type 0. �

7. Implementation Aspects
The implementation of our approach to TSOP involves de-
sign and implementation aspects covering both the program
level (the runtime support for handling messages, match-
ing join patterns, firing reactions) and the type level (the
compile-time support for type checking). We give an account
of such aspects in this section.

Concerning the program level, our framework relies on a
standard formulation of the Join Calculus, for which there
exist standalone, embedded, and library implementations:
native support for join patterns is provided in JoCaml [20],

Join Java [28], and in Cω [3, 33], among others; library im-
plementations of join patterns are available for C# [42, 49],
Visual Basic [43], and Scala [24]. Both native and library im-
plementations of join patterns have pros and cons. Natively
supported join patterns allow for specific optimizations [31]
and analysis techniques [18, 37], but they are currently avail-
able only for niche programming langauges that enjoy lim-
ited popularity. Library implementations of join patterns are
(or can be made) available for all mainstream programming
languages and therefore integrate more easily with existing
code and development environments, but they might be con-
strained by the syntax and typing discipline of the host lan-
guage. Nonetheless, carefully crafted implementations can
perform and scale remarkably well [49].

To illustrate the applicability of our approach, Listing 7
presents the full-duplex channel (Example 5.8) implemented
using the Scala Joins library [24], which defines Join’s con-
trol structures on top of the standard Scala language.1 The
code defining the Channel class has a straightforward cor-
respondence with its formal counterpart. The class consists
of a set of event declarations specifying the messages that
can be targeted to instances of the class (lines 3–10), the
reaction rules specifying the behavior of instances of the
class (lines 11–20), as well as the initial state of each in-
stance (lines 21–22). The main program creates a channel
that is shared by two asynchronous processes that exchange
integers and strings in full-duplex (lines 37–39). The mes-
sages representing the state of the channel (lines 3–6) are
private to enforce encapsulation of the state. The public
interface (lines 7–10) is represented by synchronous events,
which means that invoking a Channel’s public operation
(lines 27–28 and 31–32) suspends the calling thread until
the matching reaction has fired and a result has been returned
(lines 13,15,17,19). In the formal model, all message sends
are asynchronous and sequentiality is encoded with explicit
continuations (see the reference c in Listing 5). The reaction
rules that govern the channel behavior are defined by means
of a call to the join method (inherited from the Joins su-
perclass in the Scala Joins library) that takes as a parameter a
partial function encoding the join patterns in terms of pattern
matching. Pattern composition is then achieved by means of
the and combinator, whose definition exploits Scala’s ex-
tractors and extensible pattern matching. Note that Channel
is parametric in the types L and R of the messages exchanged
over the full-duplex channel. This possibility, not accounted
for in the formal presentation of the type system (Section 5),
comes for free thanks to Scala’s support for generics.

Imposing the typing discipline that we have described in
Section 5 is more challenging to put into practice since this
requires the implementation of a substructural type system
that makes use of unconventional behavioral connectives.
When using the Scala Joins library, the programmer can only

1 The example has been written and tested using a variant of Scala Joins 0.4
that has been patched to make it compatible with Scala 2.11.6.

1 class Channel[L,R] extends Joins {

2 // MESSAGES //

3 private object LE extends NullaryAsyncEvent

4 private object RE extends NullaryAsyncEvent

5 private object LF extends AsyncEvent[L]

6 private object RF extends AsyncEvent[R]

7 object lsend extends SyncEvent[Unit,L]

8 object rsend extends SyncEvent[Unit,R]

9 object lrecv extends NullarySyncEvent[R]

10 object rrecv extends NullarySyncEvent[L]

11 join { // REACTION RULES //

12 case LE() and lsend(v) => LF(v)

13 lsend reply {}

14 case LF(v) and rrecv() => LE()

15 rrecv reply v

16 case RE() and rsend(v) => RF(v)

17 rsend reply {}

18 case RF(v) and lrecv() => RE()

19 lrecv reply v

20 }

21 LE() // INITIALIZATION //

22 RE()

23 }

24

25 class Process(chan : Channel[Int,String]) {

26 def runRight(v : String) : Unit = {

27 println("Right sends " + v); chan.rsend(v)

28 println("Right receives " + chan.rrecv())

29 runRight(v + "*") }

30 def runLeft(v : Int) : Unit = {

31 println("Left sends " + v); chan.lsend(v)

32 println("Left receives " + chan.lrecv())

33 runLeft(v + 1) }

34 }

35

36 object TestChannel extends App {

37 val chan = new Channel[Int,String]

38 Future { new Process(chan).runLeft(1930) }

39 Future { new Process(chan).runRight("Pluto") }

40 Thread.sleep(5000000)

41 }

Listing 7. The full-duplex channel in Scala Joins [24].

rely on the native Scala type checker, which can verify that
programs comply with the interface of the objects they use,
but not necessarily with their protocol. The compiler can
detect if a message of the wrong type is sent to an object
or if a message is sent to an object that does not expose
that message in its interface, but it cannot verify whether
messages are sent in a particular order, or if a program fulfils
the obligations with respect to the objects it uses.

We envision two ways of implementing the typing dis-
cipline advocated in this paper: the first one is to develop
a TSOP-aware programming language, possibly integrated
with one or more host languages, in the style of Plaid [1, 48];
the second one is to superimpose our type system to that of

an existing programming language, augmented with a DSL
for TSOP. The first approach would grant us complete con-
trol over the type checker and would make it possible to take
full advantage of typing information, for example to mini-
mize the amount and nature of runtime checks concerning
typestates. A major downside is that the language would
likely enjoy limited popularity. The second approach has
been pursued, for example, in Mungo,2 a Java front-end that
implements a behavioral type system for Java objects expos-
ing dynamically changing interfaces. The key idea in Mungo
is to have a pre-processing phase that analyzes the code us-
ing a typestate-sensitive type checker. If this phase is passed,
the program is handed over to the standard Java compiler.
The stratification of this architecture could favor the integra-
tion of our framework with a wider range of programming
languages and development environments, possibly at the
cost of some compromises in the use of type information for
checking protocol compliance and optimal code generation.

8. Related Work
Typestate-Oriented Programming. In [14] class states are
represented as invariants describing predicates over fields.
They support verification in presence of inheritance and de-
pend on a classification of references as not aliased or pos-
sibly aliased. This approach is refined in [1, 5] with a flexi-
ble access permission system that permits state changes even
in the presence of aliasing. Shared access permissions have
been investigated in a concurrent framework in [45, 46], but
their integration with the typestate mechanism has not been
considered in these works. In Plaid [48], the typestate of an
object directly corresponds to its class, and that class can
change dynamically. Plaid supports the major state modeling
features of Statecharts: state hierarchy, or-states, and and-
states, allowing states dimensions to change independently.

The foundations of Plaid and, in general, of TSOP are for-
mally studied in [21] by means of a nominal object-oriented
language with mutable state and a native notion of typestate
change. The language is also equipped with a permission-
based type system integrated with a gradual typing mecha-
nism that combines static and dynamic checking. Progress
and type preservation properties are formally proved.

To the best of our knowledge, TSOP has been investigated
in a concurrent setting only in [11] and marginally in [23].
Damiani et al. [11] develop a type and effect system for a
Java-like language to trace how the execution of a method
changes the state of the receiver object. To forbid access to
fields that are not available in the current object’s state, only
direct invocations of methods on this can change the state
of the current object. Since each class method is synchro-
nized, two concurrent threads cannot simultaneously execute
in the same object. Our approach relaxes such restrictions.
For instance, the full-duplex channel (Example 5.8) can be
used in true concurrency by the two peers, and each is stat-

2 http://www.dcs.gla.ac.uk/research/mungo/

http://www.dcs.gla.ac.uk/research/mungo/

ically guaranteed to comply with (its view of) the channel
protocol. Gay et al. [23] study an integration of typestate
and session types targeting distributed objects. The focus of
their work is on the modularization of sessions across differ-
ent methods rather than on typestates themselves. In fact, the
work rests on the assumption that non-uniform objects (those
whose interface changes with time) must be used linearly.

Concurrent Objects. In the actor model [26] messages
(asynchronously) received by objects are handled by an
internal single-threaded control which can dynamically
change its behaviour, thereby changing the object/actor’s
state. In SCOOP [35, 50] each object is associated with a
handler thread and the client threads wishing to send re-
quests to the object must explicitly register this desire by
using the separate construct. Unlike actors, SCOOP’s
threads have more control over the order in which the re-
ceiver processes messages: the messages from a single sep-
arate block are processed in order, without any interleav-
ing. In addition, SCOOP allows pre/postcondition reasoning
in a concurrent setting: before executing a method, the ex-
ecuting processor waits until the precondition is satisfied
while each postcondition clause is evaluated individually
and asynchronously. Pre/post conditions are reminiscent of
state-sensitive operations distinctive of TSOP.

Behavioral description of objects with dynamically chang-
ing interfaces, sometimes called active or non-uniform ob-
jects, have been studied for more than two decades. Among
the seminal works is [36], where Nierstrasz proposes finite-
state automata for describing object protocols and failure
semantics for characterizing the subtyping relation. Type-
theoretic approaches based on similar notions have been
subsequently studied for various object calculi and type lan-
guages, with varying degrees of ensured properties, for in-
stance in [34, 38–41]. Aside from the fact that none of these
works is based on the Join Calculus or addresses TSOP ex-
plicitly, all of these type systems are biased towards the
description of operations rather than state. In [34] and [41],
types are variants of process algebras built on actions stand-
ing for method invocations. Choices and “parallel” compo-
sition roughly correspond to our ⊕ and ⊗ operators, and se-
quential composition is used to express the dynamic change
of an object’s interface. We model this aspect using explicit
continuation passing, in the style of [12, 22]. By contrast,
the type systems in [38–40] are based on the decoration of
object types with tokens akin to typestates, in the sense that
they can be used to represent in an abstract form the internal
state of object that affects the available operations. Tokens
themselves can be annotated in such a way so as to express
obligations on the use of objects.

Session Types. Communication protocols over channels,
as opposed to object protocols, can be described using ses-
sion types [27]. Our use of explicit continuations for describ-
ing structured behaviors has been inspired by the encoding
of session types into linear channel types [12]. Our type sys-

tem uses essentially the same technique, except that continu-
ations are objects instead of channels. Continuations are con-
venient also when types account for structured protocols, to
describe the effect of functions on channels [22].

Types for the Join Calculus. Our language of behavioral
types is an original contribution of this paper and is also the
first behavioral type theory for the Objective Join Calculus.
Other type systems for the Join Calculus have been formally
investigated in [18, 37] and for the Objective Join Calcu-
lus in [19]. [18] discusses an extension of ML-style poly-
morphism to the Join Calculus and addresses the issues that
arise when polymorphic channels are joined in the same pat-
tern; [37] presents a typing discipline to reason on the scope
within which channels are allowed to be used, so as enforce
a form of encapsulation. These two works are based on the
original formulation of the Join Calculus [16], where a join
definition introduces a bunch of channel names all at once.
In particular, objects are modeled indirectly as the set of the
operations they support, each operation being represented by
a distinct channel. Since types are associated with channels,
it is then difficult if at all possible to describe and reason
about the overall behavior of objects. The seminal paper on
the Objective Join Calculus [19] also introduces a type sys-
tem for establishing basic safety and privacy properties. In
particular, it distinguishes between public and private mes-
sages, the latter ones being used for encoding the internal
state of objects. Once again, privacy information is associ-
ated with the single messages and object types solely specify
their interface, but not their protocol. In our type system, the
separation between public and private messages stems from
the fact that distinct references to the same object may be
given different types eventually combined using ⊗.

To the best of our knowledge, [7] is the only work that de-
scribes a form of analysis on join patterns that takes object
behaviors into account and therefore that is remotely related
to our type system. However, [7] is based on a control-flow
analysis rather than types and its aim is to optimize code gen-
erated by join definitions, for instance detecting that some
channels (called signals in [7]) never escape the scope of
the object in which they are defined and that their associ-
ated message queue always contains (at most) one message.
Similar properties can also be inferred by inspecting the type
associated with objects in our type system.

Parametric Properties. A different approach to checking
that programs comply with the protocol of the objects they
use is by means of monitoring techniques for parametric
properties [29, 32]. Such techniques are based on runtime
verification, hence they cannot rule out protocol violations
that do not manifest themselves during one particular execu-
tion. However, they can be used for verifying rather complex
properties involving non-regular protocols (like the fact that
a lock is released as many times as it is acquired) and mul-
tiple objects (like the fact that a collection does not change
while it is being iterated upon). Our type system can use lin-

earity to capture some non-regular protocols. For instance,
it requires locks to be released as many times as they are
acquired. However, it cannot express contextual properties
(like the fact that the lock is released within the same method
that has acquired it), nor properties involving multiple ob-
jects, since different objects have unrelated types.

9. Concluding Remarks
We have found evidence that the Objective Join Calculus
is a natural model for TSOP. The choice of this particular
model allowed us (1) to approach TSOP in a challenging
setting involving concurrency, object sharing/aliasing, and
partial/concurrent state updates; (2) to capture the charac-
terizing facets of TSOP (state-sensitive operations, explicit
state change, runtime state querying, object protocols, mul-
tidimensional state, aliasing control) with the support of a
simple and elegant language of behavioral types equipped
with intuitive semantics and subtyping (Section 4); (3) to
devise a manageable type system (Section 5) that statically
guarantees valuable properties (Section 6) and includes a
characterization of safe partial/concurrent state transitions in
terms of subtyping (see the side condition of [T-REACTION]).

In this paper we focused on the theoretical foundations
of the chemical approach to TSOP and glimpsed at the key
aspects that concern its practical realization (Section 7). Be-
low is a non-exhaustive list of extensions and future devel-
opments that we find particularly relevant or intriguing.

Aliasing. In our type system, fine-grained aliasing control
is realized by the⊗ connective: an object of type (equivalent
to) t⊗ s can (actually, must) be used according to both t and
s, by possibly parallel processes. Uncontrolled aliasing re-
quires using the exponential ∗. However, neither⊗ nor ∗ ex-
press with sufficient precision some forms of aliasing/shar-
ing of objects. It would be interesting to investigate whether
and how our type language integrates with other forms of
aliasing control [5, 15, 45].

Compiler Optimizations. Efficient compilation techniques
for join patterns [31] rely on atomic operations and finite-
state automata for tracking the presence messages with a
given tag. Our type system paves the way to further opti-
mizations: for example, tlock says that, when the method
release is invoked, the lock is for sure in state BUSY. In
other words, the reaction involving BUSY and release can
be triggered without requiring an actual synchronization and
invocations to release compiled as ordinary method calls.
The availability of precise information on the behavior of ob-
jects can help reducing the amount of locking, simplifying
the mechanisms (automata) that detect triggered reactions,
and improving the representation of objects with typestate.

Type Inference. Early experiments indicate that it is pos-
sible to implement a type inference algorithm for our type
system with some minimal help from the programmer. This
feature is crucial for the effectiveness of the approach given

the use of structural subtyping and the richness of types. We
are comforted by the fact that inference of object protocols
has been investigated in a number of works (a detailed sur-
vey is given in [13]), some of which use specification lan-
guages inspired to regular expressions [25] as we do.

Inheritance. Inheritance for concurrent objects is a known
source of challenging problems. For the Objective Join Cal-
culus, it has been studied in [19], but with a (non-behavioral)
type system focused on privacy. We plan to investigate how
our type discipline affects the realization of this feature.

Acknowledgments
The authors are grateful to the anonymous reviewers for
their detailed and insightful comments and suggestions and
to Philipp Haller for his prompt help in porting Scala Joins to
the latest Scala compiler. Inspiring preliminary discussions
for this work were hosted at the top of the Roman stairway
in Piazza di Spagna. The first author has been supported by
the University of Padova under the PRAT projects BECOM
and ANCORE. The second author has been supported by
ICT COST Action IC1201 BETTY, MIUR PRIN CINA,
Ateneo/CSP Project SALT, and RS13MO12 DART.

References
[1] J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks. Typestate-

oriented programming. In Proceedings of OOPSLA’09, pages
1015–1022. ACM, 2009.

[2] N. E. Beckman, D. Kim, and J. Aldrich. An empirical study
of object protocols in the wild. In Proceedings of ECOOP’11,
LNCS 6813, pages 2–26. Springer, 2011.

[3] N. Benton, L. Cardelli, and C. Fournet. Modern concur-
rency abstractions for C#. ACM Trans. Program. Lang. Syst.,
26(5):769–804, 2004.

[4] G. Berry and G. Boudol. The chemical abstract machine.
Theor. Comput. Sci., 96(1):217–248, 1992.

[5] K. Bierhoff and J. Aldrich. Modular typestate checking of
aliased objects. In Proceedings of OOPSLA’07, pages 301–
320. ACM, 2007.

[6] J. A. Brzozowski. Derivatives of regular expressions. J. ACM,
11(4):481–494, 1964.

[7] P. Calvert and A. Mycroft. Control flow analysis for the join
calculus. In Proceedings of SAS’12, LNCS 7460, pages 181–
197. Springer, 2012.

[8] J. Conway. Regular Algebra and Finite Machines. William
Clowes & Sons Ltd, 1971.

[9] B. Courcelle. Fundamental properties of infinite trees. Theor.
Comp. Sci., 25:95–169, 1983.

[10] S. Crafa and L. Padovani. The chemical approach to typestate-
oriented programming. Technical report, 2015. https://

hal.archives-ouvertes.fr/hal-01155682.

[11] F. Damiani, E. Giachino, P. Giannini, and S. Drossopoulou.
A type safe state abstraction for coordination in Java-like
languages. Acta Inf., 45(7-8):479–536, 2008.

https://hal.archives-ouvertes.fr/hal-01155682
https://hal.archives-ouvertes.fr/hal-01155682

[12] O. Dardha, E. Giachino, and D. Sangiorgi. Session types
revisited. In Proc. of PPDP’12, pages 139–150. ACM, 2012.

[13] G. de Caso, V. A. Braberman, D. Garbervetsky, and S. Uchitel.
Enabledness-based program abstractions for behavior valida-
tion. ACM Trans. Softw. Eng. Methodol., 22(3):25, 2013.

[14] R. DeLine and M. Fähndrich. Typestates for objects. In
Proceedings of ECOOP’04, LNCS 3086, pages 465–490.
Springer, 2004.

[15] M. Fähndrich and R. DeLine. Adoption and focus: Practical
linear types for imperative programming. In Proceedings of
PLDI’02, pages 13–24. ACM, 2002.

[16] C. Fournet and G. Gonthier. The reflexive CHAM and the
join-calculus. In Proceedings of POPL’96, pages 372–385.
ACM, 1996.

[17] C. Fournet and G. Gonthier. The join calculus: A language for
distributed mobile programming. In Summ. Sch. Appl. Sem.,
LNCS 2395, pages 268–332. Springer, 2000.

[18] C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Implicit
typing à la ML for the join-calculus. In Proceedings of
CONCUR’97, LNCS 1243, pages 196–212. Springer, 1997.

[19] C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Inheritance
in the join calculus. J. Logic Alg. Progr., 57(12):23 – 69, 2003.

[20] C. Fournet, F. Le Fessant, L. Maranget, and A. Schmitt. Jo-
caml: A language for concurrent distributed and mobile pro-
gramming. In Advanced Functional Programming, LNCS
2638, pages 129–158. Springer, 2003.

[21] R. Garcia, É. Tanter, R. Wolff, and J. Aldrich. Foundations of
typestate-oriented programming. ACM Trans. Program. Lang.
Syst., 36(4):12, 2014.

[22] S. J. Gay and V. T. Vasconcelos. Linear type theory for asyn-
chronous session types. J.Fun. Progr., 20(1):19–50, 2010.

[23] S. J. Gay, V. T. Vasconcelos, A. Ravara, N. Gesbert, and
A. Z. Caldeira. Modular session types for distributed object-
oriented programming. In Proceedings of POPL’10, pages
299–312. ACM, 2010.

[24] P. Haller and T. V. Cutsem. Implementing joins using extensi-
ble pattern matching. In Proceedings of COORDINATION’08,
LNCS 5052, pages 135–152. Springer, 2008.

[25] T. A. Henzinger, R. Jhala, and R. Majumdar. Permissive
interfaces. In Proc. of FSE’05, pages 31–40. ACM, 2005.

[26] C. Hewitt, P. Bishop, and R. Steiger. A universal modular
actor formalism for artificial intelligence. In Proceedings of
IJCAI’73, pages 235–245, 1973.

[27] K. Honda. Types for dyadic interaction. In Proceedings of
CONCUR’93, LNCS 715, pages 509–523. Springer, 1993.

[28] G. S. V. Itzstein and M. Jasiunas. On implementing high level
concurrency in Java. In Proceedings of ACSAC’03, LNCS
2823, pages 151–165. Springer, 2003.

[29] D. Jin, P. O. Meredith, D. Griffith, and G. Roşu. Garbage col-
lection for monitoring parametric properties. In Proceedings
of PLDI’11, pages 415–424. ACM, 2011.

[30] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and
the pi-calculus. ACM Trans. Program. Lang. Syst., 21(5):914–
947, 1999.

[31] F. Le Fessant and L. Maranget. Compiling join-patterns.
Electr. Notes Theor. Comput. Sci., 16(3):205–224, 1998.

[32] P. O. Meredith, D. Jin, F. Chen, and G. Roşu. Efficient
monitoring of parametric context-free patterns. Autom. Softw.
Eng., 17(2):149–180, 2010.

[33] Microsoft Research. Cω, 2004. http://research.

microsoft.com/Comega/.

[34] E. Najm, A. Nimour, and J. Stefani. Guaranteeing liveness in
an object calculus through behavioural typing. In Proceedings
of FORTE’99, volume 156, pages 203–221. Kluwer, 1999.

[35] P. Nienaltowski. Practical Framework for Contract-Based
Concurrent Object-Oriented Programming. PhD thesis, ETH
Zurich, 2007.

[36] O. Nierstrasz. Regular types for active objects. In Proceedings
of OOPSLA’93, pages 1–15. ACM, 1993.

[37] M. Patrignani, D. Clarke, and D. Sangiorgi. Ownership types
for the join calculus. In Proceedings of FMOODS/FORTE’11,
LNCS 6722, pages 289–303. Springer, 2011.

[38] F. Puntigam. State inference for dynamically changing inter-
faces. Comput. Lang., 27(4):163–202, 2001.

[39] F. Puntigam. Strong types for coordinating active objects.
Concurrency and Computation: Practice and Experience,
13(4):293–326, 2001.

[40] F. Puntigam and C. Peter. Types for active objects with static
deadlock prevention. Fundam. Inform., 48(4):315–341, 2001.

[41] A. Ravara and V. T. Vasconcelos. Typing non-uniform con-
current objects. In Proceedings of CONCUR’00, LNCS 1877,
pages 474–488. Springer, 2000.

[42] C. V. Russo. The joins concurrency library. In Proceedings of
PADL’07, LNCS 4354, pages 260–274. Springer, 2007.

[43] C. V. Russo. Join patterns for visual basic. In Proceedings of
OOPSLA’08, pages 53–72. ACM, 2008.

[44] D. Sangiorgi and D. Walker. The Pi-Calculus - A theory of
mobile processes. Cambridge University Press, 2001.

[45] S. Stork, P. Marques, and J. Aldrich. Concurrency by default:
using permissions to express dataflow in stateful programs. In
Proceedings of OOPSLA’09, pages 933–940. ACM, 2009.

[46] S. Stork, K. Naden, J. Sunshine, M. Mohr, A. Fonseca,
P. Marques, and J. Aldrich. Æminium: A permission-based
concurrent-by-default programming language approach. ACM
Trans. Program. Lang. Syst., 36(1):2, 2014.

[47] R. E. Strom and S. Yemini. Typestate: A programming lan-
guage concept for enhancing software reliability. IEEE Trans.
Software Eng., 12(1):157–171, 1986.

[48] J. Sunshine, K. Naden, S. Stork, J. Aldrich, and É. Tanter.
First-class state change in Plaid. In Proceedings of OOP-
SLA’11, pages 713–732. ACM, 2011.

[49] A. J. Turon and C. V. Russo. Scalable join patterns. In
Proceedings of OOPSLA’11, pages 575–594. ACM, 2011.

[50] S. West, S. Nanz, and B. Meyer. Efficient and reasonable
object-oriented concurrency. In Proceedings of PPoPP’15,
pages 273–274, 2015.

http://research.microsoft.com/Comega/
http://research.microsoft.com/Comega/

	Introduction
	The Chemistry of Typestates
	The Objective Join Calculus
	Syntax and Semantics of Types
	Type System
	Properties of Well-Typed Processes
	Implementation Aspects
	Related Work
	Concluding Remarks

