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ABSTRACT

Classic caching algorithms leverage recency, access count,
and/or other properties of cached blocks at per-block gran-
ularity. However, for media such as flash which have perfor-
mance and wear penalties for small overwrites, implement-
ing cache policies at a larger granularity is beneficial. Re-
cent research has focused on buffering small blocks and writ-
ing in large granularities, called containers, but it has not
explored the ramifications and best strategies for caching
compound blocks consisting of logically distinct, but physi-
cally co-located, blocks. Containers may have highly diverse
blocks, with mixtures of frequently accessed, infrequently
accessed, and invalidated blocks.

We propose and evaluate Pannier, a flash cache middle-
ware that provides high performance while extending flash
lifespan. Pannier uses three main techniques: (1) leverag-
ing block access counts to manage cache containers, (2) in-
corporating block liveness as a property to improve flash
cache space efficiency, and (3) designing a multi-step feed-
back controller to ensure a flash cache does not wear out in
its lifespan while maintaining performance. Our evaluation
shows that Pannier improves flash cache performance and
extends lifespan beyond previous per-block and container-
aware caching policies. More fundamentally, our investiga-
tion highlights the importance of creating new policies for
caching compound blocks in flash.

Categories and Subject Descriptors

D.4.7 [Software]: Operating Systems—Organization and
Design

General Terms
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1. INTRODUCTION

Flash caches using solid-state drives (SSDs) are typically
layered in front of hard disk drives (HDDs) to achieve high
system performance, but the hardware characteristics of flash
are at odds with the assumptions of standard cache eviction
algorithms. We focus on achieving high cache performance
for a second level cache, which exists at a layer below a
storage system’s RAM cache and above the hard drive’s in-
ternal caches. Increasing cache performance is of particular
value to data-intensive computing. Flash is often used for
caching in this environment since it provides significant per-
formance gains over HDDs at a higher density than DRAM.
A difficulty with using flash, though, is that state-of-the-
art caching algorithms make caching decisions at per-block
granularity [5, 10, 12, 18, 24, 27, 33, 38|, which does not
align to the erasure units of flash and causes internal copy-
forward operations. As an example, cached blocks may be
kilobytes in size, while throughput and erasure properties
are optimized for flash writes that are megabytes [23, 35]
that correspond to the flash erasure unit. Evicting individ-
ual blocks from flash results in internal operations to copy
live blocks to new locations and flash erasures, which are
the primary source of performance degradation and lifespan
reduction [6, 22]. Note that we use the term block to refer to
the unit of cache insertion, read, and management; which is
not necessarily the same as the flash erasure unit, sometimes
also referred to as a block in the literature.

To optimize write throughput and reduce flash erasures,
small blocks are often buffered together to form a container
[17, 23, 35]. Such designs overwrite entire containers so the
flash translation layer (FTL) can avoid relocating individual
blocks, which extends the flash’s lifespan. Because the FTL
does not have access to block properties such as dirty/clean
status and access count, the cache’s status is managed at a
user level, though there has been research on moving cache
functionality into the FTL [31].

Fundamentally though, block-based caching and container-
based caching are in conflict. Per-block tracking can main-
tain the highest accuracy for access patterns but also re-
quires the most resources such as RAM and creates the most
flash fragmentation. For example, MQ [38] maintains a per-
block access counter for cached blocks and evicted blocks,
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which scales RAM with the number of cached blocks. On the
other hand, container-based approaches track cache status
at a coarse granularity to reduce resources [17], which makes
it difficult to distinguish between the cache status of blocks
within a container. While recent cache algorithms have com-
bined per-block tracking information with large container
writes, they have not fully considered the implications of
compound block caching [23, 35].

A new issue arises for a container cache since blocks within
a container may have highly varying access patterns and
even vary in their liveness state. We refer to heterogeneous
containers as divergent containers. Blocks in a container
may exist in one of three states: hot, cold, or invalid. Hot
and cold are intuitive terms indicating opposite regions on
the access count spectrum, and a research challenge is to in-
corporate these concepts into a cache algorithm. In our anal-
ysis, we found blocks that have several orders of magnitude
more accesses than other blocks within the same container.
Besides access differences, a new issue arises as cache blocks
become invalidated (i.e., deleted or overwritten). Per-block
caching would immediately mark the space for invalidated
blocks as free. However, container caches on flash avoid
small overwrites so containers become partially dead. Bet-
ter understanding these new challenges allows us to fully ex-
plore the potential of container-based flash caching. We have
specifically designed a flash cache middleware, called Pan-
nier, to manage a container cache with divergent contain-
ers. Pannier serves as a second level cache (underneath the
DRAM cache) for a storage system, which can be shared by
multiple applications. Pannier uses a combination of block
access history and invalidation to determine which contain-
ers to keep versus evict and whether to copy blocks from
evicted containers and possibly regroup by access patterns.

The success of a flash cache policy depends on multiple,
interacting goals: maximizing performance (high IOPS and
low latency) while also controlling erasures. While some ad-
ministrators wish to maximize performance and are willing
to replace flash as necessary, most want consistent perfor-
mance where the flash cache lifespan matches the overall sys-
tem lifespan. To meet this goal, we present a multi-step feed-
back algorithm called Throttle Insertions and Reinsertions
for Erasures (TIRE). When the flash writes are within a
quota (per time period), client insertions and internal copy-
forward operations (called reinsertions) are allowed. As the
writes increase, we increase a threshold necessary for block
insertions and reinsertions, where the value is based on its
access count. To better quantify the value of data written
to the cache, we present a new metric called flash usage ef-
fectiveness (FUE) that combines hit ratio and erasures into
a single number for comparison purposes (§4.1).

In summary, our contributions are:

e We propose Pannier, a container-based flash cache that
manages compound blocks, and we compare to multi-
ple state-of-the-art caching policies.

e We manage divergent containers with diverse blocks,
varying access characteristics and liveness status.

e We present TIRE, a multi-step feedback controller that
preserves most of the hot data while ensuring the flash
device does not wear out before its targeted lifespan.

e We experiment with a Pannier prototype to validate
performance and lifespan improvements.
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Figure 1: Impact of cache size and container size on

outliers of block access count.

2. DIVERGENT CONTAINERS

In this section, we discuss the background and challenges
of a flash cache design based on containers. We use LRU+, a
simple container-based caching policy derived from Nitro [17],
as an example to identify design issues. Nitro also supported
deduplication and compression, which we disable to focus on
the caching algorithm. LRU+ tracks the most recent access
to a container (e.g., the most recent read of any block in
a container) and evicts the least recently used container.
First, we show divergent containers exist, for example hav-
ing a large variance of access counts among the contained
blocks. Then we demonstrate that block invalidation is com-
mon and causes space inefficiency.

Block access pattern variability. In container caching,
the granularity of a flash write is an entire container con-
sisting of multiple blocks inserted by a client. We study the
access pattern of blocks within a container and analyze the
number of outlier blocks per container. For this analysis, we
define outlier blocks as those that have access counts greater
or equal to 5x the average (rounded up) accesses of blocks
in the container. As an example, in a 2MB container with
512 4KB blocks, if 100 blocks each have 10 accesses and the
remaining blocks have zero accesses, the rounded mean is 2,
and the outlier threshold is 10. Then there are 100 outlier
blocks in the container.

Figure 1 plots the cumulative distribution function for
the outlier blocks per container for one of our experimental
traces (Trace 3 in §4.2). The x-axis indicates the number of
outlier blocks per container, and the y-axis shows the frac-
tion of containers. We fix the container size to 2MB, and
Figure 1(a) shows that about 30% of the containers, across
all cache sizes, have at least one outlier block. Larger cache
sizes show more outlier blocks for the containers since con-
tainers stay in the cache longer. One extremely divergent
container had a block with 873 accesses as well as numerous
blocks with either zero or one accesses. In Figure 1(b), we
fix the cache size to 10% of the working set size and vary
the container size from 2 to 128MB. As the container size
increases, the block access counts become more variable be-
cause physically co-located blocks may have very different
access counts in a large container, thus more outlier blocks
are observed per container. For example, we observed one
128MB container had a block with 2,334 accesses while the
vast majority of blocks had zero to two accesses. We ob-
served outlier blocks across all of our traces.

This characterization indicates that evicting the entire
container may cause performance loss due to access count
variability in blocks. Our solution in Pannier is to give con-
tainers a time period within the cache for their access counts
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Figure 2: Characterization of container invalidation
when using different container packing strategies.

to stabilize, and then we copy blocks that are accessed with
similar counts to form new containers such that blocks in
containers will generally age at similar rates.

Incorporating invalidation into a container cache.
When a client overwrites a block, the modified block is
written into a new container to avoid excessive FTL copy-
forward. The block in the old container becomes invalidated
in the sense that it is no longer the valid version to return.

To better understand the characteristics of invalidation,
Figure 2 plots the distribution of container invalidation for
trace 1 (§4.2). The horizontal axis shows the invalidation ra-
tio for containers, and the vertical axis is the percentage of
containers. We studied the impact of two common packing
strategies when forming containers before writing to flash.
We used the LRU+ caching scheme with an infinite cache
size and a cache sized to 10% of the working set. Figure 2(a)
shows the results when packing by logical address, meaning
that logically near blocks are inserted into the same con-
tainer. Figure 2(b) shows the results when packing blocks
into either clean or dirty containers, where dirty blocks must
be stored to HDD before eviction. In each experiment, we
used two open containers to accentuate the impact of pack-
ing. For both packing strategies, results for the infinite cache
show a mostly bimodal distribution with containers either
fully invalidated (rightmost bar) or fully valid (leftmost bar),
while the 10% cache shows a smoother variation. A simple
container-based LRU+ replacement policy that only con-
siders recency knowledge will keep a recently accessed con-
tainer, even if it is mostly invalidated, leading to poor space
utilization. For one cache configuration and trace combina-
tion, we observed 69% of all cached blocks were invalidated.
Clearly, invalidation is an important property for a container
cache algorithm regardless of the packing scheme.

3. PANNIER ARCHITECTURE

This section presents the design of Pannier with a focus
on container-based flash caching. The goal of Pannier, as
a second level storage cache, is to agnostically cache high-
value content for the applications to maximize performance
while maintaining the lifespan of the flash device. From
the discussion in §2, Pannier also needs to select divergent
containers with large access count variability and/or high
invalidation to consolidate valid blocks to new containers.

Figure 3 shows the overall architecture, components, and
examples of the insertion and lookup paths, which are dis-
cussed in greater detail in §3.1. Pannier must handle well-
studied per-block caching concerns, such as segregating hot
and cold data, along with container-specific issues that have
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Figure 3: Container-based flash caching architecture.
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not been thoroughly investigated. Because of complex ac-
cess and invalidation patterns, a container may have combi-
nations of hot, cold, and invalid blocks. For these reasons,
we combine a segmented LRU structure for hot/cold data
segregation along with a new survival queue that identifies
divergent containers.

Consider the following example of a client insertion and
lookup. (1) When the client inserts data from a read-miss or
for a new write, the admission control policy decides whether
to insert the new cache block. (2) The packing policy de-
termines how to assign the block to an in-RAM container.
(3) Pannier seals the container when it is full and writes it
to the flash. (4) On a lookup, Pannier checks the in-RAM
indices for the flash location based on the block’s key (e.g.,
file handle and offset) and services the read from flash. (5)
Due to the read hit, the cache-status module is updated,
causing the corresponding container’s position to change in
the in-memory queues.

3.1 Pannier Components
In this section, we define the major cache components.

Block. A block is the generic term we use for the minimal
unit of access to the cache. A client can read, insert, or
invalidate a block.

Block index. An in-memory index maps from a block’s key
(e.g., LBA) to a location in flash. For a client read, the in-
memory index is checked for the block’s key, and if found,
the flash location is returned. Newly inserted blocks are
added to a container and referenced from the index. When
invalidating a block, the block’s index entry is removed.

Container. We use 2MB as the default container size (§5.2
highlights the relevant factors). Each container has a header
section to keep the metadata describing the blocks in that
container so we can reconstruct the index efficiently at start-
up time. In-memory, open containers hold newly inserted
blocks and can support in-place updates. Once a container
is sealed and persisted in the flash cache, Pannier redirects



overwrites to a new open container without updating the
sealed container.

S2LRU+. Advanced caching designs [14, 18, 38] show that
a segmented cache structure provides segregation of hot and
cold data, thus protecting cache locality for a second level
cache. We decided to use S2LRU [14] as a building basis
for Pannier. S2LRU partitions the cache into two segments,
one for the probationary and the other for the protected
segments. In the standard S2LRU algorithm, new data are
inserted to the most recently used (MRU) position in the
probationary segment. On a hit, data are promoted from the
probationary segment to the MRU position in the protected
segment. Data hit in the protected segment are promoted to
the MRU position of the same segment. When the protected
segment exceeds its predefined size (e.g., half of the cache
size), the LRU data are migrated to the MRU position in the
probationary segment. For clarity, we rename the protected
segment and probationary segment the hot queue and cold
queue, respectively.

An intuitive way to make S2LRU container-aware is to
manage at the container granularity instead of block granu-
larity, which we call S2LRU+. Specifically, S2LRU+ inserts
a new container into the MRU position in the cold queue.
Whenever there is a hit to a container, S2LRU+ promotes
the container to the hot queue, and the migration from hot
queue to cold queue is also at container granularity. Entries
in the S2LRU+ queue are references to container informa-
tion structures. A drawback of S2LRU+, though, is that it
is not designed to handle divergent containers.

S2LRU*. We further modified S2LRU+ to create S2LRU*
for Pannier, by modifying the insertion, promotion and rein-
sertion operations to better support divergent containers
and the segregation of hot and cold blocks (§3.2).

Survival queue. In addition to the S2LRU* structure,
Pannier uses a survival queue, a priority-based queue struc-
ture to identify divergent containers that may otherwise sur-
vive for a long time because of a small number of repeatedly
accessed blocks. Once such containers are identified, hot
blocks can be copied to form new containers to segregate
hot/cold data, and the original container is freed. Pannier
assigns a decay point and a survival time to each container
to describe when to inspect a container to age access counts
and how long it can stay in the cache. The survival queue
is ranked using the survival time. The survival queue con-
sists of pointers to container information structures shared
with the S2LRU* structures. We discuss the operation of
the survival queue in §3.2.

Pannier manages a wall clock counter in the cache which
is incremented for each insertion operation, i.e., caching a
read-miss or a write. Because writes cause blocks in our
immutable containers to be invalidated, the wall clock is
incremented for every write. The decay point and survival
time are assigned using the wall clock value.

Invalidation and access bitmaps. Within each con-
tainer, Pannier tracks which blocks are valid or invalidated
using an invalidation bitmap with a bit for each block. Sim-
ilarly, we use an access bitmap to track if a block has been
read since it was written to flash. If a block is invalidated,
we clear the access bit for the corresponding block.

Ghost cache and access counter. Each block has an 8-
bit access counter, and Pannier uses a ghost cache [12, 18,
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| Conditions | Actions

1. XE() <0 no insertion, wait for next quantum

2. E(t)<q cache everything
within quota slack:

3 E’(t) c split (g, K - q] into three intervals,

(¢, K - q 1) cache read misses and reinsertions,
2-3) set acc. threshold to 1, 2 respec.

A beyond quota slack: no insertion

4Bl >K-q| omcd :

wait for next quantum

Table 1: TIRE is a multi-step feedback controller.

38] to manage a counter for blocks in the cache and those
recently evicted from the cache. Since the ghost cache only
keeps the meta-data (key and access count), it can actually
track more than the physical cache size, and there are tech-
niques to reduce tracking overheads [8]. We set the ghost
cache to hold 2x of the cache size. The ghost cache is used
for insertion and reinsertion described in §3.2.

TIRE: Throttle Insertions and Reinsertions for Era-
sures. Typical MLC NAND flash devices have a usable
lifespan of 2-10K erase cycles, and our admission control
component ensures the flash cache does not wear out dur-
ing its lifespan. Based on industrial specifications [29, 30],
we set the flash erasure per block per day (EPBPD) quota
to 8.3 and 5, representing 3 year and 5 year amortization
periods, respectively.

The principle of the TIRE admission policy is to maintain
the flash erasure quota. TIRE uses a credit-based approach
to manage the quota. Specifically, we split the execution
time into quanta (e.g., 5-minute) as an accounting period,
and we set the erasure quota ¢ for that time period ¢t. TIRE
outputs an erasure delta (AE(t)), which is the running era-
sure credit for the quanta that may be negative or positive.
TIRE also calculates an erasure credit (3E(t)), which is the
running credit of erasures allowed, which again may be neg-
ative or positive. We derive the current erasure credit from
the erasure credit of the last quantum and the delta erasure
(XE(t) = XE(t—1)+AE(t—1)). If there are remaining era-
sures for one quantum, then the erasure credit is carried over
to the next quantum. Within a quantum, we use a multi-
step bang-bang controller [34] to decide with fine granularity
what to put in the cache. For each quantum, TIRE com-
putes the instantaneous erasures (F) since the beginning of
the quantum.

We next walk through the TIRE policy in greater detail,
shown in Table 1, discussed from top to bottom. (1) When
the erasure credit (X E(t)) is non-positive at the beginning of
a quantum, TIRE rejects all insertions and reinsertions until
the next quantum. When the erasure credit is positive, the
remaining checks are considered. (2) If the instantaneous
erasures are below the quota (E(t) < ¢), then all insertions
(reads and writes) as well as reinsertions are allowed.

We next consider the case that the erasures increase be-
yond the quota. We define an access threshold as the min-
imum accesses needed for a block to be accepted into the
cache. The design rationale of TIRE’s policy is to gradually
raise the access threshold of writing blocks into the cache.
TIRE uses a slack factor K to control how many erasures are
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allowed beyond the quota within a time period. (3) When
the instantaneous erasures are between ¢ and K - ¢, TIRE
dynamically adjusts the throttling policy. Specifically, we
partition the interval within (¢, K - q] and increase the ac-
cess threshold accordingly. We set K = 4 and split (g, K - ¢]
equally into 3 intervals (discussed in §5.2). TIRE assigns the
following three policies (1-3) to each interval: interval 1) ac-
cepts insertions for read misses and reinsertions but does not
accept writes (new dirty data from a client); intervals 2-3) in-
crease the access threshold to 1 and 2, respectively, for read
misses and reinsertions. This means that as the erasures
grow beyond ¢ and up to K - ¢, we increase the threshold
for block accesses necessary before writing into the cache.
We found increasing the access threshold can significantly
reduce erasures with limited impact on hit ratio (see §5.2).
(4) When erasures grow beyond the slack value in a time
period (E(t) > K - q), no further insertions are allowed until
the next quantum, which may start with a negative erasure
credit because we allowed erasures beyond the quota in the
current quantum.

Sampled distributions. Pannier leverages sampling tech-
niques to track trends in the cache including access and reuse
distributions. Pannier also samples a subset of contain-
ers to track access percentage. We found a small sampling
rate (e.g., 3%) provides sufficient accuracy, while minimiz-
ing memory overheads. These sampled distributions guide
the eviction and copy-forward operations in §3.2.

3.2 Pannier Functions
Next, we describe Pannier’s key functions and operations.

Promotion. We configured S2LRU* by setting a minimum
number of accesses needed before a container is promoted
to the hot queue (Figure 4), since a container may contain
numerous blocks. This technique avoids cold containers pol-
luting the cache, and we discuss its impact in §5.2.

Seal, eviction, invalidation and access. Figure 5 shows
pseudocode of how Pannier handles events related to con-
tainers and blocks. We describe the events of sealing, evic-
tion, invalidation and access to a block. Let A, I, and C
represent the percentage of accessed, invalidated, and cold
blocks in a container, respectively; then A + I + C' = 100%.

When an in-memory container is full, it is sealed and writ-
ten to flash. The OnSeal function sets the decay point and
survival time for a container. The decay point is the period
until the access counters for blocks are decremented, similar
to clock-based aging algorithms, so our access counters are
aged. The intuition of survival time is to give a container
sufficient time to allow servicing read hits and invalidating
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lvoid OnSeal(Container c):

2 c.decay_point = c.seal_time + lifetime

3 c.survival_time = c.seal_time + lifetime
4

5Container OnEvict():

6 Container ¢ = Q.top()

7 if c.decay_point < now():
8 AgeContainer(c)

9 if c.survival_time < now():

10 Copy forward objects with frequency > 0

11 Q.pop() and return c

12 else:

13 return LRU container from cold queue

14

15void Onlnvalidation(Container c):

16 c.survival_time = now() + lifetime * (100% —c.1%)
17

18void OnAccess(Container ¢, Object obj):

19 Increment the frequency of obj

Survival queue Q

20 bool refill = false

21 if c.decay_point < now():

22 AgeContainer(c)

23 if c.A% > access_threshold:

24 refill = true

25 if c.A% increased or refill:

26 c.survival_time = now() + lifetime =% (100% —c.1%)

27

23void AgeContainer(Container c):

20 step = ceil ((now() — decay_point)/lifetime))
30 Decrement object frequency by step

31 Recompute c.A%

32 c.decay_point =

now() + lifetime

Figure 5: Seal, aging, eviction and access handling
for cached blocks and containers in Pannier.

overwritten blocks before analyzing the stable pattern for
the container. The lifetime is determined as the 99" per-
centile of the reuse distance distribution for sampled blocks,
representing a sufficient survival time in the cache.

When the cache is full and a container must be selected for
eviction, OnEvict is called, which first checks if the container
needs to be aged (described below). Then it checks if the
survival time for the top container in the queue has expired.
If so, Pannier copies blocks with non-zero accesses forward
to new containers using the TIRE policy and the packing
rules described in the reinsertion section. If the survival
time of the container has not expired, then Pannier evicts
the LRU container from the cold queue.

On block invalidation (OnInvalidation), the survival time
of the container is reset to a fraction of the default lifetime,
which is proportional to the valid blocks in the container.
For example, if the container is 100% invalidated, then the
survival time is set to the current time, thus it is evicted
from the queue immediately. If the container state has not
changed when the survival time expires, Pannier evicts this
container and reclaims the space. This design leverages the
bimodal pattern observed in §2 to set the appropriate sur-
vival time.

On a read access (OnAccess), Pannier increments the ac-
cess count of the block. If the decay point of the container
has expired, Pannier ages the container. If the percentage
of the aged accessed blocks for a container is high then we
extend the survival time of the container. Pannier uses the
median value of a sampled distribution of container access
percentage as the access_threshold value. Since the ac-
cess count is decremented for aged containers, Pannier only
copies hot blocks forward and consolidates them into new
containers in the OnEvict operation. The advantage of ag-



ID | Trace Description Duration WSS Reads R:W Seq. (KB/IO)
1 MSR prn0  print server 7 day 61GB 14GB 1:1.2 24
2 MSR srcll  source control server 7 day 157GB  780GB  3:1 51
3 MS map hosts of a live map imagery 24 hr 703GB  1.9TB  3.2:1 40

Table 2: Properties of traces used in the performance experiments (WSS = working set size).

ing containers during OnAccess is that we apply the aging
procedure to containers that are changing, whereas contain-
ers that are not accessed will move to the top of the survival
queue and be evicted.

When aging a container (AgeContainer), we calculate how
many lifetimes have passed since the last aging step, which
is the amount to decrement from every block’s access count.
We then adjust the access bitmap, since block access counts
may have reached zero. Finally, we adjust the decay point
to allow another round of aging.

Reinsertion. When the cache is full and a container has
been selected for eviction, Pannier copies accessed blocks
forward to new containers according to the TIRE policy that
monitors erasures. However, Figure 4 shows our technique
for grouping blocks based on their access count. We use
the sampled per-block access count distribution to set the
threshold for selecting between open containers for the cold
and hot queues. When sealed, a container is placed into the
MRU position of either the cold or hot queues. We use four
open containers for insertion and reinsertion by default. We
categorize open containers into two for clean and two for
dirty blocks and then pack blocks based on access count.

Restart and crash recovery. Pannier currently check-
points cache status information and dirty blocks to flash at
the container granularity based on either a client SYNC oper-
ation or every 30 seconds. Since our contribution focuses on
container caching, we refer the reader to previous work [25,
31] for specific implementation details.

For restart and crash recovery, a journal tracks the dirty
and invalid status of blocks. When recovering from a crash,
Pannier reads the journal and the container headers from
flash and recreates the indices and cache status information.

4. EXPERIMENTAL METHODOLOGY

This section describes the metrics, traces, configuration
for Pannier, and experimental systems.

4.1 Metrics

Our results present overall system IOPS, including both
reads and writes. Because writes are handled asynchronously
and are protected by battery-backed DRAM in our proto-
type, we focus on the read-hit ratio and the read response
time to validate Pannier. The principal metrics are:
Input/Output operations per second (IOPS): Client
read and write operations per second.

Read-hit ratio (RHR): The ratio of read I/O requests
satisfied by Pannier over total read requests. Pannier splits
large requests into 4KB blocks. If all 4KB blocks are in the
cache, the request is a hit. Otherwise it is a miss since the
HDD I/O for missing blocks dominates the latency.

Read response time (RRT): The average elapsed time
from the dispatch of one read request to when it finishes,
characterizing the user-perceivable latency including HDD
latency for cache misses.

Erasure per block per day (EPBPD): The flash era-
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sures normalized against the number of flash blocks given a
cache size and a period of time.

Flash usage effectiveness (FUE): We introduce the
FUE metric as the number of bytes of flash reads divided
by flash writes, including client writes and internal copy-
forward writes. A score of 1 means that, on average, every
byte written to flash is read once, so higher scores are bet-
ter. FUE combines RHR and erasures into a single score to
simplify the comparison of techniques, though a client may
be willing to trade-off flash lifespan for greater performance,
which is not captured by FUE.

4.2 Trace Description

Storage traces. We used a set of 69 traces from 3 reposi-
tories. The repositories are:

EMC-VMAX traces. 48 traces of EMC VMAX primary
storage servers that span at least 24 hours and have at least
1GB of both reads and writes [32].

MS Production Server traces. All nine storage traces
from a diverse set of Microsoft Corporation production servers
captured using event tracing for windows instrumentation,
with at least 700k accesses [15].

MSR-Cambridge traces. 12 block level traces lasting for
168 hours on 13 servers, representing a typical enterprise
data center [21]. We narrowed the available traces to 12 to
include appropriate traces for cache studies. The proper-
ties include a working set size greater than 25GB, >5% of
capacity accessed, and read/write balance (<45% writes)®.

For performance experiments, we selected three traces
from the public dataset so that interested readers can re-
peat our experiments. Note that the cache size for each
workload is 10% of the working set size for each dataset un-
less otherwise stated. Table 2 lists the trace characteristics
to study the behavior of Pannier with different workloads.
MSR prnO is collected from one print server, which is char-
acterized by small I/Os and a relatively small working set
size. MSR src1l is collected from a source control server
with a high overwrite ratio. MS map hosts map images and
has a large working set size.

Synthetic traces. We created a set of synthetic traces to
study the impact of access count variability and invalidation
on divergent containers. We used ProWGen [4] to generate
a set of read-only web traces with a range of object sizes.
The working set size of these objects is 85GB. We simu-
late a busy web server with 67% utilization of the available
throughput [11, 20]. We controlled the object access count
by adjusting a Zipf distribution, with values between 0.5 and
1 as in previous work [3, 4, 11]. We set the median object
size to be 60KB with a standard deviation of 8MB based on
previous studies of static web content [11, 20]. We further
vary the invalidation in a controlled manner to study the
interplay of invalidation and access patterns.

! The trace names are: hmO, prnO, prni, proj0, proji,
proj4, srcl0, srcll, srcl2, usrl, usr2, web2.



Variable Values
Container size (MB) 2,4, 8, 16, 32, 64, 128
DRAM cache size (%) 1, 2.5, 5, 10, 20
Flash cache size (%) 1, 2.5, 5, 10, 20
Ghost cache on (re)insertion on, off

Open (re)insertion containers 1,2,4,8

Packing policy
Promotion threshold (%)
Write-mode

Admission control policy

LBA, dirty/clean, acc.
0 (off), 1, 2, 5, 12
through, back
off, static, TIRE

Intervals in TIRE 1,2,3,4,5
Slack factor 1.1, 1.5, 2, 4, 8, 16
TIRE quantum (min) 1, 2, 5,10, 15

Table 3: Pannier parameters with default values in bold.

Policy Abbr. Description I C F

LRU L least recently used

S2LRU Lo two segments LRU

MQ M based on frequency hint

Belady B know future access X

LRU+ Lt container-based LRU x

S2LRU+ L% container-based S2LRU X

RIPQ+ R RIPQ with overwrites X

Pannier P our design X X
Table 4: Cache policies, invalidation-aware (I),

container-aware (C), or future knowledge (F). We seg-
regate per-block policies from container-aware policies.
The abbreviations are used in figures in §5.1.

4.3 Parameter Space

Table 3 lists the configurations for Pannier, with default
values in bold. Due to space limitations, we interleave pa-
rameter discussion with experiments in §5.

Table 4 shows the caching schemes selected to represent
coverage of past and present work including block-based
caching such as LRU and container-based caching such as
LRU+. We use I and C to indicate whether the scheme is
invalidation-aware or container-aware. The configurations
for previous work are the default in their papers (e.g., num-
ber of queues). The Belady optimal replacement algorithm
assumes that future accesses are known in advance [2], and
it replaces the blocks in the cache with the most distant ac-
cesses. If the new caching block’s next access is the furthest,
then it bypasses inserting the block into the cache. For all
container-based caching policies, we set the container size to
be the same as Pannier.

RIPQ+. RIPQ [35] is a container-based flash caching frame-
work to approximate several caching algorithms that use
queue structures. One of the key techniques in RIPQ is
that as a block in a container is accessed, its ID is copied
into a virtual container in RAM. When RIPQ selects a con-
tainer for eviction, any blocks that are referenced by virtual
containers are copied forward. We added an overwrite oper-
ation to RIPQ (not previously supported), and we refer to
the resulting system as RIPQ+. For an overwrite, RIPQ+
inserts the modified block into the corresponding open con-
tainer and updates the index structures to reference the new
version. When evicting the previous container, RIPQ+ de-
termines the invalidated block is no longer referenced and
can be removed. RIPQ+ supports invalidation operations
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but does not explicitly incorporate invalidation in the evic-
tion algorithm, so we did not mark RIPQ+ as invalidation-
aware.

4.4 Systems

For our experiments, we built a full-system simulator that
allows us to measure metrics such as hit-ratio and flash era-
sures based on the Micron MLC flash specification [19]. We
vary the size of each plane or flash chip to control the SSD
capacity. We over-provision the SSD capacity by 7% for FTL
garbage collection in the per-block flash cache experiments.
No FTL space reservation is used for the container-based
experiments [17]. We set the flash block size to 2MB and
discuss its impact along with sizing containers in §5.2.

We place a small DRAM cache (5% of the flash cache size)
with an LRU policy in front of the flash cache to represent a
use case where the flash cache is used as a second-level cache.
Four in-RAM containers are used for newly inserted blocks,
and four in-RAM containers are used for re-insertions.

Our prototype, used for performance experiments, is a pri-
mary storage server equipped with four 1.6GHz Xeon CPUs
and 8GB DRAM with battery protection. There are 11 1TB
7200RPM disk drives in a RAID-5 configuration.

We use a Samsung 256GB SSD, though we constrain our
experiments to use a fraction of the available SSD, as con-
trolled by the cache capacity experimental parameter. Be-
fore each experiment, we overwrite the flash device. Ac-
cording to specifications, the SSD supports >100K random
read IOPS and >90K random write IOPS. Using a SATA-2
controller, we measured 4KB SSD random reads at 37.8K/s.

S. EVALUATION

We now evaluate Pannier’s efficacy at improving flash
cache performance and lifespan. We first compare hit-ratios
and flash erasures across cache algorithms. Second, we study
the impact and tradeoffs of each major component of Pan-
nier. Third, we evaluate the performance of our prototype
primary storage system. Fourth, we study an erasure effi-
cient version of Pannier with the TIRE algorithm. Finally,
we present sensitivity and overhead analysis.

5.1 Comparing Caching Algorithms

We first compare block-based and container-based caching
algorithms to Pannier using a simulator with a focus on read-
hit ratio and FUE (bytes read / bytes written).

Hit-ratio improvement. Figure 6(a) shows the read-hit
ratio results across different caching schemes. We report the
average hit-ratio across all 69 traces, and we vary the cache
size between 2.5%, 5%, and 10% of the working set size
for each trace. The standard deviation of read-hit ratios is
<1%. We classify the results into a per-block group in the
first 4 bars and container-based group in the last 4 bars.
For space reasons, we abbreviate each technique as shown
in Table 4. The per-block group includes LRU, S2LRU,
MQ and Belady. The results show that S2LRU and MQ
improve hit-ratio over LRU because they leverage additional
hot/cold and access count information at a per-block level.
Compared to LRU, MQ improves the read-hit ratio up to
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Figure 6: Read-hit ratio and FUE for various cache policies and sizes.

7.3% on average. Belady shows the highest read-hit ratio by
leveraging future knowledge.

The container-based group has LRU+, S2LRU+, RIPQ+
and Pannier, which generally have lower hit-ratios than per-
block schemes due to coarser tracking. LRU+ does not have
a separate segment to protect frequently accessed contain-
ers and is not invalidation-aware, which leads to the lowest
read-hit ratio in this group. S2LRU+ and RIPQ+ are also
not invalidation-aware, but they do segregate frequently ac-
cessed containers, so they have similar read-hit ratios. Pan-
nier directly manages invalidation and variability in contain-
ers, which achieves up to 16% read-hit ratio improvement
(with an average of 9.1%) when compared with LRU+, and
it is competitive with per-block schemes such as MQ. There
is still large gap from MQ to Belady. As will be shown later,
Pannier also significantly improves flash lifespan compared
to per-block schemes.

FUE results. Next, we analyze results from the perspective
of flash usage effectiveness. Similar to the previous figure,
Figure 6(b) plots the average FUE for all caching schemes
across 69 traces while varying the cache size on the x-axis.

Per-block caching schemes such as LRU, S2LRU and MQ
achieve low FUE scores (< 0.46). This means, on aver-
age, less than half of the bytes written (including internal
flash writes) are read. Per-block caching schemes are un-
aware of flash properties and evict individual blocks, which
internally causes FTL copy-forward and excessive flash era-
sures. We observed 2.8x more erasures on average for per-
block schemes compared to container-based schemes. Al-
though S2LRU and MQ achieve higher hit-ratios compared
to container-based schemes, their FUE scores are lower be-
cause high erasure numbers negate the benefit of hit-ratio
improvement.

Container-based schemes show consistently higher FUE
scores than the per-block schemes. For S2LRU+ versus
S2LRU, FUE improves >1.9x on average because eviction at
container granularity reduces fragmentation in flash garbage
collection. This effect is more pronounced with smaller cache
sizes because smaller caches experience higher write ampli-
fication. RIPQ+ ignores invalidation, which leads to under-
utilized flash space, which impacts FUE. Pannier has a higher
FUE than all other block-based caching schemes and all per-
block schemes except Belady’s. Compared to LRU+, Pan-
nier handles both invalidation and divergent containers, thus
achieves a ~34% improvement in the FUE metric.

Belady’s algorithm shows the highest read-hit ratio and
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Figure 7: Tradeoff in TIRE controller. Y-axis start at
30%. The standard deviation is <1.5%.

FUE across all traces. Using future knowledge, Belady can
decide not to insert blocks that would be evicted before be-
ing accessed. This perfect admission control results in fewer
flash erasures and higher FUE than other algorithms.

5.2 Pannier Features and Tradeoffs

To isolate the contributions of the different features of
Pannier, we first discuss the tradeoffs in the TIRE controller.
Then, we study the impact of Pannier’s invalidation-aware
eviction scheme and container aging. Next, we study the im-
pact of a ghost cache on container packing, insertion, rein-
sertion and promotion threshold. Finally, we discuss the
impact of container size.

Tradeoffs in TIRE. We study four parameters in Pan-
nier’s TIRE controller: the slack factor K (short-term al-
lowance beyond the quota), the number of intervals, access
count thresholds for insertion/reinsertion and the feedback
quantum. Figure 7 plots the read-hit ratio for the TIRE
controller with S2LRU*. We vary the number of intervals
between 1 and 4, and we vary the slack factor between 1.1
to 16, though we only plot 1.5 to 8 for space reasons. The
cache is set to 10% of the working set size, and the EPBPD
goal is set to 5. Other cache sizes show consistent results.

The read-hit ratio is maximized for TIRE with three in-
tervals and a slack value of 4. This result shows that a cache
may temporarily need to use more erasures than a stricter
quota would allow (K = 4 versus K = 1.5). Increasing the
threshold for insertion/reinsertion (3 intervals versus 1) also
helps prevent writes for less useful blocks. By comparison,
we turned off TIRE and found that 22 out of the 69 traces
had more erasures than the limit of 5, though the read-
hit ratio was higher than for TIRE (51.4% versus 47.9%).
Next, we investigated the access count threshold and found
that TIRE’s dynamic approach has a higher hit ratio than a
static value of 2 (47.9% versus 45.4%). Though not plotted,
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we also investigated the quantum granularity from 1 to 15
minutes, and found the highest read-hit ratio at 5 minutes,
though the differences were small at other quantum values.

Impact of eviction and container aging. Figure 8 shows
the impact of eviction and aging in Pannier. We start with
plain S2LRU+ and add invalidation-awareness and aging,
which constitute S2LRU* (L3 + I+ A). Across cache sizes,
adding invalidation-awareness and aging increases the read-
hit ratio. With handling of invalidation, heavily invalidated
containers are quickly evicted without traversing the hot
and cold queues, which leads to a ~3.2% read-hit ratio im-
provement. However, the invalidation-aware scheme does
not have an impact on FUE. Adding aging into Pannier in-
creases the read-hit ratio (1.2%) and FUE (0.15) slightly.
Each technique adds a small, but cumulative, improvement
to read-hit ratio.

Impact of ghost cache and promotion threshold. Due
to space constraints, we summarize the impact of a ghost
cache for insertion, reinsertion and packing blocks into con-
tainers. We also show the impact of a promotion threshold.

First, we found that leveraging a ghost cache with histor-
ical access counts of recent blocks is an effective technique
to improve FUE through admission control. The policy is
to only insert blocks into the cache that have more than a
threshold of accesses. Figure 9 plots the read-hit ratio and
FUE when varying the access count threshold between [0,
3]. An access count threshold of 0 indicates that admis-
sion control is disabled. The results show that for small
cache sizes (e.g., 1% and 2.5%), the read-hit ratio loss is low
(<£2%) when increasing the insertion threshold. The impact
is more pronounced for large cache sizes. We observed 2-3x
improvement in FUE when increasing the threshold, demon-
strating that this admission control policy significantly re-
duces flash erasures and increases FUE with a slight de-
crease in read-hit ratio. We incorporate this property in our
insertion/reinsertion policy to limit erasures when a quota
is enforced (§5.4).

Second, we use the ghost cache to segregate frequently
accessed blocks into containers for either the hot or cold
queue during the original insertion into the cache as well
as reinsertion during copy-forward. We refer to this as a
packing decision. Using four open containers for insertion
and reinsertion, we found that either insertion or reinsertion
leveraging the ghost cache separately improves the hit-ratio
1-1.5%, and the combination increases the hit-ratio ~3%.
FUE scores also increased marginally with the ghost cache.
Overall, the ghost cache has a modest impact for packing
containers, but a much larger impact on admission control.

Finally, we study the impact of including a promotion
threshold. We use S2LRU* as a baseline system and vary
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Figure 9: Tradeoffs in access-count based admission con-
trol for S2LRU+. The standard deviation is <0.5%.

the promotion threshold as the percentage of blocks in a
container. For example, in a container with 512 blocks, the
promotion threshold of 1% indicates 5 accesses are needed to
promote the container. We found that setting the container
promotion threshold to 5% achieves a consistent read-hit ra-
tio increase of ~2%, with the FUE score increasing slightly
(< 0.1). A higher threshold causes the read-hit ratio and
FUE score to drop. For Pannier, we set the promotion
threshold to 5% as the default value.

Impact of container size. We analyze the impact of con-
tainer size in terms of performance, resource overhead and
flash erasures. We use a multi-threaded benchmark with a
mix of random 4KB reads and random container writes of
varying sizes as the typical I/O pattern for Pannier. As we
vary the write size, we found that when the size increases
from 2MB to 32MB, the write throughput increases from 28
to 32 MBps. Further increasing the write I/O size slowly
increases the throughput but also significantly increases the
read tail latency. For example, the 99" percentile read re-
sponse time is ~1.6s when using a 1GB I/O size for writes.
Escalation of tail latencies in the lower-level can have unex-
pected impacts on upper-level applications [7].

A large container size decreases DRAM requirements for
maintaining cache status in the queue, but there are draw-
backs. In contrast, smaller containers use less memory for
open in-memory containers that are being packed. Impor-
tantly, flash erasures can be minimized when the cache evic-
tion size is aligned with flash block size since this avoids
incorrect copy-forward decisions by the FTL. For these rea-
sons we set 2MB as the default container size for Pannier
to align with the flash block size. For flash devices that
have differing characteristics than what we have studied, a
different container size may be more appropriate.

5.3 Prototype System Results

Next, we report the performance of Pannier without the
TIRE controller (i.e., without throttling SSD writes). We
replayed the three selected traces at an accelerated speed
to achieve ~80% of the system saturation throughput, rep-
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resenting a sustainable high load that Pannier can handle.
We created a warm cache scenario where we use the first two
thirds of the trace to warm the cache and then measure the
performance for the remaining trace. We primarily compare
with MQ and LRU+ because they represent the best per-
block scheme (MQ) and the container-aware baseline scheme
(LRU+). We normalize the performance against LRU be-
cause it represents a typical per-block baseline scheme.

Improved read response time. We first show how a
high read-hit ratio in Pannier prototype translates to an
overall performance boost with the MSR prn0 trace. Fig-
ure 10 presents the read-hit ratio, FUE and read response
time results of MQ, LRU+ and Pannier. We size the cache
to be 10% of the working set size, and present results for
the last two days of the trace. Figure 10(a) shows that
Pannier achieves a 15% read-hit ratio increase compared to
LRU+4. MQ shows the highest read-hit ratio with an in-
crease of 17%. Figure 10(b) shows that Pannier and LRU+
are consistently 2x better than MQ in FUE, which shows
the value of container-granularity writes. Figure 10(c) shows
the read response time of MQ, LRU+ and Pannier normal-
ized against LRU. Pannier shows a 16% read response time
reduction and 29% IOPS increase compared to LRU, and
MQ has an even lower response time in the final day.

Improved IOPS. We examine the performance improve-
ment for the MSR srci11 trace to see how Pannier behaves
when the read-hit ratio improvement is small. Figure 11
presents the read-hit ratio, FUE and read response time
results of MQ, LRU+ and Pannier for the srci11 trace. Fig-
ure 11(a) shows that the hit-ratio of all three techniques are
similar. However, the FUE of Pannier improves ~70% be-
cause of the high overwrite percentage in src11. Given sim-
ilar read-hit ratios, higher FUE indicates fewer flash writes
and flash queueing contention, thus, better IOPS. The read
response time shows a 4% improvement over LRU, and the
normalized IOPS shows a 12% improvement.

59

. Perf-(%)
Trace | Policy | RHR | FUE | EPBPD IOPS | RRT
L 67.6 | 0.01 | 13.7 100 | 100

o | M 82002 120 118 | 83
P Lt | 635|018 | 4.14 102 | 107
P 78.8 | 0.22 | 4.30 129 | 84

L 23.0 | 0.07 | 337 100 | 100

crerr| M| 244|008 | 324 106 | 92
Lt | 228 | 013 | 12.38 | 104 | 106

P 23.6 | 0.22 | 134 112 | 96

L 25.6 | 0.16 | 40.2 100 | 100

o M | 346 | 017 | 39.0 110 | 85
Pl o+ | 205 | 04 14.3 108 | 103
P 20.3 | 045 | 18.9 119 | 89

Table 5: Performance evaluation across caching policies.
The IOPS and RRT reduction percentage are relative to
the average performance with LRU policy. The standard
deviation for performance is <5.4%.

Performance result summary. Table 5 shows the results
for the traces studied in our performance experiments. We
observed Pannier achieves consistent performance improve-
ment across all traces and found that the read response time
directly relates to read-hit ratio. For the same read-hit ra-
tio (the src11 trace), a higher FUE score means fewer flash
writes, thus less contention and improved IOPS. As the load
intensity changes, the tradeoffs of Pannier can increase or
decrease. For example, as the load intensity decreases, the
IOPS improvement of Pannier is less pronounced, though
the EPBPD is still ~3x lower than the per-block scheme.
A higher load intensity causes more contention in Pannier,
where a modest FUE improvement alleviates some of the
queueing effect, thus better IOPS. In addition, a larger flash
cache will improve read-hit ratio and read response time,
but the gap between each of the caching policies is smaller
too.

Since the typical use case of a flash cache is behind an
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upper-level DRAM cache, we also experimented with dif-
ferent DRAM sizes. A bigger DRAM cache hides reference
streams with low reuse distance from a flash cache, thus
slightly increasing FUE and IOPS. The read-hit ratio and
read response time achieves <3% improvement because the
underlying (larger) flash cache is the determining factor for
hits. Pannier users can tune the DRAM cache size based on
the availability of resources and workload characteristics.

5.4 Pannier with TIRE

So far, we have studied the performance of Pannier for
a performance-oriented customer. Next we study the per-
formance of Pannier with erasure constraints and quantify
the impact of the TIRE controller on flash performance and
erasures. Figure 12 shows the advantage of Pannier’s con-
troller with an EPBPD quota of 5 for the MSR src11 trace.
We plot the trace load and the instantaneous, quota and
credit EPBPD. For comparison, we use two policies: credit-
based zero slack and infinite slack. For the zero slack policy,
if the EPBPD credit is zero at any point in the quantum,
then there is no admission for the next quantum until the
EPBPD quota is positive. Another variant of this policy is
infinite slack that accepts any new caching blocks into the
cache and only computes the EPBPD credit at the end of
the quantum.

The no slack, static policy (Figure 12(a)) strictly keeps
the EPBPD target and generates a large EPBPD credit of
1612, but the read-hit ratio is only 13.8% with a FUE of
1.9. The infinite slack, static policy (Figure 12(b)) leads
to a read-hit ratio of 18.3% and FUE of 0.81 with a neg-
ative EPBPD credit of -96, meaning the erasure goal was
not achieved. Figure 12(c) shows that the TIRE successfully
satisfies the EPBPD quota with the highest read-hit ratio of
20.4% and FUE of 0.6 with a larger EPBPD balance of 208
compared to infinite slack. Clearly, the dynamic throttling
policy based on access count demonstrates interesting trade-
offs between EPBPD slack and performance. As discussed
earlier, turning off admission control leads to a higher read-
hit ratio (23.6%) but a negative EPBPD balance of -1836,
which will wear out the flash before its intended lifespan.

Table 6 summarizes the results for our traces when the
TIRE controller is on. We do not include prn0 results be-
cause its EPBPD is below 5. As the EPBPD quota in-
creases from 5 to 8.3, read-hit ratio and FUE values increase,
though the flash lifetime decreases. In general, removing the
EPBPD quota decreases the normalized read response time.
As an example, the MS map trace has 107% normalized read
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quota=5 quota=8.3
Perf.(%) Perf.(%)
Trace | RHR | FUFE 10PS | RRT RHR | FUE 10PS | RRT
srcll | 20.4 0.6 90 111 | 22.9 0.9 96 108
map 22.0 1.2 92 107 | 24.3 1.6 98 104
Table 6: Performance evaluation of Pannier with

EPBPD quota of 5 and 8.3. The IOPS and RRT reduc-
tion percentage are relative to LRU policy in Table 5.
The standard deviation for performance is <4.8%.

response time with a quota of 5 compared to 89% without
any quota (Table 5). Pannier allows users to explore trade-
offs between performance and flash lifespan to achieve the
desired performance objectives.

5.5 Sensitivity and Overhead Analysis

To further understand the interplay of access pattern vari-
ability and invalidation on caching, we consider a static web
content flash cache use case, which is typically deployed in
a content delivery network (CDN). Then, we study the re-
source overhead of Pannier.

Impact of access pattern variability. We first study a
static web content trace generated using ProWGen with a
Zipf distribution of access counts. The read-only web server
trace is characterized with variable size objects and no in-
validations. We compare LRU+, Pannier and RIPQ+ by
varying the Zipf slope from 0.5 to 1 [3, 4, 11]. We choose
RIPQ+ because it is specifically designed as a static content
cache, and we use the default value of 256MB containers and
8 insertion points for their segmented queue [35]. Pannier
and LRU+ also used 256MB containers for consistency. We
set the cache size as 10% of the working set size.

Figure 13(a) shows the normalized IOPS as a function of
Zipf slope, which controls accesses to data. We normalized
against the IOPS of LRU+ when the Zipf slope is set to 0.5.
When the Zipf slope is set to 0.5 (highly varying access pat-
terns), the read-hit ratios for RIPQ+, Pannier and LRU+
are 53%, 50%, 27%, respectively. When the Zipf slope is set
to 1 (low variability of access patterns), the read-hit ratios
are close to 81% for all techniques. When the Zipf slope
is low, access patterns are spread across containers, which
lowers the read-hit ratio. This effect is more pronounced in
LRU+ because one accessed block may keep an entire con-
tainer alive. RIPQ+ and Pannier successfully consolidate
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Figure 13: Impact of Zipf slope and invalidation on a
static web content workload. The standard deviation for
performance is <3.8%.

hot blocks to new containers, which translates to up to 54%
IOPS improvement compared to LRU+.

Factoring in invalidation. Next, we use a controlled ap-
proach to study the interplay of invalidation and access pat-
tern variability. We gradually increase the percentage of
overwrites from 0 to 100% to the read-only web trace. We
fix the cache size and accesses as in the previous experi-
ment, and we set the Zipf slope to 0.8 (a typically measured
value [3, 4, 11]). We normalized the IOPS to the Pannier re-
sult with zero invalidations. Pannier assigns shorter survival
time for heavily invalidated containers, and Figure 13(b)
shows that the read-hit ratio of Pannier changes from 71% to
67%, which translates to a slight IOPS decrease of 7%. Inval-
idated containers in RIPQ+ and LRU+ have to go through
the entire stack to be evicted, therefore, the IOPS decreases
are 13% and 18%, respectively, compared to 0% invalidation.
We found that a higher Zipf slope exacerbates the problem
because both divergent containers and invalidation prevents
containers from being evicted by LRU+, causing low space
efficiency and low system IOPS.

Resource overhead. The RAM requirements for cache
status include block and container records, queue structures,
and sampling for threshold values. If we target a 1TB flash
cache with a container size of 2MB and 4KB blocks, the
RAM overhead is ~400MB, which is small relative to the
4GB needed by a block index for any caching algorithm.
Adding an optional ghost cache that tracks two times as
many blocks as exist in flash adds an additional ~4.2GB of
DRAM. Note that a storage server with 1TB of flash may
devote 50GB of DRAM to data caching (e.g., 5% of flash).

6. RELATED WORK

Caching algorithms and NAND-flash caches, in particular,
have been studied extensively in the past decades, so we
briefly summarize the literature directly related to our work.

Buffer caches and hardware caches. Caches have been
widely deployed as a performance accelerator over the years
[5, 10, 12, 14, 18, 24, 26, 27, 31, 35, 38]. For example,
MQ [38] leverages a skewed frequency distribution in the sec-
ond level buffer cache to promote blocks with high frequency
to increase the hit-ratio. LIRS [12] leverages a per-block
LRU stack to maintain inter-reference recency. Their scheme
demotes blocks with long inter-reference recency quickly with-
out traversing the entire LRU stack. However, our con-
tainer organization makes the per-block inter-reference pre-

diction challenging because logical distinct blocks are phys-
ically co-located. One cannot infer the reuse distance from
the relative position across containers. ARC [18] divides the
cache into two partitions (accessed-once and accessed-many)
and promotes a block from one partition to the other on a
hit and adjusts the partitions’ sizes to adapt to workloads.
However, ARC cannot be directly transformed to support
containers because block access patterns vary within a con-
tainer. Qureshi et al. [26] found that the LRU Insertion
Policy (LIP), which places the incoming line in the LRU
position instead of the MRU position, reduces cache misses
for memory-intensive workloads. However, a container may
have a mixture of hot, cold, and invalidated blocks.

Flash caches. System researchers have studied block-
based flash caches extensively [1, 25, 31]. Two recent works,
SDF [23] and Nitro [17], use a large write unit that is aligned
to the flash erasure unit size to improve flash cache perfor-
mance. RIPQ [35] leverages another level of indirection to
track reaccessed photos within containers. RIPQ only han-
dles static, read-only content and does not make any caching
decisions based on container utilization, which we updated
to create RIPQ+. In summary, none of the previous work
explicitly studied hot/cold block and invalidation mixtures
for container-based caching, which is the focus of our work.

A large body of work on flash write buffer management
has attempted to leverage flash internal structures to achieve
better performance [9, 13, 16, 22], but it remains challenging
to incorporate additional information such as clean/dirty
status and recency at the firmware layer without modifying
the FTL interface.

Container techniques in other domains. Buffering small
writes into large containers has been studied extensively, and
one of the best known studies is the log-structured file sys-
tem (LFS) [28], which leverages large containers to achieve
high write throughput for HDD systems. WOLF [36] lever-
ages segregating active and inactive data in memory contain-
ers to reduce garbage collection overhead. However, some
techniques from LFS-type systems cannot be directly ap-
plied to flash. For example, a hole plugging [37] technique
is effective for disk systems, but flash does not support in-
place writes. Also, as a cache, Pannier has the option to
silently evict [31] cached data unlike a file system. Pannier
is unique in that our use of containers balances high perfor-
mance and high flash usage effectiveness, though techniques
from earlier works influenced our design.

7. CONCLUSION

As flash caches have become widespread for second level
caching, new caching algorithms are needed that are aware
of the erasure properties of flash. Using containers to buffer
small writes is the first step, but it raises the new problem
of managing compound objects. This paper studies several
important aspects of a container cache including: leverag-
ing access counts to group blocks into containers; managing
divergent containers with varying access counts and inval-
idated blocks; and limiting flash erasures with the TIRE
algorithm. Our caching middleware, Pannier, has higher
performance than other container-based caching algorithms.
In comparison to block-based caching algorithms, Pannier’s
performance is competitive with significantly fewer erasures.
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