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ABSTRACT
Science and engineering depend upon computation of func-
tions such as flow fields, charge distributions, and quantum
states. Ultimately, such computations require some kind
of discretization, but in recent years it has become possi-
ble in many cases to hide the discretizations from the user.
We present the Chebfun system for numerical computation
with functions, which is based on a key idea: an analogy
of floating-point arithmetic for functions rather than num-
bers.

1. INTRODUCTION
The oldest problem of computing is, how can we calculate

mathematical quantities? As other aspects of computing
have entered into every corner of our lives, mathematical
computation has become a less conspicuous part of com-
puter science, but it has not gone away. On the contrary, it
is bigger than ever, the basis of much of science and engi-
neering.
The mathematical objects of interest in science and engi-

neering are not just individual numbers but functions. To
make weather predictions, we simulate velocity and pressure
and temperature distributions, which are multidimensional
functions evolving in time. To design electronic devices, we
compute electric and magnetic fields, which are also func-
tions. Sometimes the physics of a problem is described by
long-established differential equations such as the Maxwell
or Schrödinger equations, but just because the equations are
understood doesn’t mean the problem is finished. It may
still be a great challenge to solve the equations.
How do we calculate functions? The almost unavoidable

answer is that they must be discretized in one way or an-
other, so that derivatives, for example, may be replaced by
finite differences. Numerical analysts and computational en-
gineers are the experts at handling these discretizations.
As computers grow more powerful, however, a new pos-

sibility has come into play: hiding the discretizations away
so that the scientist does not have to see them. This is
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not feasible yet for weather prediction, but for certain kinds
of desktop computing, it is becoming a reality. This pa-
per introduces the Chebfun software system, which has fol-
lowed this vision from its inception in 2002. For functions
of one variable, f(x), the aim has been largely achieved,
and progress is well underway for functions of two variables,
f(x, y).

Chebfun is built on an analogy. To work with real num-
bers on a computer, we typically approximate them to 16
digits by finite bit strings: floating-point numbers, with an
associated concept of rounding at each step of a calcula-
tion. To work with functions, Chebfun approximates them
to 16 digits by polynomials (or piecewise polynomials) of
finite degree: Chebsyhev expansions, again with an associ-
ated concept of rounding. Thus the key to numerical com-
putation with functions is the generalization of the ideas of
floating-point approximation and rounding from numbers to
functions.

2. A COMBINATORIAL EXPLOSION
Haven’t discretizations in general, and floating-point num-

bers in particular, been rendered superfluous by the intro-
duction of symbolic systems like Mathematica or Maple? It
is worth taking a moment to explain why the answer is no,
for this will help elucidate the basis of our algorithms for
numerical computing with functions.

We begin with what looks like an encouraging observation:
if x and y are rational numbers, then so are x + y, x − y,
xy, and x/y (assuming y 6= 0). Since rational numbers can
readily be represented on computers, this might seem to
suggest that there is no need for floating-point arithmetic
with its inexact process of rounding. If a computer works in
rational arithmetic, no error is ever made, so it might seem
that in principle, much of numerical computation could be
carried out exactly.

The first obstacle we encounter is that not every interest-
ing real number x is rational (think of the hypotenuse of a
triangle). However, this alone is not a serious problem, as x
can be approximated arbitrarily closely by rationals.

The bigger problem is that when we try to construct such
approximations by practical algorithms, we run into combi-
natorial or exponential explosions. For example, suppose we
wish to find a root of the polynomial

p(x) = x5 − 2x4 − 3x3 + 3x2 − 2x− 1.

We can approximate an answer to great accuracy by rational
numbers if we take a few steps of Newton’s method, taught
in any introductory numerical analysis course. Let us do



Table 1: Five steps of Newton’s method in rational arithmetic to find a root of a quintic polynomial.

x(0) = 0

x(1) = −1

2

x(2) = −22

95

x(3) = −11414146527

36151783550

x(4) = − 43711566319307638440325676490949986758792998960085536
138634332790087616118408127558389003321268966090918625

x(5) = − 72439147917682017612900138187892597303500388360475439311780411943435792601058027446962992288206418458567001770355199631665161159634363

229746023731575873333990816664320035147759847208021088660066874783249488750988451982247975822898447180846798325922571792991768547894449

45627352999213086646631394057674120528755382012406424843006982123545361051987068947152231760687545690289851983765055043454529677921

15362215689722609358654955195182168763169315683704659081440024954196748041166750181397522783471619066874148005355642107851077541250

this, beginning from the initial guess x(0) = 0. The startling
result is shown in Table 1.
There is a problem here! As approximations to an exact

root of p, the rational numbers displayed in the table are
accurate to approximately 0, 0, 1, 3, 6, and 12 digits, re-
spectively; the number of useful digits doubles at each step
thanks to the quadratic convergence of Newton’s method.
Yet the lengths of the numerators are 1, 1, 2, 10, 53, and 265
digits, expanding by a factor of about 5 at each step since
the degree of p is 5. After three more steps we will have
an answer x(8) accurate to 100 digits, but represented by
numerator and denominator each about 33,125 digits long,
and storing it will require 66 kilobytes. If we were so foolish
as to try to take 20 steps of Newton’s method in this mode,
we would need 16 terabytes to store the result.
Such difficulties are ubiquitous. Rational computations,

and symbolic computations in general, have a way of ex-
panding exponentially. If nothing is done to counter this
effect, computations grind to a halt because of excessive de-
mands on computing time and memory. This is ultimately
the reason why symbolic computing, though powerful when
it works, plays such a circumscribed role in computational
science. As an example with more of a flavor of functions
rather than numbers, suppose we want to know the indefi-
nite integral of the function

f(x) = ex cos5(6x) sin6(5x).

This happens to be a function that can be integrated ana-
lytically, but the result is not simple. The Wolfram Mathe-
matica Online Integrator produces an answer that consists
of the expression

5ex(24 sin(24x) + cos(24x))

295424

plus twenty other terms of similar form, with denominators
ranging from 512 to 3687424. Working with such expressions
is unwieldy when it is possible at all. An indication of their
curious status is that if I wanted to be confident that this
long formula was right, the first thing I would do was see if
it matched results from a numerical computation.

3. FLOATING-POINT ARITHMETIC
It is in the light of such examples that I would like to con-

sider the standard alternative to rational arithmetic, namely
floating-point arithmetic. As is well known, this is the idea

of representing numbers on computers by, for example, 64-
bit binary words containing 53 bits (≈ 16 digits) for a frac-
tion and 11 for an exponent. (These parameters correspond
to the IEEE double precision standard.) Konrad Zuse in-
vented floating-point arithmetic in Germany before World
War II, and the idea was developed by IBM and other man-
ufacturers a few years later. The IEEE standardization came
in the mid-1980s, and is beautifully summarized in the book
by Overton [14]. For more up-to-date details, see [13].

There are two aspects to floating-point technology: a rep-

resentation of real (and complex) numbers via a subset of the
rationals, and a prescription for rounded arithmetic. These
principles combine to halt the combinatorial explosion. Thus,
for example, if two 53-bit numbers are multiplied, the math-
ematically exact result would require about 106 bits to be
represented. Instead of accepting this, we round the result
down to 53 bits again. More generally, most floating-point
arithmetic systems adhere to the following principle: when
an operation +,−,×, / is performed on two floating-point
numbers, the output is the exactly correct result rounded
to the nearest floating-point number, with ties broken by
a well-defined rule. This implies that every floating-point
operation is exact except for a small relative error:

computed(x ∗ y) = (x ∗ y)(1 + ε), |ε| ≤ εmach. (1)

Here ∗ denotes one of the operations +,−,×, /, and we
are ignoring the possibilities of underflow or overflow. The
IEEE double precision value of “machine epsilon” is εmach =
2−53 ≈ 1.1× 10−16.

Equation (1) implies an important corollary: when two
floating-point numbers x and y are combined on the com-
puter by an operation ∗, the result computed(x∗y) is exactly
equal to x̃ ∗ ỹ for some two numbers x̃ and ỹ that are close
to x and y in a relative sense:

computed(x ∗ y) = x̃ ∗ ỹ, |x− x̃|
|x| ,

|y − ỹ|
|y| ≤ εmach. (2)

Numerical analysts say that the operations +,−,×, / are
backward stable, delivering the exactly correct results for in-
puts that are slightly perturbed from their correct values in
a relative sense. The same conclusion holds or nearly holds
for good implementations of other elementary operations,
often unary instead of binary, such as

√
, exp, or sin [13].

Floating-point arithmetic is not widely regarded as one of
computer science’s sexier topics. A common view is that it



is an ugly but necessary engineering compromise. We can’t
do arithmetic honestly, the idea goes, so we cheat a bit —
unfortunate, but unavoidable, or as some have called it, a
“Faustian bargain.” In abandoning exact computation we
sell our souls, and in return, we get some numbers.
I think one can take a more positive view. Floating-point

arithmetic is an algorithm, no less than a general procedure
for containing the combinatorial explosion. Consider the
Newton iteration of Table 1 again, but now carried out in
IEEE 16-digit arithmetic:

x(0) = 0.00000000000000,

x(1) = −0.50000000000000,

x(2) = −0.33684210526316,

x(3) = −0.31572844839629,

x(4) = −0.31530116270328,

x(5) = −0.31530098645936,

x(6) = −0.31530098645933,

x(7) = −0.31530098645933,

x(8) = −0.31530098645933.

It’s the same process as before, less startling without the ex-
ponential explosion, but far more useful. Of course, though
these numbers are printed in decimal, what is really going
on in the computer is binary. The exact value at the end,
for example, is not the decimal number printed but

x(8) = −0.010100001011011110010000 . . .

11000001001111010100011110001binary.

Abstractly speaking, when we compute with rational num-
bers, we might proceed like this:

Compute an exact result,

then round it to a certain number of bits.

The problem is that the exact result is often exponentially
lengthy. Floating-point arithmetic represents an alternative
idea:

Round the computation at every step,

not just at the end.

This strategy has proved overwhelmingly successful. At a
stroke, combinatorial explosion ceases to be an issue. More-
over, so long as the computation is not numerically unstable
in a sense understood thoroughly by numerical analysts, the
final result will be accurate. This is what one observes in
practice, and it is also the rigorous conclusion of theoretical
analysis of thousands of algorithms investigated by genera-
tions of numerical analysts [11].

4. CHEBFUN
Chebfun is an open-source software system developed over

the past decade at Oxford by myself and a succession of
students and postdocs including Zachary Battles, Ásgeir
Birkisson, Nick Hale, and Alex Townsend, as well as Toby
Driscoll at the University of Delaware (a full list can be
found in the Acknowledgments and at www.chebfun.org).
The aim of Chebfun is to extend the ideas we have just
discussed from numbers to functions. Specifically, Chebfun
works with piecewise smooth real or complex functions de-
fined on an interval [a, b], which by default is [−1, 1]. A

function is represented by an object known as a chebfun.

(We write “Chebfun” as the name of the system and “cheb-
fun” for a representation of an individual function.) If f and
g are chebfuns, we can perform operations on them such as
+,−,×, /, as well as other operations like exp or sin. The in-
tention is not that such computations will be exact. Instead,
the aim is to achieve an analogue of (2) for functions,

computed(f ∗g) = f̃ ∗ g̃, ‖f − f̃‖
‖f‖ ,

‖g − g̃‖
‖g‖ ≤ Cεmach (3)

(again ignoring underflow and overflow), where C is a small
constant, with a similar property for unary operations. Here
‖·‖ is a suitable norm such as ‖·‖∞. Thus the aim of Chebfun
is normwise backward stable computation of functions. We
shall say more about the significance of (3) in Section 6.

Chebfun is implemented in MATLAB, a language whose
object-oriented capabilities enable one to overload opera-
tions such as +, −, ×, /, sin, and exp with appropriate
alternatives. Some of the methods defined for chebfuns are
as follows (this list is about one-third of the total):

abs csc kron real

acos cumprod legpoly remez

airy cumsum length roots

angle diff log round

arclength dirac max sec

asin eq mean semilogy

atan erf min sign

atanh exp minus sin

besselj feval mod sinh

bvp4c find norm spline

ceil floor null sqrt

chebpade gmres ode45 std

chebpoly heaviside pinv sum

chebpolyplot imag plot svd

cond integral plus tanh

conj interp1 poly times

conv inv polyfit transpose

cos isequal prod var

cosh isinf qr waterfall

cot isnan rank

coth jacpoly rank

MATLAB (or Python) programmers will recognize many
of these as standard commands. In MATLAB, such com-
mands apply to discrete vectors, or sometimes matrices, but
in Chebfun, they perform continuous analogues of the oper-
ations on chebfuns. Thus for example log(f) and sinh(f)

deliver the logarithm and the hyperbolic sine of a chebfun f,
respectively. More interestingly, sum(f) produces the defi-
nite integral of f from a to b (a scalar), the analogue for
continuous functions of the sum of entries of a vector. Sim-
ilarly, cumsum(f) produces the indefinite integral of f (a
chebfun), diff(f) computes the derivative (another cheb-
fun), and roots(f) finds the roots in the interval [a, b] (a
vector of length equal to the number of roots).

Mathematically, the basis of Chebfun — and the origin
of its name — is piecewise Chebyshev expansions. Let Tj

denote the Chebyshev polynomial Tj(x) = cos(j cos−1x),
of degree j, which equioscillates between j + 1 extrema ±1
on [−1, 1]. The Chebyshev series for any Hölder continuous
f ∈ C[−1, 1] is defined by [20]

f(x) =

∞
∑

j=0

′

ajTj(x), aj =
2

π

∫ 1

−1

f(x)Tj(x)√
1− x2

dx, (4)



where the prime indicates that the term with j = 0 is mul-
tiplied by 1/2. (These formulas can be derived using the
change of variables x = cos θ from the Fourier series for the
2π-periodic even function f(cos θ). Chebyshev series are es-
sentially the same as Fourier series, but for nonperiodic func-
tions.) Chebfun is based on storing and manipulating coef-
ficients {aj} for such expansions. Many of the algorithms
make use of the equivalent information of samples f(xj) at
Chebyshev points,

xj = cos
jπ

n
, 0 ≤ j ≤ n, (5)

and one can go back and forth to the representation (4)
as needed by means of the Fast Fourier Transform (FFT).
Each chebfun has a fixed finite n chosen to be large enough
for the representation, according to our best estimate, to
be accurate in the local sense (3) to 16 digits. Given data
fj = f(xj) at the Chebyshev points (5), other values can be
determined by the barycentric interpolation formula [17],

f(x) =

n
∑

j=0

wj

x− xj

fj

/

n
∑

j=0

wj

x− xj

, (6)

where the weights {wj} are defined by

wj = (−1)j δj , δj =

{

1/2, j = 0 or j = n,

1, otherwise.
(7)

(If x happens to be exactly equal to some xj , one bypasses
(6) and sets f(x) = f(xj).) This method is known to be
numerically stable, even for polynomial interpolation in mil-
lions of points [12].
If f is analytic on [−1, 1], its Chebsyhev coefficients {aj}

decrease exponentially [20]. If f is not analytic but still
several times differentiable, they decrease at an algebraic
rate determined by the number of derivatives. It is these
properties of rapid convergence that Chebfun exploits to be
a practical computational tool. Suppose a chebfun is to be
constructed, for example by the constructor statement

f = chebfun(@(x) sin(x)).

What happens when this command is executed is that the
system performs adaptive calculations to determine what
degree of polynomial approximation is needed to represent
sin(x) to about 15 digits of accuracy. The answer in this
case turns out to be 13, so that our 15-digit approximation
is actually

f(x) = 0.88010117148987T1(x)− 0.03912670796534T3(x)

+ 0.00049951546042T5(x) − 0.00000300465163T7(x)

+ 0.00000001049850T9(x)− 0.00000000002396T11(x)

+ 0.00000000000004T13(x)

when represented in the well-behaved basis of Chebyshev
polynomials {Tk}, or

f(x) = 1.00000000000000x− 0.16666666666665x3

+ 0.00833333333314x5 − 0.00019841269737x7

+ 0.00000275572913x9 − 0.00000002504820x11

+ 0.00000000015785x13

in the badly-behaved but more familiar basis of monomials.
This is a rather short chebfun; more typically the length
might be 50 or 200. For example, chebfun(@(x) sin(50*x))

has length 90, and chebfun(@(x) exp(-1./x.^2)) has length
219.

Having settled on representing functions by Chebyshev
expansions and interpolants, we next face the question of
how to implement mathematical operations such as those in
the list above. This is a very interesting matter, and de-
tails of the many algorithms used in Chebfun can be found
in [20] and the other references. For example, zeros of cheb-
funs are found by roots by a recursive subdivision of the
interval combined with eigenvalue computations for Cheby-
shev “colleague matrices” [3], and global maxima and min-
ima are determined by max and min by first finding zeros of
the derivative. All these computations are fast and accurate
even when the underlying polynomial representations have
degrees in the thousands.

At the end of Section 2 we considered an indefinite inte-
gral. In Chebfun indefinite integration is carried out by the
command cumsum, as mentioned above, and that example on
the interval [−1, 1] could go like this:

x = chebfun(@(x) x);

f = exp(x).*cos(6*x).^5.*sin(5*x).^6;

g = cumsum(f);

The chebfun g is produced in about 0.02 secs. on a desktop
machine, a polynomial of degree 94 accurate to about 16
digits. Here is a plot:

−1 −0.5 0 0.5 1
−0.1

−0.05

0

0.05

0.1

5. TAMING THE EXPLOSION
As mentioned earlier, when two 53-bit numbers are mul-

tiplied, an exact result would normally require 106 bits, but
floating-point arithmetic rounds this to 53. Chebfun im-
plements an analogous compression for polynomial approx-
imations of functions as opposed to binary approximations
of numbers. For example, suppose x is the chebfun corre-
sponding to the linear function x on [−1, 1]. If we execute
the commands

f = sin(x), g = cos(x), h = f.*g,

we find that the chebfuns f and g have degrees 13 and 14,
respectively. One might expect their product to have de-
gree 27, but in fact, h has degree only 17. This happens
because at every step, the system automatically discards
Chebyshev coefficients that are below machine precision —
just as floating-point arithmetic discards bits below the 53rd.
The degree grows only as the complexity of the functions in-
volved genuinely grows, as measured on the scale of machine
epsilon.

Here is an example to illustrate how this process contains
the explosion of polynomial degrees. The program

f = chebfun(@(x) sin(pi*x));

s = f;

for j = 1:15

f = (3/4)*(1 - 2*f.^4);



s = s + f;

end

plot(s)

begins by constructing a chebfun f corresponding to the
function sin(πx) on the interval [−1, 1], with degree 19.
Then it takes fifteen steps of an iteration that raises the
current f to the 4th power at each step. The result after
a fraction of a second on a desktop computer is a rather
complicated chebfun, of degree 3378, which looks like this:

−1 −0.5 0 0.5 1
5

6

7

8

9

10

The degree 3378 may seem high, but it is very low com-
pared to what it would be if the fourth powers were com-
puted without dropping small coefficients, namely 19×415 =
20,401,094,656 ! Thus the complexity has been curtailed by
a factor of millions, yet with little loss of accuracy. For exam-
ple, the command roots(s-8) now takes less than a second
to compute the twelve points x ∈ [−1, 1] with s(x) = 8:

-0.99293210741191

-0.81624993429017

-0.79888672972343

-0.20111327027657

-0.18375006570983

-0.00706789258810

0.34669612041826

0.40161707348210

0.44226948963247

0.55773051036753

0.59838292651791

0.65330387958174

These results are all correct except in the last digit.
Once one has a chebfun representation, further compu-

tations are easy. For example, sum(s) returns the definite
integral 15.26548382582674 in a few thousandths of a sec-
ond. The exact value is 15.26548382582674700943 . . . .

6. NORMWISE BACKWARD STABILITY
Does Chebfun live up to the vision of an analogue for

functions of floating-point arithmetic for numbers? In con-
sidering this question, a good starting point is the normwise
backward stability condition (3), and in particular, it is pro-
ductive to focus on two questions:

(I) How close does Chebfun come to achieving (3)?

(II) What are the implications of this condition?

The answer to (I) appears to be that Chebfun does satisfy
(3), at least for the basic operations +,−,×, /. This has not
been proved formally and it is a project for the future to
develop a rigorous theory. To explain how (3) can hold, let
us consider the mode in which each chebfun is represented

precisely by a finite Chebyshev series with floating-point co-
efficients (instead of values at Chebyshev points). The prop-
erty (3) for + and − stems from the corresponding proper-
ties for addition and subtraction of floating-point numbers,
together with the numerical stability of barycentric interpo-
lation [12]. For multiplication, the argument is only slightly
more complicated, since again the operation comes down to
one of Chebyshev coefficients. The more challenging funda-
mental operation is division, for in this case the quotient f/g
is sampled pointwise at various Chebyshev points and then
a new Chebyshev series is constructed by the adaptive pro-
cess used generally for chebfun construction. It is not known
whether the current code contains safeguards enough to give
a guarantee of (3), and this is a subject for investigation. In
addition, it will be necessary to consider analogues of (3) for
other Chebfun operations besides +,−,×, /.

This brings us to (II), the question of the implications of
(3). The easier part of the answer, at least for numerical
analysts familiar with backward error analysis, is to under-
stand exactly what the property (3) does and does not assert
about numerical accuracy. A crucial fact is that the bound
involves the global norms of the function f and g, not their
values at particular points. For example, we may note that
if two chebfuns f and g give (f − g)(x) < 0 at a point x,
then from (3) we cannot conclude that f(x) < g(x). We can

conclude, however, that there are nearby chebfuns f̃ and
g̃ with f̃(x) < g̃(x). This is related to the “zero problem”
that comes up in the theory of real computation [22]. It is
well known that the problem of determining the sign of a
difference of real numbers with guaranteed accuracy poses
difficulties. However, Chebfun makes no claim to overcome
these difficulties: the normwise condition (3) promises less.

Does it promise enough to be useful? What strings of
computations in a system satisfying (3) at each step can be
expected to be satisfactory? This is nothing less than the
problem of stability of Chebfun algorithms, and it is a major
topic for future research. Certainly there may be be applica-
tions where (3) is not enough to imply what one would like,
typically for reasons related to the zero problem. For exam-
ple, this may happen in some problems of geometry, where
arbitrarily small coordinate errors may make the the differ-
ence between two bodies intersecting or not intersecting, or
between convex and concave. On the other hand, genera-
tions of numerical analysts have found that such difficulties
are by no means universal, that the backward stability con-
dition (2) for floating-point arithmetic is sufficient to ensure
success for many scientific computations. An aim of ours
for the future will be to determine how far this conclusion
carries over to condition (3) for chebfuns.

7. CHEBFUN SOFTWARE PROJECT
Chebfun began in 2002 as a few hundred lines of MATLAB

code, written by Zachary Battles, for computing with global
polynomial representations of smooth functions on [−1, 1],
and this “core Chebfun” framework has been the setting for
the discussion in this article. But in fact, the project has
expanded greatly in the decade since then, both as a software
effort and in its computational capabilities.

In terms of software, we have grown to an open-source
project hosted on GitHub with currently about a dozen
developers, most but not all based at Oxford. The code
is written in MATLAB, which is a natural choice for this
kind of work because of its vector and matrix operations,



although implementations of parts of core Chebfun have
been produced by various people in other languages includ-
ing Python, C, Julia, and Octave. To date there have been
about 20,000 Chebfun downloads. We interact regularly
with users through bug reports, help requests by email,
and other communications, but we believe we are not alone
among software projects in feeling that we have an inade-
quate understanding of who our users are and what they are
doing.
In terms of capabilities, here are some of the developments

beyond the core ideas emphasized in this article. The ab-
breviations ODE and PDE stand for ordinary and partial
differential equations.

• piecewise smooth functions [15]

• periodic functions (Fourier not Chebyshev) [6]

• fast edge detection for determining breakpoints [15]

• infinite intervals [a,∞), (−∞, b], (−∞,∞)

• functions with poles and other singularities

• delta functions of arbitrary order

• Padé, Remez, CF rational approximations [7, 16, 21]

• fast Gauss and Gauss–Jacobi quadrature [8, 10]

• fast Chebyshev ↔ Legendre conversions [9]

• continuous QR factorization, SVD, least-squares [1, 19]

• representation of linear operators [5]

• solution of linear ODEs [5]

• solution of integral equations [4]

• solution of eigenvalue problems [5]

• exponentials of linear operators [5]

• Fréchet derivatives via automatic differentiation [2]

• solution of nonlinear ODEs [2]

• PDEs in one space variable plus time

• Chebgui interface to ODE/PDE capabilities

• Chebfun2 extension to rectangles in 2D [18]

We shall not attempt to describe these developments, but
here are a few comments. For solving ODE boundary value
problems, whether scalars or systems and smooth or just
piecewise smooth, Chebfun and its interface Chebgui have
emerged as the most convenient and flexible tool in ex-
istence, making it possible to solve all kinds of problems
with minimal effort with accuracy close to machine precision
(these developments are due especially to Ásgeir Birkisson,
Toby Driscoll, and Nick Hale) [2]. For computing quadra-
ture nodes and weights, convolution, and conversion between
Legendre and Chebyshev coefficient representations, Cheb-
fun contains codes implementing new algorithms that repre-
sent the state of the art, enabling machine accuracy for even
millions of points in seconds (these developments are due to
Nick Hale and Alex Townsend [8, 9]). Extensions to multi-
ple dimensions have begun with Alex Townsend’s Chebfun2
code initially released in 2013 [18].

 

Figure 1: Schrödinger eigenstates computed by

quantumstates(V), where V is a chebfun representing

a piecewise smooth potential function.

The best way to get a sense of the wide range of problems
that can be solved by this kind of computing is to look at the
collection of Chebfun Examples available online at the web
site www.chebfun.org. Approaching 200 in number, the Ex-
amples are organized under headings that look like chapters
of a numerical analysis textbook (optimization, quadrature,
linear algebra, geometry, . . . ), with dozens of short discus-
sions in each category of problems ranging from elementary
to advanced.

Here is an example that gives a taste of Chebfun’s ability
to work with functions that are only piecewise smooth, and
to solve ODE eigenvalue problems. The sequence

x = chebfun(@(x) x,[-2,2]);

V = max(x.^2/2,1-2*abs(x));

quantumstates(V)

produces the plot shown in Figure 1 as well as associated
numerical output. The figure shows the first 10 eigenmodes
of a Schrödinger operator −h2∂2u/∂x2 +V (x)u(x) with the
default value of Planck’s constant h = 0.1. The potential
function V (x) consists of the parabola x2/2 over the interval
[−2, 2] maximized with a triangular barrier around x = 0,
and it is represented by a piecewise-smooth Chebfun with
four pieces. This kind of mathematics arises in any introduc-
tory quantum mechanics course; Chebfun makes exploring
the dependence of eigenstates on potential functions almost
effortless, yet with accuracy close to machine precision.

And here is an example that gives a taste of Chebfun-
like computing on rectangles in 2D as implemented by Alex
Townsend’s extension Chebfun2. The sequence

f = chebfun2(@(x,y) exp(-(x.^2+y.^2))...

.*sin(6*(2+x).*x).*sin(4*(3+x+y).*y));

contour(f)

defines and plots a chebfun2 representing an oscillatory func-
tion of x and y on the unit square [−1, 1]2. The command
max2 tells us its global maximum in a fraction of a second:

max2(f)

ans = 0.970892994917307

The algorithms underlying Chebfun2 are described in [18].



Figure 2: Two-dimensional extension of Chebfun:

an oscillatory function represented by a chebfun2,

with its maximum shown as a black dot.

8. CONCLUSION
Chebfun is being used by scientists and engineers around

the world to solve 1D and some 2D numerical problems with-
out having to think about the underlying discretizations.
The Chebyshev technology it is built on is powerful, and it
is hard to see any serious competition for this kind of high-
accuracy representation of functions in one dimension.
At the same time, the deeper point of this article has

been to put forward a vision that is not tied specifically to
Chebyshev expansions or to other details of Chebfun. The
vision is that by the use of adaptive high-accuracy numerical
approximations of functions, computational systems can be
built that “feel symbolic but run at the speed of numerics.”
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