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ABSTRACT
The sonic space that can be spanned with the voice is vast
and complex and, therefore, it is difficult to organize and ex-
plore. In order to devise tools that facilitate sound design by
vocal sketching we attempt at organizing a database of short
excerpts of vocal imitations. By clustering the sound sam-
ples on a space whose dimensionality has been reduced to
the two principal components, it is experimentally checked
how meaningful the resulting clusters are for humans. Even-
tually, a representative of each cluster, chosen to be close to
its centroid, may serve as a landmark in the exploration of
the sound space, and vocal imitations may serve as proxies
for synthetic sounds.

Categories and Subject Descriptors
H.5.5 [Sound and Music Computing]: Signal analysis,
synthesis, and processing

General Terms
Experimentation

Keywords
Vocal imitations, Clustering, Landmarks, PCA

1. INTRODUCTION
In this contribution, we investigate how the space of vocal

imitations could be arranged and simplified to highlight clus-
ters of sounds that are acoustically similar. We also assess
if the clusters, produced by mere algebraic and algorithmic
manipulations, make sense to humans as well. Prototype
sounds are automatically selected to represent clusters, and
human participants are requested to label each of the re-
maining sounds as being perceptually closer to one of the
prototypes. Between subject consistency is measured and
the low-dimensional space is partitioned according to the
preferences of participants.
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Section 2 introduces the sonic space of vocal imitations
and its possible uses. Sections 3 and 4 respectively show
how to encode and group samples of vocal imitations in or-
der to organize them. In section 5 we check how automatic
clustering compares with human performance for the task
of classifying a whole set of vocal imitations based on simi-
larity to the extracted cluster prototypes. Finally, section 6
indicates how this work will be extended and used for sound
design.

2. THE VOCAL SONIC SPACE
In a sense, the human voice has for acoustic communi-

cation a role similar to what the hand and pencil have for
visual communication. Humans use their voice for verbal
communication as well as for non-verbal acoustic expression,
similarly to the hand which is used both for writing and for
drawing. Just as the hand and pencil are extensively used
for visual sketching, the voice has potential to be exploited
for sketching or imitating sounds. Indeed, sketching comes
before verbal – oral or written – expression in development
of both the human species and the human individuals [3].
Recent research has shown that vocal imitations can be more
effective than verbalizations at representing and communi-
cating sounds [13]. Such natural capabilities are being ex-
ploited for sound retrieval and synthesis [2]. The European
project SkAT-VG is investigating the use of voice and ges-
ture as intuitive means for the selection and control of sound
models in sonic interaction design [19].

In order to devise tools that facilitate sound design by vo-
cal sketching we must gain a better understanding of what
the voice can do and how vocalizations are interpreted by lis-
teners. The space of voice-produced sounds needs to be de-
scribed both in acoustic and in articulatory terms. We need
to know the characteristics of a comprehensive repertory of
vocal sounds and how these can be achieved by our voice or-
gan. From a sound design perspective, it is particularly use-
ful to organize the vocal sound space on a low-dimensional
layout whose navigation can be facilitated by landmarks, or
sounds that represent distinct neighborhoods. The purpose
of this study is to explore the construction of such a layout
automatically from a database that significantly spans the
possible non-verbal uses of the human voice.

A database of 152 audio segments were manually extracted
from the Fred Newman’s repertory of vocal imitations de-
scribed in his book [17] and included in the companion CD.
The segments were all 500 ms long (22050 samples at 44100
samples/s) and were taken to represent a single sound event
or process. The length has been chosen in order to try to



accomodate for different phenomena. There is still a degree
of arbitrariness in this operation, as some events may be the
result of a concatenation of articulatory actions of a shorter
time span, but for the scope of this study each audio segment
may be considered to include a single utterance.

Since the audio segments were extracted from a compre-
hensive set of examples of a renown professional vocal artist,
they are likely to represent well the possibilities of human
voice. In general, we would like to be able to browse col-
lections of vocal samples, and to do that it is desirable to
organize them on a two-dimensional surface, where new vo-
cal imitations could be added and possibly used as proxies
for non-vocal or synthetic reference sounds. In a practical
application for sound designers, we may want to navigate
the sonic space of a given sound synthesis model, and vo-
cal imitations may be used to refer to underlying synthetic
sounds.

Tools for sonic browsing on two dimensions were proposed
in the past [7]. The idea of using landmarks to facilitate
navigation in the sound design space was explored in the
context of parametric sound synthesis [5, 1], and auditory
representations were used both to give a visual snapshot to
each sound and to compute distances that would allow lo-
cating new sounds in the map. In the present study, we show
how a low-dimensional space of vocal imitations, each pos-
sibly corresponding to an underlying synthetic sound, can
be automatically arranged and partitioned, with landmarks
automatically extracted as representatives of clusters.

Relevant related work is [20], where a free-sorting task
on 150 non-vocal sound effects, assigned to several subjects,
produced dissimilarity matrices to train an automated classi-
fier via multidimensional scaling. Categorization via manual
grouping was done for everyday sounds in selected contexts,
such as cars [15]. For kitchen sounds [9], the four main cate-
gories of solids, electricals, gases, and liquids were found, and
they were largerly confirmed when subjects were requested
to sort imitations of such sounds [12]. The organization of
sound material into spatial layouts for performance control
was investigated in [16], where mixtures of Gaussians were
used to achieve continuous interpolation in the sonic space.
The mapping between vocal postures/gestures and sound-
synthesis parameters is an active research topic in sound
and music computing, where several machine-learning tech-
niques can be exploited [6].

3. REDUCING DIMENSIONALITY: A COM-
PACT DESCRIPTION OF SOUNDS

Digital signals are described by sequences of many values,
and reducing the dimensionality is a necessary step in order
to organize a sonic space. A classic way to do that is by
means of Principal Component Analysis (PCA), which is
based on Singular Value Decomposition (SVD) [10].

Attempting a reduction of dimensionality on the raw au-
dio files or on their invertible transformations (Fourier, or
Wavelet) is not successful. That is why more compact de-
scriptions of sounds are conveniently adopted, even if they
do not allow to reconstruct the original signals. However,
in a sonic space where landmarks are associated with in-
stances of sound models, it would be possible to localize a
given sound in the space and to interpolate between neigh-
boring landmarks to synthesize a new sample, even without
direct reconstruction from descriptors.

In the area of music information retrieval a lot of research
has been devoted to extract audio descriptors (or features)
that could concisely represent sound and music [18]. Several
software libraries are available to easily extract brightness,
spectral flux, and other descriptors from a given soundfile,
and to collect statistical descriptors from them. For this
study, we have been using the popular MIR toolbox v.1.5 [11]
under Matlab R2010b, and we applied a number of its fea-
ture extractors to summarize each of our audio segments
with statistical information. In particular, we used the me-
dian and interquartile (IQR) range values (as recommended
in [18]) of spectral flux, centroid, roughness, flatness, en-
tropy, skewness, and RMS energy computed over 18 win-
dows spanning the 500ms-duration of each audio segment.

In addition to the statistical audio features, we added
some features that would account for the temporal morphol-
ogy of each audio segment. The idea is that, for example,
such features would mark a clear difference between a sus-
tained noise and an impulsive click. However, there is the
problem of where short temporal events actually occur in
time, as it should be irrelevant if an impulsive click occurs
at time 100ms or 300ms in the considered time span. In or-
der to account for possible elastic deformations of time, Dy-
namic Time Warping (DTW) is used to compare distances
between the extracted RMS profile and a number of tem-
plates. The set of prototypical temporal envelopes is consti-
tuted by: upward slope, downward slope, up-down profile,
and impulses. As compared to the study on morphological
profiles conducted on 55 environmental sounds by Minard et
al. [14], we used four of the six dynamic profiles that resulted
from manual clustering by their pool of experts. Among the
many other possible descriptors that could be used, those
exploiting the nature of vocal sounds are particularly inter-
esting, and will be briefly considered in section 6. However,
in this study the organization of the sonic space, the extrac-
tion of prototype sounds, and the subjective tests are voice
agnostic. Table 1 lists the features used in this study.

1 Flux median Distance between consecutive
spectral frames2 IQR

3 Centroid median The first moment of a spectral
frame4 IQR

5 Roughness median Estimation of sensory dissonance
6 IQR
7 Flatness median Indicates whether the spectrum

is smooth or spiky8 IQR
9 Entropy median The relative entropy of a

spectral frame10 IQR
11 Skewness median A measure of symmetry of a

spectral frame12 IQR
13 RMS median The global energy of a spectral

frame14 IQR
15 Upward Upward slope
16 Downward Downward slope
17 Up-down Up-down profile
18 Pulses Train of pulses

Table 1: The eighteen features considered in the
study.

All collected features are non-negative real numbers, but
their range and units are quite different from each other. For
the subsequent step of PCA, we perform a normalization to
the maximum value of each feature in our population of
samples. Still, most of the distributions are heavily skewed



toward zero. In order to obtain feature distributions that
more evenly span the unit interval we distort the distribu-
tion of values of each feature by its cumulative histogram
(histogram equalization).

Before the extraction of principal components, the mean
is subtracted from the distribution of each feature, and the
distribution is further normalized to range between -1 and 1.
Then, the thin SVD is computed on the matrix B ∈ Rm×f ,
where m = 152 is the number of audio segments and f = 18
is the number of features:

B = USV ′. (1)

S ∈ Rf×f is the diagonal matrix of singular values in
descending order, U ∈ Rm×f is the matrix of orthonormal
basis vectors (principal components) that best represents the
set of audio segments (described as features) in a L2 sense.
The i−th row of U expresses the i−th audio segment as a
set of coefficients of a combination of principal directions, or
“feature modes”. These modes are expressed as columns of
SV ′ ∈ Rf×f .

To reduce dimensionality, we retain only columns 1 to l of
matrix U , corresponding to the l largest singular values, or
to the most prominent feature modes. For our database of
audio segments, each summarized by the 18 features of Ta-
ble 1, the decay of singular values is relatively slow, thus not
giving an obvious cutoff for l. Still, a meaningful and prac-
tical navigation of the sonic space can only be afforded by a
low-dimensional space. In particular, the first two principal
components are the ones that would afford effective brows-
ing [7], even though they explain less than one third of the
variance for this set of sounds.

4. CLUSTERING
In general, clustering in the PCA-reduced subspace is

more effective than doing it in the original space, because
the subspace of l + 1 cluster centroids is spanned by the
first l principal directions of data [4]. Particularly interest-
ing is the case of two principal components (l = 2), because
that gives a bi-dimensional space that is easy to navigate,
as if it was a map displaying a set of landmarks. With
such low value of l, the extraction of three clusters is par-
ticularly effective, and such clusters can be displayed in the
2-D space of principal components. Figure 1 displays the
clusters of 60 (red), 42 (green), and 50 (blue) elements, as
well as the six largest principal-component loading vectors
(two-component reduction of the columns of SV ′). The anti-
diagonal of this space is roughly aligned with the median
centroid, or brightness of sound. Although the m audio seg-
ments do not tend to cluster in three distinct groups, the
clustering procedure provides a three-fold subdivision of the
sonic space. In Figure 1, the larger circles correspond to the
cluster centroids, which ideally should be selected as repre-
sentatives of each cluster. In practice, since resynthesiz-
ing a vocalization that corresponds to such centroids is not
possible, we can choose the closest member as a cluster rep-
resentative. The spectrograms of such representatives are
depicted in Figure 2. The first can be described as imita-
tion of a trumpet, the second is a prototype of “glottal fry”,
and the third is a “tongue flop” that could be used to imitate
horse steps. Given such a relatively small number of clusters
compared to the number of elements, and the vague nature
of the terms and categories that can be used to describe
sounds, it is not easy to interpret them. In the first (red)

cluster we have sounds that are (mostly) pitched. The sec-
ond (green) cluster contains sounds that are continuous and
noisy. Finally the third (blue) cluster encompasses sounds
that are characterized by an impulsive behavior or a tempo-
ral evolution. The three classes of vocal imitations roughly
correspond to the categories of instrument-like, motor, and
impact sounds as they emerged from the analysis of a free-
sorting task on 83 sounds of car interiors, air-conditioning
units, car horns, and car doors [15]. The classes could also
be put in correspondence with the categories of electricals,
gases/liquids, and solids, as they emerged from categoriza-
tion of kitchen sounds and of their imitations [9, 12].
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Figure 1: Three clusters in the space of the two
principal components

Even more meaningful is connectivity analysis [4]. Fig-
ure 3 shows, discretized to a binary color, the matrix U2U2

′,
where U2 are the first two columns of U , with their rows
sorted according to the extracted clusters. By discretizing
such matrix to binary values, the three clusters as well as
the elements of “contamination”between and within clusters
can be made visible. In this clustering the degree of connec-
tivity is c = 0.65, i.e., 65% of the active cells belong to the
three squares on the diagonal of U2U2

′, thus showing strong
connection within clusters.

4.1 Different clustering techniques
It is possible to replace the k-means clustering with other

different techniques that enable us to highlight different per-
spectives on data. We report results for hierarchical, Fuzzy
C-means and GMM clustering:

• Connectivity for Hierarchical= 0.58

– Cophenetic correlation coefficient: 0.69 1

• Connectivity for Fuzzy C-Means= 0.64

• Connectivity for GMM= 0.57

With hierarchical clustering we can plot the dendrogram
for the linkage. Looking at this graph depicted in Figure 4,
it is possible to gain some insight on the nature of grouping.

1As a comparison it is 0.95 in [12]



Figure 2: Spectrograms of representatives of clusters 1 (60 elements, red cluster), 2 (42 elements, green
cluster) and 3 (50 elements, blue cluster)

Figure 3: Connectivity of 152 audio segments in the
two principal components with k-means clustering

If the distances are very small (i.e. all the grouping occurs
on the lower part of the dendrogram) it means that we have
a good fit of the data. This can be summarized by the
Cophenetic correlation coefficient. One of the drawbacks
of this approach is that it does not provide “prototypes”
for each cluster, thus requiring to separately calculate the
barycenter. By cutting the dendrogram at different levels
we get different numbers of clusters. In this case, it seems
that the most natural cardinalities of clusters are 3, 4, or
7. As a comparison we present in Figure 5 the results of
hierarchical clustering with 4 clusters.

Fuzzy C-Means and GMM (Gaussian Mixture Model) can
conversely provide a degree of membership for each sound to
each of the clusters thus allowing to handle situations where
a sound can not be clearly positioned in one of the classes.

5. HOW WOULD A HUMAN DO?
Considering a small (i.e., 3) number of clusters, we asked

26 listeners (15 experts in sound and music computing and
11 naive, 21 male and 5 female, age ranging between 18 and
54 years), not involved in this research, to use a web ap-
plication to perform the following task: Listen to the three
cluster representatives and then assign each of the remaining
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Figure 4: Dendrogram for hierarchical clustering.
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149 sounds to one of the representatives. From these associ-
ations, we computed the confusion matrix and the cluster-
ing accuracy for each subject, as compared to the machine-
provided clusters. Subjects showed values of accuracy rang-
ing from 0.40 to 0.65, where a random assignment would
return a value 0.33 of accuracy. For example, for the sub-
ject that is the closest to automatic clustering (accuracy is

0.65), the confusion matrix is C =

 46 13 1
6 24 12
10 11 29

, where

element ci,j represents the number of audio segments that
have been assigned to cluster i by the machine and to cluster
j by the human. The mean accuracy for the 26 subjects
is 0.50, which is significantly larger than 0.33 (one-tailed t-
test, t(25)=13.88, p < 0.01). The mean accuracy for the 15
expert subjects is 0.54, while that of the non-experts is 0.47.
The difference between the mean accuracies of the two sub-
groups is small yet significant (one-tailed t-test, t(24)=2.67,
p < 0.01), thus showing that expert subjects are slightly
closer to the machine in labeling sounds according to three
prototypes.

5.1 Agreement between subjects
In order to see how human experts agree with each other

in the proposed classification task we considered the ar-
ray of labels (cluster numbers) that each participant as-
signed to the audio segment. For each of the 325 pairs that
could be formed out of the 26 participants, we computed
the agreement using the inter-rater agreement statistic (Co-
hen’s Kappa) between the two arrays of assignments. The
measured mean agreement is 0.43, which could be labeled
as fair-to-moderate. This value is significantly larger than
0.26 (labeled as fair), i.e. the mean agreement between each
subject and the machine-provided labeling (one-tailed t-test
on two unpaired samples, t(349) = 4.29, p < 0.01). This
gives a measure of how far machine clustering is from the
grouping consensus achieved between people.

5.2 Partitioning the sonic space
Having asked 26 participants to label the 152 audio seg-

ments by similarity to the 3 prototypes extracted by the
automatic clustering procedure, we could collect empirical
probabilities for each of the three classes. For each class, we
counted the percent number of times that class was chosen
for a given audio segment. A probability surface was ob-
tained for each class by K-nearest neighbor regression (with
a smoothing of K = 20), so that a Bayesian decision could
be taken for each point of the plane, simply by choosing
the largest of the three probabilities at that point. The re-
sulting regions are portrayed in Figure 6. This partition
of the sonic space, as derived from the labeling exercise,
can be compared to the distribution of clusters of Figure 1.
Some overlap between the green and red regions is appar-
ent. Since these regions are respectively associated with the
“glottal fry” and with the “trumpet” vocal prototypes, such
region of confusion may be due to sounds with both a rough
and a tonal structure.

It is also possible to compare the clustering responses for
each single subject and rate them according to internal and
external validity indices [8]. External validity indices as-
sume that the true labeling is known (in our case we use the
automatic clustering as the baseline) while internal indices,
normally used to evaluate different clustering algorithms or

different values of parameters (e.g. k in k-means cluster-
ing), only exploit the data. In general, we found that the
participants who label the audio segments more similarly
to automatic clustering (by comparing external indices) are
also the ones that score higher in internal indices, thus sug-
gesting that their responses might rely on the features that
are exploited in the automatic clustering. As an example
the “best” subject scored 2.13 in the Davies-Bouldin (DB)
index, while the “worst” scored 10.772.
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Figure 6: Bayesian subdivision of the sonic space by
similarity to three given sound prototypes. Decision
boundaries drawn after a labeling exercise with 26
subjects.

5.3 Consensus clustering
Closely related to Bayesian probability is the concept of

consensus clustering [8]. It refers to the situation in which a
number of different (input) clusterings have been obtained
for a particular dataset and it is desired to find a single
(consensus) clustering which is a better fit in some sense
than the existing clusterings. Consensus clustering for un-
supervised learning is analogous to ensemble learning in su-
pervised learning and, interpreted as an optimization prob-
lem known as median partition, has been shown to be NP-
complete. We based our implementation on the KCC algo-
rithm presented in [21]. Given the formulation of the prob-
lem it is interesting to let the algorithm grow a different
number of clusters with respect to the original set3. The
reason behind this approach is that a number of subjects
might systematically express a different subdivision of the
original data thus highlighting the need for more categories.
We present in Figure 7 the same Internal Indices proposed in
Section 5.2, for a varying number of clusters, showing that
deriving more clusters does not necessarily leads to better
results.

2DB index is defined as a function of the ratio of the within
cluster scatter, to the between cluster separation, a lower
value will mean that the clustering is better.
3In our case this means to have more than 3 clusters as
output.
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6. CONCLUSIONS AND EXTENSIONS
In this work we have shown how dimensionality reduction

can be applied to a set of vocal imitations, each represented
by a feature vector, so that the sounds can be automatically
arranged on a low-dimensional space and a few representa-
tive prototypes can be extracted. The process is based on
fairly standard techniques of singular vector decomposition
and clustering. In general, subdivision into k clusters is
best done on l = k−1 principal components. With this con-
straint, and for l = 1, 2, 3, 4, 5 we get degrees of connectivity
c = 1, 0.65, 0.49, 0.39, 0.33, respectively. In all cases, the
prototype sounds (or cluster representatives) found are per-
ceptually distinct from each other, and they may well serve
the purpose of automatically finding landmarks in the space
of vocal imitations. Prior literature on perceptual group-
ing have shown that three or four categories can be used to
partition the space of everyday sounds, or their imitations,
in given contexts. The two-dimensional space is particularly
attractive for sound design, because it can be used as a sonic
map where a few landmarks are highlighted. We have shown
how human subjects tend to partition the two-dimensional
space of vocal sounds when they are asked to refer to three
automatically extracted prototypes. In future work, we are
going to use vocal imitations to access the sonic space of a
given sound synthesis model, where landmarks will be asso-
ciated with both a synthetic sound and its vocal imitation,
and new synthetic exemplars could be located on the plane,
either by spatially placing them [5] or by new vocalizations.

In this work, relatively little attention has been payed to
the quality of descriptors, which were chosen from a set of
standard audio features used for musical signals extended
with signatures of temporal envelope. The fact that the
sounds are all of vocal origin should be exploited to include
specific features that come from the literature of speech and

voice analysis. It is possible that pitch (melodic) profiles,
which turned out to be not important for the categorization
of environmental sounds [14], may be relevant for a more ro-
bust construction of a sonic space of vocal imitations. In any
case, the results of section 5 give a bound to the improve-
ments that could possibly be achieved, as they are limited by
the agreement that human experts show in assigning labels
to sounds.
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