
Computing Discrete Logarithms using Joux’s Algorithm

Gora Adj, Thomaz Oliveira, Francisco Rodŕıguez-Henŕıquez
CINVESTAV-IPN (Mexico)

Alfred Menezes
University of Waterloo (Canada)

gora.adj@gmail.com

Abstract

In 2013, Joux presented a new algorithm for solving the discrete logarithm problem in finite
fields of small characteristic with a main novelty involving the resolution of bilinear equation
systems. The algorithm improved significantly all previous methods for this purpose. We
used Joux’s algorithm to compute discrete logarithms in the 1303-bit finite field F36·137 and
illustrated for the first time its effectiveness in ‘general’ small-characteristic finite fields with
very modest computational resources.

Keywords
Discrete logarithm problem, Joux’s algorithm, Gröbner bases descent.

1 Introduction

Let FQ denote the finite field of order Q. The discrete logarithm problem (DLP) in FQ is that of
determining, given a generator g of F∗Q and an element h ∈ F∗Q, the integer x = logg h ∈ [0, Q− 2]
satisfying h = gx. Hereafter we suppose that the characteristic of FQ is 2 or 3.

Until recently, the fastest general-purpose algorithm known for solving the DLP in FQ was Cop-
persmith’s 1984 index-calculus algorithm [4] with a running time of LQ[ 13 , (32/9)1/3]≈ LQ[ 13 , 1.526],
where as usual LQ[α, c] with 0 < α < 1 and c > 0 denotes the expression

exp
(
(c+ o(1))(logQ)α(log logQ)1−α

)
that is subexponential in logQ. In February 2013, Joux [12] presented a new DLP algorithm with
a running time of LQ[ 14 + o(1), c] (for some undetermined c) when Q = qdn, q ≈ n and d a small
integer. Shortly thereafter, Barbulescu, Gaudry, Joux and Thomé [3] presented an algorithm with
quasi-polynomial running time (logQ)O(log logQ) when Q = qdn with q ≈ n and d a small integer.
Note that this complexity is asymptotically smaller than LQ[α, c] for any α > 0 and c > 0.

After a concrete analysis of the new algorithms, we demonstrated in [1] that these two algo-
rithms can be combined to weaken some large fields that were originally believed crytographically
secure (against Coppersmith algorithm).

Recently, we employed, for the first time, Joux’s algorithm to compute discrete logarithms in a
‘general’ cryptographic field, namely F36·137 (also in F36·163 [2]), which does not enjoy any specific
properties. The computations of a discrete logarithm took only 888 CPU hour using modest
computer resources despite our implementation being in Magma [14] and far from optimal. By
comparison, in 2012 Hayashi et al. [11] used the Joux-Lercier algorithm [13] (of complexity L[1/3])
to compute a discrete logarithm in F36·97 in about 896313 CPU hours.

In Joux’s L[1/4] index-calculus algorithm, the Gröbner bases descent phase, where bilinear
equation systems need to be solved, constitutes a crucial step for the computation of a discrete
logarithm in finite fields of small characteristic. In fact, the complexity of the algorithm is given
by that of the Gröbner bases descent, based on the work previously done by Faugère, Safey El Din
and Spaenlehauer [7].

In §2, we describe Joux’s algorithm with a focus on the Gröbner bases descent. Next, we
discuss our experimental results in §3 with computing a discrete logarithm in F36·137 , and draw our
conclusions in §4.



2 The index-calculus algorithm of Joux

Let Fqdn be a finite field where n ≤ 2q + 1 and d > 1 a small integer. The elements of Fqdn are
represented as polynomials of degree at most n−1 over Fqd . Let N = qdn−1. Let g be an element
of order N in F∗qdn , and let h ∈ F∗qdn . We wish to compute logg h. The algorithm proceeds by first
finding the logarithms of all degree-one (and degree-two elements whenever d = 2) in Fqdn . Then,
after the descent stage, logg h is expressed as a linear combination of logarithms of degree-one (and
degree-two if d = 2) Fqdn elements. The descent stage proceeds in several steps, each expressing the
logarithm of a degree-D element as a linear combination of the logarithms of elements of degree
≤ m for some m < D. The final step in the descent tree is dedicated to small degrees D and
requires to solve a bilinear system which can be done by computing a Gröbner basis.

The representation of the targeted fields is given in §2.1, and in §2.2 the Gröbner bases descent
is detailed.

2.1 Setup

Select polynomials h0, h1 ∈ Fqd [X] of degree at most 2 so that the polynomial of Granger et al.
[10]

X · h1(Xq)− h0(Xq) (1)

has an irreducible factor IX of degree n in Fqd [X]; we will henceforth assume that max(deg h0,deg h1)
= 2, whence n ≤ 2q + 1. Note that

X ≡ h0(Xq)

h1(Xq)
≡
(
h0(X)

h1(X)

)q
(mod IX), (2)

where for P ∈ Fqd [X], P denotes the polynomial obtained by raising each coefficient of P to the
power qd−1. The field Fqdn is represented as Fqdn = Fqd [X]/(IX) and the elements of Fqdn are
represented as polynomials in Fqd [X] of degree at most n− 1. Let g be a generator of F∗qdn .

2.2 Gröbner bases descent

Let f ∈ Fqd [X] with deg f = D. Let m = d(D+ 1)/2e (or m = 1 when d > 2 and D = 2). Suppose

that logg h1 is known and 3m < n. In Joux’s new descent method [12, §5.3], one finds degree-m
polynomials1 k1, k2 ∈ Fqd [X] such that f | G, where

Gq = (h1)mq(kq1k2 − k1k
q
2) mod IX .

We then have
(h1)mq · k2 ·

∏
α∈Fq

(k1 − αk2) ≡ Gq (mod IX)

as can be seen by making the substitution Y 7→ k1/k2 into the systematic equation

Y q − Y =
∏
α∈Fq

(Y − α), (3)

and clearing denominators. Now, if k(X) = amX
m + am−1X

m−1 + · · ·+ a0 ∈ Fqd [X], then

k(X) ≡ am

((
h0(X)

h1(X)

)q)m
+ am−1

((
h0(X)

h1(X)

)q)m−1
+ · · ·+ a0 (mod IX)

≡

(
am

(
h0(X)

h1(X)

)m
+ am−1

(
h0(X)

h1(X)

)m−1
+ · · ·+ a0

)q
(mod IX),

where for γ ∈ Fqd , γ denotes the element γq
d−1

. Whence after clearing denominators

k(h1)mq ≡
(
am(h0)m + am−1(h0)m−1(h1) + · · ·+ a0(h1)m

)q
(mod IX).

1More generally, the degrees of k1 and k2 can be different.



Define k̃ = k(h1)mq, and note that deg k̃ = 2m. We thus have G ≡ k1k̃2 − k̃1k2 (mod IX),

and consequently G = k1k̃2 − k̃1k2 since 3m < n. It follows that G(X) = f(X)R(X) for some
R ∈ Fqd [X] with degR = 3m − D. If R is m-smooth, we obtain a linear relationship between
logg f and logarithms of degree-m polynomials by taking logarithms of both sides of the following:

(h1)mq · k2 ·
∏
α∈Fq

(k1 − αk2) ≡ f(X)qR(X)q (mod IX). (4)

To determine (k1, k2, R) that satisfy

k1k̃2 − k̃1k2 = fR, (5)

one can transform (5) into a system of multivariate bilinear equations over Fq. Specifically, each
coefficient of k1 and k2 is written using d variables over Fq, the d variables representing the d

components of that coefficient (which is in Fqd) over Fq. The coefficients of k̃1, k̃2 and R can be
written in terms of the coefficients of k1 and k2 and f . Hence, equating coefficients of Xi of both
sides of (5) yields 3m+ 1 quadratic equations. The Fq-components of each of these equations are
equated, yielding dD bilinear equations in 2d(m+1) variables over Fq. This system of equations is
then solved by finding a Gröbner basis for the ideal it generates. Finally, solutions (k1, k2, R) are
tested until one is found for which R is m-smooth. This yields an expression for logg f in terms of
the logarithms of at most (q + 1) + (3m−D) polynomials of degree at most m.

Now, considering the action of Gl2(Fqd) on the set of pairs (k1, k2), one expects to have enough
relations for descending any irreducible polynomial over Fqd [X] of degree D whenever

q(2m+1−D)d−3 > p−1, (6)

where p is the probability of R to be m-smooth [9, Section 3.3].

3 Computing discrete logarithms in F36·137

The supersingular elliptic curve E : y2 = x3 − x+ 1 has order #E(F3137) = cr, where

c = 7 · 4111 · 5729341 · 42526171

and
r = (3137 − 369 + 1)/c = 33098280119090191028775580055082175056428495623

is a 155-bit prime. The Weil and Tate pairing attacks [15, 8] efficiently reduce the logarithm
problem in the order-r subgroup E of E(F3137) to the discrete logarithm problem in the order-r
subgroup G of F∗36·137 .

Our approach to compute logarithms in G is to use Joux’s algorithm to compute logarithms in
the quadratic extension F312·137 of F36·137 (so q = 34, n = 137 and d = 3 in the notation of §2).
More precisely, we are given two elements α, β of order r in F∗312·137 and we wish to find logα β.
Let g be a generator of F∗312·137 . Then logα β = (logg β)/(logg α) mod r. Thus, in what follows we
will assume that we need to compute logg h mod r, where h is an element of order r in F∗312·127 .

Our DLP instance is described in §3.1 and the experimental results are presented in §3.2.

3.1 Problem instance

Let N denote the order of F∗312·137 . Using the tables from the Cunningham Project [5], we deter-

mined that the factorization of N is N = p41 ·
∏31
i=2 pi, where the pi are all known primes (and

r = p25).
We chose the representations F34 = F3[U ]/(U4 +U2 +2) and F312 = F34 [V ]/(V 3 +V +U2 +U),

and selected
h0(X) = V 326196X2 + V 35305X + V 204091 ∈ F312 [X]

and h1 = 1. Then IX ∈ F312 [X] is the degree-137 monic irreducible factor of X − h0(X34); the
other irreducible factor has degree 25.

We chose the generator g = X + V 113713 of F∗312·137 . To generate an order-r discrete logarithm
challenge h, we computed

h′ =

136∑
i=0

(
V bπ·(3

12)i+1c mod 312
)
Xi



and then set h = (h′)N/r. The discrete logarithm logg h mod r was found to be

x = 27339619076975093920245515973214186963025656559.

This can be verified by checking that h = (gN/r)y, where y = x · (N/r)−1 mod r (cf. Appendix A).

3.2 Experimental results

Our experiments were run on an Intel i7-2600K 3.40 GHz machine (Sandy Bridge), and on an Intel
i7-4700MQ 2.40 GHz machine (Haswell).

The number of degree-1 elements of Fqdn that we had to compute their logarithms is 312 ≈ 219.
After finding enough linear relations (219 therefore) between the logarithms of these elements in
1.05 CPU hours (Sandy Bridge, 1 core), the resulting sparse linear system of linear equation was
solved modulo r using Magma’s multi-threaded parallel version of the Lanczos algorithm in 556.8
CPU hours (Sandy Bridge, 4 cores). Since in this case d > 2, we did not need to compute the
logarithms of all the degree-2 elements of Fqdn .

The first two classical methods in the descent phase allowed to express the logarithm of our
challenge element (of degree 136) as a linear combination of logarithms of polynomials of degree
≤ 5 in 102 CPU hours (Haswell, 4 cores).

The Magma implementation of Faugère’s F4 algorithm [6] is utilized for the Gröbner bases
descent stage, and this takes 26.5 minutes on average for a degree-5 to degree-3 descent, 33.8
seconds for a degree-4 to degree-3 descent, 34.7 seconds for a degree-3 to degree-2 descent, and
0.216 seconds for a degree-2 to degree-1 descent. In total, we performed 233 5-to-3 descents, 174
4-to-3 descents, and 11573 3-to-2 descents. These computations took 115.2 CPU hours, 1.5 CPU
hours, and 111.2 CPU hours, respectively (Haswell, 4 cores). We also performed 493537 2-to-1
descents; their running times are incorporated into the running times for the higher-level descents.

4 Conclusions

We discussed Joux’s L[1/4] DLP algorithm, focusing on the Gröbner bases descent stage, and used
the algorithm to solve a problem instance in the 1303-bit finite field F36·137 in 888 CPU hours.
However, it remains to be determined if the DLP in higher extensions (for example, in the 2273-bit
field F36·239) can be solved using modest computational resources. Our preliminary analysis on
the field F36·239 is pessimistic. A main obstacle is the cost of finding a Gröbner basis of a bilinear
system, which grows very rapidly with the number of the variables when one wishes to increase
the parameter d or the degree of the field representation polynomials h0 and h1.

References

[1] G. Adj, A. Menezes, T. Oliveira and F. Rodŕıguez-Henŕıquez, “Weakness of F36·509 for discrete loga-
rithm cryptography”, Pairing-Based Cryptography – Pairing 2013, LNCS 8365 (2014), 20–44.

[2] G. Adj, A. Menezes, T. Oliveira and F. Rodŕıguez-Henŕıquez, “Computing discrete logarithms in F36·137

and F36·163 using Magma”, available at http://eprint.iacr.org/2014/057.

[3] R. Barbulescu, P. Gaudry, A. Joux and E. Thomé, “A heuristic quasi-polynomial algorithm for dis-
crete logarithm in finite fields of small characteristic: Improvements over FFS in small to medium
characteristic”, Advances in Cryptology – EUROCRYPT 2014, LNCS 8441 (2014), 1–16.

[4] D. Coppersmith, “Fast evaluation of logarithms in fields of characteristic two”, IEEE Transactions on
Information Theory, 30 (1984), 587–594.

[5] The Cunningham Project, http://homes.cerias.purdue.edu/ ssw/cun/.

[6] J.-C. Faugère, “A new efficient algorithm for computing Gröbner bases (F4)”, Journal of Pure and
Applied Algebra, 139(1-3) (1999), 61–88.

[7] J.-C. Faugère, M. Safey El Din and P.-J. Spaenlehauer, “Gröbner Bases of Bihomogeneous Ideals
Generated by Polynomials of Bidegree (1,1): Algorithms and Complexity”, Journal of Symbolic Com-
putation, 46(4) (2011), 406–437.

[8] G. Frey and H. Rück, “A remark concerning m-divisibility and the discrete logarithm in the divisor
class group of curves”, Mathematics of Computation, 62 (1994), 865–874.



[9] R. Granger, T. Kleinjung and J. Zumbrägel, “Breaking ‘128-bit secure’ supersingular binary curves (or
how to solve discrete logarithms in F24·1223 and F212·367)”, Advances in Cryptology – CRYPTO 2014,
to appear; available at http://eprint.iacr.org/2014/119.

[10] R. Granger and J. Zumbrägel, “On the security of supersingular binary curves”, presentation at ECC
2013, September 16 2013.

[11] T. Hayashi, T. Shimoyama, N. Shinohara and T. Takagi, “Breaking pairing-based cryptosystems using
ηT pairing over GF (397)”, Advances in Cryptology – ASIACRYPT 2012, LNCS 7658 (2012), 43–60.

[12] A. Joux, “A new index-calculus algorithm with complexity L(1/4+o(1)) in very small characteristic”,
Selected Areas in Cryptography – SAC 2013, LNCS 8282 (2014), 355–379.

[13] A. Joux and R. Lercier, “The function field sieve in the medium prime case” Advances in Cryptology
– EUROCRYPT 2006, LNCS 4004 (2006), 254–270.

[14] Magma v2.19-7, http://magma.maths.usyd.edu.au/magma/.

[15] A. Menezes, T. Okamoto and S. Vanstone, “Reducing elliptic curve logarithms to logarithms in a
finite field”, IEEE Transactions on Information Theory, 39 (1993), 1639–1646.

A Magma script for verifying the F36·137 discrete logarithm

//Definition of the extension fields Fq := F3(U) and Fq3 := Fq(V)

q := 3^4;

F3 := FiniteField(3);

P3<u> := PolynomialRing(F3);

poly := u^4 + u^2 + 2;

Fq<U> := ext<F3|poly>;

Pq<v> := PolynomialRing(Fq);

poly := v^3 + v + U^2 + U;

Fq3<V> := ext<Fq|poly>;

Pq3<Z> := PolynomialRing(Fq3);

r := 33098280119090191028775580055082175056428495623;

Fr := GF(r);

h0 := V^326196*Z^2 + V^35305*Z + V^204091;

h0q := Evaluate(h0,Z^q);

F := Z - h0q;

Ix := Factorization(F)[2][1];

Fn<X> := ext<Fq3|Ix>;

N := #Fn - 1;

// Generator of GF(3^{12*137})^*

g := X + V^113713;

// Encoding pi

Re := RealField(2000);

pival :=Pi(Re);

hp := 0;

for i := 0 to 136 do

hp := hp + V^(Floor(pival*(#Fq3)^(i+1)) mod #Fq3)*(X^i);

end for;

// This is the logarithm challenge

cofactor := N div r;

h := hp^cofactor;

// log_g(h) mod r is:

x := 27339619076975093920245515973214186963025656559;

// Define the exponent y to be used in the verification:

y := IntegerRing()!(Fr!(x/cofactor));

// Check that h = (g^cofactor)^y

h eq (g^cofactor)^y;


