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Figure 1: (a) AA(183/112); converted into b) BNOT blue noise profile [de Goes et al. 2012], (c) FPO-like profile (δmin = 0.925) [Schlomer
et al. 2011], (d) step blue noise [Heck et al. 2013], (e) green noise (using [Heck et al. 2013]), and (f) pink noise (using [Heck et al. 2013]).

Abstract

We describe a novel technique for the fast production of large point
sets with different spectral properties. In contrast to tile-based
methods we use so-called AA Patterns: ornamental point sets ob-
tained from quantization errors. These patterns have a discrete
and structured number-theoretic nature, can be produced at very
low costs, and possess an inherent structural indexing mechanism
equivalent to those used in recursive tiling techniques. This allows
us to generate, manipulate and store point sets very efficiently. The
technique outperforms existing methods in speed, memory foot-
print, quality, and flexibility. This is demonstrated by a number
of measurements and comparisons to existing point generation al-
gorithms.

CR Categories: I.4.1 [Image Processing and Computer Vision]:
Digitization and Image Capture—Sampling.

Keywords: Sampling Methods, Blue Noise, Tiling, Spectral Anal-
ysis.

1 Introduction

The creation of well-distributed point sets is a fundamental prob-
lem in computer graphics, since they appear in many applications
including sampling, stippling and half-toning, Monte Carlo integra-
tion, and distributing objects.

Research on producing point sets with desired properties has been

active for more than two decades. In recent years, optimization
methods allow synthesizing point sets which match user-specified
features (e.g. a target power spectrum or a reference point set).
Since the production costs of such sets are typically high, point
sets are produced on tiles that are distributed. Such tiling methods
usually suffer from a number of inherent quality problems [Lagae
and Dutré 2008] such as repetition artifacts and noticeable seams
in the point sets, and spurious spikes in their frequency spectra that
manifest the frequencies of the underlying tiling structure.

In this paper we propose a new approach for generating arbitrarily
large point sets with controlled spectra, at very high speeds and very
low memory footprint. Our technique starts from what is called an
AA Pattern, a well-selected low-cost point set that is adapted to
match a given spectrum. A small number of displacement vectors
(around 4k) is enough to define infinitely large point sets without
noticeable artifacts.

1.1 Related Work

For a long time research on well-distributed point-sets was domi-
nated by searching for isotropic point sets that exhibit blue-noise
spectral properties, as suggested by Ulichney [1988]. Direct pro-
duction algorithms to generate such point sets include stratified jit-
tering, dart throwing [Dippé and Wold 1985; Cook 1986; Mitchell
1987], and their variants. There are also iterative optimization tech-
niques to modify a given point set, including Lloyd’s relaxation al-
gorithm [McCool and Fiume 1992] and its variants [Balzer et al.
2009; Xu et al. 2011; Chen et al. 2012; de Goes et al. 2012], other
iterative methods [Schmaltz et al. 2010; Fattal 2011; Schlömer et al.
2011], and the recently invented target-matching algorithms [Zhou
et al. 2012; Öztireli and Gross 2012; Heck et al. 2013].

As mentioned above, tile-based techniques were used to produce
large point sets from small sets with optimized properties [Lagae
and Dutré 2008]. Multiple tiles can be used to avoid the repetition
artifacts of a single toroidal tile, but give rise to a new problem:
optimal placement of points on each tile needs a way to identify
and limit the number of possible adjacent tiles.

Two approaches were proposed to solve this problem: Color-based
methods use a plain lattice of square tiles, and use colorized edges
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[Cohen et al. 2003; Kopf et al. 2006] or corners [Lagae and Outre 
2006] to identify adjacent tiles. Geometry-based methods employ 
recursive tilings where the tessellation process enforces having only 
a few possible adjacent tiles around each tile [Ostromoukhov et al. 
2004; Ostromoukhov 2007; Wachtel et al. 2014]. 

Recursive methods employ a set of so-called 'structural indices' : 
numbers used to identify distinct configurations (shape and orien
tation) of a tile and its adjacent tiles. Even though the number of 
structural indices is finite (thanks to self-similarity of the tilings), 
it grows exponentially with the number of adjacent tiles that have 
to be identified [Wachtel et al. 2014, supplementary material]. Re
cursive methods also keep a set of so-called 'production rules' to 
describe how geometry and structural indices transform upon sub
division. 

1.2 Motivation 

We have shown that most methods for creating large point sets with 
controlled spectral behavior are tiling methods. However, such 
methods have a number of problems that we highlight by identi
fying requirements for tilings and their lookup tables. This will 
also motivate our new approach which replaces tiles with a direct 
index-based mechanism: 

1. Even distribution of points. Most tiling techniques achieve 
this by using tiles of equal area, putting equal number of 
points inside each tile. 

2. An indexing mechanism to assemble tilings without violating 
the given spectral properties, and to efficiently identify actual 
or potential locations of nearby points across tile boundaries. 
Tiling methods do this by matching the shape or color of tile 
edges or comers. 

3. A randomization mechanism for distributing tiles. A proper 
randomization: a) should not repeat periodically, b) should 
avoid local repetition of the same tile or group of tiles, and 
c) should provide random access to individual tiles. 

Early tiling methods based on colors [Cohen et al. 2003] em
ploy a stochastic process to lay tiles, but this could not avoid 
local repetition, and does not enable random access. Quasi
random sequences were also proposed subsequently for ran
domization [Schlomer and Deussen 2010]. These are deter
ministic point sets which sacrifice favorable spectral features 
of random point sets to gain more control over spatial proper
ties (e.g. uniformity or ability to identify a neighborhood of 
a point). They form the basis for quasi-Monte Carlo methods 
[Niederreiter 1992]. 

Recursive methods, on the other hand, rely solely on the struc
ture of the tiling for randomization. This poses substantial 
limitations is terms of Oexibility because, to the best of our 
knowledge, there is no systematic method for designing such 
tiles; as reOected in the need to store production rules. 

4. Enabling optimization across tile borders. A common prob
lem with color -based tiling is that points close to tile edges 
are treated quite differently by the optimization process than 
points in the middle, which usually leads to visible seams in 
the created point sets. An extended set of colors for edges/
corners, and more points per tile, help to conceal this problem 
[Lagae and Outre 2008] but are not a general solution. Re
cursive methods do not suffer from noticeable seams, but it 
is still difficult to synchronize the optimization process across 
all possible neighbors of each tile [Ostromoukhov 2007]. 

5. Using compact look-up tables. 

6. Providing a facility to control the density of points adaptively, 
while maintaining the same lookup tables. Only recursive 
methods feature this capability. 

Unfortunately, all tiling methods fall short in some of the listed 
requirements. With modern optimization techniques [Zhou et al. 
2012; Oztireli and Gross 2012; Heck et al. 2013] a much wider 
neighborhood becomes involved in determining the optimal place
ment of individual points. This would exacerbate the seams prob
lem of color-based approaches as well as the memory usage prob
lem of geometry-based approaches. Tables would grow up to the 
order of gigabytes, as noted by Wachtel et aL [2014]. 

We propose an alternative to tiling techniques which is more Oex
ible and more efficient in computation time and space, and meets 
most of the listed requirements. Our observation is that the tiles 
themselves are not essential; they are only an auxiliary element to 
guide the placement of points. Thus, instead of employing a quasi
random process for the layout of tiles, we propose using such a 
process to directly lay out granular points. These basic point sets 
are then adapted using a small set of displacement vectors to shape 
their spatial and/or spectral properties. We demonstrate this using 
so-called AA Patterns: a family of quasi-random point sets on a 
regular grid which exhibit desirable properties. 

2 AA Patterns 

AA Patterns are ornamental point sets which result from quantiza
tion errors in 20 forward linear texture mapping [Ahmed 2011c]. 
They emerge from the interaction of a grid of points { (x , y)} (orig
inally: pixels of a source image) with a background array of cells 
{ (X , Y)} (originally: pixels of a target viewport), where a linear 
transformation: 

maps points to cells. A point is set (included in the point set) iff it 
hits a specific region of a cell that we will refer to as the "set-region" 
in this paper; see Figure 2. 

Figure 2: An AA Pattern is obtained when an appropriately trans
fanned array of cells is used to filter points in the integer grid. A 
point i.s retained iff it hits the set (green) region of a cell. 

This description of AA Patterns can be formulated algebraically as: 

where 

and 

AA(a) = {(x, y) : x ,y E Z;dX < t ;dY < t} , (2) 

dX = dX(x,y ) ~ {(ax+y)/ 2} 
dY = dY(x, y) ~ {(ay + x)/2} ' 

t = (a - 1)/2. 

(3) 

(4) 



The notation {.} in Eq. (3) denotes the fractional part of a real num-
ber:

{x} = x− �x�
Eq. (3) can be seen as a modular hashing function that maps points
in the integer grid into ‘indices’ in the unit torus, while Eq. (2)
defines a filtering map inside the unit torus. When α is irrational the
index is unique for each point, and the pattern is aperiodic1. On the
other hand, for a rational parameter α = p/q, indices repeat over a
2q period, and the pattern is therefore periodic over that period. In
that case it is more convenient to write t, dX , and dY as integers,
with an implicit 2q denominator:

t = p− q , (5)

dX = (px+ qy)% 2q , (6)

dY = (qx+ py)% 2q . (7)

Each period of AA(p/q) contains t2 points.

Figure 3 shows an example AA Pattern. Despite their complex ap-
pearance, AA Patterns are made up of only a few distinct “clusters”
of varying sizes [Ahmed 2011c]. These clusters are interspersed
in a hierarchical, self-similar manner [2011a; 2011b; 2012] for ex-
ample, the distribution of each cluster resembles an AA Pattern (not
necessarily the parent one). The density of points is even, which fol-
lows from the fact that (dX, dY ) make well distributed sequences
modulo 1 [Kuipers and Niederreiter 1974].

Figure 3: A part of AA(
√
3), colored to highlight distinct clusters

of points (only the smallest four clusters appear in this part).

The structure of AA Patterns is reflected in index-space: there exists
an algorithm [2011c, Algorithm 5] for coloring the distinct clusters
using maps in the set-region. These coloring maps identify clus-
ters, which vary in size and are asymmetric around points, and the
maps themselves are fractal in nature [2012], so they do not readily
suit our purpose. Nevertheless, they indicate a neighborhood iden-
tification capability of AA Patterns through indices. Further inves-
tigation revealed intrinsic multi-resolution index-space maps that
identify symmetric neighbourhoods of arbitrary fixed sizes around
points, as will be shown subsequently.

3 Neighborhood Maps in AA Patterns

As implied in Eq. (2), an AA Pattern is separable into two bitmaps,
one for each index, combined by a bitwise AND operation (see Fig-
ure 4 and [Ahmed 2012]2). These bitmaps are transpositions of

1 This is easier to see in terms of the points-cells interaction: the whole

overlap of points and cells is aperiodic for irrational α, and there would

always be discrepancy in the filtered point set around any two points.
2Since our analysis is based on [Ahmed 2012], we will narrow down our

discussion to the constraint α ∈ (1.5, 2) considered thereat.

each other. The dX-bitmap is made up of only two repeating rows,
and the two rows themselves are interdependent; that is, each row
implies the other. This structure offers the convenience of inves-
tigating only a one-dimensional profile – a single row of the dX-
bitmap – that implies the whole pattern. Let this be the row through
y = 0, and for sake of brevity we will drop the y parameter of dX:

dX(x) � dX(x, 0) = {αx/2} . (8)

Since the row can be represented as a bit-sequence we will use the
words “bit” and “point” interchangeably in our discussion.

= &

(a) (b) (c)

Figure 4: (a) A part of AA(
√
3), and its constituent (b) dX-bitmap

and (c) dY -bitmap; highlighting the constituent pair of (b) rows
and (c) columns.

Zooming into the row, consider a set point c at distance xc from the
origin:

dX(xc) < t .

Now we examine the neighbor point at distance x from c. If the
point at (xc + x) is set, it means that

dX(xc + x) < t ,

and since
dX(xc + x) = {dX(xc) + dX(x)} (9)

we conclude that:

⎧⎪⎨
⎪⎩
dX(xc) < t− dX(x) if dX(x) < t

dX(xc) >= 1− dX(x) if dX(x) > 1− t

impossible if t ≤ dX(x) ≤ 1− t

, (10)

c stands for any point in the row, and the values (t − dX(x)) or
(1−dX(x)) mark thresholds between indices of points which have
and those which do not have the xth neighbor set. (t − dX(x))
are right delimiters, and (1 − dX(x)) are left delimiters; the xth
neighbor of c is set iff the index of c falls on the delimited side of
the threshold. Each offset x which does not return “impossible” in
Eq. (10) sets a new threshold.

Now we examine all offsets in a window of width W centered at
c. If an offsets returns “impossible” it means that this location is
always unset. All other offsets generate thresholds that partition the
interval [0, t) into sub-intervals; see Figure 5.

Indices in the same interval mean identical neighborhoods of in-
dexed points, because these indices fall on the same side of every
threshold. Conversely, each interval between consecutive thresh-
olds correspond to a unique bit-sequence in the window around c,
which can be reproduced by iterating through all thresholds, testing
if the interval falls on the delimited side of the threshold, and set-
ting/unsetting the respective bit accordingly. For example, the third
(red) interval in Figure 5 falls in the delimited side of the thresholds
corresponding to the offsets {−7,−2,−1, 6, 7}, so it corresponds
to a window containing the bit-sequence 1000011 1 0000011; and
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-1 - 6 -5 -4 -3 -2 -1 c 1 2 3 4 5 6 
0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 

F igure 5: In a row of the dX-bitmap of AA( v'3), examining a 
wirulow of width 15 generates 10 thres/wlds that pan it ion the in
dices into I 1 intervals, corresponding to 11 distinct pattem-space 
layouts of neighbor points. We make it clear that '15' is an arbitrar
ily c/wsen width, and does twt have a special meaning; any other 
width gives analogous results. 

nearby points can be found 7, 2, and 1 step to the left, as well as 6 
and 7 steps to the right. Recall that we are still inside a single row 
of the dX -bitmap. 

Since the union of all sub-intervals spans the whole range of in
dices of set points, the union of the corresponding bit sequences 
comprises all distinct bit-sequences in the row around a set bit; that 
is, all distinct neighborhoods around a point The number of sub
intervals is equal to the number of thresholds, which is no larger 
than W. Thus: a) the number of distinct layouts is no larger than 
W , and b) the indices of points at the center of each layout fall in a 
contiguous interval 

When a is irrational dX is a well distributed sequence modulo 
1, which means that the average number of thresholds is propor
tional to W; but in all cases W is a supremum. Also note in Eq. 
(8) that dX(x) = 0 only when x = 0 (otherwise a will be ratio
nal); applying this to Eq. (9) reveals that indices are unique. Since 
thresholds make a well distributed sequence, there would eventu
ally be a threshold (in fact an infinitude of thresholds) between any 
two indices, indicating a different neighborhood of some size. This 
proves that the pattern is aperiodic when a is irrational. 

IDs: It is easy to convert Eq. (10) into an algorithm for finding 
the thresholds, as summarized in pseudo-code in Algorithm 1. We 
sequentially assign numerical IDs to intervals of indices to label 
them. All points with a given ID have identical neighborhoods. 
The ID of a point can be retrieved by searching for the interval 
in which its index falls, which can be implemented efficiently as 
a binary search. We call this conversion "thresholding", because 
it effectively searches for the threshold immediately preceding the 
index. Thus, we have three levels of addressing in AA Patterns: 

(x,y) ~ 
'-v-' 

coordinates 

(dX,dY ) .._,_.. 
index 

thresholding 
(col, row) . (11) .._,_.. 

ID 

Algorithm 1 Finding thresholds of indices a for a designated 
neighborhood window width W or a prescribed number of IDs N. 

i = 0; i d_count = 1; 
repeat: 

++i; 
for (x = i) and (x = -i) 

dX = frac (alpha *x I 2) ; 
if (dX < t ) 

a d dThreshold (t - dX) ; ++id_count; 
if (dX > 1 - t) 

a d dThresho ld (l - dX); ++id_cou nt; 
u ntil (i == W/2) or (id_count == N) ; 
sort the table of t hreshol ds; 

Contexts: For a given ID, a context refers to a distinct configuration 
of IDs of close neighbors around a point with that ID. Whereas 
points with the same ID have identical locations of neighbors, these 
neighbors might have different IDs. For the same ID we might 
therefore have different contexts. To give an example, we inspect 
the immediate neighbors outside the window of Figure 5. These 
two locations produce two more thresholds that split two intervals; 
see Figure 6. IDs of these two intervals can occur in two contexts; 
that is, points with these IDs have two possibilities for IDs of their 
immediate neighbors. All other intervals have single contexts: the 
state of the eighth neighbor is fixed, hence the whole ID window 
of immediate neighbors, hence their IDs. We may also consider 
wider contexts than the immediate neighbors, but the number of 
dual-context IDs grows no larger than the considered width. 

-a -1 ~ -s -4 -3 4 - 1 c 1 2 3 4 s 6 7 a 
0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 

p.attorn !!pa«a: ------- ---------

Figure 6: Inspecting the immediate neighbor location outside the 
window of Figure 5 reveals two dual-context IDs. 

Close parameters~ similar patterns: Algorithm 1 outputs a sim
ilar sequence of thresholds for a' ~ a, unW a' fails to approximate 
a. It is the order of thresholds that matter in identifying neighbor
hoods, not their exact values, therefore AA (a ') and AA(a) share 
all distinct layouts of points up to the width where the sequence of 
thresholds of AA(a' ) goes out of order. The two patterns are in
distinguishable in a window smaller than that width. Note that if 
the indistinguishable window is larger than a chosen ID window, 
the two patterns share the same set of IDs; if it is larger by 2n they 
share all n -steps contexts of all IDs. 

3.1 Two-Dimensional Neighbourhood Maps 

The single row we analyzed implies the whole dX -bitmap, so our 
conclusions extend to whole vertical slices in the dX -bitmap. Anal
ogous arguments hold for dY, and upon combining the two bitmaps 
we get a Cartesian product of indices and IDs. Pattern-space neigh
borhood windows become squares, and index-space intervals be
come two-dimensional blocks; as illustrated in Figure 7. 

Following the distribution of indices, IDs are distributed evenly and 
quasi-randomly when a is irrational, as illustrated in Figure 8. 

As we will show subsequently, IDs can play a similar role to colors 
or structural indices in Wing methods, with three major advantages: 

• IDs can be extracted directly from point coordinates: no need 
to store production rules. 

• The distribution of IDs is inherently quasi-random, eliminat
ing the need to use an external randomization process. 

• The number of IDs grows quadratically (linearly in each di
rection) with the width of identified neighborhood, compared 
to exponential growth in Wing techniques (cf. [Wachtel et al. 
2014]). 

Dual-context IDs in the one-dimensional profile produce dual- and 
quad-context IDs in the two-dimensional Cartesian product This 
brings an interesting analogy to color-based tiling methods: In 
Wing there is a majority of interior (single-context) points, a few 
edge points (multiple-context), and very few corner points (too 
many contexts). In AA-Patterns the majority of IDs have single
contexts, only a few have dual-contexts, and very few have quad-
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Figure 7: A Cartesia11 product of two of the one-dimensional pro· 
file in Figure 5 produces a checkered map that fills the set region 
in index-space. The actual layouts of points are shown inside the 
corresponding intervals. 

Figure 8: Distribution of the third colUirlll of TDs of Figure 7 in a 
part of AA ( J3). 

contexts. Thus, in AA Patterns we logically (not spatially) have "in
terior points", "edge points", and "comer points", with the impor
tant difference that the three classes are interspersed, which reduces 
seams. This is one reason why this approach surpasses tiling. 

4 Optimizing AA Patterns 

The above analysis of the basic structure of AA Patterns revealed all 
the elements needed to build an efficient sampling framework. Now 
we optimize the point locations for achieving various spectral prop
erties. AA Patterns offer a quite convenient facility for optimization 
via "similar patterns" discussed in Section 3: choosing a rational 
parameter pf q close enough to the target irrational a produces a 
periodic pattern that shares all contexts as AA(a) in the desired 
neighborhood width. This setup is an advantage of AA Patterns, as 
it circumvents the overhead of synchronizing the optimization pro
cess across many patches. It also eliminates the difficulty pointed 
out by Ostromoukhov [2007] of handling non-toroidal domains. 

First, we explain the concept using Lloyd's relaxation, then we 
move on to other optimizations. We applied Lloyd's algorithm to 
a few periodic AA Patterns, and visualized the incurred displace
ments in index-space; see Figure 9. A block structure emerges 
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in index-space plots, coinciding with the neighborhood maps de
scribed in Section 3, and it is also multi-resolution, revealing more 
sub-blocks of the map as more iterations are applied; that is, as 
wider neighborhoods becomes involved in determining displace
ments. The behaviour of points with the same ID is identical, both 
within the same pattern and across similar patterns. 

Note that this is the natural response of AA Patterns to Lloyd's al
gorithm: we are not enforcing any behavior. Its implication is that: 

1. A small table, one vector per ID, is sufficient to store infor
mation about an optimized AA Pattern. 

2. The structure of the table is simple, enabling easy retrieval of 
stored information. 

3. Optimization information can be generated/stored to any de
sirable resolution. 

4. Information obtained from a small-period pattern can be 
reused for a similar long-period (or aperiodic) pattem 

4.1 Optimizing with Other Methods 

A general optimizer may optimize points sequentially, one at a time 
(e.g. CCDT [Xu et al. 2011]), and/or may incorporate a random 
behavior (e.g. jittering to break local symmetries3). Consequently, 
points with the same ID might be displaced differently. Thus, we 
have to enforce identical displacements, which we do by averaging 
as advocated in [Ostromoukhov 2007; Wachtel et al. 2014]. 

Optimizing a periodic AA Pattern is very similar to optimizing a 
point set in a toroidal domain; the only constraint is to ensure that 
points with the same ID make identical displacements. Algorithm 2 
summarizes the procedure. The result is stored in a compact table 
which we call a "displacement map". 

In our examples we used AA(183/112) during optimization, ap
proximating a = (5 - ../3)/ 2, with ID window width of99 steps 
(49 on each side), and 4-steps contexts. This produced 55 single
context and 8 dual-context IDs in each of (dX, dY). Thus, the ma
jority of IDs have single contexts: averaging is sparingly applied, 
and it has little effect on the optimization process. Figure 1 shows 
some of the profiles we managed to obtained under the mentioned 
constraints: save a little anisotropy, the results are almost indistin
guishable from the unconstrained optimization. For FPO [Schlomer 
et al. 2011] we used a very local variant which moves each point to 
the farthest point within the convex hull of its immediate neighbors 
(hence preserving contexts). 

4.2 Retrieving Optimized Point Sets from Tables 

Once a displacement map is available, it can be used with any 
AA Pattern that shares the same set of IDs and contexts. The 
local statistics (e.g. nearest neighbor distance, coverage radius, and 
bond orientation order [Heck et al. 2013]) are maintained; as long 
as points do not make large displacements beyond the minimum 
context width. Algorithm 3 lists the steps. It is simple, fast, com
pact, self-contained, and therefore lends itself well for system-level 
implementation in any device. 

5 Discussion 

We now discuss various aspects of our technique, and compare to 
tiling methods. 

3 Jittering, if needed, should be sized such that it does not take a point 
"out of context''; that is, a point should not jump behind immediate neigh
bors. 
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Figure 9: Visualization of two iterations of Lloyd’s algorithm applied to a single period of AA(97/56) and AA(362/209), where 97/56 ≈
362/209 ≈ √

3. (a, b), respectively, show the actual displaced point set, where each point is colored according to the size of incurred
displacement; in a smooth scale from green (0) to red (largest displacement). In (c, d), respectively, we rearranged the points by order of
their indices; in other words, we plotted the sizes of displacements in index-space. For comparison, the ticks below each index-space plot
show the thresholds of Figure 5 at the right scale.

Algorithm 2 Generating an optimized displacement map for a pe-
riodic pattern AA(p/q).

Input:
1. A t× t map assigning a set of N ×N IDs to points.
2. An iterative optimizer of a local nature.

Steps:
1. Use Eq. (2) to generate a single period of AA(p/q);
2. Repeat:

• use the optimizer to find the necessary displacement for
each point;

• average the displacements across points sharing the
same ID;

• apply the average displacements to points;
until the point set has the desired properties;

3. Record the displacements in an N × N map, one vector per
ID

Speed: In a 2.50GHz CORE i5 CPU our production algorithm pro-
duces more than 100M points per second; this is almost 20 times
faster than [Wachtel et al. 2014], and is faster than any tiling method
we are aware of. Our optimization algorithm is also quite fast
thanks to the periodic approximation patterns. We used a point set
of 5041 points during optimization, and it takes from a few seconds
for Lloyd’s relaxation, up to 3 minutes using the method of Heck et
al. [2013]. The latter can be considered an upper limit, since this
algorithm is able to match most common profiles.

Memory: Due to the limited size of the displacement map (a few
kilobytes), the memory footprint of our method is orders of magni-
tude smaller than Wachtel et al. [2014] or other tile-based methods.
Note that the speed and memory usage of our production algorithm
are independent of the profile of the point set. We also need a small

Algorithm 3 Generating an optimized point set from a displace-
ment map using a parameter α.

Input:
1. A table T of N thresholds generated by Algorithm 1.
2. An N ×N displacement map D generated by Algorithm 2.

Pseudo Code:
For each grid point (x, y)

dX = frac((alpha * x + y)/2)
dY = frac((alpha * y + x)/2)
if (dX < t) and (dY < t) {

row = binarySearch(T, dY)
col = binarySearch(T, dX)
output (x, y) + D[row, col]

}

memory footprint during optimization, since our method optimizes
a single point set over a toroidal domain, eliminating the overheads
of synchronizing across many patches.

Quality: Compared to tiling methods, our approach puts less con-
straints on the optimization algorithms, and is able to consider arbi-
trarily large neighborhoods and contexts. To the best of our knowl-
edge, none of the tiling methods can index beyond the second ring
of neighbors and stay within the practical limits of resources; cf.
[Wachtel et al. 2014, supplementary material]. Our optimization is
therefore more accurate.

The spectral quality of all known lookup methods deteriorates grad-
ually as the size of the point set grows [Lagae and Dutré 2008].
Specifically, a grid-like structure appears in the power spectrum,
reflecting the fact that this spectrum is only a quantized approxi-
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Figure 10: (a) Power spectrum of a 64k blue-noise point-set gen-
erated with Algorithm 3 using a 5k table. (b) A closeup showing the
quantized nature of the spectrum.

mation of the target spectrum; see Figure 10. The intuition is that
lookup methods (including ours) displace points from a determin-
istic structure using a finite set of vectors, and the latter has a lim-
ited capacity to conceal the underlying structure as the point set
grows. Considering this, our approach offers two important ad-
vantages over tiling methods: a) it can generate very faithful dis-
placement maps (as discussed above) which retain their quality for
higher ratios of point set size to map size, and b) thanks to the large
selection set of α, it enables generating tables of exactly any desir-
able size, to match the available budget of memory and/or support
a specific target neighborhood size.

Flexibility: The fact that we do not need much resources makes
our approach suitable for many implementation scenarios unattain-
able by tiling methods. For example: a) it is ready for client-server
implementation, where a server can keep thousands of reusable dis-
placement tables of different noise profiles, b) it enables implemen-
tation of on-the-fly target-matching at interactive speeds, and c) it
enables storing extra information in the neighborhood tables, tabu-
lar or functional.

6 Conclusion

In this paper we presented a new technique for producing large
point sets that are optimized to match a wide range of spacial and/or
spectral profiles.

The method runs at high speed and uses very little resources. It
is free of the seams problem found in the color-based tiling ap-
proaches, and it solves the problem of large memory consumption
for geometry-based methods by generating all structural informa-
tion from coordinates of points in a grid.

Our technique is based on AA Patterns, ornamental patterns origi-
nally introduced for artistic purposes. We reintroduce these patterns
as quasi-random point sets with powerful neighborhood identifica-
tion mechanism through their maps of indices.

The adaptation of AA Patterns for sampling suggests two directions
for future research: one is to investigate other properties of AA Pat-
terns as quasi-random point sets (e.g. their incremental quality),
and the other is to inspect optimizing other quasi-random point sets
(e.g. Halton sequences).

Even though our approach offers some advantages, it is currently
limited to fixed densities of points. In principle, AA Patterns are
hierarchical and self-similar [Ahmed 2012], so there is a good po-
tential for extending the concept to adaptive sampling. However,
we so far faced two obstacles: their self-similarity is topological,

not geometrical, and details appear upon zooming out, not upon
zooming in, thus we currently do not have an infinite possibility for
zooming-in. We leave this for further research. Other directions for
future research include extending the concept to multi-class sam-
pling and higher dimensions.
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A Glossary

Here we summarize the terms that appeared in our discussion.

Cluster: The visually distinguishable grouping of points in an
AA Pattern. We do not use clusters directly in our proposed
method.

Neighborhood: Locations of other points near a given point.

Window: A square area (or a range in 1D) of a given size centered
at a point.

Layout: Locations of points in a window.

Neighborhood Window: A layout with a specific point at the cen-
ter.

Index: A pair of fractional hash keys obtained from the coordi-
nates of a point using Eq. (3) (or Eq. (8) in one dimension).

Set-Region: The interval of indices of points included in an
AA Pattern.

ID: A label to identify a subset of points which share the same
neighborhood window. Indices of such points fall in a con-
tiguous rectangular block.

Threshold: An index value marking the edge between blocks of
different IDs.

Thresholding: Converting an index to an ID (e.g. using binary
search).

Neighborhood Map: The union of all ID blocks in index-space,
which exactly fills the set-region.

B The Big Picture

Figure 8 shows the quasi-random local distribution of IDs. Global
distribution can be visualized in index-space by comparing neigh-
borhood maps to coloring maps; each block in the latter comprises
indices of a specific point in a distinct cluster. From Figure 11(c)
we see that Each ID is held by either a subset of a specific point in a
distinct cluster, or a union of specific points from different clusters.
The distribution of each cluster resembles an AA Pattern, but sub-
setting and merging obscures this ornamental distribution. Thus,
the global distribution of IDs is visually quasi-random, in addition
to being quasi-random in a mathematical sense.

(a) (b) (c)

Figure 11: Set-region maps of AA(
√
3): (a) The neighborhood

map from Figure 7. (b) The coloring map for Figure 3(b). (c)
The superposition of the two maps: the neighborhood map tends to
align with the blue blocks because our chosen neighborhood win-
dow is the same order of size as the blue clusters in Figure 3(a).
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