
Implementation of a Linear Transitive 
Closure Algorithm in Relational Database Design

Roy Ladner 
Graduate Student 

Department o f Computer Science 
University o f New Orleans, New Orleans, LA 70148 

email: rladner@cs.imo.edu

Abstract - This paper describes a correction to an existing 
linear transitive closure algorithm found in [1], explains 
how the algorithm works and provides an example of how 
it works. Relational database design involves the genera
tion of relational schemes that avoid unnecessary repetition 
of information. At the same time the ability to accurately 
retrieve all data stored in the database must be preserved. A 
transitive closure algorithm can be used in the design pro
cess to identify the correct attributes that can be removed 
without jeopardizing the accuracy of data retrieval [2]. Lin
ear run time can be achieved with the corrected algorithm 
described in this paper.

1 Introduction
Relational database design involves the generation of rela
tional schemes that avoid unnecessary repetition of infor
mation. At the same time the ability to accurately retrieve 
all data stored in the database must be preserved. A transi
tive closure algorithm can be used in the design process to 
identify the correct attributes that can be removed without 
jeopardizing the accuracy of data retrieval [2], In a data 
models class I was assigned the project of implementing the 
linear transitive closure algorithm provided in [ 1 ]. The origi
nal algorithm follows as Figure 1 with line numbers added.

1 result := a

2 ¡*fdcount is an array whose ith element contains the
3 number o f attributes on the left side o f the ith FD
4 that are not yet known to be in a* */
5 for j := 1 to |F| do
6 begin
7 fdcountfi] := size o f  left side o f f h FD;
8 end
9 /*appears is an array with one entry for each attribute.

10 The entry for attribute A is a list : f integers. Each
11 integer i on the list indicates that A appears on the
12 leftside o f the «“* FD • /
13 for each attribute A  do

Permission to make digital or hard copies of part or all o f this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights 
for components of this work owned by others than ACM must be 
honored. Abstracting with credit is permitted. To copy otherwise, to 
republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee.
© 1997 ACM 0-89791—925-4

14 begin
15 appears[A] := NIL\
16 for i ;= 1 to |F| do
17 begin
18 let p —> y denote the ith FD;
19 if  A e p then add i to appears[AJ;
20 end
21 end
22 addin (a);
23 return (result);
24 procedure addin (a);
25 result := result u  {A};
26 for each attribute A  in a  do
27 begin
28 if  A  is not an element o f result then
29 begin
30 for each element i o f appears [A] do
31 begin
32 fdcount [i] :=fdcount[i] - 1;
33 if  fdcount [i] := 0 then
34 begin
35 let P —t y denote the ith FD;
36 addin (y );
37 end
38 end

39 end
40 end

Figure 1 - The Original Algorithm

I implemented the algorithm and found that it would not 
achieve linear run time and would not even successfully com
pute closure. A brief explanation of the role of functional 
dependencies will clarify why this algorithm will not com
pute closure and will clarify the changes necessary for clo
sure to be computed in linear run time.
2 The Use of Functional Dependencies 
The algorithm explained in this paper takes advantage of the 
use of functional dependencies. A functional dependency 
expresses facts about the real world that are being modeled 
with the database and represents a functional relationahip of 
database attributes [3], It also serves as a constraint on the 
database tables to impose consistency and nonredundancy [4],

As part of the design process before the closure algorithm 
is implemented, functional dependencies of the form p y 
are identified. The closure algorithm then computes the clo

mailto:rladner@cs.imo.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2817460.2817462&domain=pdf&date_stamp=1997-04-02


sure set as the set of all database attributes functionally de
termined by one or more attributes under the given set of 
functional dependencies [1], Each functional dependency is 
examined. When all elements of the left hand side of a func
tional dependency are also in the current closure set, the ele
ments of the current closure set functionally determine the 
right hand side of that functional dependency (i.e. - for p - ►  
Y, p e {current closure set}). That right hand side (y) is then 
added to the closure set. The set of functional dependencies 
must be successively examined with each new addition to the 
closure set; however, there is no need to reexamine any func
tional dependency that has previously yielded its right hand 
side to the closure set [2],

If the right hand side of a dependency has been added to 
the closure set, then it can be eliminated. Thus during suc
cessive examinations of the functional dependency set, it will 
not be considered for providing a candidate for addition to 
the closure set.

The flaw in Figure 1 is its treatment offdcount. The data 
in that array can identify which dependencies will provide an 
addition to the closure set and can also identify those which 
are eliminated from further consideration. However, at line 
7, the algorithm assigns to fdcount the "size of the left side of 
the /'* FD." This by itself provides no meaningful informa
tion to determine when to add the right hand side of the de
pendency to the closure set or when to eliminate it from fur
ther consideration.

The comment beginning at line 2 of Figure 1 suggests as
signing to fdcount[i] "the number of attributes on the left 
side of the ith FD that are not yet known to be in" the closure 
set. This is not accurate because some attributes on the left 
side of functional dependencies could be in result but not be 
in the closure set.

On the other hand, assigning to fdcount[i] the number of 
attributes on the left side of the ith functional dependency 
that are not in the result provides the correct information. 
That will be "0" when all attributes in the functional depen
dency are also in the result. It is under those circumstances 
that the right hand side of the functional dependency can be 
added to result and the functional dependency can be elimi
nated.

Additionally, the assignment of fdcount[i] -1 to fdcount[iJ 
at line 32 of Figure 1 will prevent a correct result in some 
circumstances. Values in fdcount will be altered prematurely. 
When fdcount[i] holds the value "0" so that the left hand 
side of the FD should be added to the result, that value will be 
modified to "-1" so that the left hand side will not be added to 
result at line 36. On the other hand, when fdcountfi] holds 
the value "1", it will be modified to "0" and result will be 
updated with invalid attributes. Instead, fdcount[i] should 
be assigned fdcount[i] -1 only when fdcount[i] equals 0 and 
only after the assignment to the result has been made.

For the algorithm to successfully work with array opera
tions similar to those in lines 7 and 32 of Figure 1 it would be

necessary to add and maintain a separate list. Attributes not 
currently in the closure set would be added to this list as each 
is added to the closure set [2], Each attribute would then be 
removed from this list as appears is traversed while seeking 
new additions to the closure set. This would assure that ap
pears is not traversed more than once for each attribute added 
to the closure set. The algorithm explained below eliminates 
the need for this extra list.

3 A Working Version
The algorithm in pseudo code with the necessary corrections 
follows as Figure 2.

1 /*appears is an array with one entry for each attribute.
2 The entry for attribute A  is a list o f integers. Each
3 integer i on the list indicates that A appears on the
4 left side o f the ith FD */
5 initialize all elements o f appears to 0
6 for each functional dependency i loop
7 /*let P —t y denote the ith FD*/
8 for each attribute A  in p  loop
9 add i to appears[AJ\

10 end loop;
11 end loop;
12 procedure closure_of ( a ,  A, {FD}, appears )
13 /*fdcount is an array whose ith element contains
14 the number o f attributes on the left side o f the
15 ith FD that are not yet known to be in a  */
16 initialize all elements o ffdcount to 1
17 AppearsCopy := appears',
18 procedure addin (a , A, fdcount,{FD }, AppearsCopy)
19 match := false;
20 begin /* addin */
21 if A is not an element o f a  then
22 for J  in 1.. | a  | loop
23 /*let P -» y denote the Kth FD in the list

24 AppearsCopy(J) *1
25 for K in l.AppearsCopy(J)'Length loop
26 temp := AppearsCopy(J)(K)',
27 if  temp /= 0 and then fdcount (temp) /= -1
28 and then | p — ot | = 0 then
29 a  := a  u  y ;
30 fdcount ( temp )  := -1;
31 match := true;
32 end if;
33 AppearsCopy(J)(K) := 0;
34 end loop;
35 end loop;
36 end if;
37 if  match then
38 addin ( a , is, fdcount, {FD}, AppearsCopy );
39 end if;
40 end addin;

41 begin /* closure_of */

42 addin ( a ,  A, fdcount, {FD}, AppearsCopy );

43 end closure_of;

Figure 2 - The Working Agorithm



In the algorithm a functional dependency (FD) is denoted 
P —► y. The left side of the arrow represents a set of one or 
more attributes. The right side of the arrow represents a set 
composed of exactly one attribute. Before parameters are 
passed to the algorithm, a functional dependency that may 
have looked like p -* Y1>72>y3 *s first split into multiple func
tional dependencies of the form p -»y , p -» y p y3 .

Appears indexes all attributes to functional dependencies. 
Appears is an array indexed by the set of all attributes. Each 
component is a list of integers. Each integer; in each list 
indicates that the attribute appears on the left hand side of 
the ith functional dependency. Appears is initialized outside 
of closure_of and a copy is provided to addin. This will 
eliminate the need to reinitialize appears with each call of 
closure_of.

The main procedure closure_of has four parameters: a , A, 
{FD}, and appears. The set of attributes on which closure is 
being determined is represented by a. For a single func
tional dependency of the form p —► y, a  is selected from p, A 
represents the single attribute comprising y. The variable 
result used in the original algorithm is omitted. Instead, the 
variable a  is expanded to include the values that would oth
erwise have been added to result. The set of all functional 
dependencies is denoted {FD}.

The subprocedure addin modifies the values offdcount as 
attributes are added to the closure Set. Fdcount is an array 
that is indexed by the identifying numbers of each functional 
dependency. Fdcount is used as a value holder to flag each 
functional dependency that has been eliminated through the 
addition of its right hand side to the closure set.

At line 21 ofFigure 2, the input is tested. If the closure set 
is complete, all processing stops. Otherwise, beginning at 
line 22, the algorithm examines each attribute in a  in con
junction with the information stored in AppearsCopy and 
fdcount to identify the relevant functional dependencies on 
which set computations will be made during each call of 
addin. More concisely, for the Jth  attribute in a , 
AppearsCopy(J) is an integer list of all functional dependen
cies in which the attribute appears on the left hand side. For 
each integer K  in A ppearsCopy(J) , AppearsCopy(J) (K) iden
tifies the Kth functional dependency, p y .

Beginning at line 27, three conditions must be met for an 
attribute to be added to the closure set. For clarity, let temp 
:=AppearsCopy(J)(K). As a first condition, temp /= 0. This 
establishes that there is a functional dependency in 
AppearsCopy(J) for consideration.

Second, fdcount(temp) /= -1. All values of fdcount are 
initialized outside of addin to 1. A value of -1 is assigned at 
line 30 only when the right hand side of the functional de
pendency is added to the closure set.

The third condition is that | P -  a  | = 0. This means that 
all values in p are also in the current closure set a  . The 
closure set a  therefore functionally determines the attribute 
on the right hand side of the dependency, and the right hand

side is added to a  . The value "-1" is then assigned to 
fdcount(temp) at line 30.

At line 33 a "0" is assigned to AppearsCopy(J)(K). During 
recursive calls of addin, this will prevent repetitive consider
ations of attributes previously evaluated.

A boolean variable match is initialized to false at line 19. 
If attributes are added to the closure set at line 29, then match 
becomes true and recursion will occur at line 38. Should A 
not be found to be an element of the closure set (line 21) 
during the next call of addin, then processing will continue. 
Otherwise, processing stops and a  holds all elements of the 
closure set.
4 An Example
The following example illustrates how the algorithm works. 
Let {FD} = { CG ->B, AC ~> B, C - >  A, CG ->D}. Clo
sure of {C} under {FD} will be computed. This will deter
mine whether attribute “A” is extraneous to the dependency 
AC ~> B. If B is found to be in the closure set, then the 
program implementing the closure algorithm will eliminate 
“A” from that functional dependency leaving only C --> B 

for further consideration.

Following the algorithm, closure_of is called with the in
put parameters holding the following values: a  = {C}, A = 
B, {FD} = {CG ~> B, AC ~> B, C ~> A, CG ~> D}, and 
appears having the component values shown in Figure 3.

APPEARS

(A) (B) (C) (D) (G)
1 2 0 1 0 1
2 0 0 2 0 4
3 0 0 3 0 0
4 0 0 4 0 O

Figure 3 - Appears Initialized

The set of attributes is {A, B, C, D, G}. Figure 3 indicates, 
for example, that attribute "C" appears in all four functional 
dependencies, but attribute "A” appears in only the second. 
A copy of appears is provided to addin.

Since there are four functional dependencies, fdcounts in
dex will be 1, 2, 3,4, corresponding to the given ordering of 
the functional dependencies, and the component of each is 
initialized to "1". See Figure 4.

FDCOUNT
index-(1 )  (2) (3) (4) 

com ponent- 1 1 1 1

Figure 4 - Fdcount Initialized

4.1 The Original Call o f  Addin 
Addin is then called. Match is assigned "false". The algo
rithm continues because A = "B" is not an element of {C}. 

The loop at line 22 is entered. The sole attribute in {C} is



considered. AppearsCopy(C) indicates that attribute "C" ap
pears in all four functional dependencies. The conditions at 
line 27 are tested for each. AppearsCopy(C)(l) is "1", iden
tifying the first functional dependency, CG —> B, and satis
fying the first condition. Second, fdcount(l) is not equal to 
"-1", satisfying the second condition. Finally, {CG} - {C} is 
not equal to "0". The third condition is not satisfied. Since 
AppearsCopy(C)(2) = "2", the second functional dependency 
AC --> B, is tested for all three conditions. Again, {AC} - 
{C} is not equal to "0”. Next, AppearsCopy(C)(3) = "3". 
The third functional dependency is C —> A. This time all 
three conditions are satisfied. Particularly, {C} - {C} = "0". 
Attribute "A" is therefore added to {C}, and the closure set is 
expanded to {CA}. Fdcount(3) is assigned "-1", and match 
is assigned "true". AppearsCopy(C)(4) will not yield an ad
dition to the closure set. AppearsCopy(C)(l) through 
AppearsCopy(C)(4) are assigned a "0". This will prevent 
attribute "C" from being considered during the next call of 
addin. Only the one new attribute added during this call of 
addin will be evaluated in connection with fdcount and 
AppearsCopy.

At the conclusion of the loop in lines 22 - 35, a  is 
comprised of {CA}. Fdcount holds the values shown in Fig
ure 5, and A ppearsCopy holds the values shown in Figure 6.

FDCOUNT
index-(1 )  (2) (3) (4) 

component - 1 1 - 1  1

Figure 5 - Fdcount at the End of the First Call of Addin

APPEARSCOPY
(A) (B) (C) (D) (G)

1 2 0 0 0 1
2 0 0 0 0 4
3 0 0 0 0 0
4 0 0 0 0 0

Figure 6 - AppearsCopy at the End of the First Call of Addin

4.2 The Second Call o f  Addin 
Since a there was an addition to the closure set, addin is 
called again. During this recursive call, a  , fdcount, and 
AppearsCopy hold the new values described above. All other 
parameters remain unchanged. Match is initialized to "false" 
at line 19. Processing continues since A = "B" is not an 
element of the closure set {CA} (line 21).

This time only attribute "A" will be considered in conjunc
tion with AppearsCopy and fdcount since all values of 
AppearsCopy(C) are equal to "0". In particular, 
AppearsCopy(A)(l) = "2", identifying the second functional 
dependency, AC ->  B, and fdcount(2) = "1", satisfying the 
first two conditions at line 27. The third condition is also 
satisfied since {C } - {CA} = 0. Attribute "B" is therefore 
added to {CA}. The closure set is expanded to {CAB}.

Fdcount(2) is assigned a "-1", and match is assigned "true". 
AppearsCopy(A)(l) is also assigned "0".

At the conclusion of the loop in lines 22 - 35, a  is com
prised of { CAB}. Fdcount and appears hold the values shown 
in Figures 7 and 8 respectively.

FDCOUNT
index-(1 )  (2) (3) (4) 

com ponent- 1 - 1 - 1  1

Figure 7 - Fdcount at the End of the Second Call of Addin

APPEARSCOPY 
(A) (B) (C) (D) (G)

1 0 0 0 0 1
2 0 0 0 0 4
3 0 0 0 0 0
4 0 0 0 0 0

; - AppearsCopy at the End of the Second Call of
Addin

4.3 The Third Call o f  Addin 
Since there was an addition to the closure set during the sec
ond call of addin, there is another recursive call of addin 
with the values of the closure set and fdcount updated as noted 
above. The algorithm terminates at line 21 because A which 
is equal to "B" is an element of {CAB}. However, had the 
algorithm not terminated, only the first and fourth functional 
dependencies would have been examined for additions to the 
closure set because the only values offdcount not equal to "- 
1" are the first and fourth. Additionally, these two functional 
dependencies would have been examined only in connection 
with the addition of attribute "G" to the closure set immedi
ately prior to the current call of addin.

The objective was to determine whether attribute "A" was 
extraneous to the dependency AC —> B. The algorithm com
puted the set { a  } = {CAB} as the closure set of {CD} over 
the functional dependency set {FD}. Since "B" was found to 
be an element of the closure set, attribute "A" is considered 
extraneous, and attribute "A" may then be removed from the 
original functional dependency "AC —> B". The functional 
dependency set {FD} would then consist of {CG —> B, C —> 
B, C—>A, CG — >D}. This set would then be used for com
puting dosine for the remainder of the attributes and depen
dencies [2],
5 Conclusion
The computation of closure is an integral part of relational 
database design. Efficient determination of closure is espe
cially warranted as the complexity of design increases with 
greater numbers of attributes and relationships among the 
attributes. This efficiency can be achieved with the algo
rithm described in this paper.



References
[1] Korth, Hemy F. and Abraham Silberschatz, Database 
Systems Concepts, pages 161-170, McGraw-Hill, Inc., New 
York, NY, 1991.
[2] Maier, David, The Theory o f Relational Databases, pages 
65-74, Computer Science Press, Rockville, MD, 1983.
[3] Salzberg, Betty Joan, An Introduction to Database De
sign, pages 18-20, Academic Press, Inc., Orlando, FL, 1986.
[4] Simovici, Dan A. and Richard L. Tenney, Relational Da
tabase Systems, pages 237-240, Academic Press, Inc., San 
Diego, CA, 1995.




