
Filtering SQL via the Principles of Pandemonium

J o h n L u s th , N e n a d Ju k ic

The U niversity o f A labam a

Tuscaloosa, A L 35487

lusth@ cs.ua.edu, njukic@cs.ua.edu

P a n d e m o n i u m -

1 : t h e c a p i t a l o f H e l l i n M i l t o n ’ s P a r a d i s e L o s t

2 : t h e i n f e r n a l r e g i o n s

3 : a w i l d u p r o a r (w h e n n o t c a p i t a l i z e d)

. . . W e b s t e r ’s 9 t h C o l l e g i a t e D i c t i o n a r y

A b s tra c t - In th is paper, we re-introduce Pandemo
nium, an early specification for parallel processing
through semiautonom ous agents. The biggest
advantage of the Pandem onium approach is its sim
plicity, which is achieved by dividing tasks among
m any computational units. Using Pandemonium as
a m etaphor, we design an in terp reter for general-
purpose filtering of text. To dem onstrate the appli
cability of our design, we show how to partially
parse and correct a sequence of badly ordered SQL
commands. This example is not artificial; the badly
ordered commands were generated by a commercial
CASE tool for database development and the com
m and set was too large for m anual correction. A
Pandemonium -style approach has many advantages
over using full-blown parser generators and rule-
based system s for such tasks.

1 Introduction

In 1958, Oliver Selfridge [1] proposed a forward-
looking concept of using semiautonomous agents for
problem solving. Individual agents would be tuned
to certain aspects of the inpu t and, upon recognizing
such an aspect, an agent would proclaim th a t it had
the answ er (modulo its lim ited world view). The
more confident the agent, the louder the agent’s
proclamation. O ther agents, in tu rn , would hear
these proclamations, sort them out, and proclaim
their own opinion of the “tru e” answer. A m aster
agent would then select the best answer from the
h ighest level of agents. Selfridge called his system,
Pandemonium, and his agents, demons, invoking
m eanings one and three of the definition a t the
beginning of th is paper.

Although Pandemonium , as originally con
ceived, corresponds more closely to the neural nets

Peimission to make digital or hard copies of part or all o f this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific peimission and/or a fee.
© 1997 ACM 0-89791-925-4

of today, and indeed, still has its followers [2], the

f irinciples involved provide a useful m etaphor for a
arge class non-neural ne t problems, such as data

correction, data filtering, or da ta mining. We have a
particular in terest in data correction and filtering
due to num erous requests to “w rite a program to fix
up th is [large] flawed data file”. Our desire is to
design a general filter based upon the principles out
lined by Selfridge. We believe such a filter will be
powerful yet easy and in tuitive to customize.

Although we use the Pandem onium m etaphor as
a starting point for specifying a filter, we diverge
from Selfridge in four im portan t ways. Firstly, we
make each demon fully autonomous; there is no
hierarchy of demons and no m aster demon deciding
which subdemons are to be believed. Secondly, since
we are prim arily concerned with collections of tex
tual data, we employ a stream ing approach for fun-
neling data to the demons. Thirdly, we explicitly
order demons such th a t higher ordered demons have
first crack a t the stream ing data. Finally, we use the
term daemon [3], ra th e r th an demon, lest readers
th ink nefarious instructions can be discerned by
reading th is paper backwards.

In the rem ainder of th is paper, we discuss a spe
cific filtering problem in Section 2, describe the syn
tax and semantics of a general Pandemonium -
influenced [4] in terp re ter in Section 3, present a
Pandemonium program for correcting badly ordered
SQL generated by a commercial CASE tool in Section
4, and discuss the advantages of the Pandemonium
approach over other potential solutions in the last
section.

2 The problem

The relational model of da ta [5] is based on a simple
and uniform data structure: the relation. A rela
tional database usually contains m any relations,
with tuples in relations th a t are related in various
ways [6]. The referential integrity constraint is
specified between two relations and it is used to
m aintain the consistency among tuples of the two
relations. The best known language used to imple
m ent relational database model on commercial da ta
base m anagem ent systems is called SQL [7], an acro
nym for structured query language. The following
example w ritten in SQL describes a referential integ
rity constraint between two relations:

CREATE TABLE A
(Aname CHAR(10),
Aaddress CHAR(20),
PRIMARY KEY (Aname));

mailto:lusth@cs.ua.edu
mailto:njukic@cs.ua.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2817460.2817464&domain=pdf&date_stamp=1997-04-02

CREATE TABLE B
(Bname CHAR(10),
Baddress CHAR(20),
Aname CHAR(10),
PRIMARY KEY (Bname),
FOREIGN KEY (Aname)

REFERENCES A(Aname));

Every B is associated w ith an A, and the referential
in tegrity constraint "FOREIGN KEY (Aname) REFER
ENCES A(Aname))" m akes sure th a t every B is asso
ciated w ith an existing A.

The CREATE TABLE statem ents are often gener
ated autom atically from the high level conceptual
database models (such as ER diagrams) by a data
dictionary-based computer-aided software engineer
ing (CASE) tools. I t is not unusual to generate hun
dreds of CREATE TABLE statem ents a t once, by
using a CASE tool command. We have identified a
potential problem th a t arises during the SQL gen
eration phase of some commercial CASE tools. The
following example illustra tes the problem. Suppose
th is code was generated by a CASE tool.

CREATE TABLE A
(Aname CHAR(10),
Aaddress CHAR(20),
Bname CHAR(10),
PRIMARY KEY (Aname),
FOREIGN KEY (Bname)

REFERENCES B(Bname));

CREATE TABLE B
(Bname CHAR(10),
Baddress CHAR(20),
PRIMARY KEY (Aname));

The first CREATE TABLE statem ent would be
rejected by the SQL interpreter, because table A
refers to a table B th a t has not been created yet.
T hat m akes th is code unusable in th is shape.

This problem can be solved by sorting table
creation statem ents (using topological sort, for
example), so th a t every CREATE TABLE statem ent
which refers to another table, appears after the
creation sta tem ent for the referred table. Sorting
fails, though, if a circular reference appears. An
a lternate approach is to strip CREATE TABLE sta te
m ents of referential integrity constraints, by filter
ing FOREIGN KEY constraints out. After the last
table creation command is processed, ALTER TABLE
commands can be used to add the referential integ
rity constraints back to the tables whose CREATE
TABLE statem ents originally contained a FOREIGN
KEY constraint, as illustrated by the following
example:

CREATE TABLE A
(Aname CHAR(10),
Aaddress CHAR(20),
Bname CHAR(10),
PRIMARY KEY (Aname));

CREATE TABLE B
(Bname CHAR(10),
Baddress CHAR(20),
PRIMARY KEY (Bname));

ALTER TABLE A ADD FOREIGN KEY
(Bname) REFERENCES B(Bname);

If the num ber of generated CREATE TABLE
statem ents is large, a parsing m echanism is neces
sary on order to autom ate the process of filtering out
and, later, adding back in FOREIGN KEY referential
integrity constraints. We propose using Pandem o
nium to im plem ent th is a lte rnate approach.

3 The solution

For correcting badly ordered SQL, we can imagine
our daemons strung out along the input stream . As
the CREATE TABLE commands pass by, the daemons
will modify the commands and collect information
for la ter use. The data th a t stream s past the last
daemon will the collection of CREATE TABLE com
m ands sans their integrity constraints and will be
w ritten to the output data stream . A daemon which
is triggered by the end of the input data stream per
forms an action which causes the ALTER TABLE
commands to be w ritten to output.

To implement such a solution, we have devised a
general language for specifying daemons. In the
rem ainder of the section, we discuss the syntax and
semantics of daemons and give a specific Pandem o
nium program for performing the task a t hand.

3.1 Daemons

A daemon is bipartite, being composed of a trigger
clause and an action clause. Syntactically, the two
clauses are separated by a colon and term inated
with a semicolon. The gram m ar rule specifying a
daemon is quite simple:

daemon : trigger COLON action SEMICOLON

A daemon tests its trigger clause whenever a
da ta item comes into view. Like a rule in a rule-
base, if the trigger evaluates to true, the daemon
executes its action clause. As to actions, a daemon
may remove data, modify it, add to it, or modify a
global or static local variable. Global variables corre
spond to Selfridge’s demonic shrieks and wails, w ith
the greater the m agnitude of the variable, the louder
the noise made by the demon. Static local variables
correspond a daemon’s memory.

We assum e th a t the data stream s by all the
daemons in a sequential fashion. T hat is, the last
daemon has a chance to act upon the ith piece of data
before the first daemon sees the Ith*1 d a ta item. This
is an arb itrary constraint we place upon the model
for simplicity’s sake; the model itse lf can be n a tu
rally viewed as a pipelined processor of sequential
data. Should a more parallel im plem entation be

desired, the same techniques for m anaging a pipe
lined CPU [8] would apply here as well. „

3.2 Triggers

Triggers look very sim ilar to prem ises in rules; and
are specified by the following gram m ar rules...

trigger : expr
| expr -> expr // implication

expr : tokenList
| arithmetic

where a tokenList is a list of tokens, possibly speci
fied w ith regular expressions, and arithmetic is any
integer-valued arithm etic expression. Triggers
evaluate to tru e or false. We use a sim ilar method
as C in in terp reting w hether an expression is true
or not: integer zero is considered false; all other
integers are considered true.

The one exception to the above rule concerns
embedded implications, a feature which distin
guishes triggers from typical rule prem ises and is
extremely useful for w riting succinct and robust
applications. Im plications are used to ensure th a t
the daemon is in a well-determined state , much the
same way asserts are used in C programs. Exam
ples of th is use are...

'create' -> 'table'
'foreign' 'key' ->
GettingConstraint
colors > 16 ||

limitedTextures -> textures < 8
commaExpected() -> ','

The first example sta tes th a t if the data token in
front of the daemon is ‘create’, the next token m ust
be ‘table’. The second example trigger states that, if
the next two tokens are ‘foreign’ and ‘key’ in th a t
order, then the gettingConstraint flag should be
true. The th ird example sta tes th a t if the there are
more th an 16 colors or the limitedTextures flag is
true, there should be less than 8 textures. The final
example sta tes th a t if the commaExpectedQ function
re tu rns true, the data token should be a comma. If
an embedded implication fails, an appropriate m es
sage is generated and the application term inates.
Note the syntax of triggers (and actions) borrows
heavily from C.

Tokens in a token list are enclosed with either
single quotes or double quotes. Single quotes call for
case-insensitive m atching and double quotes call for
case-sensitive matching. A plus sign is used to con
catenate the strings and is useful for constructing a
token w ith case-sensitive and case-insensitive por
tions.

3.3 Actions

An action is a comma separated list of commands.
In general, actions e ither modify the data stream , or

the local / global state , or both. Examples of com
m ands are

remove
replace with '(' $* ')'
cleanup()
++Level
pending = 0;

The first command specifies th a t the input tokens
matched by the trigger should be removed from the
data stream . The second command specifies th a t the
m atched tokens should removed, then reinserted
into the data stream with enclosing parentheses.
The term $* is shorthand for all m atched tokens.
The th ird command calls the cleanUpO procedure,
while the last two commands modify variables in
standard C fashion.

Like YACC [9], our system uses a shorthand
notation for referring to m atched tokens. The term
$i refers to the i^ m atched token, while $* refers to
the entire ordered list of m atched tokens. For exam
ple, a daemon of the form

('hickory'|'filbert')
('bush'|'tree') :

replace 'nut' $2;

replaces phrases such as hickory tree and filbert
bush with nut tree and nu t bush, respectively. The
$2 in the action clause refers to the second token
m atched in the trigger.

3.4 A Pandem onium program

The entire list of daemons for correcting the badly
ordered SQL is as follows...

'create' 'table'
Table = $3;

',' 'foreign' -> 'key' '(':
remove,
GettingConstraint = 1,
GettingKeys = 1;

'foreign' -> 'key' '(':
remove,
GettingConstraint = 1,
GettingKeys = 1,
comma = o ; / / r e m o v e t r a i l i n g c o m m a s

')' && GettingKeys :
remove, GettingKeys = 0;

GettingKeys &&
remove,
Keys = addKey(Keys, $1);

GettingKeys && ',':
remove;

'references' '*' ->
gettingConstraint:

remove, ForeignTable = $2;

',' && GettingConstraint &&
!Comma:

remove,
GettingConstraint = 0,
Comma = 1;
addConstraint(Table, Keys,

Foreign);

(')' || && GettingConstraint:
GettingConstraint = 0;

addConstraint(Table,Keys,Foreign);

EO F :
generateAlterTableCommands();

Note th a t the program is quite short, even con
sidering the addition of the two bookkeeping func
tions to handle multi-keys and to keep track of the
elided integrity constraints. The program would be
even shorter (and som ewhat easier to understand) if
not for the need to delete, in some cases, the comma
preceding or tra iling an integrity constraint. To
handle the four different cases, though, only two
additional demons are needed.

W hen a daemon m atches on a token, the
stream ing of input da ta is tem porarily halted a t the
location of the daemon. A useful analogy is th a t the
daemon throw s a tem porary dam across the input
stream . Only when the daemon’s action is per
formed, or its trigger fails on subsequent tokens,
does the daemon remove the dam. In the case of the
first daemon in the above program, the daemon
dams the stream upon seeing the token ‘create’. If
the next token is ‘table’, the daemon copies the
value of the next token to the global variable Table,
and then sequentially releases all th ree tokens to
the downstream daemons. If the token after ‘create’
is not ‘table’, the trigger fails and the daemon
sequentially releases the two tokens it has seen.

4 Conclusion

The biggest advantage of the Pandemonium
approach is its simplicity. In many cases, when
parsing, it is not necessary to understand the entire
gram m ar of the input. P arser generators, such as
YACC, which are often used to construct filters, do
not lend them selves to the use of partial gram m ars
On the other hand, the Pandemonium approach
offers a very quick and pragm atic mechanism for
parsing when only a subset of the gram m ar is
known. Compared to a rule-based system, our
approach has the notational convenience of embed
ded implications and can be parallelized through
pipelining.

In th is paper, we have dem onstrated the explic
itness and effectiveness of the Pandemonium
approach on a concrete problem of filtering SQL
statem ents. We do not claim th a t the Pandemonium
approach is the quickest one, performance wise.
However, we believe th a t th is approach is a very

practical alternative when the am ount of tim e and
effort th a t is to be spent on creating a parser is lim
ited. In our fu ture work, we will address more com
plex problems with th is approach, and consider the
role th a t m aster daemons could play in improving it,
w ithout increasing the complexity of the Pandem o
nium programs.

5 References and notes

[1] Selfridge, O., “Pandemonium: A paradigm for
learning”, Mechanisation o f Thought
Processes: I, pp. 511-526, 1959.

[2] Smieja, F., “The Pandem onium System of
Reflective Agents”, IEEE Transactions on
Neural Networks, 7 (1), Jan u ary 1996.

[3] daemon, which is defined by W ebster’s as a
“tu te lary deity or spirit” does not have the evil
connotation of demon and is used to denote an
autonomous agent in the UNIX“ operating
system. We find it an appropriate
replacement.

[4] Herein, we will use the term Pandemonium
for brevity instead of the more accurate, bu t
awkward, phrase Pandemonium-influenced.

[5] Codd, E., "A Relational Model for Large
Shared D ata Banks", Communications o f the
ACM, 13 (6), June 1970.

[6] E lm ashri R. and B. S. N avathe, Fundam entals
O f Database System s, The
Benjamin/Cummings Publishing Company,
Inc., 1994.

[7] ANSI (1986), American N ational Standards
Institute: The D atabase Language SQL,
Document A N S I X 3 .133, 1986.

[8] Hwang, K., Advanced Computer Architecture,
published by McGraw-Hill, pp. 265-321, 1993.

[9] Johnson, S., “Yet another compiler-compiler”,
Bell Labs Technical Report TM-75-1273-6,
July 1975.

