
Building a Registered Volume Database: 
an Object-Oriented Octree Program

Lynn W. Jones
Virginia Polytechnic Institute, Blacksburg, Virginia 

lwjones@vt.edu

Abstract- The Dynamic Brain Project will create an 
interactive database on the human brain, available via the 
Internet. In addition to medical images and textual 
information, the completed project will give users access to 
all types of data, including video and sound. One of the 
primary tasks is to create a point-and-click navigation 
interface for the user, giving access to the data through a 3- 
dimensional, volumetric image generated from medical 
scans. The project uses Postgres, an object-oriented 
database management system. Data relations (tables) are 
spatially linked to the interface image by the x,y,z- 
coordinates to which they belong. These coordinates are 
determined by building the volume with an octree data 
structure and outputting the spatially registered data to a 
Postgres table. This paper summarizes the database schema 
and the octree algorithm for the project.

The Dynamic Brian Project (DBP) [3] proposes to create an 
interactive database of multimedia information on the 
human brain to be accessed over the World Wide Web. The 
point of entry will be a 3-dimensional, volume image of the 
brain. The user will have both a “point and click” and a 
structured query interface. With point-and-click browsing, 
he or she may visually navigate through regions of the 
brain, whereas a structured query will search for index 
terms relating to brain structure name, function, 
connectivity, pathology and the like. Either access method 
might generate a new volume image showing the requested 
information, as well as retrieve data of varied formats: 2- 
and 3-dimensional images; text; video and sound clips; 
spreadsheet and statistical data; or links to any of these 
types residing on other Internet servers. The DBP will 
employ Web tools such as Java, HTML (Hyper Text 
Markup Language) and VRML (Virtual Reality Modeling 
Language).

Principle Investigators of the DBP are Dr. Terry 
Huntsberger of the Computer Science Department at the

Permission to make digital or hard copies of part or all o f this work for 
personal or classroom use is granted without fee provided that copies are 
not made or. distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights 
for components of this work owned by others than ACM must be 
honored. Abstracting with credit is permitted. To copy otherwise, to 
republish, to post on servers ot to redistribute to lists, requires prior 
specific permission and/or a fee.

© 1997 ACM 0-89791—925-4

University of South Carolina and Dr. James Augustine of 
the School of Medicine at the University of South Carolina. 
Other contributors include Dr. Caroline Eastman and Dr. 
John Rose. Through the Computing Research Association 
Distributed Mentorship Project, I was able to work with Dr. 
Eastman on the DBP for eleven weeks in the summer of 
1996. Much of my research involved the initial data 
organization to create a volumetric database. This paper 
discusses database schema for the project and the octree 
implementation which generates the spatially-registered, 
object-oriented table of information on the human brain.

Our view of the brain is that of an inherently 
hierarchical structure. Each general area of the brain is 
composed of parts with increasingly specific names, 
characteristics, and functions. Most people are familiar with 
terms such as frontal lobe, temporal lobe, etc. Each of the 
lobes is a construct of its lobules, which are comprised of 
their gyri, and so forth. It is expected that a user would also 
approach the data in an hierarchical way, first browsing or 
requesting fairly general information and becoming more 
specific as he or she becomes more knowledgeable. The top 
level of the DBP is the initial image: a “solid 3-dimensional 
model of the cerebral hemispheres with the five lobes color 
coded and identifiable” [3], The user selects a lobe to view 
in more detail, and the DBP system creates an image based 
on the next level in the hierarchy.

This natural, hierarchical structure and the need to 
support mixed-media data both suggest the use of an object- 
oriented database management system (DBMS), which 
“stores and manages objects [and] can easily handle 
‘unconventional’ data types and highly interrelated data”
[5]. Preliminary efforts employ Postgres, an object- 
extended, relational DBMS, which supports SQL and also 
provides indexing and query optimization [8], The complete 
DBP database will include class objects and relationships 
which model the brain’s structural hierarchy. Class 
declarations based on brain structure and function [1] as 
proposed by Dr. Eastman are shown in Figure 1. The 
REFERENCE class will record metadata or identification of 
medical images. Links to further information may also be 
provided here or in additional classes. Querying these tables 
of objects could generate a new image or might present 
mixed formats of related information to the user.

The volume image displayed by the DBP will be 
generated from MRI (magnetic resonance imaging), CT

mailto:lwjones@vt.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2817460.2817465&domain=pdf&date_stamp=1997-04-02


(computerized tomography) and PET (positron emissions 
test) scans. To provide an interactive, navigable interface, 
the class objects representing structures and functions will 
be registered to their physical locations within the volume 
image. A VOLUME object class will be created to hold this 
information. Its definition is shown in Figure 2. MR1-, PET- 
, and CT-value data members record color values for each 
object. Level refers to the level of resolution in the 
information hierarchy. The scans will be mapped with 
structure and function names which are also recorded in 
each VOLUME object. Because a region of the brain will 
belong to overlapping classifications, from general to 
specific, these may be entered in list form or may be coded 
to indicate a particular grouping of structures and functions. 
Data member Comers is a set of eight vertices of a cube in 
x,y,z-space. The collection of VOLUME objects will 
become a Postgres table indexed by location coordinates 
and by structure and function names. To create the image of 
a particular brain structure, the query will search the 
VOLUME table for the requested key(s) and return a list of 
comers and color values. A separate algorithm will format 
the points for rendering in VRML. A user’s click in the 
image will query the table for the object at that position in 
the volume. The retrieved structure names and functionality 
can be used in an SQL join to obtain information in the 
other Postgres tables.

Once the database schema has been determined, we 
look at the task of entering the data. Information for 
relations shown in Figure 1 may be added using regular 
Postgres commands and SQL statements. For the VOLUME 
relation in Figure 2, however, some of the data is not yet 
known. We have medical scan data as a starting point. Each 
cross-sectional scan produces a 2-D array of values, which 
determine display color at each x-y coordinate of the image. 
Structures and functionality are not clearly delineated in the 
scan images, so these must be manually identified and 
mapped on each slice. A very basic mapping was made for 
this preliminary research. Recent advances in scan 
technology permitting simultaneous PET and MRI scans [7] 
may in the future allow automation of the mapping process

VOLUME

{
MRIJValue
PETValue
CTValue
Level
IsStructure
Has_Function
Comers

J________ ________
Fig. 2. Class definition for object-oriented octree nodes 
to be output to the Postgres object relation.

using pattern recognition techniques. To assign Comers data 
to each object, we must construct a 3-D volume from the 
cross sections. The octree data structure was chosen to 
represent this volume, as it supports efficient, hierarchical 
organization and access of spatial data [2]. From the octree, 
we will also determine the value for Level for each object.

An octree, as the name implies, is a tree structure in 
which each internal node has exactly eight children. It 
recursively decomposes space into cubic volumes [6], as 
shown in Figure 3. An internal node in the tree represents 
the eight sub-cubes, or child nodes, contained within. The 
extent of decomposition corresponds to the level of 
resolution in the image and to the level of hierarchy or 
containership in the data. In many implementations, a nodes 
location in the volume is determined from its location in the 
octree. Using a database management system, however, the 
DBP will not maintain the octree but rather use it to create 
registered VOLUME objects (the cubes represented by each 
octree node) to import into a Postgres table. For this reason, 
we will explicitly store the location of each object by 
recording the vertices of the cube it describes.

We start with 64 MRI scans, each a 64x64 array of 
unsigned characters (bytes) with a range in value from 0 to 
255. The PET and CT scans were not yet available when 
this work was done. Metadata headers are stripped from 
each MRI scan and the files concatenated into one file. The 
most general structure and function names were identified

Fig. 1. DBP class definitions for related Postgres tables.
STRUCTURE CONNECTION FUNCTION PATHOLOGY REFERENCE

{
Name
PartO f
NextTo
Connection
Function
Reference

}

{
Name
Source
Destination
Type
Afferent
Efferent
Projection
Reference

}

{
Name
Structure
Subfunction
Pathology
Reference

}

{
Name
Structure
Function
Reference

}

{
Bibliography
Structure
Function
Pathology
Species
Methodology
NumberOfSubjects
Findings

}



on each scan, creating two additional files of unsigned 
character values. The octree program first reads the values 
from the three files into a single 64x64x64 array. The 
volume array is recursively subdivided into octants, first 
32x32x32, then 16x16x16, and so forth. At each division, if 
the octant size remains greater than lx lx l, an internal 
octree node is created, that octant is again subdivided, and a 
smaller octant is given to each of the node’s eight children. 
When the octant size reaches lx lx l, a leaf node is 
allocated. Scan, structure and function values are read from 
the array, and the node records its coordinates and its depth 
in the tree. As the recursive calls return, each internal node 
sets its data from its children’s data (see Figure 4). An 
internal node’s MRI value is the average of the eight child 
values; the structure and function names are the union of 
those contained in the children. Parent node comers are also 
set: comer number 1 of the parent is the first child’s comer 
number 1; comer 2 is the second child’s comer 2, etc. The 
parent level is one less than the child’s level. The initial call 
to the octree-building function returns a pointer to the root, 
a node which represents the entire volume at very low 
resolution.

At this point we have an octree of the complete sets of 
data, and we begin to take advantage of the octree structure 
by “pruning” out the similar nodes which can be sufficiently

represented by their parents. The pruning function visits 
each parent of leaf nodes, deciding whether the eight 
children are similar enough to be represented by the parent 
alone. The MRJ values are tested to determine if each 
child’s value is within a certain range of the parent value. 
The structure and function identifications are compared for 
equality. If the children have the same identifications and all 
eight contain scan values falling within the given range, 
they are removed from the tree. The pruning operation 
could have been done in the recursive building function; 
however, in order to observe its effects, it was written as a 
separate routine called only on parents of leaf nodes and not 
propagating upward through the tree. More than four calls 
of the prune function had no further effect on the size of 
tree; i.e., no node collapsed more than four levels. As the 
structure and function identifications become more detailed 
and the nodes more dissimilar, we will need to preserve the 
deepest nodes for maximum resolution, and two or three 
calls of the pruning function should suffice. After pruning, a 
level-traversal of the octree is made and the contents of each 
node are written to a file. These are then imported into a 
Postgres relation (table) of objects, and Postgres manages 
persistence and access. Recording each node’s coordinates 
in the volume and depth in the tree allows us to manipulate 
the Postgres table in a fashion comparable to tree traversals.

Fig. 3. Octree decomposition o f a volume. The top cube, or root o f the tree, is divided into octants. The volumes contained in each 
octant are represented by the child nodes, 0-7. Four o f the children are empty and will not be dividedfurther. Partially filled 
cubes are again decomposed. Cube 3 's children include three full nodes, children 0, 2, and 3, which will also not be divided. 
Decomposition ofpartially filled cubes continues until a stopping measure such as tree depth, pixel-level resolution, or other 
threshold is reached.



The pruned octree is efficient because it effectively 
stores the same information as the full tree but in fewer 
nodes. Figure 4 uses empty and full cubes to illustrate how 
decomposition is stopped when a node satisfactorily 
represents its entire volume. Reducing the number of nodes 
in the tree reduces the size of the VOLUME table, the 
number of accesses needed to read or search the file, and the 
amount of data the DBP must transmit over the Internet. We 
take advantage of the octree’s hierarchical organization as 
well. Traversing an octree by levels results in “successive 
refinements that increase the resolution of the object’s 
details” [4]. Presumably, at some point in the traversal, the 
amount of detail is sufficient to present the desired 
information, and we are satisfied with the level of resolution 
rendered. Retrieval from the tree benefits in two ways. 
When an approximation or general information is requested, 
only nodes close to the root of the tree need be visited. On 
an indexed search, the decision to follow a path from parent 
to child eliminates a substantial portion of the tree from 
further searching [2]. We maintain this property in the 
Postgres table by using Level as a key field, retrieving only 
those objects at a particular level of resolution.

The octree node relation establishes a spatial, or 
resolution, hierarchy for rendering an image of the volume 
data it represents. The algorithm imposes constraints on the 
input, in that the x, y, and z dimensions must be equal (a

perfect cube) and that they must be a power of two. The 
DBP will ultimately use scans sized 256x256; however, 
there are only 64 of these files. A preprocessing module will 
generate, possibly by interpolation, three additional cross- 
sections between each scan (another option is to pad the file 
with null or background values which will be pruned from 
the tree anyway). The program has been tested on a 64- 
cubed data set. Using the MRI scans and the sparse structure 
and function identifications described, pruning reduces the 
number of nodes by nearly 53%, from 299,593 nodes to 
139,929 nodes. It is necessary to test on large data, but 
because of the number of nodes it is difficult to verify 
correctness of the output until the volume image can be 
rendered.

The algorithm itself solves the problem of generating 
and spatially registering data to a volume. As the project 
develops, test conditions for pruning nodes will be verified 
and decisions will be made on how to effectively overlay 
new indexing information on the existing nodes. Much 
remains to be discovered about the brain. As new structures 
and functions are mapped, the octree program can be used 
to update the database volume. Provided new files are 
registered to the original scans, the program can build a 
registered volume from any combination of input files. 
Newly registered objects can be output complete with 
Comers and Level data in the same way as the initial

Parent Node
1 1 ti telVkM uaiMoilM.^i^TiRECiTURET' T T gW n brsTj^ w.! f:

121 3 lobeA motorskills, speech, 
language

0,0,0; 2,0,0; 2,2,0; 0,2,0 
0,0,2; 2,0,2; 2,2,2; 0,2,2

Child Nodes

0 120 4 lobeA motorskills 0,0,0; 1,0,0; 1,1,0; 0,1,0 
0,0,1; 1,0,1; 1,1,1; 0,1,1

1 121 4 lobe_A motorskills 1,0,0; 2,0,0; 2,1,0; 1,1,0 
1,0,1; 2,0,1; 2,1,1; 1,1,1

2 118 4 lobeA motorskills 1,1,0; 2,1,0; 2,2,0; 1,2,0 
1,1,1; 2,1,1; 2,2,1; 1,2,1

3 119 4 lobe_A motorskills 0,1,0; 1,1,0; 1,2,0; 0,2,0 
0,1,1; 1,1,1; 1,2,1; 0,2,1

4 120 4 lobeA motorskills 0,0,1; 1,0,1; 1,1,1; 0,1,1 
0,0,2; 1,0,2; 1,1,2; 0,1,2

5 122 4 lobe_A speech 1,0,1; 2,0,1; 2,1,1; 1,1,1 
1,0,2; 2,0,2; 2,1,2; 1,1,2

6 123 4 lobeA speech 1,1,1; 2,1,1; 2,2,1; 1,2,1 
1,1,2; 2,1,2; 2,2,2; 1,2,2

7 123 4 lobeA language 0,1,1; 1,1,1; 1,2,1; 0,2,1 
0,1,2; 1,1,2; 1,2,2; 0,2,2

Fig. 4. Example o f data in a parent node and its eight children. These child nodes would not be prunedfrom the octree 
because, though the MRl_Values are within a close range o f the average (parent) value and all eight represent the same 
brain structure, they have different function identifications.



objects. The updated information can then be inserted into 
the correct VOLUME objects using Postgres commands. 
The program may be easily modified to read additional 
files, and it is likely that the VOLUME objects will be 
completely rebuilt periodically as researchers discover finer 
details about the brain.

Programming efficiency was not a primary concern at 
this stage of the project. The octree program is used only to 
create the volume and will not influence interactive 
performance of the Dynamic Brain Project database. One 
performance issue to be explored, however, involves the

storage of points in each VOLUME object. An alternative is 
to store a- single comer rather than the eight Comer 
coordinates. The cube’s size may be determined by its level, 
and from this we may calculate the other seven comers. 
This is a substantial savings in file size, and if the data is to 
be transformed for VRML on the user’s processor (using 
Java), it would also require the transfer of much less data. 
Improvement really depends on how the VRML 
transformation is done and on the average number of nodes 
used for each image.

References:
[1] Augustine, James R. Circuitry and functional aspects of the insular lobe in primates including humans. In review. 1996.
[2] Carlbom, Ingrid, Indranil Chakravarty, David Vanderschel. A hierarchical data structure for representing the spatial 
decomposition of 3-d objects. IEEE Computer Graphics and Applications, Vol.5, April 1985, pp. 24-31.
[3] Huntsberger, Terry and James Augustine. Dynamic brain project (proposal). Columbia, SC: University of South 
Carolina, 1996. Submitted to National Science Foundation.
[4] Kunii, T.L., T. Satoh, K. Yamaguchi. Generation of topological boundary representation from octree encoding. IEEE 
Computer Graphics and Applications, Vol. 5, March 1985, pp. 29-38.
[5] Loomis, Mary E.S. Object Databases: The Essentials. Reading, Massachusetts: Addison-Wesley Publishing Company. 
1995.
[6] Samet, Hanan. Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Reading, 
Massachusetts: Addison-Wesley Publishing Company. 1990.
[7] Service, Robert F. New dynamic duo: PET, MRI, joined for the first time. Science, Vol. 272 (June 7, 1996), p. 1423.
[8] Stonebraker, M. and G. Kemnitz. The Postgres next-generation database management system. Communications of the 
ACM, 34(10): 78-92. October, 1991.




